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ABSTRACT

The ubiquitous presence of adversarial attacks in deep learning has been a source
of frustration and challenge for researchers for years. However, in this work, we
establish a new connection between adversarial attacks and the intricate process of
diffusion. Specifically, we formulate an adversarial attack as a diffusion process,
and by reverting this adversarial attack process, we have devised an innovative
defense mechanism that stands out as a general-purpose defense against both
black-box and white-box attacks. We call this new mechanism a Reverse Adver-
sarial Process (RAP), which is ensured by a theoretical treatment for deploying
denoising diffusion models on arbitrary distributions. Empirically, we found our
model successfully defends against adversarial attacks with an unprecedented level
of accuracy. For example, our approach has demonstrated exceptional perfor-
mance on the RobustBench, a highly-regarded leaderboard for assessing adversarial
robustness, outperforming previous state-of-the-art methods by a clear margin.

1 INTRODUCTION

The phenomenon known as adversarial attacks represents a malicious strategy in which attackers
manipulate input data in order to confound machine learning algorithms (Goodfellow et al., 2014),
rendering them susceptible to erroneous outcomes. Its existence serves as a time bomb, undermining
the very foundations of machine learning (Dickson, 16 Dec. 2020). As the utility and prevalence of
machine learning continues to expand, including in the development of general artificial intelligence,
the specter of adversarial attacks looms larger than ever before. Indeed, the potential consequences of
such attacks upon the reliability of machine learning systems are grave and far-reaching.

In recent times, considerable advances have been made in the area of adversarial robustness, as
evidenced by the emergence of various techniques and methods, including the heuristic approach
known as adversarial training (Kolter, 8 Feb. 2023; Madry et al., 2017; Szegedy et al., 2013; Tramèr
et al., 2017). This technique has been demonstrated to be effective in lowering the success rate of
adversarial attacks, and thus represents a promising line of defense against these attacks. Despite
their empirical successes, it is important to acknowledge that adversarial attacks remain a persistent
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Figure 1: A comparison between our reverse adversarial process (RAP) and a diffusion model. Note that, unlike
MNIST, adversarial perturbations on CIFAR-10 are generally imperceptible. For visualization purposes, we
intentionally amplify the magnitude of the adversarial attack in this figure.
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and formidable challenge, and cannot be entirely eliminated through the application of adversarial
training alone (Kolter, 8 Feb. 2023; Schott et al., 2018). Additionally, the issue of overfitting (Rice
et al., 2020), which is also encountered in the context of adversarial training, represents a significant
obstacle that can compromise its effectiveness.

In this new study, we have uncovered a connection between adversarial attacks and the cutting-
edge field of diffusion models (see Fig. 1). Our research has revealed that these two seemingly
disparate phenomena share a strikingly similar process, with diffusion involving the gradual addition
of Gaussian noise to a sample, and adversarial attacks entailing the gradual addition of adversarial
perturbations to a sample. This finding has prompted us to explore a new strategy for defending
against adversarial attacks, one that draws upon the principles of diffusion modeling. In more
technical details, we regard each attack step as a diffusion step, which gradually transforms an
initial sample x0 into an adversarial example xT after T steps’ perturbation with a sequence of
perturbations {ξ1,⋯, ξT } (see Fig. 1(b)). Our goal is to learn a defensive adapter (typically a U-Net
(Ronneberger et al., 2015)) to complete its inverse process, i.e., involving a gradual removal of
perturbations {ξT ,⋯, ξ0} applied to xT in a manner that ensures learnability, ultimately leading
to the recovery of the original state x0. Nevertheless, directly applying the diffusion model is
impractical due to its requirement of the added perturbation to adhere to a Gaussian distribution.
Adversarial perturbations, being a complex distribution 1, presents a challenge. To tackle this, we
employ a theoretical deployment that expands the concept of Gaussian noise, typically associated
with diffusion models, to encompass adversarial perturbations characterized by intricate distributions.
This extension facilitates our incremental denoising approach.
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Figure 2: A comparison between RAP and adver-
sarial purification with a diffusion model. RAP
is unique in that it directly models and predicts
adversarial perturbations, making it capable of de-
fending against white-box attacks.

Our approach represents a departure from pre-
vious works on adversarial purification using
diffusion models (Nie et al., 2022; Ankile et al.,
2023; Xiao et al.; Wang et al., 2022; Wu et al.,
2022) (see Fig. 2). Recently, researchers ex-
plored adding a sequence of Gaussian noises
{ϵ1,⋯, ϵT } to adversarial examples and used dif-
fusion models to remove these Gaussian noises,
hoping “also" to remove the adversarial pertur-
bation. While such approaches are undeniably
impressive, they fall short in directly modeling
adversarial perturbations, leaving them a room
for improvement when defending against white-
box attackers who are aware of this denoising
process (Nie et al., 2022; Ankile et al., 2023;
Xiao et al.; Wang et al., 2022; Wu et al., 2022).
Our method, in contrast, directly models adver-
sarial perturbations and can predict adversarial perturbations and remove them. More precisely, our
approach can be seen as augmenting a vanilla classifier with an adapter to create a “robust classifier”
(see Fig. 3). Notably, our method does not rely on adversaries of the vanilla classifier to train the
adapter; instead, we utilize adversaries of the “robust classifier” to train it. In this regard, our method
mirrors the principles of adversarial training, specifically training the adapter in a diffusion-denoising
manner. Consequently, our method is effective against white-box attacks.

This paper presents the following contributions toward enhancing the security and reliability of deep
learning systems in the face of adversarial attacks. Firstly, we propose a novel approach that directly
models and predicts adversarial perturbations, establishing a prominent diffusion learning system that
achieves adversarial robustness. Secondly, our method is connected to a form of adversarial training
that adversarially trains the adapter in a diffusion-denoising way. This unique approach equips our
method with the capability to effectively handle perturbations from white-box attacks, thus serving as
a robust defense against such attacks. Thirdly, our method achieves promising results, surpassing
previous state-of-the-art methods on the highly respected RobustBench leaderboard for evaluating
adversarial robustness in images.

1If one possesses comprehensive knowledge about the distribution of adversarial perturbations, he can
effectively establish a mapping between each adversarial example and its corresponding clean version. However,
obtaining an accurate distribution of adversarial perturbations is considerably challenging.
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2 RELATED WORK

Adversarial robustness. Despite the significant amount of research dedicated to tackling the
challenge of adversarial robustness, a growing body of evidence suggests that the majority of defenses
proposed in the literature fail to offer substantial effectiveness (Athalye et al., 2018; Tramer et al.,
2020; Brendel & Bethge, 2017; Carlini et al., 2019; Athalye & Carlini, 2018; Carlini & Wagner,
2017). These failed but pioneering efforts include manifold transformation (Samangouei et al., 2018;
Shen et al., 2017; Song et al., 2017; Liao et al., 2018; Meng & Chen, 2017), randomization (Prakash
et al., 2018; Dhillon et al., 2018; Xie et al., 2017), shattering gradients (Buckman et al., 2018; Guo
et al., 2017; Ma et al., 2018; Kabilan et al., 2021), and using exploding and vanishing gradients (Song
et al., 2017; Samangouei et al., 2018).

A identified by Athalye et al. (2018) and Tramer et al. (2020), adversarial training (Rice et al.,
2020; Madry et al., 2017; Szegedy et al., 2013; Tramèr et al., 2017) is the only technique widely
acknowledged as effective for achieving adversarial robustness. It involves augmenting the training
data with adversarial examples. Although adversarial training has shown some successes, it is crucial
to recognize that adversarial attacks still pose a persistent and daunting challenge that cannot be
completely resolved by relying solely on adversarial training (Kolter, 8 Feb. 2023). Moreover,
adversarial training often faces the problem of overfitting (Rice et al., 2020; Schott et al., 2018),
which presents a significant obstacle that can hinder its effectiveness. Our method directly models
adversarial perturbations, and one of its goals is even to predict adversarial perturbations under
white-box attacks. In this sense, our method resembles adversarial training. It is commendable that a
work achieved decent adversarial robustness on MNIST (LeCun, 1998) using a generative classifier
(Schott et al., 2018). Unfortunately it did not demonstrate effectiveness on natural images such as
CIFAR-10 (Krizhevsky et al., 2009).

Adversarial purification with diffusion model. We have introduced this group of literature (Nie
et al., 2022; Ankile et al., 2023; Xiao et al.; Wang et al., 2022; Wu et al., 2022; Wang et al., 2023) in the
introduction section, whereby we have concluded that adversarial purification alone cannot guarantee
adversarial robustness. The practice of introducing Gaussian noise and utilizing diffusion models
to eliminate it does not guarantee the removal of adversarial perturbations, leaving vulnerabilities
to white-box attackers. In contrast, our approach focuses on modeling adversarial perturbations. To
achieve this, we enhance a vanilla classifier with an adapter, thereby creating a “robust classifier.”
Crucially, we train the adapter using adversaries of the “robust classifier,” rather than that of the
vanilla classifier. This methodology aligns with the principles of adversarial training and equips
our method to effectively defend against white-box attacks. The outstanding paper (Yoon et al.,
2021) provides supporting evidence for the originality of our work. In its Sec. 3.3, it is stated, “As
we will show in Section 5, the defense method based on the deterministic purification described
in Section 3.2 can successfully defend most of the adversarial attacks, but it is vulnerable to the
strong attack based on the gradient estimation of the full purification process.” Compared to prior
diffusion-based methods, our approach not only eliminates the forward diffusion process but also
formulates adversarial perturbation as a diffusion process in which the adversarial perturbations can
be eliminated through a Reverse Adversarial Process.

Denoising for adversarial robustness. Some arts attempt to improve model adversarial robustness
by denoising, mainly including two technical routes. The first route is to smooth out adversarial
perturbations through smoothing filters. However, if the attacker knows about the existence of these
filters, filtering techniques alone (Xie et al., 2019; Vuyyuru et al., 2020) are ineffective and may even
weaken the model’s adversarial robustness, as observed in some works (Wang et al., 2020). The
second route is to learn a denoiser to remove adversarial perturbations from adversarial examples.
However, previous work has had difficulty learning a generalizable denoiser to remove adversarial
perturbations (Li et al., 2021; Jing, 2022; Liao et al., 2018; Creswell & Bharath, 2018), especially in
the case of white-box attacks. This is because the distribution of adversarial perturbations is complex
and challenging to predict in a single step. Drawing inspiration from diffusion models, we train a
denoiser that progressively eliminates adversarial perturbations. We theoretically extend the concept
of Gaussian noise, typically employed in diffusion models, to encompass adversarial perturbations
with intricate distributions, enabling our step-by-step denoising process.

Non-Gaussian diffusion model. Diffusion models are based on the ubiquitous Gaussian distribution,
which elegantly relates the states observed at different times by a noise sampled from this distribution.
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Extending this model to arbitrary distributions has proven to be a challenge. While recent work has
made strides in this direction (Nachmani et al., 2021; Deasy et al., 2021; Deasy, 2022), it falls short of
fully characterizing the complexity of real-world distributions. The challenge of adversarial robustness
and the pernicious problem of robust overfitting underscore the fact that adversarial perturbations
arise from intricate distributions. In the face of this challenge, we not only provide a theoretical
deployment, but also validate the effectiveness of our method through extensive experimentation.

3 METHOD

In this section, we describe how we view adversarial attacks as a diffusion process (Sec. 3.1). Then,
we introduce the reverse adversarial process with denoising score matching (Sec. 3.2) and our training
objectives. We also discuss the connection to adversarial training (Sec. 3.3).

3.1 ADVERSARIAL ATTACK AS DIFFUSION PROCESS

Algorithm 1 Adversarial attack
process in RAP

1: Input: a clean example x0,
attack process length T

2: for t= 0, ..., T do
3: if t=0 then
4: ζ ∼ Uniform(−c, c)
5: x0 ← x0 + ζ
6: end if
7: ξt ← Sign( BL

Bx
∣
x=xt−1

),
8: xt ← Clamp(xt−1 + λξt)
9: end for

10: return an adversary xT

Taking an image x0 sampled from the underlying data distribu-
tion pdata(x0) as a starting point, the adversarial attack is a pro-
cess of gradually applying a sequence of adversarial perturbations
{ξ1,⋯, ξt,⋯, ξT } (0 ≤ t ≤ T ) to x0. The output of an adversarial
attack is the perturbed image xT after a given number of steps de-
noted as T (typically, T is 20, 100, or larger). Noticing that various
adversarial attack techniques have been proposed to achieve better
attacks, here, for the ease of notation, we define the adversarial
perturbation iteration as a step function over image x:

xt+1 = s(xt) = α∇Lϕ(xt) + xt, (1)

where α is the step size. We include a noise at the first step which
makes x̂0 = x0+ϵ the starting point instead of the original image x0

and ϵ is noise sampled from a gaussian distribution ϵ ∼ N(0, σI)
to improve the diversity of the adversary, which is considered
standard in adversarial attack (Madry et al., 2017; de Jorge Aranda et al., 2022). Therefore, we have
the static mapping between the random variables xt = st(x̂0). L is an adversarial loss function (e.g.,
an adversarial classification loss) taking the classifier ϕ and current perturbation xt as an input.

Here we introduce the assumption that the step function is invertible. Although in reality, this
assumption may not hold, we empirically find our algorithm works well and will not explicitly use
this assumption. Thus, our algorithm is more general than the analysis here.

For the adversarial process we care about, we can get their marginal distribution. Thanks to the
invertibility of the step function, we have x̂0 = s−t(xt):

p(xt ∣ x0) = N(s−t(xt) ∣ x0, σI) ⋅ det(
ds−t

dx
(xt)) . (2)

Then the adversarial distribution at each time step is denoted as:

p(xt) = ∫ pdata(x0)p(xt∣x0)dx0. (3)

In summary, an adversarial attack can be regarded as a diffusion process of degrading an original
natural image into an adversary. Fig. 1(b) shows an overview of this process, and the detailed
algorithm is presented in Alg. 1.

3.2 REVERSE ADVERSARIAL PROCESS AS DEFENCE

The adversarial process involves a finite number of steps to transform data into the adversarial
distribution, allowing for the possibility of reversing the process to recover the original data from
its adversarial example. This reversibility concept has been demonstrated in various approaches,
including the score-based generative model (Song & Ermon, 2019) and denoising diffusion models
(Ankile et al., 2023), all of which are discretizations of underlying stochastic differential equations.
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In this context, we adopt the score-based perspective and formulate the denoising score matching
approach for our reverse adversarial process. Utilizing a reversible step function, we demonstrate
that learning the gradient score function is tantamount to acquiring knowledge about the mapping
between the adversarial and the original image. This can also be viewed as applying a generalized
diffusion approach (Bansal et al., 2022) to address the problem.

In particular, we learn a parameterized function fθ(x, t) to approximate the score of the adversarial
distribution at time step t:

θ∗ = argmin
θ

T

∑
t=1

Epdata(x0)Ep(xt∣x0) [∥fθ (xt, t) − ∇ log p(xt ∣ x0)∥22] , (4)

where notably, the last term in Equation 4 is:

∇ log p(xt ∣ x0) = ∇ logN(s−t(xt) ∣ x0, σI) + ∇ log det(ds
−t

dx
(xt))

= − s
−t(xt) − x0

σ2
⋅ ds

−t

dx
(xt) + ∇ log det(ds

−t

dx
(xt))

Due to our assumption that the step function is invertible, the Jacobian ds−t

dx
(xt) is also invertible.

We use the notation Jxt to further compress the notation. Minimizing the denoising score matching
objective is equivalent to minimizing:

∥fθ (xt, t) − ∇ log p(xt ∣ x0)∥22 = ∥[(fθ(xt, t) − ∇ log det Jxt) J
−1
xt
+ s−t(xt) − x0]

Jxt

σ2
∥
2

2

, (5)

≤ λmax(J)
σ2

∥(fθ(xt, t) − ∇ log det Jxt) J
−1
xt
+ s−t(xt) − x0∥

2

2
, (6)

Algorithm 2 Reverse adversar-
ial process in RAP

1: Input: an adversary xT ,
defence process length T

2: for t= T, ..., 1 do
3: x̂0 ← f̃θ(xt, t)
4: using Alg. 1 to com-

pute ξt−1 and xt−1 by
inputting (x̂0, t − 1)

5: end for
6: return a clean image x0

where λmax(J) represents the maximum eigenvalue of the Jacobian
matrix calculated for all xt. The upper bound analysis demonstrates
that we can minimize an upper bound directly. Additionally, we’ve
observed that the majority of terms within the l2 norm primarily rely
on xt. Rather than modeling the gradient of the score function, we
introduce a new parameterization to learn all the terms dependent
on xt within the l2 norm, resulting in a simplified loss term:

f̃θ(xt, t) = (fθ(xt, t) − ∇ log detJxt)J−1xt
+ s−t(xt). (7)

Getting back to our objective function, we now have:

θ∗ = argmin
θ

T

∑
t=1

Epdata(x0)Ep(xt∣x0) ∥f̃θ (xt, t) − x0∥
2
. (8)

We notice in the literature that this approach is closely related to the generalized diffusion method
proposed by Bansal et al. (Bansal et al., 2022). Empirical evidence from their work suggests that this
formalism possesses the generality to reverse any diffusion process.

After learning our generalized diffusion model fθ, we construct the reverse adversarial process. Given
the intermediate adversary xt, we sample xt−1 using the following expression:

p(xt−1 ∣ xt) = p(xt−1 ∣ f̃θ(xt, t)) = st−1(f̃θ(xt, t) + ϵ), (9)

which is basically navigating the adversarial process to predict x0.

In summary, a reverse adversarial process can be regarded as a gradual process of removing adversarial
perturbations and restoring an original clean image. Fig. 2(a) presents an overview of this process,
and Alg. 2 details the algorithm.

3.3 CONNECTION TO ADVERSARIAL TRAINING
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Figure 3: Connection to adversarial training.

What’s particularly intriguing about our ap-
proach is that it involves enhancing a conven-
tional classifier by incorporating an adapter (i.e.,
f̃θ in Alg. 2 and Eqn. 8), resulting in the creation
of a “robust classifier” (see Fig. 3). Notably, our
method doesn’t depend on adversaries of the
vanilla classifier for adapter training; instead,
we utilize adversaries of the full “robust classi-
fier.” To elaborate, we employ Alg. 1 to attack
the “robust classifier”, generating adversarial
examples xt. We then feed these adversarial
examples into the adapter to obtain x̂0. In this context, our approach aligns with the principles of
adversarial training, particularly by training the adapter using a diffusion-denoising approach. As a
result, our method can be effective in defending against white-box attacks.

3.4 TRAINING

Algorithm 3 RAP training process.
1: Input: dataset d, diffusion steps T ,

noise schedule σ1, ..., σT , label y.
2: repeat
3: x0 ∼ d(x0)
4: t ∼ U({1, ..., T})
5: using Alg. 1 to compute ξt and

xt by inputting (x0, t)
6: Take gradient descent step on

the loss: ∥x0 − f̃θ(xt, t)∥ +
CE(f̃θ(xt, t), y)

7: until converged

The training process of RAP is similar to that of a diffusion
model, but there are two notable differences. First, the diffu-
sion process in RAP is obtained through the adversarial attack
process in Alg. 1. Second, in the first step of the diffusion
process in RAP, random perturbations are introduced. This
is inspired by adversarial training (Madry et al., 2017), and it
has been shown to be beneficial in practice. Third, we have a
classification loss for x̂0. To train a diffusion model, there are
two forms of targets to choose from, namely noise and original
images. Empirically, the difference in effectiveness between
these two targets is not significant. In this paper, we choose the
original images as the target (see Alg.3).

4 EXPERIMENTS

In this section, we start with the experimental setup (Sec. 4.1), followed by presenting quantitative
results on the reverse adversarial process’s efficacy in removing adversarial perturbations (Sec. 4.2).
Next, we compare our method to state-of-the-art approaches (Sec. 4.3). Finally, we perform an
ablation study to understand the roles of its components (Sec. 4.4).

4.1 EXPERIMENTAL SETUP

Datasets. We mostly focus on CIFAR-10 (Krizhevsky et al., 2009), which are currently the most
widely adopted datasets for evaluating adversarial robustness, particularly in the context of white-box
attacks. We utilize the MNIST dataset (LeCun, 1998) to examine the generality of our method.

Classifiers. We conduct experiments by using the same architectures as prior arts. To be more
specific, for CIFAR-10, our method runs using the identical architecture as our competitors, i.e.,
wide-resnet-28-10 (Zagoruyko & Komodakis, 2016). For the MNIST dataset, we adopt a minimalistic
CNN model 2, which is readily available as an example in the PyTorch library (Paszke et al., 2019).

Threat models. Here, we highlight the following key information.

• Attack methods. We evaluated the robustness of our method against strong adaptive attacks. As a
standard practice, RobustBench (Croce et al., 2020) 3, a highly regarded leaderboard for adversarial
robustness assessment, is employed for the majority of experiments (excluding Table 3 and Table 5).
More specifically, we utilize the strong AutoAttack (Croce & Hein, 2020) to perform experiments
and present the outcomes, which includes both white-box and black-box. For Table 5, we examine
BPDA(Athalye et al., 2018) and EoT(Athalye et al., 2018; Hill et al., 2020). In addition to these

2https://github.com/pytorch/examples/tree/main/mnist
3https://robustbench.github.io/
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(a) MNIST: adversarial->restored

(b) CIFAR-10: adversarial->restored

(c) CIFAR-10: clean->restored

clean image

restored image

Figure 4: Visualization of adversarial images, restored images, and original clean images. More
visualization results are in the Appendix.

strong adaptive attacks, we also test our method against several classical attacks, such as DeepFool
(Moosavi-Dezfooli et al., 2016), BIM (Kurakin et al., 2018), and FGSM (Goodfellow et al., 2014).

• No randomness. It is well known that the introduction of randomness can lead to an overestimation
of the network’s robustness (Athalye et al., 2018). To eliminate the influence of randomness on
the evaluation, in the defense stage, we deactivate Langevin dynamics, ensuring that the entire
inference process is free from any randomness.

• Imperceptibility. We assessed the performance of our method against both ℓ∞ attacks and ℓ2
attacks. For ℓ∞ attacks, the maximum attack magnitudes are 0.3 on MNIST and 8/255 on CIFAR-10.
For ℓ2 attacks, the maximum attack magnitude are 1.5 on MNIST and 0.5 on CIFAR-10.

Evaluation metrics. We utilize two metrics to evaluate the effectiveness of each defense method:
standard accuracy and robust accuracy. Standard accuracy refers to the prediction accuracy of each
defense method before an attack, while robust accuracy refers to the prediction accuracy after an
attack. We have found that attacking our RAP model is exceedingly difficult for adaptive attack
methods, costing a significant computational cost. Therefore, we cannot afford to perform attacks on
the entire dataset to evaluate our method. (Nie et al., 2022) faced the same challenge and opted for a
fixed set of 512 images for evaluation. In line with their approach, we use the exact set of images
obtained from their official GitHub repository. It’s worth noting that the performance of the compared
methods on this fixed set generally aligns with their performance on the complete dataset.

4.2 VISUALIZATION RESULTS

Given that our method pioneers the use of a diffusion model to model adversarial perturbations, and
considering that the distribution of these perturbations deviates from the assumption of Gaussian
noise in the standard diffusion model, one may be understandably eager to know if our trained RAP
model can truly eliminate adversarial perturbations and faithfully reconstruct the original image, or
whether the model can predict the adversarial noise as closely as possible.

The qualitative results presented in Fig. 4, 5, and 6 demonstrate the effectiveness of our method.
It can reliably restore high-quality original images even when faced with substantial adversarial
perturbations. This highlights our method’s capability to learn robust and adaptable representations,
overcoming challenges posed by non-Gaussian adversarial perturbation distributions and achieving
good quality in generation and restoration tasks.
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Table 1: Standard accuracy and robust accuracy
against AutoAttack ℓ∞ (ϵ = 8/255) on CIFAR-10
on the RobustBench, obtained by different classifier
architectures. Results are sorted by robust accuracy.

Method Extra Data Standard Acc Robust Acc
Ours ✗ 94.53 73.24

(Nie et al., 2022) ✗ 90.07 71.29
(Wang et al., 2023) ✓ 93.25 70.69

(Rebuffi et al., 2021) ✓ 92.23 68.56
(Wang et al., 2023) ✓ 92.44 67.31
(Gowal et al., 2021) ✗ 88.74 66.60
(Gowal et al., 2020) ✓ 91.10 66.02
(Huang et al., 2022) ✗ 91.58 65.79
(Rebuffi et al., 2021) ✗ 88.54 64.46
(Kang et al., 2021) ✓ 93.73 71.28 (64.20)
(Xu et al., 2023) ✗ 93.69 63.89

(Pang et al., 2022) ✗ 89.01 63.35
(Sehwag et al., 2021) ✗ 87.30 62.79

(Wu et al., 2020) ✓ 88.25 62.11
(Zhang et al., 2020) ✓ 89.36 59.96
(Gowal et al., 2020) ✗ 85.29 59.57

(Wu et al., 2020) ✗ 85.36 59.18

Table 2: Standard accuracy and robust accuracy
against AutoAttack ℓ2 (ϵ = 0.5) on CIFAR-10 on
the RobustBench, obtained by different classifier ar-
chitectures. Results are sorted by robust accuracy.

Method Extra Data Standard Acc Robust Acc
Ours ✗ 95.76 85.54

(Wang et al., 2023) ✓ 95.54 84.97
(Wang et al., 2023) ✓ 95.16 83.68

(Rebuffi et al., 2021) ✓ 95.74 82.32
(Rebuffi et al., 2021) ✗ 92.41 80.86

(Nie et al., 2022) ✗ 92.68 80.60
(Gowal et al., 2020) ✓ 94.74 80.53

(Augustin et al., 2020) ✓ 93.96 78.79
(Sehwag et al., 2021) ✗ 90.93 77.24

(Wu et al., 2020) ✓ 92.23 76.25
(Gowal et al., 2020) ✗ 90.90 74.50

(Wu et al., 2020) ✗ 88.51 73.66
(Augustin et al., 2020) ✗ 91.08 72.91

(Ding et al., 2018) ✗ 88.02 67.77
(Rony et al., 2019) ✗ 89.05 66.41

Particularly, when a clean image is provided as input, the resulting images exhibit qualitative
similarities (see Fig. 4(c) and Fig. 7). Line 3 of Alg. 2 effectively accounts for this behavior. When
xt is input into the network, it accurately predicts a clean x0. Similarly, when a clean x0 is given as
input, the network consistently outputs another clean x0.

4.3 BENCHMARKING THE STATE OF THE ART

CIFAR-10. First of all, we compare our RAP method with the current state-of-the-art approaches on
RobustBench, a widely recognized leaderboard for evaluating adversarial robustness.

Table 1 displays our method’s performance on RobustBench against AutoAttack, using a perturbation
magnitude of ℓ∞ = 8/255. From Table 1, we can make two important observations. Firstly, our
method performs well on RobustBench, positioning itself as the first place. This emphasizes the value
of our approach in modeling and predicting adversarial perturbations. Secondly, our method achieves
remarkable standard accuracy, surpassing the second-ranked competitor by a substantial margin. This
shows the potential for achieving high robust accuracy and standard accuracy simultaneously.

Table 2 presents the results depicting our method’s performance against AutoAttack on RobustBench,
with an ℓ2 perturbation magnitude of 0.5. Just as in Table 1, we observe similar results in Table 2,
reaffirming the effectiveness of our method.

Regarding adversarial purification methods, we have made comparisons with DiffPure (Nie et al.,
2022) and (Wang et al., 2023) in Tables 1 and 2. Additionally, in Table 5, we further compare our
method to (Nie et al., 2022) and (Hill et al., 2020). These comparisons highlight the effectiveness of
our method.

Table 3: Results for different models, adversarial at-
tacks and distance metrics on ImageNet. Each entry
the model’s accuracy against adversarial perturbations
bounded by the thresholds ϵℓ2 = 1.5 and ϵℓ∞ = 0.3.
DeepFool (Moosavi-Dezfooli et al., 2016), BIM (Ku-
rakin et al., 2018), FGSM (Goodfellow et al., 2014).

CNN Binary CNN Madry et al. Ours

Clean 99.1 98.5 98.8 99.0

ℓ2
Gaussian Noise 96 92 96 98.9

DeepFool 18 11 91 97.3
ℓ∞ BIM 13 11 88 93.5

ℓ∞
FGSM 4 77 93 94.8

ℓ∞ DeepFool 0 74 90 92.3
BIM 0 70 90 94.1

RobustBench stands as one of the most reliable
leaderboards for evaluating adversarial robust-
ness, employing an ensemble of diverse attacks,
with its employed auto-attack being recognized
as one of the most potent adversaries. We are
guided by prior research (Nie et al., 2022) and
primarily concentrate on assessing performance
within the RobustBench environment. Addition-
ally, it’s worth noting that we have extended
our analysis beyond the scope of RobustBench.
Supplementary results pertaining to CIFAR-10
have been provided in our Appendix. In Tables
5, the presented data exemplifies the superior
performance of our method in comparison to existing approaches.

MNIST. We utilize the MNIST dataset to examine the generality of our method. The adversarial
attacks we employed encompass DeepFool, BIM, and FGSM. The respective iteration numbers
for DeepFool and BIM are 50 and 20, while the corresponding step sizes are 0.02 and 2/255. Our
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method’s robust performance against various perturbations on the MNIST dataset is presented in
Table 3. A closer look at the table reveals that our method outperforms the competitors. These
results support the effectiveness of our method against threat models tailored for the MNIST dataset,
underscoring the value of our method in modeling adversarial perturbations.

4.4 ABLATION ANALYSIS Table 4: Evaluation of generalization and transferabil-
ity on CIFAR-10 (RobustBench, i.e., employing the
strong AutoAttack technique to yield results). Evalu-
ation of generalization and transferability on CIFAR-
10. AT (ℓ∞) (Laidlaw et al., 2020), AT (ℓ2) (Laid-
law et al., 2020), PAT-self (Laidlaw et al., 2020), ADV.
CRAIG (Dolatabadi et al., 2022), ADV. GRADMATCH
(Dolatabadi et al., 2022), DiffPure (Nie et al., 2022).

Method Standard Acc Robust Acc
ℓ∞ ℓ2

AT (ℓ∞) 86.8 49.0 19.2
AT (ℓ2) 85.0 39.5 47.8
PAT-self 82.4 30.2 34.9

ADV. CRAIG 83.2 40.0 33.9
ADV. GRADMATCH 83.1 39.2 34.1

DiffPure 88.2 70.0 70.9
Ours (ℓ∞) 94.5 73.2 80.2
Ours (ℓ2) 95.8 70.2 85.5

Generalization and transferability. One
notable limitation of adversarial training is
its inherent challenge in achieving generaliza-
tion(Laidlaw et al., 2020). Specifically, a model
trained to withstand one type of attack may
struggle to effectively defend against another
type of attack. Hence, when considering gener-
alization and transferability, it becomes imper-
ative to compare our method against adversarial
training. The findings presented in Table 4 com-
pellingly demonstrate that our method exhibits
a substantially superior capacity for generaliza-
tion compared to adversarial training.

Please refer to the Appendix for comprehensive
ablation studies providing deeper insights.

4.5 ANALYSIS OF COMPUTATIONAL COST

The computational cost of training the RAP model is reasonably comparable to other adversarial
attack/defense methods. First, in contrast to adversarial training methods, our approach focuses solely
on training the RAP module for 50 epochs, whereas typical adversarial training methods involve
training classifiers with adversarial examples for 200 epochs. Second, comparatively, the diffusion
time step used in our methods is 20, which facilitates easier learning compared to prior purification
methods utilizing diffusion models with a time step of 1,000.

Similarly, the inference time of the RAP model is not significantly more computationally expensive
than other adversarial attack/defense methods. First, though our method includes an extra RAP
model when compared to adversarial training methods, we can perform a DDIM-like process of RAP
inference. As a result, the total inference time with and without RAP is 7.35 images/second and 7.54
images/second (1-step RAP is measured, using GPU A6000 while the machine runs other programs),
respectively. This comparison verifies that the inference time of our method is not significantly
more demanding than adversarial training methods. Second, moreover, in comparison to purification
methods employing diffusion models, our inference time step can be reduced to merely 1, while
purification methods with diffusion models entail an inference time step of at least 50. This suggests
that our method is dozens of times faster than purification methods utilizing diffusion models.

5 CONCLUSION AND HIGHLIGHT

In this paper, we present a novel approach to address adversarial perturbation modeling. By con-
sidering adversarial attacks as a diffusion phenomenon, we introduce a reverse adversarial process
that effectively eliminates adversarial perturbations while exhibiting exceptional generalization capa-
bilities. Leveraging our RAP methodology enables the training of expansive models utilizing vast
datasets. These models have the potential to serve as foundational pillars for enhancing adversarial
robustness across diverse domains of society. As a result, we are committed to conducting extensive
research on these formidable models in the future.

Highlight. By training an adapter for an existing classifier, our method can enhance adversarial
robustness. Therefore, with RAP, it could be feasible to develop a “Foundation Adapter” for numerous
existing classifiers, serving as a foundational model for adversarial robustness and providing security
across various domains in society.
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A MORE VISUALISATION RESULTS

Qualitative results are presented in Fig. 4, illustrating the effectiveness of our method. We also
provide additional qualitative results in Fig. 5 and Fig. 6 to further support our findings. These visuals
demonstrate our method’s ability to restore original images, even when exposed to large adversarial
perturbations. This showcases our method’s capacity to learn robust representations, even when
dealing with non-Gaussian perturbation distributions. Our method performs well in both generation
and restoration tasks, delivering high-quality results despite deviations from Gaussian distributions
commonly associated with adversarial perturbations.

Particularly, when a clean image is provided as input, the resulting images exhibit qualitative
similarities (see Fig. 7). Line 3 of Alg. 2 effectively accounts for this behavior. When xt is input
into the network, it accurately predicts a clean x0. Similarly, when a clean x0 is given as input, the
network consistently outputs another clean x0.

adversarial image                                         restored Image                                 original image

Figure 5: Comparison of adversarial images, restored images, and original clean images on the
MNIST dataset.

B COMPARISON WITH OTHER PURIFICATION METHODS

Our approach differs from adversarial purification methods as it directly models adversarial pertur-
bations. In the following sections, we empirically compare our method with purification methods.
Unlike our technique, many purification-based methods involve computationally expensive opti-
mization processes or sampling loops during the inference stage, making it challenging to subject
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adversarial image                                         restored Image                                 original image

Figure 6: Comparison of adversarial images, restored images, and original clean images on the
CIFAR-10 dataset.
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Figure 7: Comparison of the clean images and their associated restored images on the CIFAR-10
dataset.
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Table 5: Comparison with other adversarial purification methods on CIFAR-10 using the BPDA+EOT
attack with ℓ∞ perturbations. We keep the experimental settings the same with (Hill et al., 2020; Nie
et al., 2022;?), where ϵ = 8/255. (∗The purification is actually a variant of the Langevin dynamics
sampling.) AutoAttack employs a diverse ensemble of attacks, including strong adaptive white-box
and black-box attacks, which makes it more powerful than BPDA+EoT. As a result, the attack results
in this table are less effective than those presented in Table 1 of the main paper. It’s worth noting that
the observation of AutoAttack being stronger than BPDA+EoT is consistent with the findings in (Nie
et al., 2022) (refer to Table 1 vs. Table 5(f) in (Nie et al., 2022)).

Method Purification Standard Acc Robust Acc
(Song et al., 2017) Gibbs Update 95.00 9.00
(Yang et al., 2019) Mask+Recon. 94.00 15.00
(Hill et al., 2020) EBM+Langevin dynamics 84.12 54.90

(Yoon et al., 2021) DSM+Langevin dynamics∗ 86.14 70.01
DiffPure (Nie et al., 2022) (t∗ = 0.075) Diffusion 91.03 77.43
DiffPure (Nie et al., 2022) (t∗ = 0.1) Diffusion 89.02 81.40
Stochastic Security (Hill et al., 2020) EBM 84.12 78.91

Ours Diffusion 94.62 81.63

Table 6: Combination with adversarial training on CIFAR-10 (ℓ∞ attack). (RobustBench, i.e.,
employing the strong AutoAttack technique to yield results)

Method AT RAP RAP+AT

Robust Acc 49.0 73.2 73.5

them to stronger white-box adaptive attacks, such as AutoAttack. To address this challenge, we
employ BPDA+EOT attacks as an evaluation metric, which, although not as potent as AutoAttack,
are commonly used in assessing purification methods.

The performance of our method compared to state-of-the-art approaches can be observed in Table 5,
providing further evidence of the effectiveness of our technique.

C COMBINATION WITH ADVERSARIAL TRAINING

Our method and adversarial training are not in conflict but rather complement each other. This
allows us to use the samples purified by our model as input for the adversarially trained model
during inference. The results presented in Table 6 demonstrate the additional improvement in robust
accuracy achieved through this approach. Notably, when exposed to the ℓ∞ attack, our method’s
robust accuracy increases from 73.2 to 73.5. This result showcases the effectiveness of our approach.
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D CODES
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32
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class AdversarialDiffusion(nn.Module):
    def __init__(self, ...):
        super().__init__()
        self.linf_attacks = nn.ModuleList(self.get_attacks())
    def get_attacks(self):
        attacks = []
        for i in range(self.num_timesteps):
            attacks.append(JointAttack())
        return attacks 
    def q_sample(self, x_start, t, y, cls_model, denoise_fn):
        max_iters = torch.max(t)
        all_attacks = []
        x = x_start
        for i in range(max_iters+1):
            x_raw = x
            if i == 0:
                x_raw = self.linf_attacks[i](x_raw, y, cls_model, denoise_fn, x_start,
                                             rand_start=True)
            else:
                x_raw = self.linf_attacks[i](x_raw, y, cls_model, denoise_fn, x_start)
            
            x = x_raw.detach()
            all_attacks.append(x)
        all_attacks = torch.stack(all_attacks)
        choose_attack = []
        for step in range(t.shape[0]):
            if step != -1:
                choose_attack.append(all_attacks[t[step], step])
            else:
                choose_attack.append(x_start[step])
        return torch.stack(choose_attack)
    def p_losses(self, x_start, t, y, cls_model, denoise_fn):
        x_attack = self.q_sample(x_start=x_start, t=t, y=y, cls_model=cls_model,
                                 denoise_fn=denoise_fn)
        x_recon = self.denoise_fn(x_attack, t)
        return (x_start-x_recon).abs().mean()+cls_model(
            torch.clamp(x_recon*0.5+0.5, 0, 1),y)
    def forward(self, x, y, model, sampling, *args, **kwargs):
        t = torch.randint(...).long()
        return self.p_losses(x, t, y, cls_model, denoise_fn, *args, **kwargs)

Code Blame
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