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ABSTRACT

In this work, we propose a novel activation mechanism aimed at establishing layer-
level activation (LayerAct) functions for CNNs with BatchNorm. These functions
are designed to be more noise-robust compared to existing element-level activa-
tion functions by reducing the layer-level fluctuation of the activation outputs due
to shift in inputs. Moreover, the LayerAct functions achieve this noise-robustness
independent of the activation’s saturation state, which limits the activation out-
put space and complicates efficient training. We present an analysis and exper-
iments demonstrating that LayerAct functions exhibit superior noise-robustness
compared to element-level activation functions, and empirically show that these
functions have a zero-like mean activation. Experimental results with three clean
and three out-of-distribution benchmark datasets for image classification tasks
show that LayerAct functions excel in handling noisy datasets, outperforming
element-level activation functions, while the performance on clean datasets is also
superior in most cases.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been used as a primary architecture for computer vi-
sion tasks since the development of AlexNet (Bai et al., 2021; Wang et al., 2022; Wightman et al.,
2021). Batch normalization (BatchNorm, Ioffe & Szegedy (2015)) has significantly contributed to
the success of CNNs with its numerous benefits during training, such as ensuring stability, facilitat-
ing more efficient parameter optimization, and addressing the channel collapse problem of activation
(Daneshmand et al., 2020; Ioffe & Szegedy, 2015; Santurkar et al., 2018). To build upon the con-
siderable success of CNNs with BatchNorm, and in an effort to further advance the architecture,
we pay close attention to the activation mechanism within network layers. Specifically, we propose
a novel layer-level activation (LayerAct) mechanism, along with two associated functions. While
maintaining the batch-direction normalization methods, which are effective and prevalent in CNN-
based networks, the LayerAct mechanism can provide the benefits of layer-direction normalization.
Specifically this mechanism offers two main advantages: i) addressing the trade-off issue between
two significant properties of activation, and ii) improving the noise-robustness of activations by
reducing the variance of noise-robustness across samples.

The majority of existing activation functions operate on an element (i.e. the activation functions op-
erate on each element of a layer separately), exhibit limitations due to their element-level activation
mechanism. Firstly, a trade-off exists between one-side saturation (limiting negative output space)
and allowing negative outputs for zero-like activation mean. Activation functions that saturate only
on one side are expected to have more informative propagation during the backward pass compared
to those that saturate on both the positive and negative sides, by allowing for larger derivatives.
(Clevert et al., 2016; Glorot et al., 2011) To achieve these properties, activation functions restrict the
negative outputs (e.g. rectified linear unit (ReLU, (Hahnloser et al., 2000; Nair & Hinton, 2010)),
leading the mean of activation outputs (i.e. activation mean) far from zero. However, negative out-
put should proceed for zero-like activation to ensure effective and efficient training (Clevert et al.,
2016; Qiu et al., 2018). Modern activation functions, such as exponential linear unit (ELU, Clevert
et al. (2016)), flexible ReLU (FReLU, Qiu et al. (2018)), and sigmoid-weighted linear unit (SiLU,
also known as Swish, Elfwing et al. (2018); Ramachandran et al. (2018)), seek a balance between
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the properties, but could not get rid of the trade-off. Secondly, the noise-robustness varies across
samples with element-level activation functions. The noise-robustness of element-level activation
functions relies only on the saturation state. This implies that existing activation functions with
a saturation state are expected to be robust for samples only when a sufficiently large number of
elements are in the saturation state, not when there are fewer elements in the saturation state.

LayerAct functions are designed to address these issues. The trade-off problem of element-level
activation functions arises because the activation input space that leads activation outputs to be in
saturation state remains fixed across all samples. Unlike the element-level activation mechanism,
our proposed layer-level activation mechanism assigns the saturation state based on the normalized
input of the layer-dimension, similar to layer normalization (LayerNorm; Ba et al. (2016)). As
a result, the activation output space of the saturation state varies between samples; the activation
input space leading to saturation state is determined by the layer-dimension mean and variance. We
demonstrate that the upper bound of activation fluctuation due to shift of layer input can be lower
with LayerAct functions than with element-level activation functions when input is not excessively
large.

Experimental analysis with the MNIST image dataset revealed the following properties of the Layer-
Act functions: i) the mean activation of LayerAct functions is zero-like, and ii) the output fluctuation
due to noisy input is smaller with these functions than that with element-level activation functions.
We compared the performance of the residual networks (ResNets) with LayerAct functions with
those with other element-level activation functions on three image classification tasks. The results on
noisy CIFAR10 and CIFAR100 datasets demonstrate that LayerAct functions were superior to other
element-level activation functions. Furthermore, ResNet50 with LayerAct functions also showed
superior performance on both clean and noisy ImageNet datasets compared to other functions.

2 BACKGROUND

2.1 ACTIVATION SCALE

Consider a layer in a multi-layer perceptron with linear projection and an activation function. The
computation of this layer, given a r-dimensional input vector x = (x1, x2, ..., xr)

T , a weight matrix
W ∈ Rr×d, and non-linear activation function f is defined as follows:

y = WTx, a = f (y) , (1)

where y = (y1, y2, ..., yd)
T and a are the d-dimensional output vectors of the linear projection and

activation of a layer, respectively. The output vector y of the linear projection and activation output
vector a (i.e. the output of the activation function) serves as the activation input (i.e. the input of the
activation function) and the input of the next layer, respectively.

In some activation functions, a function bounded between one and zero characterizes the non-
linearity of the activation function during forward-propagation. We define this function, denoted
as s, and its output as the activation scale function and activation scale, respectively. The activa-
tion output during forward pass and gradient during backward pass of an element-level activation
functions with activation scale function s are:

ai = yis (yi) ,
∂ai
∂yi

= s (yi) + yi
∂s (yi)

∂yi
, (2)

where s is increasing and s (yi) > 0 if yi > 0. For example, the activation scale functions for the
ith element in ReLU and SiLU, are presented as follows:

sReLU (yi) =

{
1, if yi ≥ 0

0, if yi < 0
, sSiLU (yi) =

1

1 + e−yi
(3)

where yi, sigmoid, sReLU , and sSiLU , present the ith element of y, Logistic Sigmoid function, and
the non-linear scale functions of ReLU and SiLU, respectively.

Furthermore, the saturation state of such activation functions can be defined using the activation
scale:
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Definition 2.1 (Saturation state of activation functions with activation scale functions) The
saturation state of an activation function with an activation scale function s is when s (yi) ≃ 0, as
the activation output ai = yis (yi) reaches saturation.

In conclusion, the activation scale function plays a crucial role in providing non-linearity during the
forward pass, controlling the gradient during the backward pass, and determining the saturation state
of the activation function.

2.2 TRADE-OFF BETWEEN SATURATION AND ZERO-LIKE MEAN ACTIVATION

Element-level activation functions that exhibit saturation, such as ReLU, are well recognized for
their noise-robustness properties, for instance, samples with a large number of elements in the satu-
ration state are noise-robust (Clevert et al., 2016; Qiu et al., 2018). However, the saturation in these
functions does not allow negative outputs, which causes the mean of the activation outputs to be far
from zero, potentially leading to inefficient training (Clevert et al., 2016).

To address this issue, recent activation functions, such as ELU, FReLU, and SiLU, saturate only
the large negative outputs. These activation functions can achieve a zero-like mean activation with
small negative outputs. However, a trade-off still exists because the restriction of negative outputs,
designed to ensure saturation, prevents the allowance of large negative outputs, thereby restraining
the mean of activation from being more zero-like. Additionally, saturation that relies solely on the
input of a single element can result in a large variance in noise-robustness between samples.

2.3 LARGE VARIANCE OF NOISE-ROBUSTNESS ACROSS SAMPLES

To analyze the noise-robustness, we define activation fluctuation (i.e., fluctuation of activation out-
puts due to the shift of inputs) that can represent the layer-level noise-robustness on a sample.

Definition 2.2 (Activation fluctuation) Let ϵ = (ϵ1, ϵ2, ..., ϵd)
T be the noise vector. We define ac-

tivation fluctuation as ∥f (y + ϵ)− f (y)∥ ≤ c, where c is the upper bound of activation fluctuation.

The lower the upper bound c is, the lower the variance of noise-robustness across samples. We can
define the activation fluctuation of element-level activation functions:

Definition 2.3 (Activation fluctuation of element-level activation functions) Let ϵi be the ith

noise, and ŷi = yi+ ϵi. The activation fluctuation of element-level activation function f is given by:

∥f (ŷ)− f (y)∥ =

d∑
i=1

|ŷis (ŷi)− yis (yi)| =
d∑

i=1

|yi (s (ŷi)− s (yi)) + ϵis (ŷi)| ,

A sample will exhibit a small ∥f (ŷ)− f (y)∥ if a sufficient number of its elements are in saturation
state. However, element-level activation functions do not ensure that all samples have a sufficient
number of elements in saturation state. More specifically, the activation fluctuation is upper-bounded
when not all elements are in the saturation state, where yi > 0 for all i:

∥f (ŷ)− f (y)∥ ≤
d∑

i=1

(yi |s (ŷi)− s (yi)|+ |ϵi| · s (ŷi)) (4)

Equation 4 demonstrates that activation scale is closely related to the activation fluctuation, samples
with large ∥s (ŷ)− s (y)∥ and ∥s (ŷ)∥ are not robust to noise. Thus, a method that can reduce the
upper bound of ∥s (∗̂)− s (∗)∥ and ∥s (∗̂)∥ will reduce the upper bound of activation fluctuation,
resulting in a low variance of noise-robustness across samples.

2.4 LAYER NORMALIZATION

LayerNorm normalizes elements along the layer-dimension, as opposed to the batch-dimension in
batch normalization (BatchNorm, Ioffe & Szegedy (2015)). LayerNorm normalizes the elements of
a layer using the layer-dimension mean µy and standard deviation σy defined as follows:

nLN
i =

gi
σy

(yi − µy) + bi, µy =
1

d

d∑
i=1

yi, σy =

√√√√1

d

d∑
i=1

(yi − µy)
2 (5)
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where nLN
i , gi, and bi are the ith normalized output, gain, and bias of LayerNorm. With LayerNorm,

the sum of activation scale
∥∥s (nLN

)∥∥ will have a lower upper bound of samples, which helps to
reduce the variance of noise-robustness across samples.

However, LayerNorm does not address the trade-off problem of element-level activation, and tends
to exhibit poorer performance on CNNs compared to BatchNorm. LayerNorm leads the mean
and variance of activation outputs to become similar across samples, as the activation output is
nLN
i s

(
nLN
i

)
when LayerNorm layers are applied before activation layers. Lubana et al. (2021)

demonstrated that when a LayerNorm layer is applied before an activation layer results in similar
activation output for any given network structure, thereby leading to inefficient informative propaga-
tion. Labatie et al. (2021) claimed that LayerNorm is unable to overcome the channel-wise collapse
in deep networks, resulting in less efficient training compared to BatchNorm. This perspective
is consistent with reports that LayerNorm shows poorer performance on CNN-based models than
BatchNorm, as evidenced even in its original paper (Ba et al., 2016; Wu & He, 2018). To avoid this
problem, a layer-level balancing mechanism should be employed that does not directly re-scale or
re-center the activation input.

In this section, we have defined activation scale function and demonstrated its critical role in activa-
tion processes: 1) provides non-linearity during forward pass, 2) controls gradient during backward
pass, and 3) is related to the noise-robustness of the model. We demonstrated that element-level
activation functions may have large variance of noise-robustness across samples. LayerNorm can
reduce such variance of the noise-robustness by re-scaling and re-centering the activation input, but
it also causes the statistics of activation outputs to be similar across all samples.

3 LAYER-LEVEL ACTIVATION

In this section, we introduce and discuss a novel layer-level activation mechanism and associated
functions that utilize layer-dimension normalized input for the activation scale function (see Fig-
ure 1). Our proposed method does not suffer from the trade-off issue and exhibits lower variance
than element-level activation functions across samples. Importantly, it does not cause the dilution
problem that statistics of activation outputs become similar.

Figure 1: The mechanisms of the element-level activation (left) and proposed layer-level activation
(right).

3.1 LAYERACT MECHANISM

The LayerAct function is defined as the product of the input yi and the activation scale s(ni) which
uses the layer-normalized input ni. The forward pass of a LayerAct function is given by:

ai = yis (ni) , ni =
(yi − µy)√
σ2
y + α

(6)

where α > 0 is a constant that is introduced for stability, µy , and σy are the layer-dimension mean
and standard deviation, respectively. Using the chain rule, the backward pass can be described as
follows:

∂L
∂µ

=

d∑
i=1

∂L
∂ai

· ∂s (ni)

∂ni
· −yi√

σ2 + α
,

∂L
∂σ2

=

d∑
i=1

∂L
∂ai

· ∂s (ni)

∂ni
· −yi · ni

2 (σ2 + α)
,

∂L
∂yi

=
∂L
∂ai

s (ni) +
∂L
∂ai

· ∂s (ni)

∂ni
· yi√

σ2 + α
+

1

d
· ∂L
∂µ

+
2 (yi − µ)

d
· ∂L
∂σ2

.
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For stable learning and inference, it is crucial for the activation outputs to remain continuous
throughout the entire output space. While element-level activation functions such as ReLU, leaky
ReLU (LReLU Maas et al. (2013)), and parametric ReLU (PReLU, He et al. (2015)) do not require
the activation scale to be continuous at zero (since the activation output yis (yi) is still continuous
at zero), this is not the case for LayerAct functions, where the activation output yis (ni) is discon-
tinuous if the activation scale function is not continuous. Hence, we define specific activation scale
function s for LayerAct mechanism:

Definition 3.1 (Activation scale function for LayerAct functions) The activation scale function s
is an increasing Lipschitz continuous function that bounded between zero and one:

s (0) = 1/2, |s (a)− s (b)| ≤ K |a− b| ∀a, b ∈ R.

Any function that satisfies Definition 3.1 can be used as an activation scale function for a LayerAct
function. In this paper, we suggest the Sigmoid and HardSigmoid functions as simple activation
scale functions for LayerAct functions. Both the functions are Lipschitz continuous functions and
bounded between 0 and 1. We propose the following two LayerAct functions, LA-SiLU and LA-
HardSiLU, which are the layer-level transformed versions of SiLU and HardSiLU, respectively:

LA-SiLU (yi) =
yi

1 + e−ni
, LA-HardSiLU (yi) =


yi, if ni ≥ 3

yi
(
ni

6 + 1
2

)
, if − 3 ≤ ni < 3

0, if ni < −3

.

LayerAct, unlike element-level activation, bypasses the trade-off between saturation and zero-like
mean activation. The key distinction in saturation between the element-level and LayerAct functions
is that the saturation state of element-level functions requires to be fixed at a certain point of acti-
vation output, whereas that of LayerAct functions depends on layer-dimension normalized inputs.
Thus, while LayerAct still have saturation state where s (ni) ≃ 0, the activation output space with a
LayerAct function is not limited (e.g., consider a layer where µy ≪ 0).

Although LayerAct functions utilize layer-direction normalization for activation, the activation out-
put ai of a LayerAct function in Equation 6 is not normalized output like that resulting from acti-
vation with LayerNorm. When a LayerNorm layer is applied right before an activation layer, the
activation output would be nLN

i s
(
nLN
i

)
. The re-centering and re-scaling effects of layer-direction

normalization impact the activation, resulting in a loss of diversity in layer-level mean and vari-
ance statistics across samples, as discussed in Subsection 2.4. LayerAct functions only adopt the
benefit of layer-direction normalization for CNNs, reducing the variance of noise-robustness across
samples. For additional details and clarification, please see Appendix C.

3.2 NOISE-ROBUSTNESS OF LAYERACT

In this subsection, we begin by establishing that the activation fluctuation of LayerAct is also related
to the two terms of activation scale function, ∥s (∗̂)− s (∗)∥ and ∥s (∗̂)∥, as outlined in Subsection
2.3. Subsequently, we demonstrate that these two terms for LayerAct are bound to be lower than
those of element-level activation. Here, we consider noise that is not substantial compared to acti-
vation input (i.e., σϵ ≪ σy), where σϵ represents the variance of noise ϵ. To begin with, we define
the activation fluctuation of LayerAct.

Definition 3.2 (Activation fluctuation of LayerAct functions) The activation fluctuation of Lay-
erAct activation function g, where n̂i = (ŷi − µŷ) /σŷ denotes ith noisy normalized input, is defined
as:

∥g (ŷ)− g (y)∥ =

d∑
i=1

|ŷis (n̂i)− yis (ni)| =
d∑

i=1

|yi (s (n̂i)− s (ni)) + ϵis (n̂i)| ,

Given that n and n̂ represent the normalized output of y and ŷ, respectively, we can define an upper
bound for the activation fluctuation of LayerAct functions as follows:

∥g (ŷ)− g (y)∥ ≤
d∑

i=1

(|yi| |s (n̂i)− s (ni)|+ |ϵi| s (n̂i)) . (7)

5



Under review as a conference paper at ICLR 2024

Hence, the two terms of LayerAct scale function, ∥s (n̂)− s (n)∥ and ∥s (n̂)∥, are also related to the
noise-robustness, similar to those of element-level activation function (see Equation 4). Considering
Definition 3.1, the upper bound of ∥s (ŷ)− s (y)∥ and ∥s (ŷ)∥ of element-level activation and that
of ∥s (n̂)− s (n)∥ and ∥s (n̂)∥ of LayerAct are given by repectively:

∥s (ŷ)− s (y)∥ ≤
d∑

i=1

K |ϵi| , ∥s (ŷi)∥ ≤ d, (8)

∥s (n̂)− s (n)∥ < K

d∑
i

∣∣∣∣∣∣yi + ϵi − µy − µϵ√
σ2
y + α+ σ2

ϵ

− yi − µy√
σ2
y + α

∣∣∣∣∣∣ =
d∑
i

K |ϵi − µϵ|√
σ2
y + α

, ∥s (n̂i)∥ ≪ d,

(9)

where
√

σ2
y + α+ σ2

ϵ ≈
√
σ2
y + α > 1 when σy ≫ σϵ and α is sufficiently large.

Equations 8 and 9 reveal that the activation fluctuation of LayerAct can exhibit a smaller bound-
ary across samples compared to that of element-level activation. This implies that networks with
LayerAct are likely to achieve more robust processing during the forward pass, especially when the
input is not excessively large, reinforcing the importance of applying normalization methods, such
as BatchNorm, in networks with LayerAct functions.

3.3 RELATIONSHIP BETWEEN LAYERACT AND NORMALIZATION METHODS

LayerAct does not directly re-center or re-scale its inputs, highlighting the necessity of a suitable
normalization method to fully enjoy the advantages of normalization. Therefore, the choice of
normalization method significantly impacts the performance of networks with LayerAct.

However, the benefit of LayerAct may be reduced when LayerNorm is placed before the activa-
tion layer, as LayerNorm’s output acts as pre-normalizing for the LayerAct functions. This results
in LayerAct’s activation output being similar to that of the corresponding element-level activation
function. Nonetheless, when an affine function is utilized in the mechanism of LayerNorm, the
benefit of LayerAct can partially remain. For details, see Appendix D.

Meanwhile, LayerAct is more sensitive to the presence of similar order of elements’ mean and
variance (or those of channels in case of image data) in the input layer compared to element-level
activation functions Thus, normalization that can prevent such similar order of statistics of ele-
ments is needed to enhance the effectiveness of LayerAct functions. Given these considerations,
and recalling that the inputs to LayerAct should be excessively large to maintain noise-robustness,
batch-direction normalizations such as BatchNorm or Decorrelated Batch Normalization (?) For
details, see Appendices E) and F.

4 EXPERIMENTS

In this section, we present the experimental analysis and classification performance of LayerAct.
First, we verify the important properties of LayerAct with the MNIST dataset. Next, we evaluate the
classification performance of the LayerAct functions on three image datasets, CIFAR10, CIFAR100
(Krizhevsky, 2009), and ImageNet (Russakovsky et al., 2015) for both clean and noisy cases. We
used ResNet with BatchNorm as the network architecture for our experiments (He et al., 2016).
See Appendix H for details of the experimental environment, and Appendix K for more results of
experiments. The tables in this section report the mean accuracy over 30 runs except the experiments
on ImageNet, the best results are underlined and bolded, while the second best are bolded.

4.1 EXPERIMENTAL ANALYSIS ON MNIST

In this subsection, we compare the LayerAct functions with other activation functions to demonstrate
that LayerAct functions embody the properties discussed in Section 3: i) zero-like mean activation
and ii) noise-robustness. We trained a network with a single layer that contains 512 elements on the
MNIST training dataset without any noise to observe the behavior of the LayerAct functions during
training. For the details of the experimental setting, see Appendix H
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4.1.1 ZERO-LIKE MEAN ACTIVATION

Figure 2: Distribution of the activation output means of the elements in a trained network on MNIST
at 1 and 40 epochs.

Figure 2 shows the distribution of the activation output means of the single-layer network trained
on the MNIST dataset at 1 and 40 epochs. The distributions did not change after 40 epochs. The
LayerAct functions maintain zero-like mean activation for all epochs. Our experimental results indi-
cate that the LayerAct functions allow similar (before epoch 20) or larger (after epoch 40) negative
outputs compared to the element-level activation functions with negative outputs. Thus, LA-SiLU
and LA-HardSiLU can achieve more zero-like mean activation than other activation functions.

4.1.2 NOISE-ROBUSTNESS

Figure 3: Distribution of activation output fluctuation due to noise with different noise distribution.

To confirm the noise-robustness of the LayerAct functions, we computed the activation fluctuation
of Definition 2.3 and 3.2 using the network trained on the clean MNIST dataset. For the noisy input
ŷi, we used two different noises with a normal distribution; one with a mean of zero and a standard
deviation of 0.5, and another with a mean of one and a standard deviation of 0.5.

Figure 3 shows the distribution of the activation fluctuation with two different noise distributions.
Although the fluctuation distribution of the activation input was similar (See Figure 4 in Appendix J
), LayerAct functions have a significantly smaller mean and variance of activation fluctuation among
the samples than any other element-level activation function in all cases. The decrease in variance
is remarkable, showing that the LayerAct functions are noise-robust for all samples. Moreover, the
element-level activation functions that ensure a zero-like mean with one-sided saturation such as
SiLU or HardSiLU showed slightly larger activation fluctuations than those of ReLU or LReLU
when the noise had a large mean. However, the LayerAct functions maintained lower fluctuations in
both cases.

4.2 CLASSIFICATION PERFORMANCE

We demonstrate the classification performance of the LayerAct functions on three image datasets,
CIFAR10, CIFAR100, and ImageNet. We trained ResNet20, ResNet32, and ResNet44 with a basic
block for CIFAR10 and CIFAR100. For ImageNet, we trained ResNet50 with the bottleneck block.
In all our experiments, we utilized networks with BatchNorm. We compared the LayerAct functions
with ReLU, LReLU, PReLU, Mish (Misra, 2020), SiLU and HardSiLU. We used accuracy as the
performance metric. See Appendix H for the detail of experimental setting.
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4.2.1 CLEAN CIFAR10 AND CIFAR100

The column named clean of Tables 1 and 2 presents the classification performance of ResNet20
with both LayerAct functions and element-level activation functions, benchmarked on the clean
CIFAR10 and CIFAR100 dataset. In both dataset, LA-SiLU achieved the best performance among
the activation functions.

In other experiments, ResNet32 and ResNet44 on clean CIFAR datasets (Table 15 in Appendix
K), GELU achieved better result in two specific cases, ResNet32 on CIFAR10 and ResNet44 on
CIFAR10. In the remaining combinations of networks and datasets, LA-SiLU outperformed in a
significant majority of cases. Specifically, the p-value from T-test or Wilconxon signed-rank test
was below 0.05 in 30 out of 36 experiments, indicating statistical significance. Detailed results of
these statistical tests can be found in Appendix K.

Table 1: Classification performance of ResNet20 on the CIFAR10 and CIFAR10-C datasets.

CIFAR10 CIFAR10-C
Activation Clean Total Noise Blur Digital Weather Extra

ReLU 91.29 69.92 50.28 65.19 72.67 78.63 72.59
LReLU 91.31 69.82 49.88 65.26 72.66 78.41 72.52
PReLU 90.82 69.04 49.99 64.01 71.9 77.34 71.74
SiLU 91.45 70.12 50.23 65.63 72.54 78.86 73.03

HardSiLU 91.09 69.65 49.71 65.2 72.04 78.18 72.76
Mish 91.48 70.1 50.05 65.69 72.65 78.87 72.9

GELU 91.50 69.78 49.8 64.95 72.46 78.69 72.55
ELU 91.04 69.83 48.33 66.55 72.26 78.81 72.53

LA-SiLU 91.60 71.5 51.8 67.51 73.97 79.9 74.37
LA-HardSiLU 91.21 71.34 52.17 67.46 73.52 79.48 74.33

Table 2: Classification performance of ResNet20 on the CIFAR100 and CIFAR100-C datasets.

CIFAR100 CIFAR100-C
Activation Clean Total Noise Blur Digital Weather Extra

ReLU 65.92 41.81 21.91 40.41 43.95 49.02 42.75
LReLU 65.88 41.9 21.89 40.53 44.15 49.12 42.8
PReLU 64.00 39.85 20.71 38.13 42.35 46.54 40.71
SiLU 65.89 41.32 20.95 39.89 43.46 48.76 42.3

HardSiLU 65.19 41.04 21.31 39.55 43.19 48.07 42.11
Mish 65.85 41.12 20.48 39.74 43.39 48.59 42.08

GELU 65.84 41.22 21.02 39.72 43.31 48.65 42.2
ELU 66.24 41.31 19.17 40.53 43.63 49.15 42.32

LA-SiLU 66.39 42.6 21.48 41.69 45.03 50.12 43.47
LA-HardSiLU 66.16 42.85 22.33 41.76 45.29 50.06 43.86

4.2.2 NOISY CIFAR10 AND CIFAR100

To verify the noise-robustness of LayerAct functions, we evaluated their classification performance
on the out-of-distribution benchmark datasets, CIFAR-C (Hendrycks & Dietterich, 2019). The
CIFAR-C dataset includes a total of 19 distinct corruptions, each with five levels of severity, or-
ganized into five categories: noise, blur, digital, weather, and extra.

Tables 1 and 2 show the classification performance of ResNet20 on CIFAR10-C and CIFAR100-C
datasets (see Appendix K for the results of ResNet32 and ResNet44). The total represents the aver-
age of accuracy across all corruptions. The networks with LayerAct functions achieved remarkable
performance compared to those with element-level activation functions. In statistical significance
test, networks with LA-HardSiLU outperformed those with element-level activation functions (T-
test or Wilconxon signed-rank test with p-value< 0.05), except networks with ReLU and LReLU on
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noisy CIFAR10 with Gaussian noise 1 and 2. This result demonstrates that LA-HardSiLU exhibits
greater noise-robustness to intense noise compared to other functions. Furthermore, we experi-
ments on ResNets without a normalization method to investigate the impact of BatchNorm on noise-
robustness of LayerAct. The experiments reveals that LA-SiLU can maintain its noise-robustness
when inputs are not excessively large. For the detailed results of the experiments, see Appendix E.

Table 3: Classification performance on the clean and noisy ImageNet.

ImageNet
Activation Clean Total Noise Blur Digital Weather Extra

ReLU 77.71 43.75 34.40 36.85 48.37 47.18 49.60
LReLU 77.83 43.24 32.87 36.33 48.00 47.03 49.38
PReLU 74.99 36.77 23.28 32.27 43.29 39.56 42.05
SiLU 77.85 42.31 29.74 35.94 46.59 47.36 48.77

HardSiLU 76.30 40.56 26.21 35.14 46.01 45.23 46.63
Mish 77.41 42.57 31.24 36.60 46.73 46.83 48.64

GELU 78.01 40.71 27.82 35.35 45.34 44.52 47.28
LA-SiLU 78.62 45.29 36.16 37.66 50.31 48.33 51.71

LA-HardSiLU 78.24 43.63 32.21 37.57 47.69 47.88 49.93

4.2.3 IMAGENET

Table 3 shows the classification performance of the LayerAct functions and the element-level acti-
vation functions for comparison with clean and noisy ImageNet datasets. We report the accuracy
of 10-crop testing on validation dataset. The best results are underlined and bolded, while the sec-
ond best are bolded. We used the out-of-distribution benchmark dataset, ImageNet-C (Hendrycks
& Dietterich, 2019), which has the same corruptions with CIFAR-C datasets. The networks with
LayerAct functions outperformed those with other activation functions on all datasets. The Lay-
erAct functions, even LA-HardSiLU that showed worse performance on the clean CIFAR10 and
CIFAR100 datasets compared to SiLU or LReLU, outperformed other activation functions on clean
ImageNet.

4.3 FURTHER ANALYSIS AND EXPERIMENTS

The integration of LayerAct functions into a network demands careful selection of the normaliza-
tion method, due to its inherent layer-direction normalizing characteristic. Our experimental re-
sults demonstrate that LayerAct is effectively compatible with BatchNorm, a normalization method
prevalently employed in CNNs. Detailed analysis on the relationship between LayerAct and various
normalization methods can be found in Appendices D, E, and F

To explore the viability of LayerAct, we utilized LA-SiLU in U-Net (Olaf Ronneberger, 2015) and
UNet++ (Zhou et al., 2018), which are architectures designed for medical image segmentation. As
shown in Table 14 in Appendix I, networks with LA-SiLU outperform those with ReLU and SiLU.
These results highlight the potential of LayerAct functions in different architectures and tasks.

5 CONCLUSION

In this study, we introduce LayerAct that provide non-linearity with layer-direction normalizing of
all elements in a layer. This unique activation mechanism achieves one-side saturation while also
allowing larger negative outputs. Moreover, the activation scale with normalized input enables the
LayerAct functions to reduce the mean and variance of activation fluctuation, implying that networks
with LayerAct functions have potential to have lower variance of noise-robustness across samples.
ResNets trained using LA-SiLU, one of the possible LayerAct functions, demonstrated similar or
better performance than those for the other activation functions on the clean image datasets. More-
over, LayerAct functions outperformed the other activation functions at most of the experiments on
noisy datasets. Our code and trained models are available on our GitHub repository1.

1https://github.com/LayerAct/LayerAct
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A IMPORTANT PROPERTIES OF ACTIVATION

The saturation state of an activation function contributes to robustness against shifts in activation in-
put, as changes in saturated activation inputs minimally affect the output. However, early activation
functions like Sigmoid and Tanh, which saturate on both positive and negative sides, suffer from
the vanishing gradient problem. To overcome this while maintaining noise-robustness, one-sided
saturation became an important property after the great success of ReLU. ReLU is expected to be
noise-robust in the saturation state, (as the outputs are not affected by input shifts in the saturation
state) and to have fewer vanishing gradient problems by allowing large positive outputs.

Nevertheless, functions like ReLU, which do not allow negative outputs, encounter another issue of
bias shift, leading to ineffective and inefficient training. After Clevert et al. (2016) demonstrated
that an activation mean closer to zero can solve such a problem, “zero-like mean activation” has
become an important property of activation functions. To incorporate both properties, one-sided
saturation and zero-like mean activation, activation functions such as ELU, GELU, and SiLU were
designed to allow small negative outputs to push the activation mean towards zero while saturating
large negative outputs for noise-robustness.

B DEFINITION OF ZERO-LIKE MEAN ACTIVATION

The activation output of the ith unit of mth sample (m ∈ {1, 2, ...,M}) is defined as ai,m =
f (yi,m), where f , yi,m, and M are activation function, the ith activation input of the mth sample,
and the number of samples, respectively. Ideally, a “zero-like activation mean” occurs when the
activation mean of a single unit, ai, approximates zero across the samples. Mathematically, this can
be represented as:

1

M

M∑
m=1

ai,m ≈ 0.

However, approximating the activation mean to zero is challenging for the activation functions that
saturate the (large) negative outputs such as ELU, SiLU or FReLU. Due to the saturation, previous
studies have defined the “zero-like activation mean” property of an activation function as its ability to
“push” the activation mean towards zero. In a mathematical term, this can be presented as |µai | ≪ c,
where c is a small positive constant (Clevert et al., 2016; Qiu et al., 2018).

C DIFFERENCE BETWEEN LAYERACT AND ACTIVATION WITH LAYERNORM

In this section, we compare the activation outputs between LayerAct and activation functions
paired with LayerNorm. When LayerNorm is placed right before activation, the output is ai =
nLN
i s

(
nLN
i

)
, where nLN is normalized output of LayerNorm. Conversely, the activation output of

a LayerAct function is ai = yis (ni), as defined in Equation 6 in the main article.

The critical distinction between activation with LayerNorm and LayerAct lies in the preservation
of input mean and variance statistical information in the activation output. With LayerNorm, the
activation function takes a layer-normalized input, resulting in activation outputs that exhibit similar
statistical information across samples (as shown in the activation output equation for LayerNorm
above). However, this homogenization of statistical information across samples, a characteristic of
LayerNorm, is a reason why BatchNorm often outperforms LayerNorm in non-sequential models
such as CNNs (Labatie et al., 2021; Lubana et al., 2021).

LayerAct, on the other hand, produces more distinguishable activation outputs between samples by
preserving statistical variation between samples. This is due to the fact that only the activation scale
function of LayerAct uses the layer-normalized input, not the LayerAct function itself (as shown in
Equation 6 in the main article).

We would like to note that LayerAct is compatible with BatchNorm, and all the networks used in
our CIFAR10, CIFAR100 and ImageNet experiments contain BatchNorm. It is worth noting that the
dimension of input normalization between BatchNorm and the activation scale of LayerAct differs,
which can result in different effects from BatchNorm to LayerAct. Thus, LayerAct can be effectively
used with BatchNorm to enhance the performance of neural networks.
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D LAYERACT WITH LAYERNORM

For the further investigation on the network that utilize both of LayerAct and LayerNorm, consider a
network using LayerNorm without an affine function (no gain and bias) and placing the LayerNorm
layer right before the activation layer. Here, the normalization output of the LayerNorm layers serves
as the activation input.

Consequently, in this scenario, the normalization output of a LayerNorm layer is nL̂N =
y−µ2

y√
σ2
y+α

.

This leads to the output of SiLU nL̂Ns
(
nL̂N

)
and LA-SiLU nL̂Ns (n) to be exactly same as n =

nL̂N . As such, the closer the output of the LayerNorm layer approximates the normalized input
of LayerAct’s activation scale function (i.e., the more gain and bias approximate to one and zero,
respectively), the more the benefits of LayerAct are reduced.

However, the benefits of LayerAct functions, addressing the trade-off problem between two prop-
erties of activation and having potential to have lower variance of noise-robustness across sam-
pels, can be partially maintain when used with LayerNorm that includes an affine function. In
such scenarios, the layer-direction normalization in LayerNorm and LayerAct differs, represented

as nL̂N = g · y−µ2
y√

σ2
y+α

+ b, and n = · y−µ2
y√

σ2
y+α

, where g and b are gain and bias parameter of Layer-

Norm, respectively. To explore this, we carried out experiments on ResNets with LayerNorm. We
followed the same experimental setting of the experiments in our main manuscript.

Table 4: Classification performance of ResNets with LayerNorm on the CIFAR10 and CIFAR10-C
datasets.

CIFAR10 CIFAR10-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 88.24 73.77 62.05 71.26 76.48 79.69 76.46
ResNet20 SiLU 87.53 74.3 63.32 71.74 77.33 79.77 76.58
ResNet20 LA-SiLU 88.52 75.31 63.81 73.11 78.23 80.92 77.6
ResNet32 ReLU 88.55 74.48 63.33 71.92 76.94 80.33 77.11
ResNet32 SiLU 87.27 75.3 64.78 72.92 78.55 80.3 77.32
ResNet32 LA-SiLU 87.85 76.39 67.35 74.22 78.80 80.99 78.32
ResNet44 ReLU 88.58 75.2 64.32 72.75 77.87 80.67 77.67
ResNet44 SiLU 86.65 75.11 65.67 72.73 77.84 79.85 77.1
ResNet44 LA-SiLU 86.88 76.73 69.53 74.98 78.51 80.43 78.43

Table 5: Classification performance of ResNets with LayerNorm on the CIFAR100 and CIFAR100-
C datasets.

CIFAR100 CIFAR100-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 61.3 44.04 31.82 44.39 47.03 48.86 45.07
ResNet20 SiLU 60.45 45.93 35.66 46.46 48.46 49.91 46.59
ResNet20 LA-SiLU 62.3 45.3 31.63 45.9 48.72 50.65 46.17
ResNet32 ReLU 63.21 45.92 33.23 46.17 49.26 50.94 46.84
ResNet32 SiLU 60.04 47.14 37.37 48.6 49.57 50.33 47.41
ResNet32 LA-SiLU 60.76 47.26 36.63 48.51 49.97 51.03 47.51
ResNet44 ReLU 64.18 46.63 33.92 46.89 49.68 51.72 47.75
ResNet44 SiLU 59.58 47.41 38.28 48.69 49.45 50.61 47.73
ResNet44 LA-SiLU 60.17 47.31 38.1 48.82 49.63 50.26 47.46

We present the average accuracy over 10 trials in Tables 4 and 5. The experiments substantiated
our concerns about the relationship between LayerNorm and LayerAct. The results showed that
ResNet32 and ResNet44 with ReLU outperformed those with LA-SiLU. On the noisy CIFAR100
dataset, the performance of ResNet20 and ResNet44 with SiLU was better than those with LA-SiLU.
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Nonetheless, it is noteworthy that LA-SiLU exhibited superior performance in four out of six sce-
narios on noisy datasets. Moreover, networks with LA-SiLU outperformed those with SiLU. This
observation brings us to the conclusion that the advantages of LayerAct are diminished when paired
with LayerNorm as compared to BatchNorm. However, it’s noteworthy that the benefits of Layer-
Act might still be partially retained when LayerNorm is utilized, particularly in scenarios where the
affine function is incorporated.

E RELATIONSHIP BETWEEN LAYERACT AND BATCHNORM

Considering the importance of normalization methods in deep learning, exploring the relationship
between LayerAct and normalization methods is needed.

Firstly, to verify whether the noise-robustness of LayerAct relies on BatchNorm, we conducted
additional experiments on ResNets without a normalization method. For these experiments, we
selected ReLU and SiLU as baseline activation functions for comparison with LA-SiLU. The choice
of ReLU was based on its simplicity as an activation function, while SiLU was chosen due to its use
of sigmoid activation scale functions, similar to LA-SiLU. We used the same experimental setting
as in the experiments in our main manuscript. We present the average accuracy over 10 trials.

Table 6: Classification performance on CIFAR10 and CIFAR10-C of ResNet32 without a normali-
ation method. We report the average mean accuracy in the table.

CIFAR10 CIFAR10-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 88.51 67.43 53.27 62.12 70.93 75.91 71.38
ResNet20 LA-SiLU 88.95 69.36 54.71 65.58 71.93 77.59 73.34
ResNet32 ReLU 89.56 68.94 54.48 63.9 72.45 77.52 72.73
ResNet32 LA-SiLU 89.12 70.59 56.29 66.81 73.11 78.94 74.22
ResNet44 ReLU 90.03 69.97 55.75 65.08 73.38 78.45 73.62
ResNet44 LA-SiLU 88.77 71.65 58.15 68.32 74.01 79.49 74.88

Table 7: Classification performance on CIFAR100 and CIFAR100-C of ResNet32 without a nor-
maliation method. We report the average mean accuracy in the table.

CIFAR100 CIFAR100-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 88.51 67.43 53.27 62.12 70.93 75.91 71.38
ResNet20 LA-SiLU 88.95 69.36 54.71 65.58 71.93 77.59 73.34
ResNet32 ReLU 89.56 68.94 54.48 63.9 72.45 77.52 72.73
ResNet32 LA-SiLU 89.12 70.59 56.29 66.81 73.11 78.94 74.22
ResNet44 ReLU 90.03 69.97 55.75 65.08 73.38 78.45 73.62
ResNet44 LA-SiLU 88.77 71.65 58.15 68.32 74.01 79.49 74.88

Table 6 and 7 demonstrates the performance of ResNets without any normalization on both clean and
noisy CIFAR10 and CIFAR100. We used a learning rate of 0.01. We report the average classification
accuracy among 30 trials. ResNet32 and ResNet44 with SiLU exploded during training in some
trials. Thus, we present the experimental results of the networks with ReLU and LA-SiLU.

The networks with LA-SiLU outperformed the networks with ReLU on noisy datasets. This result
and the one from Appendix D imply that the noise-robustness of LA-SiLU is not depend on the
normalization methods, if the activation input is not excessively large.

However, the performance of ResNet32 and ResNet44 with ReLU outperformed those with LA-
SiLU on clean datasets. This is because networks with LA-SiLU sufer the overfitting problem,
showing 95.76% and 96.47% accuracy on CIFAR10 and CIFAR100 train dataset, repsectively,
which are higher than those with ReLU, 92.23% and 94.52%. This reveals that deeper networks
with LA-SiLU needs the re-scaling and re-centering operation of normalization methods, such as
BatchNorm, to prevent overfitting.
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The efficacy of BatchNorm extends beyond its re-scaling and re-centering operations and is also
attributed to its directional approach. When considering an image dataset X ∈ Rn×c×h×w, batch-
direction normalization introduces dynamic variablility to the order of mean and variance of chan-
nels across sampels. This means that the order of mean and variance in channles can differ between
samples, contributing to the unique advantages of BatchNorm. This mechanism of BatchNorm is
very helpful to LayerAct, which uses layer-direction normalizing for activation and is highly sensi-
tive to the sequence in which mean and variance are calculated across channels.

In conclusion, selecting normalization method for networks with LayerAct functions should be in
precise way, considering the operation of both LayerAct and normalization method. While Layer-
Norm can reduce the benefit of LayerAct as discussed in Appendix D, while BatchNorm have good
properties, BatchNorm would be the one for the networks with LayerAct functions on image dataset.

F LAYERACT WITH OTHER NORMALIZATION METHODS.

To investigate the relationship between LayerAct and normalizations, we conducted experiments on
ResNets with Switchable Normalization (SwitchNorm, Luo et al. (2019)), Instance enhancement
batch normalization (IEBN, Liang et al. (2020)), and Decorrelated Batch Normalization (DBN,
Huang et al. (2018)). We used same experiment setting with those of our main manuscript. We
report the average accuracy over 10 runs for the experiments with SwitchNorm and IEBN, and
average accuracy over 5 runs for those with DBN.

Analysis of the experimental results revealed that LayerAct functions are not effectively compatible
with normalizations that can cause a large variance in the channel means, such as SwitchNorm
and IEBN. This incompatibility arises because LayerAct is more sensitive to such large variance
between channel means, which resulting channels with smaller means to be more likely to become
inactivated compared to those with larger means.

Table 8: Classification performance on CIFAR10 and CIFAR10-C of ResNet32 with SwitchNorm.
We report the average mean accuracy in the table.

CIFAR10 CIFAR10-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 89.65 72.4 56.07 71.35 75.24 80.43 74.81
ResNet20 SiLU 90.6 74.17 57.7 72.94 77.57 82.21 76.33
ResNet20 LA-SiLU 89.56 72.43 55.9 71.05 75.47 80.87 74.73
ResNet32 ReLU 90.7 73.9 58.24 72.84 76.3 81.79 76.42
ResNet32 SiLU 90.79 74.65 58.78 73.39 77.64 82.57 76.91
ResNet32 LA-SiLU 89.94 72.72 56.15 71.07 75.52 81.48 75.23
ResNet44 ReLU 91.4 74.65 58.1 74.01 77.18 82.81 76.99
ResNet44 SiLU 74.48 61.7 49.5 60.58 64.11 67.87 63.41
ResNet44 LA-SiLU 89.36 72.02 54.85 70.59 75.07 81.05 74.24

Table 9: Classification performance on CIFAR100 and CIFAR100-C of ResNet32 with Switch-
Norm. We report the average mean accuracy in the table.

CIFAR100 CIFAR100-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 57.36 37.01 20.61 38.43 39.75 43.56 38.59
ResNet20 SiLU 64.55 42.96 25.13 43.91 46.35 50.42 44.55
ResNet20 LA-SiLU 63.88 41.76 23.23 42.83 45.28 49.43 43.4
ResNet32 ReLU 60.19 38.81 21.89 40.02 41.3 46.0 40.61
ResNet32 SiLU 64.35 42.45 25.00 43.08 45.86 49.92 44.00
ResNet32 LA-SiLU 64.05 42.27 23.72 43.46 45.5 50.16 43.89
ResNet44 ReLU 61.64 39.93 22.64 41.03 42.47 47.54 41.67
ResNet44 SiLU 44.8 29.57 18.11 29.96 31.98 34.21 30.73
ResNet44 LA-SiLU 62.99 41.91 22.86 43.06 46.02 49.79 43.06
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Table 8 and 9 exhibit that the combination of SwitchNorm and LayerAct is not effective. It is be-
cause LayerAct is more sensitive to the presence of similar channel characteristics across samples
compared to element-level activation functions. If two samples display similar orders in the mean
and variance of their channels, LayerAct, which employs layer-direction normalization for activa-
tion, tends to yield similar activation outputs.

BatchNorm distinctively ensure different channel characteristics between samples. While Layer-
Norm does not inherently differentiate channels across samples, it does not actively homogenize
them either, thus preserving the natural order of mean and variance among channels. On the other
hand, InstanceNorm actively normalizes the mean and variance of channels to be more uniform.
SwitchNorm utilize the weighted average of three normalization method. Consequently, due to the
integrated normalization approach of SwitchNorm, which combines three methods, we expect that
the effect of InstanceNorm tends to homogenize channel characteristics, rendering LayerAct func-
tions susceptible to inefficiency.

Table 10: Classification performance on CIFAR10 and CIFAR10-C of ResNet32 with IEBN. We
report the average mean accuracy in the table.

CIFAR100 CIFAR100-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 91.5 70.12 52.49 66.73 73.44 79.64 73.89
ResNet20 SiLU 91.44 68.98 49.39 66.26 72.29 79.0 73.06
ResNet20 LA-SiLU 91.63 70.64 52.7 67.3 74.2 79.87 74.65
ResNet32 ReLU textbf92.54 71.67 54.06 68.82 74.82 81.12 75.11
ResNet32 SiLU 91.85 71.07 53.39 68.26 73.9 80.5 74.9
ResNet32 LA-SiLU 92.36 71.77 54.19 68.19 75.32 81.15 75.6
ResNet44 ReLU 92.78 72.18 55.2 68.83 75.61 81.59 75.43
ResNet44 SiLU 92.08 71.23 52.79 68.54 74.27 80.95 74.99
ResNet44 LA-SiLU 92.5 73.01 56.97 69.18 76.03 82.34 76.5

Table 11: Classification performance on CIFAR100 and CIFAR100-C of ResNet32 with IEBN. We
report the average mean accuracy in the table.

CIFAR100 CIFAR100-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 66.62 41.97 22.81 42.51 45.07 50.3 44.37
ResNet20 SiLU 66.19 40.88 21.14 41.08 44.29 49.68 43.28
ResNet20 LA-SiLU 66.73 41.59 21.31 41.98 45.26 50.53 43.82
ResNet32 ReLU 68.17 43.49 23.81 43.89 46.76 52.3 45.78
ResNet32 SiLU 67.43 42.3 23.15 42.38 45.33 51.14 44.68
ResNet32 LA-SiLU 67.97 43.56 24.49 43.39 46.94 52.47 45.76
ResNet44 ReLU 69.47 44.73 25.74 44.77 47.77 53.51 47.12
ResNet44 SiLU 68.18 43.47 24.76 43.37 46.46 52.22 45.89
ResNet44 LA-SiLU 68.41 45.29 26.89 45.15 48.67 54.03 47.13

Table 10 and 11 demonstrate the preformacne of networks with IEBN. With the exception of
ResNet20 on CIFAR100, networks with LA-SiLU demonstrated enhanced performance on noisy
datasets when compared to their counterparts utilizing ReLU and SiLU. Conversely, ReLU outper-
formed LA-SiLU in ResNet32 and ResNet44 models. Nonetheless, it is important to highlight that
LA-SiLU consistently surpassed SiLU, which utilizes the same activation scale function, across all
tested scenarios.

These results imply that the mechanism of LayerAct holds promise for enhancing efficiency. It is
also important to consider careful consideration and integration of network complexity, particularly
due to the interplay between normalization and activation functions, are essential, given that the scale
function of ReLU is considerably simpler compared to sigmoid, the scale function of LA-SiLU and
SiLU.

Table 12 and 13 demonstrate the preformacne of networks with DBN. Except for ResNet20 on CI-
FAR100, networks with LA-SiLU showed similar or improved performance on both clean and noisy
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Table 12: Classification performance on CIFAR10 and CIFAR10-C of ResNet32 with DBN. We
report the average mean accuracy in the table.

CIFAR100 CIFAR100-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 89.96 64.9 35.84 64.19 71.27 77.93 67.99
ResNet20 SiLU 89.69 65.02 39.63 63.08 70.24 76.98 68.83
ResNet20 LA-SiLU 91.33 68.49 43.02 67.59 73.41 79.73 72.33
ResNet32 ReLU 91.99 68.18 37.10 68.58 75.0 81.30 71.15
ResNet32 SiLU 92.27 68.02 40.16 66.64 73.86 80.91 71.57
ResNet32 LA-SiLU 92.26 70.33 44.43 69.65 75.0 82.12 73.99
ResNet44 ReLU 92.30 69.07 38.99 69.20 75.73 81.82 72.07
ResNet44 SiLU 92.13 68.89 41.72 68.09 74.14 81.17 72.52
ResNet44 LA-SiLU 92.42 70.94 46.53 69.58 75.17 82.61 74.69

Table 13: Classification performance on CIFAR100 and CIFAR100-C of ResNet32 with DBN. We
report the average mean accuracy in the table.

CIFAR100 CIFAR100-C
Model Activation Clean Total Noise Blur Digital Weather Extra

ResNet20 ReLU 59.71 34.19 13.48 34.26 38.28 43.67 36.07
ResNet20 SiLU 57.82 32.13 13.41 31.57 35.78 40.99 34.22
ResNet20 LA-SiLU 58.19 32.24 14.32 30.95 35.11 41.4 34.96
ResNet32 ReLU 54.06 30.29 14.16 28.67 34.09 38.34 32.14
ResNet32 SiLU 62.0 35.26 14.99 34.41 39.35 45.01 37.46
ResNet32 LA-SiLU 65.02 38.75 19.18 37.84 41.81 48.66 41.36
ResNet44 ReLU 60.32 34.64 14.96 33.68 39.03 44.1 36.51
ResNet44 SiLU 64.67 37.58 15.81 37.63 42.01 47.2 39.83
ResNet44 LA-SiLU 67.59 42.44 21.03 42.54 46.52 52.15 44.6

datasets compared to those employing ReLU and LA-SiLU. The results of these experiments high-
light the potential applicability of LayerAct functions in conjunction with advanced batch-direction
normalization methods.

G ACTIVATION OUTPUT OF LAYERACT FUNCTIONS

Figure 4: LA-SiLU with different mean and variance values in the input. The distribution of the
activation input is: i) µy = 0, σy = 1, ii) µy = 0, σy = 5, iii) µy = −5, σy = 1, and iv) µy = 5,
σy = 1 from the left to right.

In this section, we present and discuss an illustration of LayerAct functions. Unlike other activa-
tion functions, the mean and variance of the input affect the shape of the activation output in the
LayerAct functions (as outlined in Equation 6 in the main article). For better demonstration of this
characteristic, we present the outputs of the LayerAct functions for four distinct cases. Each case
uses an input that follows a different normal distribution.

Figures 4 and 5 plot the activation outputs of LA-SiLU and LA-HardSiLU, respectively. These
figures demonstrate how the shape of activation output is different depending on the shape, mean
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Figure 5: LA-HardSiLU with different mean and variance values in the input. The distribution of
the activation input is: i) µy = 0, σy = 1, ii) µy = 0, σy = 5, iii) µy = −5, σy = 1, and iv) µy = 5,
σy = 1 from the left to right.

and variance in this case, of the activation input. The figures also show that LayerAct functions
can produce negative outputs depending on the mean and variance of the inputs. In some cases, no
output exists in the saturation state (see the second figure in Figure 5). It is notable that the LayerAct
functions achieved noise-robustness without a large number of elements in the saturation state.

H EXPERIMENTAL REPRODUCTION

We implemented LayerAct functions and networks for experiment with PyTorch (Paszke et al.,
2019). All networks used in our experiments were trained on NVIDIA A100. We used multiple
devices to train the networks on ImageNet, and a single device for the other experiments. The
versions of Python and the packages were i) Python 3.9.12, ii) numpy 1.19.5 iii) PyTorch 1.11.0,
and iv) torchvision 0.12.0. We used cross entropy loss functions for all the experiments. The random
seeds of the experiments were 11 × i where i ∈ {1, 2, ..., 30} on CIFAR10 and CIFAR100 and 11
and 22 on ImageNet.

To train networks on MNIST for experimental analysis, we applied batch gradient descent for 80
epochs with the weight decay and momentum fixed to 0.0001 and 0.9, respectively. The learning
rate started from 0.01, and was multiplied 0.1 at epochs 40 and 60 as scheduled.

We used ResNet (He et al., 2016) with BatchNorm right before activation for experiments on CI-
FAR10, CIFAR100 and ImageNet. We initialized the weights following the methods proposed by
He et al. (He et al., 2015). For all experiments, the weight decay, momentum, and initial learning
rate were 0.0001, 0.9 and 0.1, respectively.

For CIFAR10 and CIFAR100, we trained ResNet20, ResNet32, and ResNet44 with a basic block
using the stochastic gradient descent with a batch size of 128 for about 64000 iterations. We ran-
domly selected 10% of the training dataset as the validation set. The learning rate was scheduled to
decrease by the factor of 10 at 32000 and 48000 iterations. For the data augmentation of CIFAR10
and CIFAR100, we followed Lee et al. (2015). We rescaled the data between 0 and 1, padded 4
pixels on each side, and randomly sampled a 32 × 32 crop from the padded image or its horizontal
flip. The data was normalized after augmentation. For testing, we did not apply data augmentation,
only normalized the data. The hyper-parameter α of LayerAct functions for the experiments was set
to 0.00001.

For the experiment with ImageNet, we trained ResNet50 with the bottleneck block using stochastic
gradient descent, and the batch size was 256 for about 600000 iterations. The learning rate was
scheduled to decrease by a factor of 10 at 180000, 360000, and 540000 iterations. For the data
augmentation on ImageNet, we rescaled the data between 0 and 1, resized it to 224 × 244, and
randomly sampled a 224 × 224 crop from an image or its horizontal flip (Krizhevsky et al., 2017).
We normalized the data after data augmentation. For testing, we resized the data to be 256×256 and
applied 10-crop. Afterward, the data was normalized. To ensure stable learning, we set the hyper-
parameter α of LayerAct functions to 0.1 which is larger than those for CIFAR10 and CIFAR100.

The noisy datasets were generated by adding noise to the data after it was rescaled between 0 and 1.
Following this, the same data augmentation applied to the clean dataset was also used on the noisy
dataset.
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The supplementary material of this paper and the trained networks are available in our anonymous
GitHub repository2.

I U-NET AND UNET++ WITH LA-SILU ON A MEDICAL IMAGE
SEGMENTATION TASK.

In this section, we present the experimental results from U-net (Olaf Ronneberger, 2015) and Unet++
(Zhou et al., 2018) for segmentation task on a nuclei image dataset from Data Science Bowl 2018
(Goodman et al., 2018). Detailed experimental setting is as follows: i) Adam optimizer with
3e−4learning rate, and 1e−4 weight decay, ii) training 100 epoches with cosine annealing schedular,
and iii) BCE-Dice Loss as the loss function. We report the average IoU (Intersection over Union;
%) over 10 trials with different weight initialization.

Table 14: Segmentation performance on U-net and Unet++ of ResNet32. We report the average
mean accuracy in the table.

Activation U-net Unet++ w/o DSV Unet++ with DSV
ReLU 84.71 84.94 84.92
SiLU 84.87 85.15 85.01

LA-SiLU 85.13 85.27 85.05

DSV and w/o indicate deep supervision (Lee et al., 2015) and without, respectively. The experimen-
tal results demonstrate that networks with LA-SiLU outperform those with ReLU and SiLU in every
case. This reveals the practical potential of LayerAct functions across CNN-based architectures and
image segmentation tasks. It is also important to highlight that neither UNet nor UNet++ utilizes
a normalization method. Considering the experimental results of networks without a normaliza-
tion in Appendix E , where ResNet20 with LA-SiLU demonstrated better performance compared to
that with ReLU and SiLU, this suggests that LayerAct can exhibit robust performance in shallow
networks without normalization.

J ADDITIONAL FIGURES

In this section, we present additional tables and figures extracted from the experiments.

Figure 6: Distribution of the activation input means of the elements in a trained network on MNIST
at 1st and 40th epochs.

Figure 6 presents the distribution of the mean activation input. As observed in the mean of activation
input at epoch 40 (right), LayerAct functions promote the training of parameter W such that the
output of the linear projection y = WTx, which is also activation input, gets closer to zero compared
to other functions. This helps the activation output to exhibit a ‘zero-like’ behaviour.

LayerAct functions exhibit a significantly lower mean and variance of activation fluctuation among
the samples compared to any other element-level activation function (see Figure 3 in the main ar-
ticle). Figure 7 demonstrates that the distribution of mean fluctuation in activation input appears

2https://github.com/LayerAct/LayerAct
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Figure 7: Distribution of activation input fluctuation due to noise with different noise distribution.

similar across all functions. This observation confirms that the lower mean and variance of activa-
tion output fluctuation of LayerAct functions is not due to a smaller fluctuation in activation input,
but is a result of the inherent mechanism of LayerAct.
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K ADDITIONAL TABLES

Table 15 shows the classification performance of networks on clean CIFAR10 and CIFAR100
datasets.

Tables 16, 17, 18, and 19 demonstrate the classification performance of ResNet32 and ResNet44
with activation functions on CIFAR10-C and CIFAR100-C datasets. We do not report the exper-
iments of ResNet44 with PReLU on CIFAR10 as a network exploded during training. The per-
formance of networks with LayerAct functions were better or similar compared to other activation
functions.

Table 15: Classification performance on the clean CIFAR10 and CIFAR100

CIFAR10 CIFAR100
Activation ResNet20 ResNet32 ResNet44 ResNet20 ResNet32 ResNet44

ReLU 91.29 92.03 92.03 65.92 67.04 68.02
LReLU 91.31 92.03 92.03 65.88 67.37 67.96
PReLU 90.82 92.03 - 64.00 66.35 67.68
SiLU 91.45 92.17 92.18 65.89 67.22 67.71

HardSiLU 91.09 91.77 91.42 65.19 66.49 66.38
Mish 91.48 92.21 92.30 65.85 67.18 68.06

GELU 91.50 92.25 92.22 65.84 67.30 68.19
ELU 91.04 91.61 91.68 66.24 67.01 67.55

LA-SiLU 91.60 92.20 92.36 66.39 67.74 68.07
LA-HardSiLU 91.21 91.68 91.36 66.16 66.63 65.51

Table 16: Classification performance on CIFAR10 and CIFAR10-C of ResNet32. We report the
average mean accuracy in the table.

Activation Clean Total Noise Blur Digital Weather Extra
ReLU 92.03 72.00 53.07 67.62 74.75 80.44 74.41

LReLU 92.03 72.01 52.66 67.86 74.77 80.42 74.5
PReLU 92.03 71.7 52.82 67.06 74.72 79.90 74.17
SiLU 92.17 71.7 52.37 67.21 74.08 80.51 74.38

HardSiLU 91.77 71.32 52.75 66.75 73.39 79.66 74.28
Mish 92.21 71.96 53.09 67.42 74.3 80.57 74.64

GELU 92.25 71.64 52.44 67.18 74.11 80.26 74.26
LA-SiLU 92.20 72.8 54.02 68.42 75.13 81.36 75.51

LA-HardSiLU 91.68 72.6 55.36 67.71 74.70 80.53 75.62

Table 17: Classification performance on CIFAR10 and CIFAR10-C of ResNet44. We report the
average mean accuracy in the table.

Activation Clean Total Noise Blur Digital Weather Extra
ReLU 92.03 73.71 56.39 70.03 76.05 81.27 75.92

LReLU 92.03 73.69 56.03 70.10 76.09 81.43 75.81
SiLU 92.18 72.45 53.12 68.64 74.80 80.88 75.06

HardSiLU 91.42 72.63 55.51 68.72 74.73 79.86 75.34
Mish 92.30 72.79 53.74 68.86 75.22 81.18 75.3

GELU 92.22 72.82 54.65 68.69 75.26 80.85 75.24
LA-SiLU 92.36 73.5 55.29 69.14 75.73 81.91 76.19

LA-HardSiLU 91.36 73.33 57.45 68.48 75.30 80.64 76.30
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Table 18: Classification performance on CIFAR100 and CIFAR100-C of ResNet32. We report the
average mean accuracy in the table.

Activation Clean Total Noise Blur Digital Weather Extra
ReLU 67.04 43.51 24.10 41.99 45.81 50.58 44.32

LReLU 67.37 43.58 23.8 42.12 45.94 50.73 44.42
PReLU 66.35 42.44 23.72 40.31 44.81 49.42 43.27
SiLU 67.22 42.94 23.06 41.27 45.01 50.31 44.02

HardSiLU 66.49 42.67 23.64 40.87 44.87 49.54 43.71
Mish 67.18 42.95 22.69 41.53 45.05 50.37 43.97

GELU 67.30 43.00 23.15 41.45 45.21 50.21 43.94
LA-SiLU 67.74 44.6 24.16 43.58 46.74 52.11 45.51

LA-HardSiLU 66.63 44.86 25.98 43.83 47.02 51.50 45.81

Table 19: Classification performance on CIFAR100 and CIFAR100-C of ResNet44. We report the
average mean accuracy in the table.

Activation Clean Total Noise Blur Digital Weather Extra
ReLU 68.02 44.77 25.45 43.05 47.33 51.94 45.44

LReLU 67.96 44.8 25.57 43.26 47.17 51.91 45.5
PReLU 67.68 44.31 25.78 42.19 46.7 51.44 44.97
SiLU 67.71 44.04 24.52 42.61 46.16 51.08 45.01

HardSiLU 66.38 44.11 26.22 42.77 46.29 50.32 44.9
Mish 68.06 44.14 24.18 42.69 46.36 51.37 45.11

GELU 68.19 43.93 24.39 42.29 46.15 51.02 44.85
LA-SiLU 68.07 46.12 26.68 44.94 48.32 53.44 46.89

LA-HardSiLU 65.51 46.83 30.85 45.83 48.93 52.5 47.35
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Tables 20 and 21 present the results of a statistical significance test between the accuracy of net-
works with element-level activation functions and those with LA-SiLU functions on clean CIFAR10
and CIFAR100. Tables 22 and 23 present the corresponding results of networks with LA-SiLU
and LA-HardSiLU on CIFAR10-C and CIFAR100-C. RN20, RN32, and RN44 denotes ResNet20,
ResNet32, and ResNet44. We do not report the experiments of ResNet44 with PReLU on CIFAR10
and CIFAR10-C as a network exploded during training. When the accuracies of both functions were
normally distributed, we performed a T-test. In cases where at least one of them are not, we per-
formed a Wilconxon signed-rank test otherwise. The notation ‘¿0.05’ indicates that the p-value from
either a T-test or a Wilcoxon signed-rank test is larger than the standard significance level of 0.05
(i.e. p-value > 0.05).

Table 20: Statistical significance test of LA-SiLU on CIFAR10 dataset.

LA-SiLU
ReLU LReLU PReLU SiLU HardSiLU Mish GELU ELU

RN20 < 1e−3 < 1e−3 < 1e−3 0.002 < 1e−3 0.011 0.016 < 1e−3

RN32 0.02 0.011 0.005 0.331 < 1e−3 0.422 0.125 < 1e−3

RN44 0.014 0.001 - 0.007 < 1e−3 0.479 0.094 < 1e−3

Table 21: Statistical significance test of LA-SiLU on CIFAR100 dataset.

LA-SiLU
ReLU LReLU PReLU SiLU HardSiLU Mish GELU ELU

RN20 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 0.065
RN32 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN44 0.357 0.244 0.008 0.006 < 1e−3 0.476 0.207 < 1e−3

Table 22: Statistical significance test of LayerAct functions on CIFAR10-C dataset.

LA-SiLU
ReLU LReLU PReLU SiLU HardSiLU Mish GELU ELU

RN20 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN32 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN44 0.399 0.233 - < 1e−3 0.001 0.002 0.003 < 1e−3

LA-HardSiLU
ReLU LReLU PReLU SiLU HardSiLU Mish GELU ELU

RN20 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN32 0.007 0.014 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN44 0.18 0.138 - < 1e−3 0.008 0.01 0.018 < 1e−3
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Table 23: Statistical significance test of LayerAct functions on CIFAR100-C dataset.

LA-SiLU
ReLU LReLU PReLU SiLU HardSiLU Mish GELU ELU

RN20 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN32 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN44 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

LA-HardSiLU
ReLU LReLU PReLU SiLU HardSiLU Mish GELU ELU

RN20 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN32 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3

RN44 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3
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