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Figure 1. We propose a reachability-guided diffusion model (Left) for generating long-term human behaviors. Our model works in the
discrete action space (Right). We visualize a few examples of learned discrete actions from continuous trajectory space using VQ-VAEs.
Visualization is done using the SSN 3D virtual human platform [3].

Abstract

Long-term human trajectory prediction is a challenging
yet critical task in robotics and autonomous systems. Prior
work that studied how to predict accurate short-term human
trajectories with only unimodal features often failed in long-
term prediction. Reinforcement learning provides a good
solution for learning human long-term behaviors but can
suffer from challenges in data efficiency and optimization.
In this work, we propose a long-term human trajectory fore-
casting framework that leverages a guided diffusion model
to generate diverse long-term human behaviors in a high-
level latent action space, obtained via a hierarchical action
quantization scheme using a VQ-VAE to discretize contin-
uous trajectories and the available context. The latent ac-
tions are predicted by our guided diffusion model, which
uses physics-inspired guidance at test time to constrain gen-
erated multimodal action distributions. Specifically, we use
reachability analysis during the reverse denoising process
to guide the diffusion steps toward physically feasible latent
actions. We evaluate our framework on two publicly avail-
able human trajectory forecasting datasets: SFU-Store-Nav
and JRDB, and extensive experimental results show that our

framework achieves superior performance in long-term hu-
man trajectory forecasting.

1. Introduction

The ability to anticipate future behavior is a remarkable
yet common skill for humans. We can navigate natu-
rally through complex environments and perform long-term
planning. Having an agent that is capable of predict-
ing realistic and plausible human behaviors is essential to
human-robot interaction and autonomous systems [32, 44].
Such prediction ability could not only benefit the decision-
making of an autonomous system, but also generate high-
quality data that mimics human behaviors. However, cre-
ating such an agent has been a challenging problem in the
domain of machine learning and robotics.

Reinforcement learning (RL) has been widely studied in
behavior learning, but can also be problematic due to re-
ward constraints [37, 66], data limitations [61], high costs
of sample complexity [13, 33] and relatively short-horizon
behaviors [16, 23]. Imitation learning (IL) is a type of of-
fline RL [25], where an agent is trained to mimic the actions



from an offline human demonstration dataset. IL has shown
promising performance in autonomous driving [7], robotics
[14], and game-playing [38] on imitating human behaviors.
However, IL faces challenges in producing diverse distri-
butions and long-term predictions with only mean squared
error (MSE) as the optimization objective. In this work, we
seek to model a diverse yet realistic human agent’s behav-
ior distribution for long-term trajectory prediction. While
an agent often faces an uncountable set of states in the con-
tinuous trajectory space, our key insight is that by tokeniz-
ing the continuous trajectory space, generative models can
better capture the multimodality of the distribution while
avoiding the curse of dimensionality. We design a hierar-
chical action quantization (HAQ) scheme based on vector
quantized variational autoencoder (VQ-VAE) [54] to learn
the mapping between the continuous trajectory space and
discrete latent action space. We then apply imitation learn-
ing in the discrete latent action space.

There are several recent advances in generating human
behaviors with discrete representations [11, 28, 29, 45, 64],
mostly based on autoregressive models using transformers
[55]. These autoregressive models have two major draw-
backs in the imitation learning setting. First, the learned
policy with a distribution shift at test time could cause the
agent to drift away from optimal states [41]. Second, the au-
toregressive model only predicts one token at a time, mak-
ing it slow in generating long sequences [8]. Recently, dif-
fusion models have been studied to imitate human behaviors
[39, 59] or robot actions [9], showing a strong capability of
modeling complex action distributions and a stable training
process.

In this paper, we use a denoising diffusion probabilis-
tic model (DDPM) [19] with the analog bit approach [8]
to achieve accurate long-term human trajectory prediction.
Our proposed diffusion model takes states (motion history,
environmental information) as the conditional input and
samples future discrete latent actions, which are learned
from our hierarchical VQ-VAEs. We hypothesize that dif-
fusion models as expressive generative models, with an effi-
cient discrete representation of continuous trajectory space,
can generate plausible human behaviors in long-horizon. To
the best of our knowledge, this is the first work to generate
discrete latent human actions with diffusion models. Fur-
thermore, we propose reachability guidance to improve the
physical feasibility of sampled trajectories. Our reachabil-
ity guidance does not require the training of an extra clas-
sifier in the pipeline which could be cumbersome [18]. We
demonstrate that with the proposed physics-guided diffu-
sion policy, our approach significantly improves the perfor-
mance in long-term human trajectory prediction tasks.

To summarize, our contribution is threefold. (1) We pro-
pose a simple yet efficient approach using a hierarchical
VQ-VAE to quantize a continuous human trajectory space

to a discrete set of actions. Our discrete representations cap-
ture the multimodality of behaviors and enable the use of IL
methods to generate long-term realistic human behaviors.
(2) We present a novel paradigm where we model future hu-
man behavior distributions in discrete action space using a
denoising diffusion probabilistic model (DDPM)-based be-
havior generator. (3) We introduce reachability guidance:
an intuitive physics-inspired guidance that incorporates the
laws of physics and safety into the denoising process, allow-
ing our model to generate physically feasible human behav-
iors (Figure 1).

2. Related Work
2.1. Off Policy Learning

Off-policy learning has proven to be effective in trajectory
generation. Offline imitation learning (IL) [4, 10, 34, 66]
has emerged as a popular method for learning human ac-
tions from pre-collected datasets. When the reward in-
formation is available, offline reinforcement learning (RL)
[15, 22, 25, 60] has also been explored for learning human
actions. However, IL, as a form of supervised learning, of-
ten assumes a unimodal action distribution [24] that rarely
holds in real-world datasets. To address this issue, positive
unlabeled learning [58] is used to focus learning on the ex-
pert part of the dataset, thereby reducing the modality in the
learning process, and behaviour transformers [45] use trans-
formers with k-means clustering to model multiple modes
of human behaviors. In addition, most existing IL methods
suffer from covariant shift when applied to online trajectory
prediction, limiting the effectiveness in long-term predic-
tion [5, 35, 43, 44]. Online RL has been integrated with IL
to address distribution shift through a closed-loop learning
fashion [27] but it requires extensive online training time.

2.2. Discretizing continuous action space

Although real-world human actions occur in a continuous
space, directly learning continuous actions from a limited
pre-collected dataset often results in unsatisfactory perfor-
mance [29]. Therefore, action space discretization has been
investigated while avoiding the exponential growth of the
state dimension. One common approach treats each action
dimension as independent [6, 50, 51, 57], while an alter-
native approach is sequential discretization through learned
causal dependence [31, 52, 53]. Leveraging human demon-
stration for action quantization has also been proven effec-
tive in generating a discrete set of reasonable actions [11].
Recently, vector quantized variational autoencoders (VQ-
VAE) have been adopted for off-policy learning [51], re-
sulting in a small discrete action space while improving the
learning performance. Furthermore, action discretization
plays an important role in hierarchical learning methods to
help identify sub-goals and facilitate action generation over



long horizons [21].

2.3. Diffusion Models

Diffusion models [46, 48] are a class of generative mod-
els that are designed to sample from complex distributions
through a reverse stochastic differential equation (SDE)
process. Later on, the development of denoising diffusion
probabilistic models (DDPM) [19] and denoising diffusion
implicit models (DDIM) [47] showed remarkable efficacy
in image generation tasks. To enhance the conditional in-
put in the generation process, classifier guidance [12] and
classifier-free guidance [18] are introduced. Moreover, dif-
fusion models also demonstrate their exceptional ability to
sample behaviors or trajectories from multimodal distribu-
tions in the field of robotics [1, 9, 20, 39, 49]. With the
attention mechanism first proposed in DDPM [19], diffu-
sion models also show superior performance in modeling
sequential correlation of the data.

3. Background

3.1. Problem Formulation

Our objective is to learn a robust policy that could gen-
erate long-term plausible human behaviors given the cur-
rent and previous states in the last H time steps. In
this paper, we are particularly interested in human nav-
igational behaviors. We aim to generate a long-term
future trajectory for the target agent over the next T
time steps. Formally, this means learning the future tra-
jectory conditional distribution p(X|X,C), where X =
{xt+1, yt+1, · · · , xt+T , yt+T } represents the future trajec-
tory, X = {xt−H , yt−H , · · · , xt, yt} the past trajectory
including the current state, and C = {ct−H , · · · , ct} any
other possible contextual observation features such as in-
formation related to the scene or the other nearby agents.
We define the state of the agent at a given time t to be
st = (xt, yt, ct), with (x, y) representing position. A de-
tailed time horizon is shown in Figure 2.

As mentioned earlier, we incorporate physics priors dur-
ing the learning process to encourage feasible human be-
havior generation. To facilitate the use of the proposed
control-theoretic methods, we use a dynamically extended
Dubins Car to approximately model the dynamics of a hu-
man:

ẋ = v cos θ, ẏ = v sin θ

v̇ = u1, θ̇ = u2

(1)

where v is the speed of movement and θ is the orientation
of the human. The state of the above system (x, y, v, θ)
represents the augmented human state (ignoring the context
c) used only for the purposes of incorporating physics pri-
ors. We define û = (u1, u2) as the control variables of our

system, where u1 is the acceleration, u2 is the angular ve-
locity.1

3.2. Imitation Learning (IL)

Imitation learning constructs an optimal policy by mimick-
ing a set of expert demonstrations, without knowing any re-
ward function. Assume the agents have access to a dataset
of expert demonstrations D =

{
s0, û0, · · · , sT , ûT

}
pro-

duced by the expert policy πβ , the goal is to learn a policy
π that imitates πβ . The simplest approach is through behav-
ioral cloning (BC) where the policy is trained by maximiz-
ing the log-likelihood of actions, Es,û∼D[log π(û|s)].

3.3. Vector quantized variational autoencoder

In this work, we use the VQ-VAE [54] to tokenize con-
tinuous human trajectories. It comprises an encoder that
maps observations onto a sequence of discrete latent vari-
ables and a decoder that reconstructs the observations from
the discrete latent variables. The encoder E outputs a
continuous embedding E(s) from the input space s =
{st−Tvq , · · · , st} and discretization is done by finding the
index of the nearest prototype vector in the codebook ej to
the encoder embedding E(s) based on the distance, where
j ∈ {1, · · · , J}. The process can be described as:

Quantize(E(s)) = ei where i = argmin
j
∥E(s)− ej∥

(2)

Let z denote the final quantized latent code for input s,
i.e., z = ei; the decoder D will reconstruct the original in-
put s based on latent code z.2 In addition to the reconstruc-
tion objective, a codebook loss and a commitment loss are
added to move codebook vectors closer to the encoder em-
beddings. The overall optimization objective of VQ-VAE
can be described as:

Lvq = ∥s−D(z)∥22 + ∥sg[E(s)]− z∥22 + β∥sg[z]− E(s)∥22
(3)

where sg stands for the stop gradient operator and β is a
hyper-parameter for the commitment loss. The parameters
of the encoder and decoder are both optimized by this ob-
jective.

4. Method
Our goal is to generate diverse and feasible long-term hu-
man behaviors. The overall framework consists of three
parts: Hierarchical Action Quantization, Action Diffusion
Policy, and Reachability Guidance, which are illustrated in
Figure 3. We consider a goal-oriented navigational problem

1Note that since Equation 1 is differentially flat, all other variables can be easily computed given (xt, yt).
2 In practice, a collection of vectors are quantized and decoded in parallel.



Figure 2. Illustration of past horizon H and future horizon T in
continuous trajectory space (Top). A discrete action aτ tokenizes
all states in a period of Tvq in continuous trajectory space (Bot-
tom).

where the human agent’s objective is to navigate in the en-
vironment to reach a terminal state. In our proposed frame-
work, our Action Diffusion Policy models a multimodal and
high-level future action distribution p(A|S) conditioned on
low-level past observations S = {X,C}, where A repre-
sents the predicted discrete latent action sequence in the fu-
ture. Our Hierarchical Action Quantization maps each dis-
crete latent action A back to the continuous trajectory X.
To incorporate physics information into the reverse diffu-
sion process, we introduce the Reachability Guidance. We
now explain the details of each component.

4.1. Hierarchical Action Quantization

Naturally, human actions can be represented with discrete
representations. Previous works in human trajectory pre-
diction [30, 44, 62] mostly represent human trajectories in
continuous space. However, we aim to learn a context-
aware discrete representation of human high-level actions
by training a VQ-VAE model.

In contrast to the vanilla VQ-VAE, in this work we pro-
pose to formulate a hierarchical action quantization (HAQ)
structure to produce the discrete latent code, inspired by
[40]. The motivation behind this is that we want to cap-
ture the multimodality of human actions by modeling the
context information ct separately from {xt, yt}. In order
to achieve this, we use a two-level hierarchical structure.
The hierarchy contains a top level encoder Etop that learns
the context information Cvq = {ct−Tvq , · · · , ct}, i.e. body
pose; a bottom level encoder Etop that learns the trajec-
tory information Xvq = {xt−Tvq , yt−Tvq , · · · , xt, yt}, and
a HAQ decoder D that reconstructs the original input Xvq .
The HAQ encoding process of the network can be written
as:

htop = Etop(Cvq), atop = Quantize(htop)

hbot = Ebot(Xvq,htop), abot = Quantize(hbot)
(4)

where h is the continuous latent variables obtained from
the encoders, Quantize process is defined as in Equation 2,
abot is our final discrete action representation, and later we
refer it as a for brevity. The overall network is optimized
by the objective defined in Equation 3 for both top and bot-

tom codebooks, with the reconstruction objective only ap-
plying to input Xvq . After training our VQ-VAE, we obtain
a semantic-rich codebook that is conditioned on contextual
information and we can represent a sequence of low-level
continuous states with a discrete high-level action (see Fig-
ure 1(Right)).

4.2. Action Diffusion Policy

In this section, we introduce our diffusion policy under the
imitation learning formulation. With a learned HAQ en-
coder, we can represent future continuous trajectory space
X in discrete space: A = {a1,a2, · · · ,aτ}, where τ =
T/Tvq (See Figure 2). Given previous continuous states S,
we can represent a behavior cloning policy as π(A|S) =
p(A|S) (subsection 3.2). We apply a conditional diffusion
model to the discrete latent action space, to model p(A|S).
The behavior cloning policy π(A|S) can be then optimized
by the diffusion objective, which aims to sample A from the
same distribution as D [59].

In this work, we adopt denoising diffusion probabilistic
models (DDPMs) [19] as our behavior cloning policy. And
to allow our diffusion policy to generate discrete actions, we
use the analog bits approach from the bit diffusion model
[8]. We start with a short introduction to diffusion models.
Starting from a noisy discrete action sequence Ak, where
AK ∼ N (0, I), a sequence of AK−1, · · · , A0 is predicted
through K iterations of denoising steps, each with a de-
creasing level of noise until the “clean” output A0 is formed.
During training, which is also called forward diffusion pro-
cess, noisy input is generated as Ak =

√
ᾱkA+

√
1− ᾱkϵ,

for some variance schedule ᾱk, random noise ϵ ∼ N (0, I).
A denoising network Gθ is trained to predict the noise that
was added to the input, conditioned on some past states S,
by minimizing the following objective:

LDDPM,θ := ES,A,k,ϵ

[
∥Gθ (S,Ak, k)− ϵ∥22

]
(5)

During the reverse diffusion process, which often refers
to the sampling time, with the variance schedule parameters
α and σ, the “cleaner” input is generated as follows:

Ak−1 =
1
√
αk

(
Ak −

1− αk√
1− ᾱk

Gθ (S,A, k)

)
+ σkϵ (6)

Discrete action sequence prediction. While DDPMs
are often used in continuous space for image generation,
we adopt the analog bits [8] method to generate discrete ac-
tion sequences with the same continuous diffusion models.
The analog bits approach is twofold: First, during training,
discrete data are represented by bits and then cast into real
numbers, which can be directly modeled by the DDPMs.
We denote this process as int2bit, where in our case a dis-
crete action aτ from a codebook of size J (subsection 3.3)
can be represented using n = [log2 J ] bits, as {0, 1}n. Then



Figure 3. Overview of our framework. Hierarchical Action Quantization (HAQ) encoder learns a discrete representation of human
behaviors. Our diffusion policy generates 6 discrete future actions conditioned on past observations. During each reverse denoising process,
reachability guidance is used to enforce some physical constraints. The final output is a long-term future human trajectory reconstructed
from discrete future actions using the HAQ decoder.

during sampling, we draw samples following the same pro-
cedures in DDPMs, and apply a simple thresholding before
decoding back into discrete data. We denote this process as
bit2int. The whole process can be described with the fol-
lowing:

A0 = int2bit(A), forward diffusion (7)
A = bit2int(Ak−1), reverse diffusion (8)

4.3. Reachability Guidance

Given that a diffusion policy does not inherently have
knowledge on fundamental physics laws, it is highly pos-
sible to generate human behaviors that are infeasible and
clearly disobey the physics world. In this work, we apply a
physical constraint during the diffusion process, which we
call reachability guidance. The motivation is simple: every
step of our diffusion process produces an intermediate se-
quence of discrete actions Ak−1, and by applying the reach-
ability guidance, we could guide the diffusion process to-
wards generating samples that are physically feasible. The
complete procedure is shown below:

Reachability. Hamilton-Jacobi (HJ) reachability analy-
sis is a formal method that can verify the performance and
safety of a dynamic system [2]. Given the assumed dynam-
ics of the human in Equation 1, we can compute a Backward
Reachable Set (BRS) based on the discrete action aτ . The
BRS represents the set of states such that the trajectories
that start from this set can reach the given discrete action aτ

(See Figure 1(Left)). To calculate the BRS, we first decode
the discrete action aτ using HAQ decoder D to obtain the
states {st−Tvq , · · · , st}where (xt, yt, θt, vt) can be derived
from st, then the process can be written as:

S = BRS(D(aτ )) (9)

where S represents the possible positions that the agent
could be located in order to feasibly reach the starting states

Algorithm 1 Reachability guided diffusion sampling

Input: Past states S, denoising network Gθ, denoising
timestep k.

Output: Denoised action A0.
1: AK ∼ N (0, I)
2: for k from K to 0 do
3: µ,Σ← G (Ak, k, S)
4: A′

k ∼ N (µ,Σ) ▷ Sample A′
k without guidance

5: Compute pγ(r|A′
k) ▷ Reachability guidance

6: µ̃← µ+ sΣ∇A′
k
log pγ(r|A′

k) ▷ Compute the new
mean

7: Ak−1 ∼ N (µ̃,Σ) ▷ Sample Ak−1 with guidance
8: end for
9: return A0

in aτ , and BRS represents the mathematical calculation of
the backward reachable set. For the sake of brevity, we will
defer to [2] for readers interested in the details of reachabil-
ity. Intuitively, the BRS should cover all the states from the
previous discrete action: D(aτ−1) ⊆ S Thus, to determine
whether an action is physically feasible, we can formulate a
classification problem where:

p(aτ−1) =

{
1, D(aτ−1) ⊆ S
0, otherwise

(10)

Then the probability that a sequence of actions A =
{a1,a2, · · · ,aτ} is physically feasible can be easily cal-
culated as:

pγ(r|A) =
1

τ − 1

τ−1∑
τ ′=1

p(aτ
′
) (11)

More generally, we can write pγ
3 in term of any inter-

mediate latent Ak, pγ(r|Ak). For brevity, we leave out the
3γ does not represent network parameters here.



quantize operation as defined in Equation 7 in the reacha-
bility analysis process.

Guidance. Classifier guidance is a useful technique for
improving diffusion models [12, 46, 48]. The process in-
volves training an additional classifier with class labels on
noisy inputs and using a classifier gradient to guide the dif-
fusion sampling process. Similarly, one can also use the
gradient of reachability “classification” to guide the diffu-
sion process. We believe that this is a simple approach to
force some physical constraint to the network, and only ap-
plied during the diffusion sampling time. Here we show a
brief derivation on how to modify an unconditional reverse
diffusion process pθ (Ak|Ak+1) to condition on the reacha-
bility analysis result pγ (r|Ak), where

pθ,γ (Ak|Ak+1, r) = Zpθ (Ak|Ak+1) pγ (r|Ak) (12)

And Z is a normalizing constant. Recall that:

pθ (Ak|Ak+1) = N (µ,Σ) (13)

log pθ (Ak|Ak+1) = −
1

2
(Ak − µ)

T
Σ−1 (Ak − µ) + C

(14)

We can approximate log pγ (r|Ak) using a Taylor expansion
around Ak = µ:

log pγ (r|Ak) ≈ log pγ (r|Ak)|Ak=µ

+ (Ak − µ)∇Ak
log pγ (r|Ak)|Ak=µ (15)

Letting g = ∇Ak
log pγ (r|Ak)|Ak=µ, we can derive an

approximation of desired distribution:

log (pθ (Ak|Ak+1) pγ (r|Ak)) ≈

− 1

2
(Ak − µ)

T
Σ−1 (Ak − µ)

+ (Ak − µ) g (16)

And finally:

log pθ,γ (Ak|Ak+1, r) = log p(z), z ∼ N (µ+Σg,Σ)
(17)

This derivation suggests that the conditional distribution can
be approximated by shifting the mean of unconditional dis-
tribution by Σg. Following [12], a scale factor s is also
added to the gradient calculation.

5. Experiments
We evaluate our methods on human trajectory forecasting
on two publicly available datasets: SFU-Store-Nav (SSN)
[65] and JRDB [56] datasets. Both datasets consist of real
human trajectories with associated visual information. We
sample both datasets at 3Hz and split the dataset into train-
ing, validation, and testing sets with proportions of 80%,

(a) (b)

Figure 4. Comparison between different forecasting timesteps (T
= 10, 20 ,30) on SSN and JRDB datasets in terms of ADE. Our
model is better at generating long-term future trajectories, while
still maintaining comparable performance in short-term predic-
tion.

5%, and 15% respectively. Following prior works in human
trajectory forecasting [17, 44, 67], we use two error metrics
to evaluate the generated human trajectories:
• Average Displacement Error (ADE): Mean l2 distance be-

tween ground truth trajectories and generated trajectories.
• Final Displacement Error (FDE): l2 distance between

ground truth trajectories and generated trajectories at the
end of time horizon T .

Since the models generate multimodal output, we report the
minimum ADE and FDE from 20 randomly generated sam-
ples instead. In addition to these two commonly used met-
rics, we introduced two more metrics that are relatively new
to the domain of human trajectory forecasting:
• Multimodality [64]: Mean l2 distance between N pairs of

generated trajectories under same input condition. We set
N = 20.

• Goal Rate (M ): Proportions of generated trajectories
which reach at least M number of goals for the entire se-
quence. We let M = 1. (Only applicable to SSN dataset.)

Note that we perform all evaluations on low-level represen-
tations. We always decode the generated discrete actions
into continuous human trajectories and run evaluations.

5.1. Implementation Details

For our action quantization, the codebook size is set to 256
× 128, where the number of discrete actions is 256, and
the dimension of each action token is 128. We set β = 1
and Tvq = 5 for training. We use multilayer perceptrons
(MLPs) as our HAQ encoders and decoder. The VQ-VAE
network is optimized using AdamW [26] with a learning
rate of 1e-6 and batch size of 128. For both SSN and JRDB
datasets, visual images are extracted into 2D body pose fea-
tures with dimensions of 50. Our discrete diffusion model
has two variants: diffusion-MLP and diffusion-Transformer
[39]. The diffusion-MLP is an MLP model with 3 hidden
layers. And the diffusion-Transformer is a standard trans-
former [55] model with 2 encoder blocks and multi-head at-



Dataset SSN JRDB

Methods ADE/FDE ↓ MModality ↑ Goal Rate ↑ ADE/FDE ↓ MModality ↑
LSTM[67] 1.19/2.01 - 0.39 3.71/4.78 -
LSTM-CNN [67] 1.03/1.97 - 0.45 3.51/4.61 -
CVAE [30] 0.79/1.14 0.19 0.67 2.12/2.77 0.41
Transformer [62] 0.76/1.32 0.27 0.71 1.89/2.85 0.49
Diffusion-BC [39] 0.84/1.21 0.24 0.59 2.33/3.13 0.38
Transformer-discrete 0.73/1.16 0.21 0.76 1.91/2.81 0.33

Ours (MLP) 0.72/1.19 0.23 0.75 1.77/2.93 0.36
Ours (no guidance) 0.73/1.05 0.27 0.87 1.63/2.61 0.43
Ours 0.68/0.97 0.25 0.88 1.49/2.53 0.39

Table 1. Quantitative comparison of our method and baselines with T = 30. Our model achieves the best or second-best performances on
all datasets. The first-best is highlighted by bold, and the second-best is highlighted by underline.

SSN JRDB
Method ADE/FDE ↓ ADE/FDE ↓
Transformer + VQVAE 0.79/1.39 1.93/2.83
Ours + VQVAE 0.77/1.20 1.72/2.74

Diffusion-BC 0.84/1.21 2.33/3.13
Diffusion-BC + guidance 0.75/1.17 2.01/2.89

Ours (Full) 0.68/0.97 1.49/2.53

Table 2. Ablation studies of quantization choice and reachability
guidance on SSN and JRDB datasets.

SSN
# of BRS ADE/FDE ↓ MModality ↑
1 (v = 1.5) 0.73/1.03 0.27
2 (v = 1, 1.5) 0.69/1.01 0.25
3 (v = 0.5, 1, 1.5) 0.68/0.97 0.25

Table 3. Ablation study of different number of reachable sets on
SSN dataset.

tentions. We use 10 diffusion steps and square cosine noise
scheduler [36]. The diffusion network is optimized with
AdamW [26] with a learning rate of 1e-4. We calculate
a set of backward reachable sets (BRS) based on different
maximum traveling speed assumptions. We assume a maxi-
mum turn rate of 1 rad/s, and a maximum acceleration of 0.5
m/s2. The maximum speed is set to be {0.5, 1, 1.5} m/s for
SSN dataset, and {1, 2, 3}m/s for JRDB dataset. Reachable
set calculation is done with the helperOC Matlab toolbox 4.
Each learned discrete action represents 5 timesteps (1.5s).
For evaluation, the observation length is set as 10 timesteps
(3s) and we are predicting 6 future discrete actions, which

4https://github.com/HJReachability/helperOC

is 30 timesteps (9s).

5.2. Results

We seek to answer the following questions in our evalua-
tion.

How does our model compare to prior work in long-term
human trajectory forecasting? In Table 1, we compare our
method to a large number of commonly used baselines. Our
methods achieve the best ADE and FDE while maintaining
a good level of diversity on both datasets. To further investi-
gate our method’s ability in long-term forecasting, we eval-
uate it across different forecasting horizons. In Figure 4, we
evaluate from T = 10 (short-term) to T = 30 (long-term)
and observe that as the forecasting horizon increases, our
model significantly outperforms all other baselines. This re-
sult demonstrates that our model has superior performance
in long-term human trajectory forecasting while still main-
taining comparable performance in the short-term.

How does diffusion policy compare to the autoregres-
sive model? We are curious how a diffusion model would
perform against the autoregressive model when the inputs
are discrete actions. Transformer-discrete is a variant of
Transformer [62] which is trained with the same quan-
tized actions as our method. As can be seen in Table 1,
the variant Transformer-discrete outperforms the original
model Transformer, suggesting the advantage of using dis-
crete actions. Both our model and MLP-variant outperform
the Transformer-discrete with lower ADE/FDE and higher
Multimodality score, which indicates that the use of the dis-
crete diffusion model is more effective in modeling a mul-
timodal action distribution in discrete space.

How effective is the reachability guidance to the per-
formance of our model? To understand how reachability
guidance influences the performance of our model, we im-
plement a variant of our model which does not use reach-
ability guidance. In Table 1, both ADE and FDE increase



with the reachability guidance, but the multimodality score
decreases. This suggests that there is a trade-off between
physical feasibility and multimodality. We hypothesize that
more diverse multimodal actions could lead to some states
that are not physically feasible; our reachability guidance
places a constraint on those states.

5.3. Ablation Study

We further perform an extensive ablation study to under-
stand the contributions of individual components to our
model performance. In Table 2, we investigate (1) the ef-
fect of our proposed hierarchical action quantization and
(2) the performance of reachability guidance with the con-
tinuous diffusion model. First, we replace the hierarchical
action quantization component with a simple VQ-VAE on
Transformer-discrete and our method. We could see a sig-
nificant decrease in performance on both datasets, indicat-
ing the importance of our hierarchical action quantization
scheme. Then we integrate our reachability guidance with
the continuous diffusion baseline: Diffusion-BC, resulting
in a 12% performance increase. This highlights the flexi-
bility and importance of the reachability guidance. Finally,
our second ablation study Table 3 investigates the effect of
the backward reachable set. As one would expect, calculat-
ing a more restrictive condition for the reachable sets can
result in a slight improvement in terms of ADE and FDE
with a little sacrifice in diversity. When there is only one
BRS calculated with a very relaxed assumption, the model
has a similar performance as the one without reachability
guidance. Thus, a more carefully designed set of dynamic
assumptions could maximize the performance of the reach-
ability guidance.

6. CONCLUSIONS
In this work, we present our discrete diffusion frame-
work that generates future human behaviors with physics-
inspired guidance. Our goal is for robots to be able to
imitate realistic and diverse human behaviors in the long
term. To achieve this, we propose reachability guidance to
enforce physical constraints during the diffusion process in
discrete action space. The proposed reachability guidance
can be used on any diffusion model without retraining. Ex-
perimental results on human trajectory forecasting datasets
demonstrate the superior performance of our framework.
The limitations of our framework include: the dynamics
of humans, and assumptions for reachable set calculation.
Recent developments in the diffusion models [42, 63] have
shown promising results incorporating physics in the sam-
pling process, we hope the proposed framework and reach-
ability guidance could open up new directions for future
work. We believe our framework is robust to other tasks,
e.g., autonomous driving, motion generation, etc, which are
yet to be explored.
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