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Abstract

Story visualization is a challenging text-to-
image generation task for the difficulty of ren-
dering visual details from abstract text descrip-
tions. Besides the difficulty of image genera-
tion, the generator also needs to conform to the
narrative of a multi-sentence story input. While
prior arts in this domain have focused on im-
proving semantic relevance between generated
images and input text, controlling the generated
images to be temporally consistent still remains
a challenge. Moreover, existing generators are
trained on single text-image pairs and fail to
consider the variations of natural language cap-
tions that can describe a given image, caus-
ing poor model generalization. To address such
problems, we leverage a cyclic training method-
ology involving pseudo-text descriptions as an
intermediate step that decouples the image’s vi-
sual appearance from the variations of natural
language descriptions. Additionally, to gener-
ate a semantically coherent image sequence, we
consider an explicit memory controller which
can augment the temporal coherence of images
in the multi-modal autoregressive transformer.
To sum up all components, we call it Cyclic
Story visualization by MultimodAl Recurrent
Transformers or C-SMART for short. Our
method generates high-resolution, high-quality
images, outperforming prior works by a signifi-
cant margin across multiple evaluation metrics
on the Pororo-SV dataset.

1 Introduction

Story visualization is a challenging task involving
generating a sequence of images given natural lan-
guage paragraph. A story consists of a sequence of
pairs of texts and images where the pairs are tem-
porally coherent as a story. Our task is to reproduce
the images given the multi-sentence paragraph in-
put. It is more challenging than the conventional
text-to-image generation task owing to additional
objectives such as understanding narrative in text,
semantic relevance and temporal consistency, e.g.
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Figure 1: Comparing visual generation tasks from
texts. Story visualization task aims to generate a se-
quence of images to describe a given story written in a
natural language paragraph and is different from text-to-
image or video generation.

foreground and background consistency, in the gen-
erated sequence of images, as depicted in Fig. 1.

The common approaches to tackle this task are to
build sequential GAN framework (Li et al., 2019)
and deep recurrent context encoder to track the
story flow. However, all these efforts are limited to
training with a single input text description per im-
age, even though many possible descriptions may
depict the target image.

Multiple descriptions for a paired image are es-
sential for the generalization of text-to-image gen-
erators. They account for the variation in natural
language descriptions that may be used to describe
a scene. Thus, most image captioning datasets (Lin
et al., 2014) comprise multiple natural language di-
rectives, obtained by a rigorous human annotation,
in both the training and evaluation splits. Neverthe-
less, the Pororo-SV dataset for story visualization
task (Li et al., 2019) consists of a single text-image
pair in the training and evaluation splits.

To address this, we propose the cyclic pseudo-



text approach comprising an Image to Pseudo-Text
to Image stream for training the text-to-image gen-
erator. The pseudo-text provides contextual infor-
mation absent in the human-annotated label inputs,
making the text-to-image generator to be more gen-
eralizable to natural language variations. (Sec. 3.3)
We implement this cyclic optimization using a bi-
directional generative model, e.g. text-to-image and
image-to-text in a unified architecture, to produce
multimodal outputs, as shown in Fig. 2. Because
the cross-modal generation requires the model to
fully understand the source modality, this iterative
forward/reverse generative process (i.e. Forward:
text-image, Reverse: image-text) could help gener-
ate the target modality with high semantic consis-
tency with the source (Huang et al., 2021). In addi-
tion, we address the temporal consistency by devel-
oping a dynamic gated-memory module in a mul-
timodal recurrent autoregressive transformer, in-
spired by (Maharana et al., 2021; Lei et al., 2020b).

To sum up all the components, we call our pro-
posed model architecture as C-SMART (Cyclic
Story visualization by MultimodAl Recurrent
Transformers). The experimental results manifest
that we can improve the quality of visualized stories
with a large margin on various evaluated metrics
compared to prior works. (Sec. 5)

We summarize our contributions as follows:

* propose the first bidirectional generative model
using multimodal self-attention on long-range
input of text and image in a recurrent manner
for generating a temporally coherent image (or
text) sequence given text (or image) in an unified
framework.

* exploit the nature of bi-directional multi-modal
generation and cyclically generate pseudo-text
for supplying contextual information deficit in
the human-annotated label for improved general-
ization of the text-to-image generator.

* explicitly generate sequences of images at a
higher resolution with higher quality than ever
before on a benchmark dataset.

* significantly outperform prior works by a large
margin along with various evaluation metrics for
the image quality, temporal coherency, and global
semantic matching between generated images
and natural language descriptions.

2 Related Work

Text-to-Image generation. Text-based image
synthesis has been widely studied recently. Most

papers in this area focus on enhancing the semantic
relevance of the generated image for the input text
description and on resolution improvements. MC-
GAN (Park et al., 2018) models both background
and foreground information to generate photo re-
alistic foreground objects for a background. Stack-
GAN (Zhang et al., 2017) uses a two-stage process
to enhance the resolution of the image conditioned
on an input text description. Subsequent works fo-
cus on architectural enhancements over StackGAN.
This is accomplished by either adding attention net-
works for improved semantic relevance, extending
the two-stage process, or adding memory networks
to improve the resolution of generated images and
others (Xu et al., 2018; Zhang et al., 2018; Zhu
et al., 2019; Gao et al., 2019). Most recently, text-
based image synthesis has been studied in a zero-
shot setting. DALL-E (Ramesh et al., 2021) pro-
poses an autoregressive transformer to model the
text and image as a single data stream. More recent
approaches utilize the multimodal CLIP model to
achieve the same objective (Radford et al., 2021).

Story Visualization. The story visualization task
is a more complex counterpart of text-based image
generation that has recently garnered research inter-
est. StoryGAN (Li et al., 2019) was the first work in
this direction and utilized a story-level discrimina-
tor to improve global consistency in generated im-
ages. CP-CSV (Song et al., 2020) disentangles fig-
ure and background information to enhance charac-
ter consistency. DuCO-StoryGAN (Maharana et al.,
2021) presents video captioning as an auxiliary task
for story visualization along with other design im-
provements to StoryGAN. VLC-StoryGAN (Ma-
harana and Bansal, 2021) uses constituency parse-
trees and common sense knowledge to improve con-
sistency and an object-level feedback loop to im-
prove image quality. DuCO-StoryGAN and DALL-
E are direct precursors of our work. While DuCO-
StoryGAN utilizes MART (Lei et al., 2020b) to
encode video captions, DALL-E presents a gen-
eration framework based on joint autoregressive
modeling of text and images.

Recurrent Transformer. Although transformers
have been shown to be effective and superior to
RNNs (Vaswani et al., 2017) for sequential model-
ing, they are still unable to model historical infor-
mation well. This problem is distinctive in the task
of long-range sequential data modeling because of
context fragmentation (Dai et al., 2019), i.e. each



Left-to-right token prediction, a.k.a. Sequence Modeling

(o] (] (o

Recurrent Memory
: Transformer Aggregation
o x 5 times P

Auto-regressive

Feed Forward ’,' [

Memory update
M =(1-2)0Z +Z oM

Transformer Add&Norm P 7
t t
AN VANEEVANERVAN ; 4
2 L D LT Multi-Head ( tanh ) [ sigmod )
Attenti
128 Text tokens 256 Image tokens : ention
§ . by S -y ( Add ) Add )
: M
g sSOS Text _____ Text sol Image | ... Image “‘ Agg?emguarﬁ'on‘ k
= token token token token ]
H &+ + + + Y\ FeedForward Linear Linear Linear Linear
S Source \ Source ----- | Source Target Target ----- Target |
3 —— =
H Pos1 PosZ _____ Pos.129 Pos 130 Pos131 _____ Pos 386 addéhiom ——
& | e X Attention
( V|| Mult-Head v
Pororo wears orange Pororo/wears [orange/ & \ Attention N
glasses and a hat glasses/and/a/hat/ ompress \ QAKAV
covering Pororo's ears | covering/Pororo's/ears E i g [
M., H!
Input text Text tokenization Input?n?@e‘ Image tokenization t-1 t

Figure 2: Proposed Multimodal Recurrent Transformer for generating an image sequence given a multi-
sentence paragraph. (Left): Illustration of the single text-to-image generation process. With auto-regressive
transformer architecture, the training procedure is conducted using left-to-right token prediction, a.k.a. language
modeling. (Right): Basic building block of recurrent transformer. Considering historical information (i.e., memory),
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Figure 3: Image tokenization using VQ-VAE.

language segment is dealt with individually without
knowing its surrounding context. This can lead to
inefficient optimization and inferior performance
because every segment is treated separately. To
address this, (Lei et al., 2020a) transplanted a recur-
rent path into transformer architecture. Specifically,
the modeling of new data segments is conditioned
on historical hidden states produced in the previous
layer and use highly summarized memory states.
With this, they explicitly bridge useful prior seman-
tic or linguistic cues to future segments.

3 Methods

3.1 Recurrent Text-to-Image Generation

Recently, researchers have explored the potential
of transformer-based models for diverse generative
tasks, e.g. image/video captioning (Cornia et al.,
2020; Zhou et al., 2018), video prediction, text-to-
image generation etc (Wu et al., 2021). Inspired
by the autoregressive generative models for pixel-
by-pixel image generation (Chen et al., 2018), the
transformer-based methods (Ding et al., 2021) have
shown promising results for text-to-image synthe-
sis.

Considering this, we propose C-SMART to gen-
erate a semantically relevant and temporally con-
sistent sequence of images corresponding to an in-
put multi-sentence story. We train the model using
a two-stage training procedure, similar to DALL-
E (Ramesh et al., 2021). In contrast to the single-
stream context-agnostic generation in DALL-E, our
model utilizes a recurrent multimodal transformer
architecture with dynamic aggregation of histori-
cal information for context-aware image sequence
generation.

To train the model, we first compress the im-
age into a discretized set of latent features called
image tokens. This is achieved using a Vector Quan-
tized Variational Autoencoder (VQ-VAE) (van den
Oord et al., 2017) for improved computational effi-
ciency. Second, we recurrently train the multimodal
autoregressive transformer model with an infused
dynamic gated-memory module to solve the story
visualization task. If the source tokens {z1, ..., 2}
discretized from image compression using VQVAE
and the textual tokens {t1, ..., t,,} tokenized from
the text using the WordPiece tokenizer are concate-
nated and fed into the model, the loss for single
generative model can be summarized as follows.

Zk—1)
ey
And, the loss for recurrent generative model for
sequential story generation can be calculated by
weight sum of sequence of single image loss.

LtQi = ZZ:l — IOg P(Zk|t1, ceey

tims 215 eey



Methods FID|, FSD| Char.F11t Frame Acc.t BLEU2/3t
StoryGAN (Li et al., 2019) 134.32  200.10 27.53 10.13 3.25/1.21
CP-CSV (Song et al., 2020) 140.24 184.52 21.33 8.78 3.23/1.26
DuCo (Maharana et al., 2021) 91.96 171.36 36.13 13.03 3.39/1.40
C-SMART (Ours) 50.24  30.40 58.11 28.06 5.30/2.34

Table 1: Quantitative results on test split of Pororo-SV Dataset. | indicates ‘lower the better’ and 1 indicates
‘higher the better’. All experimental results of prior works are reproduced with author’s codebase in Appendix.
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Figure 4: The unified model architecture for bidirec-
tional text-image and image-text generation.

Image Tokenization. Image tokens are gener-
ated at the compression stage of training. Real im-
ages usually consist of millions of pixels which
make the generative process extremely expen-
sive. In the compression stage, we use a VQ-
VAE (van den Oord et al., 2017) to transform the
input images into a set of low-dimensional discrete
latent features called image tokens. As shown in
Fig. 4, this framework is the autoencoder structure
that learns a discretized latent encoding for input
data z in the training procedure.

Generating an Image given Text. A model de-
signed for the story visualization task needs to (1)
understand the cross-modal relationship between
text and images, (2) interpret the narrative of the
story from the text, and (3) generate temporally
consistent images while maintaining semantic rele-
vance with the input text.

Fig. 2 shows the proposed multimodal recur-
rent transformer for generating an image sequence
given a multi-sentence story. First, we tokenize the
text and image inputs for training and add a po-
sitional embedding. Both text and image tokens
are treated equally and the auto-regressive trans-
former carries out a language modeling task, i.e.,
left-to-right token prediction. We then decode the
image tokens to form an image using a pre-trained
VQ-VAE decoder.

The multimodal self-attention module helps pre-
serve context even over long sequences of text and
image tokens and leads to high resolution images.

Additionally, we propose a dynamic memory ag-
gregation module for improved narrative under-
standing, infused in the intermediate layers of the
transformer as shown in Fig. 2 (right). The dynamic
updates occur as follows (1) intermediate layer is
modified for memory aggregation on current stage,
and (2) aggregated information is passed through
to next stage transformer. This module helps us
improve temporal consistency and overall seman-
tic relevance of the generated images by providing
easy access to historically aggregated features.

Mi=(1-ZhozZl+ZloM . (2

Auto-regressive Token Sampling. At the infer-
ence phase of the generative model, it is important
to sample a plausible data from the model. Because
we exploit an autoregressive transformer-based gen-
erative model, predicted data tokens can typically
be sampled with various decoding strategies such
as beam-search (Cohen and Beck, 2019), top-k and
nucleus sampling (Holtzman et al., 2019), which
are commonly used in many NLP literature (Ip-
polito et al., 2019). We use nucleus sampling strat-
egy because it is a simple but effective method to
draw considerably higher quality tokens out of the
generative model (Holtzman et al., 2019). For most
of our results, we use nucleus sampling with a rate
of p = 0.9 unless stated otherwise. We empirically
decide the values of the hyper-parameter of p using
the FID score of the generated image sequences on
the validation dataset.

3.2 Bi-directional Sequence Gen. for VL

Cross-modal generation, aiming at mapping or
translating one modality to another, requires the
model to fully "understand" the source modality
and to faithfully "generate" the target modality with
high semantic consistency with the source (Bal-
truSaitis et al., 2019). In the light of this, many
researchers have explored the unification of bidi-
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rectional text-to-image generation tasks in a single
model (Reed et al., 2016; Qiao et al., 2019) to im-
prove the generative model performance.

Taking this into account, we propose a bi-
directional image and text sequence generative
model given sequence of other modality. We jointly
train the image sequence generative model from a
multi-sentence paragraph and multi-sentence para-
graph generative model from an image sequence in
unified framework.

For the generative model, we use autoregressive
transformer-based model for both text-to-image
and image-to-text generation task, where two-stage
approach is applied as mentioned in Sec. 3.

L= tht2img + *Cimg2txt7 (3)
n
Etxt2img = Z_IOgP(Zk|tl7 m7217"-7zk—1)a
k=1
C))
n
Eingtwt = Z - IOgP(tk|Zl> ey Zmy Ly sy tk‘—l)-
k=1
)

3.3 Cyclic Pseudo-Text Generation

For image captioning task, there is a lot of avenue
to describe input image with natural language sen-
tence. Thus, many evaluation metric to measure
model performance have been proposed (Vedantam
etal., 2015; Post, 2018). Because there are different
properties to evaluate quality of the generated cap-
tion, however, no single methodology has been pro-
posed and many researchers have conducted human
evaluation and combined it with automatic evalu-
ation measures to evaluate the captioning model
performance so far. Difficulty of evaluation is due
to the possibility that one image can be expressed in
various natural language sentences. For this reason,
most image captioning datasets consist of multi-

ple descriptive sentences achieved by multi-human
annotation processing (Lin et al., 2014).

Nonetheless, the Pororo-SV dataset for story vi-
sualization task (Li et al., 2019) consist of one
text-image pair in training and evaluation dataset.
This can be detrimental from a model generaliza-
tion point of view. To combat this, we propose to
utilize the pseudo-text to train the text-to-image
generation model. The purpose of this pseudo-text
is to supply contextual information of the given
image with train model.

Also, this formulation of cycle-consistency in
text-image can be thought of as an online data-
augmentation technique (Shah et al., 2019) where
the model is trained on several generated pseudo-
texts with one image and hence can be generaliz-
able to the unseen source text during inference.

4 Experiments

4.1 Data and Evaluation Metrics

Dataset. We use Pororo-SV dataset proposed
in (Li et al., 2019), which is a modified version
of (Kim et al., 2017) for story visualization task.
Each story sample consists of 5 image sequences
and corresponding 5 descriptions. As mentioned
in previous works (Maharana et al., 2021), there
is a lot of data overlap between training and test
samples in the original dataset split of Pororo-SV
dataset (Li et al., 2019). To be more challenging,
we follow the dataset split proposed in (Maharana
et al., 2021), which contains 10191, 2334 and 2208
samples in training, validation and test splits, re-
spectively. In this version, there is no data overlap
between training and test split.

Evaluation Metrics '  Due to the task complexity

and its generative nature of the story visualization,
evaluation is non-trivial. Evaluation method of gen-
erated image sequence needs to focus on the gener-
ated image quality, coherency between generated
images and semantic matching generated image
sequence with descriptions. Thus, we use diverse
evaluation metrics to consider the complexity of
the task following (Maharana et al., 2021). We also
evaluate the generated caption quality with diverse
automatic-evaluation metrics.

* Fréchet Inception Distance (FID): Assessing
the quality of generated image by calculating the
"To make a fair comparison with prior works, all pre-

trained model for evaluating the performance are based on
https://github.com/adymaharana/StoryViz.
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Methods FID|, FSD| Char.F11 Frame Acc.f BLEU2/31
DuCo (Maharana et al., 2021) 9196 171.36 36.13 13.03 3.39/1.40
Baseline (Transformer-based model) 66.51 40.34 48.38 18.38 4.34/1.77
+ Memory-Augmented Recurrent 65.89 36.81 57.53 27.65 4.90/2.01
+ Nucleus Sampling 56.04 33.27 59.20 28.69 5.18/2.18
+ Bi-directional 5220 3143 57.18 26.81 5.23/2.27
+ Cyclic Pseudo-Text (C-SMART) 50.24 30.40 58.11 28.06 5.30/2.34

Table 2: Ablated results on test split of Pororo-SV Dataset.

distance of the distribution between generated

and real images used to train the generator.
* Fréchet Story Distance (FSD): Assessing the

coherency of the generated sequence of images
by calculating the distance of the distribution
between generated and real stories used to train

the generator proposed in (Song et al., 2020).
* Character Classification: Assessing the pres-

ence of character in generated image sequence.
Using pre-trained Inception-v3 with a multi-label
classification loss to identify characters in the
generated image. In particular, we report micro-
averaged F-score of character classification and
exact matching using frame accuracy as done in

prior work (Maharana et al., 2021).

* Video Captioning Accuracy: Assessing the
global semantic matching between generated
image sequence and captions. We report the
BLEU2/3 scores of captions predicted using gen-
erated images with pre-trained video captioner.

* Language Quality: Assessing the quality of gen-
erated captions using C-SMART. We use the au-
tomatic evaluation metrics composed of BLEU
2/3, METEOR, ROUGE-L, and CIDEr score. >

4.2 TImplementation Details

We use a recurrent GPT-based paragraph-to-image
sequence generator having a memory layer for story
visualization. With this, we iteratively conduct bi-
directional generation of text-to-image and image-
to-text. In the first stage of training, we train a
discrete variational autoencoder with only Pororo-
SV dataset, which compresses each input image
into 16 x 16 grid of image tokens having 8192
possible values for each element. Then, we use a
simple text tokenizer* having vocaburary size of

>We use the nlg-eval package (Sharma et al., 2017) to
evaluate the generated caption quality.

3You can find more details about implementation details
in our code. We will release code soon.

*nttps://github.com/openai/CLIP/blob/
main/clip/simple_tokenizer.py

49,408. Finally, we use 128 text token length and
totally 386 (128 + 16 x 16 + 2) input tokens with
two special tokens (i.e., start of sentence token and
start of image token) (Fig. 2). In the second stage
of training, we train the autoregressive multimodal
transformer in a recurrent manner, i.e. C-SMART,
to produce image sequence given multi-sentence
paragraph. We set the hidden dimension size to
512, the number of transformer layer to 16, and
the number of attention heads to 16. For positional
encoding, we use embedding layer to learn each
relative token position. Moreover, because we train
the generative network in a bi-directional way, we
use special segment embedding to implement it.
By indicating source and target individually with
segment embedding, we can make the model to
produce target data from source data, i.e. text-to-
image or image-to-text) And, we apply attention
mask similar to (Ramesh et al., 2021). For memory
module, we set the length of recurrent memory state
1. For cyclic pseudo-text approach, we set it to be
implemented after half time of total training times.
This is because at the beginning of the training,
model can not produce proper pseudo-text using
the model. This can be harmful to train text-to-
image generation. Thus, we experimentally decide
to implement it after half time shown in Fig. 8

5 Results
5.1 Quantitative Results

In Table 1, we summarize the performance com-
parison to prior works and C-SMART on Pororo-
SV (Li et al., 2019) in test split. In all metrics (i.e.,
FID, FSD, Char.F1, Frame Acc., BLEU2/3) used
for evaluating image quality, temporal coherency
on sequence of generated images and global seman-
tic consistency between generated images and de-
scriptions, C-SMART outperforms prior existing
works by a large margin. Particularly, C-SMART
shows a significant gain of FSD, which measures
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Petty arrived at her home.

Petty saw a drop of water falling in front
of her in her house.
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Figure 6: Comparative Qualitative Results to Prior
Arts. GT refers to ground-truth. We compare our
method (C-SMART) to prior arts including StoryGAN,
CPC-SV and DuCo. Ours generates a semantically more
plausible and temporally more coherent image sequence
than the prior arts. Note that our C-SMART generates
128 x 128 whereas other methods generate 64 x 64, thus
the clarity of the images is an additional benefit of our
method.

the temporal coherency in the story, over existing
works. Along with total averaged Char.F1 score in
Tab. 1, Fig. 5 shows comparison of per-character
classification F1-score on test split of Pororo-SV
dataset and normalized character frequency in train
split dataset. With our C-SMART, we obtain su-
perior performance on various characters shown
in Fig. 5 Particularly, when compared with (Ma-
harana et al., 2021), we see up to 55% improve-
ment for less frequent character, i.e. the charac-
ter name of Tongtong, in test split of Pororo-SV
dataset. In addition, considering the upper bound
of BLEU2/3 score measured using ground truth
test dataset, i.e. oracle score: BLEU2/3: 5.54/2.34,
C-SMART significantly outperform prior works
and approximately is closet to the oracle score. Con-
sidering prior work (Maharana et al., 2021) explic-
itly use the pre-trained video captioner as learning
signal, this result shows the superior performance
of C-SMART.

Furthermore, to assess the contribution of var-

C-SMART

Figure 7: Examples of generated sequence of images
with and without recurrent memory module. Ours
(C-SMART) generates semantically and visually plau-
sible image sequences.

ious components added to C-SMART, we per-
formed an ablation experiment with different con-
figurations as shown in Tab. 2.

The baseline model consists of autoregressive
transformer-based model only for single text-to-
image generation. Although it lacks ability to glob-
ally understand sequential context because of limit
of the architecture, the performance among various
evaluated metrics is dramatically improved as com-
pared to prior work (Maharana et al., 2021). We
conjecture that this improvement can be attributed
to the improved image quality by using transformer-
based approach. To allow the baseline model to uti-
lize the historical information and to be more tem-
porally coherent between generated contents, we
add recurrent path augmented with memory mod-
ule as similar with (Lei et al., 2020b). We identify
that the generative performance increase among
all evaluation metrics and the increment of FSD,
Char.F1 and Frame Acc. is the highest among
different components, e.g. nucleus sampling, bi-
directional and cyclic pseudo-text. This improved
performance can be atttributed to Next, we use
the nucleus sampling strategy with the memory-
augmented recurrent transformer. With the addition
of this, we obtain more enhanced FID score, which
means improved image quality. Next, we evaluate
the addition of the bi-directional mechanism where
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Figure 8: Contextual information predicted from the
model when increasing training time.

generative process of text-to-image and image-to-
text is conducted iteratively in a unified architec-
ture. We observe the performance improvement
except Char.F1 and Frame Acc.. Lastly, we use
cyclic pseudo-text approach where pseudo-text is
produced by using autogressive transformer-based
model to supply the generative model contextual in-
formation not described in ground-truth label. The
use of cyclic pseudo-text approach makes the gen-
erative model to be more improved compared to
prior version, and obtain increased performance.

5.2 Qualitative Results

Fig. 8 contains generated examples from the
Pororo-SV dataset. The top row in images shows
the ground truth sequence image, the three rows (2-
4) contain prior works (Li et al., 2019; Song et al.,
2020; Maharana et al., 2021) and the final row is
the image generated by C-SMART. In this exam-
ple, we demonstrate the superior visual quality and
temporal cohrecy of our approch as compared prior
works.

We empirically investigate the advantage of re-
current memory and summarize the results in Fig. 8.
As shown in the examples, the proposed recur-
rent memory promotes to generate a semantically
more plausible and temporally consistent image
sequence (compare second rows to third rows).

5.3 Analysis of Linguistics

As the unified architecture for generating of
text/image sequence given other modality input,
we also have advantage of video description when
using C-SMART framework. By using this, we
apply it as pseudo-text generation and conduct

cyclic approach on Image to Pseudo-Text to Im-
age stream. In order to compare generated caption
quality, we compare the generated caption results
using C-SMART with MART (Lei et al., 2020b)
which is only used for video caption task.

Pseudo-Text for contextual information. Fig. 8
shows various generated captions that change as
training time increases using C-SMART. Look-
ing at the results of captions inferred through
C-SMART, it can be confirmed that although it
does not generate proper captions at the beginning
of training, it generates descriptive sentences to in-
put image as training progresses, which is different
from GT but it can be also thought of as another
descriptive sentence, i.e. contextual information.
However, when training procedure is completed
(200 epoch), it can be shown that the generated
captions are almost similar to the training data, in-
dicating that it overfits to the training data. Thus,
to properly utilize the contextual information gen-
erated by pseudo-text, we use the late activation
strategy (Shah et al., 2019) by producing pseudo-
text at later stages of training. In our case, we apply
it at half of total training time, which is determined
by empirically as shown in Fig. 8

6 Conclusion

We propose C-SMART as bi-directional gener-
ative framework for sequential target data (im-
age/text) generation given sequential source data
(text/image) for solving the task of story visualiza-
tion in unified form.

Overall, our C-SMART significantly outper-
form prior works by large margin on the various
evaluation metrics.

Extending our model to out-of-distribution
dataset or in zero-shot setup would be an inter-
esting future research avenue.
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10

A Reproducing Prior Works

We reproduced the performance of prior works us-
ing author’s implementations. >

StoryGAN: https://github.com/yitong91/
StoryGAN, CP-CSV: https://github.com/
basiclab/CPCStoryVisualization-Pytorch,
DuCo-StoryGAN: https://github.com/
adymaharana/StoryViz
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