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Abstract

Story visualization is a challenging text-to-001
image generation task for the difficulty of ren-002
dering visual details from abstract text descrip-003
tions. Besides the difficulty of image genera-004
tion, the generator also needs to conform to the005
narrative of a multi-sentence story input. While006
prior arts in this domain have focused on im-007
proving semantic relevance between generated008
images and input text, controlling the generated009
images to be temporally consistent still remains010
a challenge. Moreover, existing generators are011
trained on single text-image pairs and fail to012
consider the variations of natural language cap-013
tions that can describe a given image, caus-014
ing poor model generalization. To address such015
problems, we leverage a cyclic training method-016
ology involving pseudo-text descriptions as an017
intermediate step that decouples the image’s vi-018
sual appearance from the variations of natural019
language descriptions. Additionally, to gener-020
ate a semantically coherent image sequence, we021
consider an explicit memory controller which022
can augment the temporal coherence of images023
in the multi-modal autoregressive transformer.024
To sum up all components, we call it Cyclic025
Story visualization by MultimodAl Recurrent026
Transformers or C-SMART for short. Our027
method generates high-resolution, high-quality028
images, outperforming prior works by a signifi-029
cant margin across multiple evaluation metrics030
on the Pororo-SV dataset.031

1 Introduction032

Story visualization is a challenging task involving033

generating a sequence of images given natural lan-034

guage paragraph. A story consists of a sequence of035

pairs of texts and images where the pairs are tem-036

porally coherent as a story. Our task is to reproduce037

the images given the multi-sentence paragraph in-038

put. It is more challenging than the conventional039

text-to-image generation task owing to additional040

objectives such as understanding narrative in text,041

semantic relevance and temporal consistency, e.g.042

Text-TO-Video Generation

Text-TO-Image Gen. 
Paragraph

A red car is on the ...
Snow is falling ...
Petty, poby, loopy, ...
Petty is approaching ...

S1:
S2:
S3:

S4:

Sequence of Images

A small train on a city street ...

Sentence

Story Visualization

Image

Video

A person wearing red shirt is wandering around the class room.

Sentence

Figure 1: Comparing visual generation tasks from
texts. Story visualization task aims to generate a se-
quence of images to describe a given story written in a
natural language paragraph and is different from text-to-
image or video generation.

foreground and background consistency, in the gen- 043

erated sequence of images, as depicted in Fig. 1. 044

The common approaches to tackle this task are to 045

build sequential GAN framework (Li et al., 2019) 046

and deep recurrent context encoder to track the 047

story flow. However, all these efforts are limited to 048

training with a single input text description per im- 049

age, even though many possible descriptions may 050

depict the target image. 051

Multiple descriptions for a paired image are es- 052

sential for the generalization of text-to-image gen- 053

erators. They account for the variation in natural 054

language descriptions that may be used to describe 055

a scene. Thus, most image captioning datasets (Lin 056

et al., 2014) comprise multiple natural language di- 057

rectives, obtained by a rigorous human annotation, 058

in both the training and evaluation splits. Neverthe- 059

less, the Pororo-SV dataset for story visualization 060

task (Li et al., 2019) consists of a single text-image 061

pair in the training and evaluation splits. 062

To address this, we propose the cyclic pseudo- 063
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text approach comprising an Image to Pseudo-Text064

to Image stream for training the text-to-image gen-065

erator. The pseudo-text provides contextual infor-066

mation absent in the human-annotated label inputs,067

making the text-to-image generator to be more gen-068

eralizable to natural language variations. (Sec. 3.3)069

We implement this cyclic optimization using a bi-070

directional generative model, e.g. text-to-image and071

image-to-text in a unified architecture, to produce072

multimodal outputs, as shown in Fig. 2. Because073

the cross-modal generation requires the model to074

fully understand the source modality, this iterative075

forward/reverse generative process (i.e. Forward:076

text-image, Reverse: image-text) could help gener-077

ate the target modality with high semantic consis-078

tency with the source (Huang et al., 2021). In addi-079

tion, we address the temporal consistency by devel-080

oping a dynamic gated-memory module in a mul-081

timodal recurrent autoregressive transformer, in-082

spired by (Maharana et al., 2021; Lei et al., 2020b).083

To sum up all the components, we call our pro-084

posed model architecture as C-SMART (Cyclic085

Story visualization by MultimodAl Recurrent086

Transformers). The experimental results manifest087

that we can improve the quality of visualized stories088

with a large margin on various evaluated metrics089

compared to prior works. (Sec. 5)090

We summarize our contributions as follows:091

• propose the first bidirectional generative model092

using multimodal self-attention on long-range093

input of text and image in a recurrent manner094

for generating a temporally coherent image (or095

text) sequence given text (or image) in an unified096

framework.097

• exploit the nature of bi-directional multi-modal098

generation and cyclically generate pseudo-text099

for supplying contextual information deficit in100

the human-annotated label for improved general-101

ization of the text-to-image generator.102

• explicitly generate sequences of images at a103

higher resolution with higher quality than ever104

before on a benchmark dataset.105

• significantly outperform prior works by a large106

margin along with various evaluation metrics for107

the image quality, temporal coherency, and global108

semantic matching between generated images109

and natural language descriptions.110

2 Related Work111

Text-to-Image generation. Text-based image112

synthesis has been widely studied recently. Most113

papers in this area focus on enhancing the semantic 114

relevance of the generated image for the input text 115

description and on resolution improvements. MC- 116

GAN (Park et al., 2018) models both background 117

and foreground information to generate photo re- 118

alistic foreground objects for a background. Stack- 119

GAN (Zhang et al., 2017) uses a two-stage process 120

to enhance the resolution of the image conditioned 121

on an input text description. Subsequent works fo- 122

cus on architectural enhancements over StackGAN. 123

This is accomplished by either adding attention net- 124

works for improved semantic relevance, extending 125

the two-stage process, or adding memory networks 126

to improve the resolution of generated images and 127

others (Xu et al., 2018; Zhang et al., 2018; Zhu 128

et al., 2019; Gao et al., 2019). Most recently, text- 129

based image synthesis has been studied in a zero- 130

shot setting. DALL-E (Ramesh et al., 2021) pro- 131

poses an autoregressive transformer to model the 132

text and image as a single data stream. More recent 133

approaches utilize the multimodal CLIP model to 134

achieve the same objective (Radford et al., 2021). 135

Story Visualization. The story visualization task 136

is a more complex counterpart of text-based image 137

generation that has recently garnered research inter- 138

est. StoryGAN (Li et al., 2019) was the first work in 139

this direction and utilized a story-level discrimina- 140

tor to improve global consistency in generated im- 141

ages. CP-CSV (Song et al., 2020) disentangles fig- 142

ure and background information to enhance charac- 143

ter consistency. DuCO-StoryGAN (Maharana et al., 144

2021) presents video captioning as an auxiliary task 145

for story visualization along with other design im- 146

provements to StoryGAN. VLC-StoryGAN (Ma- 147

harana and Bansal, 2021) uses constituency parse- 148

trees and common sense knowledge to improve con- 149

sistency and an object-level feedback loop to im- 150

prove image quality. DuCO-StoryGAN and DALL- 151

E are direct precursors of our work. While DuCO- 152

StoryGAN utilizes MART (Lei et al., 2020b) to 153

encode video captions, DALL-E presents a gen- 154

eration framework based on joint autoregressive 155

modeling of text and images. 156

Recurrent Transformer. Although transformers 157

have been shown to be effective and superior to 158

RNNs (Vaswani et al., 2017) for sequential model- 159

ing, they are still unable to model historical infor- 160

mation well. This problem is distinctive in the task 161

of long-range sequential data modeling because of 162

context fragmentation (Dai et al., 2019), i.e. each 163
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Figure 2: Proposed Multimodal Recurrent Transformer for generating an image sequence given a multi-
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Figure 3: Image tokenization using VQ-VAE.

language segment is dealt with individually without164

knowing its surrounding context. This can lead to165

inefficient optimization and inferior performance166

because every segment is treated separately. To167

address this, (Lei et al., 2020a) transplanted a recur-168

rent path into transformer architecture. Specifically,169

the modeling of new data segments is conditioned170

on historical hidden states produced in the previous171

layer and use highly summarized memory states.172

With this, they explicitly bridge useful prior seman-173

tic or linguistic cues to future segments.174

3 Methods175

3.1 Recurrent Text-to-Image Generation176

Recently, researchers have explored the potential177

of transformer-based models for diverse generative178

tasks, e.g. image/video captioning (Cornia et al.,179

2020; Zhou et al., 2018), video prediction, text-to-180

image generation etc (Wu et al., 2021). Inspired181

by the autoregressive generative models for pixel-182

by-pixel image generation (Chen et al., 2018), the183

transformer-based methods (Ding et al., 2021) have184

shown promising results for text-to-image synthe-185

sis.186

Considering this, we propose C-SMART to gen- 187

erate a semantically relevant and temporally con- 188

sistent sequence of images corresponding to an in- 189

put multi-sentence story. We train the model using 190

a two-stage training procedure, similar to DALL- 191

E (Ramesh et al., 2021). In contrast to the single- 192

stream context-agnostic generation in DALL-E, our 193

model utilizes a recurrent multimodal transformer 194

architecture with dynamic aggregation of histori- 195

cal information for context-aware image sequence 196

generation. 197

To train the model, we first compress the im- 198

age into a discretized set of latent features called 199

image tokens. This is achieved using a Vector Quan- 200

tized Variational Autoencoder (VQ-VAE) (van den 201

Oord et al., 2017) for improved computational effi- 202

ciency. Second, we recurrently train the multimodal 203

autoregressive transformer model with an infused 204

dynamic gated-memory module to solve the story 205

visualization task. If the source tokens {z1, ..., zn} 206

discretized from image compression using VQVAE 207

and the textual tokens {t1, ..., tm} tokenized from 208

the text using the WordPiece tokenizer are concate- 209

nated and fed into the model, the loss for single 210

generative model can be summarized as follows. 211

Lt2i =
∑n

k=1− logP (zk|t1, ..., tm, z1, ..., zk−1)

(1)
212

And, the loss for recurrent generative model for 213

sequential story generation can be calculated by 214

weight sum of sequence of single image loss. 215
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Methods FID↓ FSD↓ Char. F1↑ Frame Acc.↑ BLEU2/3↑

StoryGAN (Li et al., 2019) 134.32 200.10 27.53 10.13 3.25 / 1.21
CP-CSV (Song et al., 2020) 140.24 184.52 21.33 8.78 3.23 / 1.26
DuCo (Maharana et al., 2021) 91.96 171.36 36.13 13.03 3.39 / 1.40

C-SMART (Ours) 50.24 30.40 58.11 28.06 5.30 / 2.34

Table 1: Quantitative results on test split of Pororo-SV Dataset. ↓ indicates ‘lower the better’ and ↑ indicates
‘higher the better’. All experimental results of prior works are reproduced with author’s codebase in Appendix.
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Figure 4: The unified model architecture for bidirec-
tional text-image and image-text generation.

Image Tokenization. Image tokens are gener-216

ated at the compression stage of training. Real im-217

ages usually consist of millions of pixels which218

make the generative process extremely expen-219

sive. In the compression stage, we use a VQ-220

VAE (van den Oord et al., 2017) to transform the221

input images into a set of low-dimensional discrete222

latent features called image tokens. As shown in223

Fig. 4, this framework is the autoencoder structure224

that learns a discretized latent encoding for input225

data x in the training procedure.226

Generating an Image given Text. A model de-227

signed for the story visualization task needs to (1)228

understand the cross-modal relationship between229

text and images, (2) interpret the narrative of the230

story from the text, and (3) generate temporally231

consistent images while maintaining semantic rele-232

vance with the input text.233

Fig. 2 shows the proposed multimodal recur-234

rent transformer for generating an image sequence235

given a multi-sentence story. First, we tokenize the236

text and image inputs for training and add a po-237

sitional embedding. Both text and image tokens238

are treated equally and the auto-regressive trans-239

former carries out a language modeling task, i.e.,240

left-to-right token prediction. We then decode the241

image tokens to form an image using a pre-trained242

VQ-VAE decoder.243

The multimodal self-attention module helps pre-244

serve context even over long sequences of text and245

image tokens and leads to high resolution images.246

Additionally, we propose a dynamic memory ag- 247

gregation module for improved narrative under- 248

standing, infused in the intermediate layers of the 249

transformer as shown in Fig. 2 (right). The dynamic 250

updates occur as follows (1) intermediate layer is 251

modified for memory aggregation on current stage, 252

and (2) aggregated information is passed through 253

to next stage transformer. This module helps us 254

improve temporal consistency and overall seman- 255

tic relevance of the generated images by providing 256

easy access to historically aggregated features. 257

Ml
t = (1− Z l

t)⊙ Z l
t + Z l

t ⊙M l
l−1. (2) 258

Auto-regressive Token Sampling. At the infer- 259

ence phase of the generative model, it is important 260

to sample a plausible data from the model. Because 261

we exploit an autoregressive transformer-based gen- 262

erative model, predicted data tokens can typically 263

be sampled with various decoding strategies such 264

as beam-search (Cohen and Beck, 2019), top-k and 265

nucleus sampling (Holtzman et al., 2019), which 266

are commonly used in many NLP literature (Ip- 267

polito et al., 2019). We use nucleus sampling strat- 268

egy because it is a simple but effective method to 269

draw considerably higher quality tokens out of the 270

generative model (Holtzman et al., 2019). For most 271

of our results, we use nucleus sampling with a rate 272

of p = 0.9 unless stated otherwise. We empirically 273

decide the values of the hyper-parameter of p using 274

the FID score of the generated image sequences on 275

the validation dataset. 276

3.2 Bi-directional Sequence Gen. for VL 277

Cross-modal generation, aiming at mapping or 278

translating one modality to another, requires the 279

model to fully "understand" the source modality 280

and to faithfully "generate" the target modality with 281

high semantic consistency with the source (Bal- 282

trušaitis et al., 2019). In the light of this, many 283

researchers have explored the unification of bidi- 284
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Figure 5: Character classification F1-score on test
split of Pororo-SV Dataset.

rectional text-to-image generation tasks in a single285

model (Reed et al., 2016; Qiao et al., 2019) to im-286

prove the generative model performance.287

Taking this into account, we propose a bi-288

directional image and text sequence generative289

model given sequence of other modality. We jointly290

train the image sequence generative model from a291

multi-sentence paragraph and multi-sentence para-292

graph generative model from an image sequence in293

unified framework.294

For the generative model, we use autoregressive295

transformer-based model for both text-to-image296

and image-to-text generation task, where two-stage297

approach is applied as mentioned in Sec. 3.298

L = Ltxt2img + Limg2txt, (3)299

Ltxt2img =

n∑
k=1

− logP (zk|t1, ..., tm, z1, ..., zk−1),

(4)

300

Limg2txt =
n∑

k=1

− logP (tk|z1, ..., zn, t1, ..., tk−1).

(5)

301

3.3 Cyclic Pseudo-Text Generation302

For image captioning task, there is a lot of avenue303

to describe input image with natural language sen-304

tence. Thus, many evaluation metric to measure305

model performance have been proposed (Vedantam306

et al., 2015; Post, 2018). Because there are different307

properties to evaluate quality of the generated cap-308

tion, however, no single methodology has been pro-309

posed and many researchers have conducted human310

evaluation and combined it with automatic evalu-311

ation measures to evaluate the captioning model312

performance so far. Difficulty of evaluation is due313

to the possibility that one image can be expressed in314

various natural language sentences. For this reason,315

most image captioning datasets consist of multi-316

ple descriptive sentences achieved by multi-human 317

annotation processing (Lin et al., 2014). 318

Nonetheless, the Pororo-SV dataset for story vi- 319

sualization task (Li et al., 2019) consist of one 320

text-image pair in training and evaluation dataset. 321

This can be detrimental from a model generaliza- 322

tion point of view. To combat this, we propose to 323

utilize the pseudo-text to train the text-to-image 324

generation model. The purpose of this pseudo-text 325

is to supply contextual information of the given 326

image with train model. 327

Also, this formulation of cycle-consistency in 328

text-image can be thought of as an online data- 329

augmentation technique (Shah et al., 2019) where 330

the model is trained on several generated pseudo- 331

texts with one image and hence can be generaliz- 332

able to the unseen source text during inference. 333

4 Experiments 334

4.1 Data and Evaluation Metrics 335

Dataset. We use Pororo-SV dataset proposed 336

in (Li et al., 2019), which is a modified version 337

of (Kim et al., 2017) for story visualization task. 338

Each story sample consists of 5 image sequences 339

and corresponding 5 descriptions. As mentioned 340

in previous works (Maharana et al., 2021), there 341

is a lot of data overlap between training and test 342

samples in the original dataset split of Pororo-SV 343

dataset (Li et al., 2019). To be more challenging, 344

we follow the dataset split proposed in (Maharana 345

et al., 2021), which contains 10191, 2334 and 2208 346

samples in training, validation and test splits, re- 347

spectively. In this version, there is no data overlap 348

between training and test split. 349

Evaluation Metrics 1 Due to the task complexity 350

and its generative nature of the story visualization, 351

evaluation is non-trivial. Evaluation method of gen- 352

erated image sequence needs to focus on the gener- 353

ated image quality, coherency between generated 354

images and semantic matching generated image 355

sequence with descriptions. Thus, we use diverse 356

evaluation metrics to consider the complexity of 357

the task following (Maharana et al., 2021). We also 358

evaluate the generated caption quality with diverse 359

automatic-evaluation metrics. 360

• Fréchet Inception Distance (FID): Assessing 361

the quality of generated image by calculating the 362

1To make a fair comparison with prior works, all pre-
trained model for evaluating the performance are based on
https://github.com/adymaharana/StoryViz.
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Methods FID↓ FSD↓ Char. F1↑ Frame Acc.↑ BLEU2/3↑

DuCo (Maharana et al., 2021) 91.96 171.36 36.13 13.03 3.39 / 1.40

Baseline (Transformer-based model) 66.51 40.34 48.38 18.38 4.34 / 1.77
+ Memory-Augmented Recurrent 65.89 36.81 57.53 27.65 4.90 / 2.01
+ Nucleus Sampling 56.04 33.27 59.20 28.69 5.18 / 2.18
+ Bi-directional 52.20 31.43 57.18 26.81 5.23 / 2.27
+ Cyclic Pseudo-Text (C-SMART) 50.24 30.40 58.11 28.06 5.30 / 2.34

Table 2: Ablated results on test split of Pororo-SV Dataset.

distance of the distribution between generated363

and real images used to train the generator.364
• Fréchet Story Distance (FSD): Assessing the365

coherency of the generated sequence of images366

by calculating the distance of the distribution367

between generated and real stories used to train368

the generator proposed in (Song et al., 2020).369
• Character Classification: Assessing the pres-370

ence of character in generated image sequence.371

Using pre-trained Inception-v3 with a multi-label372

classification loss to identify characters in the373

generated image. In particular, we report micro-374

averaged F-score of character classification and375

exact matching using frame accuracy as done in376

prior work (Maharana et al., 2021).377
• Video Captioning Accuracy: Assessing the378

global semantic matching between generated379

image sequence and captions. We report the380

BLEU2/3 scores of captions predicted using gen-381

erated images with pre-trained video captioner.382
• Language Quality: Assessing the quality of gen-383

erated captions using C-SMART. We use the au-384

tomatic evaluation metrics composed of BLEU385

2/3, METEOR, ROUGE-L, and CIDEr score. 2386

4.2 Implementation Details 3387

We use a recurrent GPT-based paragraph-to-image388

sequence generator having a memory layer for story389

visualization. With this, we iteratively conduct bi-390

directional generation of text-to-image and image-391

to-text. In the first stage of training, we train a392

discrete variational autoencoder with only Pororo-393

SV dataset, which compresses each input image394

into 16 × 16 grid of image tokens having 8192395

possible values for each element. Then, we use a396

simple text tokenizer4 having vocaburary size of397

2We use the nlg-eval package (Sharma et al., 2017) to
evaluate the generated caption quality.

3You can find more details about implementation details
in our code. We will release code soon.

4https://github.com/openai/CLIP/blob/
main/clip/simple_tokenizer.py

49,408. Finally, we use 128 text token length and 398

totally 386 (128 + 16 × 16 + 2) input tokens with 399

two special tokens (i.e., start of sentence token and 400

start of image token) (Fig. 2). In the second stage 401

of training, we train the autoregressive multimodal 402

transformer in a recurrent manner, i.e. C-SMART, 403

to produce image sequence given multi-sentence 404

paragraph. We set the hidden dimension size to 405

512, the number of transformer layer to 16, and 406

the number of attention heads to 16. For positional 407

encoding, we use embedding layer to learn each 408

relative token position. Moreover, because we train 409

the generative network in a bi-directional way, we 410

use special segment embedding to implement it. 411

By indicating source and target individually with 412

segment embedding, we can make the model to 413

produce target data from source data, i.e. text-to- 414

image or image-to-text) And, we apply attention 415

mask similar to (Ramesh et al., 2021). For memory 416

module, we set the length of recurrent memory state 417

1. For cyclic pseudo-text approach, we set it to be 418

implemented after half time of total training times. 419

This is because at the beginning of the training, 420

model can not produce proper pseudo-text using 421

the model. This can be harmful to train text-to- 422

image generation. Thus, we experimentally decide 423

to implement it after half time shown in Fig. 8 424

5 Results 425

5.1 Quantitative Results 426

In Table 1, we summarize the performance com- 427

parison to prior works and C-SMART on Pororo- 428

SV (Li et al., 2019) in test split. In all metrics (i.e., 429

FID, FSD, Char.F1, Frame Acc., BLEU2/3) used 430

for evaluating image quality, temporal coherency 431

on sequence of generated images and global seman- 432

tic consistency between generated images and de- 433

scriptions, C-SMART outperforms prior existing 434

works by a large margin. Particularly, C-SMART 435

shows a significant gain of FSD, which measures 436
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Figure 6: Comparative Qualitative Results to Prior
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plausible and temporally more coherent image sequence
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the temporal coherency in the story, over existing437

works. Along with total averaged Char.F1 score in438

Tab. 1, Fig. 5 shows comparison of per-character439

classification F1-score on test split of Pororo-SV440

dataset and normalized character frequency in train441

split dataset. With our C-SMART, we obtain su-442

perior performance on various characters shown443

in Fig. 5 Particularly, when compared with (Ma-444

harana et al., 2021), we see up to 55% improve-445

ment for less frequent character, i.e. the charac-446

ter name of Tongtong, in test split of Pororo-SV447

dataset. In addition, considering the upper bound448

of BLEU2/3 score measured using ground truth449

test dataset, i.e. oracle score: BLEU2/3: 5.54/2.34,450

C-SMART significantly outperform prior works451

and approximately is closet to the oracle score. Con-452

sidering prior work (Maharana et al., 2021) explic-453

itly use the pre-trained video captioner as learning454

signal, this result shows the superior performance455

of C-SMART.456

Furthermore, to assess the contribution of var-457
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Figure 7: Examples of generated sequence of images
with and without recurrent memory module. Ours
(C-SMART) generates semantically and visually plau-
sible image sequences.

ious components added to C-SMART, we per- 458

formed an ablation experiment with different con- 459

figurations as shown in Tab. 2. 460

The baseline model consists of autoregressive 461

transformer-based model only for single text-to- 462

image generation. Although it lacks ability to glob- 463

ally understand sequential context because of limit 464

of the architecture, the performance among various 465

evaluated metrics is dramatically improved as com- 466

pared to prior work (Maharana et al., 2021). We 467

conjecture that this improvement can be attributed 468

to the improved image quality by using transformer- 469

based approach. To allow the baseline model to uti- 470

lize the historical information and to be more tem- 471

porally coherent between generated contents, we 472

add recurrent path augmented with memory mod- 473

ule as similar with (Lei et al., 2020b). We identify 474

that the generative performance increase among 475

all evaluation metrics and the increment of FSD, 476

Char.F1 and Frame Acc. is the highest among 477

different components, e.g. nucleus sampling, bi- 478

directional and cyclic pseudo-text. This improved 479

performance can be atttributed to Next, we use 480

the nucleus sampling strategy with the memory- 481

augmented recurrent transformer. With the addition 482

of this, we obtain more enhanced FID score, which 483

means improved image quality. Next, we evaluate 484

the addition of the bi-directional mechanism where 485
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Figure 8: Contextual information predicted from the
model when increasing training time.

generative process of text-to-image and image-to-486

text is conducted iteratively in a unified architec-487

ture. We observe the performance improvement488

except Char.F1 and Frame Acc.. Lastly, we use489

cyclic pseudo-text approach where pseudo-text is490

produced by using autogressive transformer-based491

model to supply the generative model contextual in-492

formation not described in ground-truth label. The493

use of cyclic pseudo-text approach makes the gen-494

erative model to be more improved compared to495

prior version, and obtain increased performance.496

5.2 Qualitative Results497

Fig. 8 contains generated examples from the498

Pororo-SV dataset. The top row in images shows499

the ground truth sequence image, the three rows (2-500

4) contain prior works (Li et al., 2019; Song et al.,501

2020; Maharana et al., 2021) and the final row is502

the image generated by C-SMART. In this exam-503

ple, we demonstrate the superior visual quality and504

temporal cohrecy of our approch as compared prior505

works.506

We empirically investigate the advantage of re-507

current memory and summarize the results in Fig. 8.508

As shown in the examples, the proposed recur-509

rent memory promotes to generate a semantically510

more plausible and temporally consistent image511

sequence (compare second rows to third rows).512

5.3 Analysis of Linguistics513

As the unified architecture for generating of514

text/image sequence given other modality input,515

we also have advantage of video description when516

using C-SMART framework. By using this, we517

apply it as pseudo-text generation and conduct518

cyclic approach on Image to Pseudo-Text to Im- 519

age stream. In order to compare generated caption 520

quality, we compare the generated caption results 521

using C-SMART with MART (Lei et al., 2020b) 522

which is only used for video caption task. 523

Pseudo-Text for contextual information. Fig. 8 524

shows various generated captions that change as 525

training time increases using C-SMART. Look- 526

ing at the results of captions inferred through 527

C-SMART, it can be confirmed that although it 528

does not generate proper captions at the beginning 529

of training, it generates descriptive sentences to in- 530

put image as training progresses, which is different 531

from GT but it can be also thought of as another 532

descriptive sentence, i.e. contextual information. 533

However, when training procedure is completed 534

(200 epoch), it can be shown that the generated 535

captions are almost similar to the training data, in- 536

dicating that it overfits to the training data. Thus, 537

to properly utilize the contextual information gen- 538

erated by pseudo-text, we use the late activation 539

strategy (Shah et al., 2019) by producing pseudo- 540

text at later stages of training. In our case, we apply 541

it at half of total training time, which is determined 542

by empirically as shown in Fig. 8 543

6 Conclusion 544

We propose C-SMART as bi-directional gener- 545

ative framework for sequential target data (im- 546

age/text) generation given sequential source data 547

(text/image) for solving the task of story visualiza- 548

tion in unified form. 549

Overall, our C-SMART significantly outper- 550

form prior works by large margin on the various 551

evaluation metrics. 552

Extending our model to out-of-distribution 553

dataset or in zero-shot setup would be an inter- 554

esting future research avenue. 555
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