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Abstract

Recent advances in model-free deep reinforcement learning (DRL) show that sim-
ple model-free methods can be highly effective in challenging high-dimensional
continuous control tasks. In particular, Truncated Quantile Critics (TQC) achieves
state-of-the-art asymptotic training performance on the MuJoCo benchmark with
a distributional representation of critics; and Randomized Ensemble Double Q-
Learning (REDQ) achieves high sample efficiency that is competitive with state-
of-the-art model-based methods using a high update-to-data ratio and target ran-
domization. In this paper, we propose a novel model-free algorithm, Aggressive
Q-Learning with Ensembles (AQE), which improves the sample-efficiency per-
formance of REDQ and the asymptotic performance of TQC, thereby providing
overall state-of-the-art performance during all stages of training. Moreover, AQE
is very simple, requiring neither distributional representation of critics nor target
randomization. The effectiveness of AQE is further supported by our extensive
experiments, ablations, and theoretical results.

1 Introduction

Off-policy Deep Reinforcement Learning algorithms aim to improve sample efficiency by reusing
past experience. A number of off-policy Deep RL algorithms have been proposed for control tasks
with continuous state and action spaces, including Deep Deterministic Policy Gradient (DDPG),
Twin Delayed DDPG (TD3) and Soft Actor Critic (SAC) (Lillicrap et al., 2016; Fujimoto et al.,
2018; Haarnoja et al., 2018a,b). TD3 introduced clipped double-Q learning, and was shown to be
significantly more sample efficient than popular on-policy methods for a wide range of MuJoCo
benchmarks. Soft Actor Critic (SAC) has similar off-policy structures with clipped double-Q learning,
but it also employs maximum entropy reinforcement learning. SAC was shown to provide excellent
sample efficiency and asymptotic performance in a wide-range of MuJoCo environments, including
the high-dimensional Humanoid environment for which both DDPG and TD3 perform poorly.

More recently, Kuznetsov et al. (2020) proposed Truncated Quantile Critics (TQC), a model-free
algorithm which includes distributional representations of critics, truncation of critics prediction, and
ensembling of multiple critics. Instead of the usual modeling of the Q-function of the expectation of
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return, TQC approximates the distribution of the return random variable conditioned on the state and
action. By dropping several of the top-most “atoms” and varying the number of dropped atoms of
the return distribution approximation, TQC can control the over-estimation bias. TQC’s asymptotic
performance (that is after a long period of training) was shown to be better than that of SAC on the
continuous control MuJoCo benchmark suite, including a 25% improvement on the most challenging
Humanoid environment. However, TQC is not sample efficient in that it generally requires a large
number of samples to reach even moderate performance levels.

Chen et al. (2021) proposed Randomized Ensembled Double Q-learning(REDQ), a model-free
algorithm which includes a high Update-To-Data (UTD) ratio, an ensemble of Q functions, and
in-target minimization across a random subset of Q functions from the ensemble. Using a UTD ratio
much larger than one, meaning that several gradient steps are taken for each environment interaction,
improves sample efficiency, while the ensemble and in-target minimization allows the algorithm to
maintain stable and near-uniform bias under the high UTD ratio. The algorithm was shown to attain
much better performance than SAC at the early stage of training, and to match or improve the sample-
efficiency of the state-of-the-art model-based algorithms for the MuJoCo benchmarks. However,
although REDQ is highly sample efficient for early-stage training, its asymptotic performance is
significantly below that of TQC.

Is it possible to design a simple, streamlined model-free algorithm which can achieve REDQ’s high
sample efficiency in early-stage training and also achieve TQC’s high asymptotic performance in
late stage training? In this paper, we achieve this goal with a new model-free algorithm, Aggressive
Q-Learning with Ensembles (AQE). Like TQC and REDQ, AQE uses an ensemble of Q-functions,
and like REDQ it uses a UTD ratio > 1. However AQE is very simple, requiring neither distributional
representation of critics as in TQC nor target randomization and double-Q learning as in REDQ. AQE
controls overestimation bias and the standard deviation of the bias by varying the number of ensemble
members N and the number of ensembles K ≤ N that are kept when calculating the targets.

Through carefully designed experiments, we provide a detailed analysis of AQE. We perform
extensive and comprehensive experiments for both MuJoCo and DeepMind Control Suite (DMC)
environments. We first show that for the five most challenging MuJoCo benchmark, AQE provides
state-of-the-art performance, surpassing the performance of SAC, REDQ, and TQC at all stages
of training. When averaged across the five MuJoCo environments, AQE’s early stage performance
is 2.9 times better than SAC, 1.6 times better than TQC and 1.1 times better than REDQ. AQE’s
asymptotic performance is 26%, 22%, and 6% higher than SAC, REDQ, and TQC, respectively.
Then we provide additional experimental results for the nine most challenging DeepMind Control
Suite (DMC) environments, which TQC and REDQ did not consider. We show that AQE also
provides state-of-the-art performance at both early stage and late-stage of training. When averaged
over nine environments, AQE’s early stage performance is 13.71 times better than SAC, 7.59 times
better than TQC and 1.02 times better than REDQ. AQE’s asymptotic performance is 37% better
than SAC, 3% better than REDQ, and 8% better than TQC. We also perform an ablation study, and
show that AQE is robust to choices of hyperparameters: AQE can work well with small ensembles
consisting of 10-20 ensemble members, and performance does not vary significantly with small
changes in the keep parameter K. We show that that AQE performs better than several variations,
including using the median of all ensemble members and removing the most extreme minimum and
maximum outlier in the targets. In order to improve computational time, we also consider different
multi-head architectures for the ensemble of critics: consistent with the supervised convolutional
network literature, we find that a two-head architecture not only reduces computational time but can
actually improve performance for some environments. Additionally, we show that AQE continues to
out-perform SAC and TQC even when these algorithms are made aggressive with a UTD≫ 1.

To ensure a fair comparison and to obtain reliable and reproducible results (Henderson et al., 2018;
Islam et al., 2017; Duan et al., 2016), we provide open source code2. For all algorithmic comparisons,
we use the the authors’ code.

2 Additional Related Work

Overestimation bias due to in target maximization in Q-learning can significantly slow down learning
(Thrun and Schwartz, 1993). For tabular Q-learning, van Hasselt (2010) introduced Double Q-

2https://github.com/AutumnWu/Aggressive-Q-Learning-with-Ensembles
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Learning, and showed that it removes the overestimation basis and in general leads to an under-
estimation bias. Hasselt et al. (2016) showed that adding Double Q-learning to deep-Q networks
can have a similar effect, leading to a major performance boost for the Atari games benchmark. As
stated in the Introduction, for continuous-action spaces, TD3 and SAC address the overestimation
bias using clipped-double Q-learning, which brings significant performance improvements (Fujimoto
et al., 2018; Haarnoja et al., 2018a,b).

As mentioned in the Introduction, Kuznetsov et al. (2020) control the over-estimation bias by
estimating the distribution of the return random variable, and then by dropping several of the top-
most “atoms” from the estimated distribution. The distribution estimate is based on a methodology
developed in Bellemare et al. (2017); Dabney et al. (2018a,b), which employs an asymmetric Huber
loss function to minimize the Wasserstein distance between the neural network output distribution
and the target distribution. In this paper, in order to counter over-estimation bias, we also drop the
top-most estimates, although we do so solely with an ensemble of Q-function mean estimators rather
than with an ensemble of the more complex distributional models employed in (Kuznetsov et al.,
2020).

It is well-known that using ensembles can improve the performance of DRL algorithms (Faußer and
Schwenker, 2015; Osband et al., 2016; Lee et al., 2021). For Q-learning based methods, Anschel
et al. (2017) use the average of multiple Q estimates to reduce variance. Lan et al. (2020) introduced
Maxmin Q-learning, which uses the minimum of all the Q-estimates rather than the average. Agarwal
et al. (2020) use Random Ensemble Mixture (REM), which employs a random convex combination
of multiple Q estimates.

Model-based methods often attain high sample efficiency by using a high UTD ratio. In particular,
Model-Based Policy Optimization (MBPO) (Janner et al., 2019) uses a large UTD ratio of 20-40.
Compared to Soft-Actor-Critic (SAC), which is model-free and uses a UTD of 1, MBPO achieves
much higher sample efficiency in the OpenAI MuJoCo benchmark (Todorov et al., 2012; Brockman
et al., 2016). REDQ (Chen et al., 2021), a model-free algorithm, also successfully employs a high
UTD ratio to achieve high sample efficiency.

3 Algorithm

We propose Aggressive Q-learning with Ensembles (AQE), a simple model-free algorithm which
provides state-of-the-art performance for the MuJoCo benchmark for both early and late stage
of training. The pseudocode can be found in Algorithm 1. As is the case with most off-policy
continuous-control algorithms, AQE has a single actor (policy network) and multiple critics (Q-
function networks), and employs Polyak averaging of the target parameters to enhance stability.
Building on this algorithmic base, it also employs an update-to-data ratio G > 1, an ensemble of
N ≥ 3 Q-functions (rather than just two as in TD3 and SAC), and targets that average all the Q-
functions excluding the Q-functions with the highest N−K values. In the Appendix, we demonstrate
theoretically in the tabular case of the algorithm that we can control over-estimation through adjusting
K and N . More concretely, we can bring the bias term from above zero (i.e. overestimation) to under
zero (i.e. underestimation) by decreasing K and/or increasing N .

For comparison, REDQ employs two randomly chosen ensemble members when calculating the
target, the bias does not depend on the number of ensemble models N (Chen et al., 2021). As
discussed in Appendix, with M = 2 fixed, increasing the size of ensemble N with the multi-head
architecture does not necessarily improve the performance of REDQ. Unlike REDQ, AQE can control
the bias term through both the number of ensemble models used in the average calculation K and the
total number of ensembles N , allowing for more flexibility. One other drawback for REDQ is that
it ignores the estimates of all other ensemble estimates except for the minimal one in the randomly
chosen set, which diminishes the power of the multiple ensemble sets. In contrast, AQE utilizes
most of the ensemble models when calculating the target.The resulting algorithm is not only simple
and streamlined, but also provides state-of-the art performance. For exploration, it uses entropy
maximization as in SAC, although it could easily incorporate alternative exploration schemes.

AQE has three key hyperparameters, G, N , and K. If we set N = 2, K = 1 and G = 1, AQE is
simply the underlying off-policy algorithm such as SAC. When N > 2, K = 1 and G = 1, then
AQE becomes similar to, but not equivalent to, Maxmin Q-learning (Lan et al., 2020).
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Algorithm 1 Aggressive Q-Learning with Ensembles

Initialize: Initial policy parameters θ, N Q-function parameters ϕi, i = 1,. . . , N , empty replay
buffer D. Set target parameters ϕtarg,i ← ϕi for i = 1, 2,. . . , N.

1: repeat
2: Take one action at ∼ πθ(·|st). Observe reward rt, new state st+1.
3: Add data to replay buffer: D ← D ∪ {(st, at, rt, st+1)}
4: for G updates do
5: Randomly sample a mini-batch B = {(s, a, r, s′)} from D.
6: for each (s, a, r, s′) ∈ B do
7: Sample ã′ ∼ πθ(·|s′).
8: Determine the K indices from i = 1, . . . , N that minimize Qtarget,i(s

′, ã′).
9: Compute the Q target y:

10: y(s, a) = r + γ

(
1
K

∑
i∈K

Qϕtarg,i(s
′, ã′)− α log πθ(ã

′|s′)
)

11: for i = 1, . . . , N do
12: Update ϕi with gradient descent using
13: ∇ϕi

1
|B|

∑
(s,a,r,s′)∈B

(Qϕi(s, a)− y(s, a))
2

14: Update target networks with ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi

15: Update policy parameters θ with gradient ascent using

16: ∇θ
1

|B|

∑
s∈B

(
1

N

N∑
i=1

Qϕi
(s, ãθ(s))− α log πθ(ãθ(s)|s)

)
ãθ(s) ∼ πθ(·|s)

17: until Convergence

AQE uses an ensemble of Q networks (as does REDQ and TQC). Employing multiple networks,
one for each Q-function output, can be expensive in terms of computation and memory. In order to
reduce the computation and memory requirements, we combine network ensemble with multi-head
architectures to generate multiple Q-function outputs. We consider N separate Q networks each
with h heads, providing a total of h ·N estimates. The h heads from one network share all of the
layers except the final fully-connected layer. In practice, we found h = 2 heads works well for AQE,
consistent with work in ensembles of convolutional neural networks for computer vision tasks (Lee
et al., 2015). When properly sharing low-level weights, multi-headed networks may not only retain
the performance of full ensembles but can sometimes outperform them. In the next section, we
discuss our experimental results.

4 Experimental Results

We perform extensive and comprehensive experiments for two sets of popular benchmarks. First
we provide experimental results for AQE, TQC, REDQ and SAC for the five most challenging
MuJoCo environments, namely, Hopper, Walker2d, HalfCheetah, Ant and Humanoid. Then we
provide additional experimental results for the nine most challenging DeepMind Control Suite (DMC)
environments, namely, Cheetah-run, Fish-swim, Hopper-hop, Humanoid-stand, Humanoid-walk,
Humanoid-run, Quadruped-walk, Quadruped-run and Walker-run. To make a fair comparison, the
TQC, REDQ and SAC results are reproduced using the authors’ open source code, and use the
same network sizes and hyperparameters reported in their papers. In particular, for the MuJoCo
environments, TQC employs 5 critic networks with 25 distributional samples for a total of 125 atoms.
TQC drops 5 atoms per critic for Hopper, 0 atoms per critic for Half Cheetah, and 2 atoms per critic
for Walker, Ant, and Humanoid. For REDQ, we also use the authors’ suggested values of N = 10
and M = 2, where M is the number of ensemble members used in the target calculation.

The REDQ paper uses G = 20 for the update-to-data ratio, and provides results for up to 300K
environment interactions. Using such a high value for G is computationally infeasible in our
experimental setting, since we use 3 million environment interactions for Ant and Humanoid and over
4 million environment interactions for Humanoid-run in order to investigate asymptotic performance
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as well early-stage sample efficiency. In the experiments reported here, we use a value of G = 5 for
both REDQ and AQE.

For AQE, we use 10 Q-networks each with 2 heads, producing 20 Q-values for each input. The AQE
networks are the same size as those in the REDQ paper. For MuJoCo benchmark, AQE keeps 10 out
of 20 values for Hopper, all 20 values for half-Cheetah, and 16 out of 20 values for Walker, Ant and
Humanoid.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 1: AQE versus TQC, REDQ and SAC for MuJoCo environments. AQE is the only algorithm
that beats SAC in all five environments during all stages of training, and it typically beats SAC by a
wide margin.

Figure 1 shows the training curves for AQE, TQC, REDQ, and SAC for the five MuJoCo environments.
For each algorithm, we plot the average return of 5 independent trials as the solid curve, and plot
the standard deviation across 5 seeds as the shaded region. For each environment, we train each
algorithm for exactly the same number of environment interactions as done in the SAC paper. We use
the same evaluation protocol as in the TQC paper. Specifically, after every epoch, we run ten test
episodes with the current policy, record the undiscounted sum of all the rewards in each episode and
take the average of the sums as the performance. A more detailed discussion on hyperparameters and
implementation details is given in the Appendix.

We see from Figure 1 that AQE is the only algorithm that beats SAC in all five environments during all
stages of training. Moreover, it typically beats SAC by a very wide margin. Table 1 shows that, when
averaged across the five environments, AQE achieves SAC asymptotic performance approximately
3x faster than SAC and 2x faster than REDQ and TQC. As seen from Figure 1 and Table 2, in the
early stages of training, AQE matches the excellent performance of REDQ in all five environments,
and both algorithms are much more sample efficient than SAC and TQC. As seen from Figure 1
and Table 3, in late-stage training, AQE always matches or beats all other algorithms, except for
Humanoid, where TQC is about 10% better. Table 3 shows that, when averaged across all five
environments, AQE’s asymptotic performance is 26%, 22%, and 6% higher than SAC, REDQ, and
TQC, respectively.

4.1 Fixed Hyperparameters across Environments

Following the TQC paper, in Figure 1 we used different drop atoms for TQC for the different MuJoCo
environments. To make the comparison fair, we also used different keep values K for AQE for the
different environments. We repeat the experiment on the five MuJoCo environments, but now use the
same hyperparameter values across environments for TQC (drop two atoms per network) and AQE
(K = 16). These choices of fixed hyperparameters appear to give the best overall performance for the
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Table 1: Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show the
amount of data collected when the specified performance level is reached (roughly corresponding
to 90% of SAC’s final performance). The last three columns show how many times AQE is more
sample efficient than SAC, TQC and REDQ in reaching that performance level. For each task, the
lowest sample use, and those within 5% difference are highlighted.

Performance SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 3000 506K 184K 136K 77K 6.57 2.39 1.77
Walker2d at 4000 631K 371K 501K 277K 2.28 1.34 1.81
HalfCheetah at 10000 763K 737K 552K 304K 2.51 2.42 1.82
Ant at 5500 1445K 1759K 1749K 632K 2.29 2.78 2.77
Humanoid at 6000 2469K 1043K 1862K 1345K 1.84 0.78 1.38
Average - - - - 3.10 1.94 1.91

Table 2: Early-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers show
the performance achieved when the specific amount of data is collected. On average, AQE performs
2.9 times better than SAC, 1.6 times better than TQC and 1.1 times better than REDQ. For each task,
the highest score and those within 5% difference are highlighted.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 100K 1456 1807 2747 3345 2.30 1.85 1.22
Walker2d at 100K 501 1215 1810 2150 4.29 1.77 1.19
HalfCheetah at 100K 3055 4801 6876 6378 2.09 1.33 0.93
Ant at 250K 2107 2344 3279 4153 1.97 1.77 1.27
Humanoid at 250K 1094 3038 4535 3973 3.63 1.31 0.88
Average at early stage - - - - 2.86 1.61 1.10

two algorithms. The training curves for AQE, TQC, REDQ, and SAC and detailed early-stage and
late-stage performance comparisons of all algorithms for this experiment are shown in the Appendix.

We can see from the results that with fixed hyperparamters, the conclusions for AQE remain largely
unchanged, except for Hopper, where REDQ becomes the strongest algorithm. When averaged across
environments, AQE still matches the high sample efficiency of REDQ during the early stages of
training. Furthermore, on average, AQE’s asymptotic performance is still 16%, 11% and 9% higher
than SAC, REDQ and TQC, respectively.

4.2 DeepMind Control Suite Results

In this section, we provide detailed experimental results for AQE, TQC, REDQ and SAC for the nine
most challenging DeepMind Control Suite (DMC) environments. The TQC and REDQ papers do not
consider DMC benchmark, so we employ the same hyperparameters for TQC and REDQ as for the
MuJoCo environments. For TQC, we employ 5 critic networks with 25 distributional samples and
drop 2 atoms per critic across environments. For REDQ, we keep using N = 10 and M = 2. To
make the comparison fair, we also use the same hyperparameter values across environments for AQE.
We present the learning curves in Figure 2. Similar to MuJoCo benchmark, for each algorithm, we
plot the average return of 5 independent trials as the solid curve, and plot the standard deviation across
5 seeds as the shaded region. We run all algorithms to 1 million environment interactions except
for the most challenging environment, Humanoid-run, where we run up to 4.5 million environment
interactions. We use the same evaluation protocol as for the MuJoCo environments.

Figure 2 shows that in DMC environments with fixed hyperparameters, AQE continues to outperform
TQC except for the Humanoid-run environment, where TQC performs better than AQE in the final
stage of training. AQE and REDQ have comparable results in some of the DMC environments during
traning, however, AQE usually outperforms REDQ in the more challenging environments, such
as Hopper-hop, Humanoid-run, and Quadruped-run. We report detailed early-stage and late-stage
performance comparisons of all algorithms in Appendix.
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Table 3: Late-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers show the
performance achieved when a specific amount of data is collected. The last three columns show the
ratio of AQE performance compared to SAC, TQC, and REDQ performance. On average, during
late-stage training, AQE performs 1.26 times better than SAC, 1.06 times better than TQC, and
1.22 times better than REDQ. For each task, the highest score and those within 5% difference are
highlighted.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 1M 3282 3612 2954 3541 1.08 0.98 1.20
Walker2d at 1M 4134 5532 4637 5517 1.33 1.00 1.19
HalfCheetah at 1M 10475 10887 11562 13093 1.25 1.20 1.13
Ant at 3M 5903 6186 5785 7345 1.24 1.19 1.27
Humanoid at 3M 6177 9593 6649 8680 1.41 0.91 1.31
Average at late stage - - - - 1.26 1.06 1.22

(a) Cheetah run (b) Fish swim (c) Hopper hop

(d) Humanoid stand (e) Humanoid walk (f) Humanoid run

(g) Quadruped walk (h) Quadruped run (i) Walker run

Figure 2: AQE versus TQC, REDQ and SAC in DeepMind Control Suite benchmark. AQE and TQC
use same hyperparameters across the nine environments.

In summary, in the early stage of training (100K data), AQE performs 13.71x better than SAC, 7.59x
better than TQC and matches the excellent performance of REDQ in nine environments. In the
late-stage training (1M data), AQE always matches or outperforms all other algorithms, except for
Humanoid-run, where TQC performs the best. On average, AQE performs 37% better than SAC, 8%
better than TQC, and 3% better than REDQ. Using the same hyperparameters and averaged across
nine DMC environments, AQE achieves the asymptotic performance of SAC approximately 3x faster
than SAC, 1.57x faster than TQC, and 1.05x faster than REDQ.

7



4.3 Ablations

In this section, we use ablations to provide further insight into AQE. We focus on the Ant environment,
and run the experiments up to 1M time steps. (In the Appendix we provide ablations for the other
four environments.) As in the REDQ paper, we consider not only performance but normalized bias
and standard deviation of normalized bias as defined by the REDQ authors. We first look at how
the ensemble size N affects AQE. The first row in Figure 3 shows AQE with N equal to 2, 5, 10
and 15, with two heads for each Q network, and the percentage of kept Q-values unchanged. As
the ensemble size N increases, we generally obtain a more stable average bias, a lower std of bias,
and stronger performance. When trained with high UTD value, a relatively small ensemble size, for
example, N = 5, can greatly reduce bias accumulation, resulting in much stronger performance. This
experimental finding is consistent with the results in Theorem 1 in Appendix G.

(a) Ensemble size: Perf (b) Ensemble size: Bias (c) Ensemble size:Std

(d) Keep value: Perf (e) Keep value: Bias (f) Keep value: Std

(g) Variations: Perf (h) Variations: Bias (i) Variations: Std

Figure 3: AQE ablation results for Ant. The top row shows the effect of the ensemble size N . The
second row shows the effect of keep number parameter K. The third row compares AQE to some
variants.

The second row in Figure 3 shows how the keep parameter can affect the algorithm’s performance:
under the same high UTD value, as K decreases, the average normalized Q bias goes from over-
estimation to under-estimation. Consistent with the theoretical result in Theorem 1, by decreasing K
we lower the average bias. When K becomes too small, the Q estimate becomes too conservative
and starts to have negative bias, which makes learning difficult. We see that K = 16 has an average
bias closest to 0 and also a consistently small std of bias. These results are similar for the other four
environments, as shown in the Appendix.

The third row in Figure 3 shows results for variants of the target computation methods. The Median
curve uses the median value of all the Q estimates in the ensemble to compute the Q target. The
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RemoveMinMax curve drops the minimum and maximum values of all the Q estimates in the
ensemble to compute the Q target. We see that these two variants give larger positive Q bias values.

We also considered different combinations of ensemble size N and the number of multi-heads h while
keeping the total number of Q-function estimates N · h fixed. We performed these experiments for all
five environments. In terms of performance, we found the two best combinations to be N = 20, h = 1
and N = 10, h = 2, with the former being about 50% slower than the latter in terms of computation
time. We also consider endowing REDQ with the same multi-head ensemble architecture as AQE
and find that it does not improve REDQ substantially (additional details in Appendix F).

We also consider comparing AQE with SAC and TQC, all using a more aggressive UTD ratio of
G = 5. Although SAC becomes more sample efficient with G = 5, AQE continues to outperform
both algorithms except for Humanoid, where once again TQC performs somewhat better than AQE
for the final stage of training (Additional details in appendix E).

5 Conclusion

Perhaps the most important takeaway from this study is that a simple model-free algorithm can do
surprisingly well, providing state-of-art performance at all stages of training. There is no need for a
model, distributional representation of the return, or in-target randomization to achieve high sample
efficiency and asymptotic performance.

With extensive experiments and ablations, we show that AQE is both performant and robust. In both
OpenAI Gym and DMControl, AQE is able to achieve superior performance in all stages of training
with the same hyperparameters, and it can be further improved with per-task finetuning. Our ablations
show that AQE is robust to small changes in the hyperparameters. Our theoretical results complement
the experimental results, showing that the estimation bias can be controlled by either varying the
ensemble size N or the keep parameter K.

AQE along with prior works show that a high update-to-data ratio combined with refined bias control
can lead to very significant performance gain. An interesting future work direction is to investigate
whether there are other critical factors (in addition to bias control) that can allow us to further benefit
from a high update-to-data ratio, and achieve even better sample efficiency with simple model-free
methods.
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Aggressive Q-Learning with Ensembles:
Achieving Both High Sample Efficiency and High

Asymptotic Performance
Supplementary Material

A Hyperparameters and implementation details

Table 4 gives a list of hyperparameters used in the experiments. Most of AQE’s hyperparameters
are made the same as in the REDQ paper to ensure fairness and consistency in comparisons, except
that AQE has 2-head critic networks. As compared with AQE and REDQ, TQC uses a larger critic
network with 3 layers of 512 units per layer. In table 5, we report the dropped atoms d for TQC and
the number of Q values we keep in the ensemble to calculate the target in AQE. In algorithm 1, we
provide detailed pseudo-code.

Table 4: Hyperparameter values.

Hyperparameters AQE SAC REDQ TQC
optimizer Adam
learning rate 3 · 10−4

discount(γ) 0.99
target smoothing coefficient(ρ) 0.005
replay buffer size 1 · 106
number of critics N 10 2 10 5
number of hidden layers in critic networks 2 2 2 3
size of hidden layers in critic networks 256 256 256 512
number of heads in critic networks h 2 1 1 25
number of hidden layers in policy network 2
size of hidden layers in policy network 256
mini-batch size 256
nonlinearity ReLU
UTD ratio G 5 1 5 1

Table 5: Environment-dependent hyper-parameters for TQC and AQE.

Environment Dropped atoms per critic Kept Q values out of N · h values
Hopper 5 10
HalfCheetah 0 20
Walker 2 16
Ant 2 16
Humanoid 2 16
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B Additional Results for AQE, TQC, REDQ and SAC in MuJoCo
Benchamrk with Fixed Hyper-parameters

We present the experiment on the five MuJoCo environments with the same hyperparameter values
across environments for TQC (drop two atoms per network) and AQE (K = 16) in Figure 4.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 4: Performance for AQE and TQC using same hyper-parameters across the five environments.
AQE uses K = 16 and TQC uses atoms = 2 per critic.

Table 6: Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the environments. On average, AQE performs 2.71 times
better than SAC, 1.59 times better than TQC and 1.02 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 100K 1456 1719 2747 2294 1.58 1.33 0.84
Walker2d at 100K 501 1215 1810 2150 4.29 1.77 1.19
HalfCheetah at 100K 3055 3594 6876 6325 2.10 1.76 0.92
Ant at 250K 2107 2344 3279 4153 1.97 1.77 1.27
Humanoid at 250K 1094 3038 4535 3973 3.63 1.31 0.88
Average at early stage - - - - 2.71 1.59 1.02

Table 7: Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the environments. On average, AQE performs 16% better
than SAC, 9% better than TQC and 11% times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 1M 3282 2024 2954 2404 0.73 1.19 0.81
Walker2d at 1M 4134 5532 4637 5517 1.33 1.00 1.19
HalfCheetah at 1M 10475 9792 11562 11293 1.08 1.15 0.98
Ant at 3M 5903 6186 5785 7345 1.24 1.19 1.27
Humanoid at 3M 6177 9593 6649 8680 1.41 0.91 1.31
Average at late stage - - - - 1.16 1.09 1.11
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C Additional Results for AQE, TQC, REDQ and SAC in DeepMind Control
Suite Benchmark

Figure 2 presents the performance of AQE, TQC, REDQ and SAC for 9 DeepMind Control Suite
(DMC) environments. We can see that AQE continues to outperform TQC except for Humanoid run
environment, where TQC performs better than AQE in the final stage training. AQE and REDQ have
comparable results in some of the DMC environments, however, AQE usually outperforms REDQ in
the more challenging environments, such as Hopper-hop, Humanoid-run and Quadruped-run. We
report detailed early-stage and late-stage performance comparisons of all algorithms in Table 8 and
Table 9. On average, in the early stage of training, AQE performs 13.71 times better than SAC, 7.59
times better than TQC and 1.02 times better than REDQ. In the late-stage training, on average, AQE
performs 1.37 times better than SAC, 1.08 times better than TQC and 1.03 times better than REDQ.

Table 8: Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the DMC environments. On average, AQE performs 13.71
times better than SAC, 7.59 times better than TQC and 1.02 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 100K 205 235 317 339 1.65 1.44 1.07
Fish-swim at 100K 121 149 234 230 1.90 1.54 0.98
Hopper-hop at 100K 2 11 50 64 32 5.81 1.28
Quadruped-walk at 100K 116 172 452 341 2.94 1.98 0.75
Quadruped-run at 100K 114 111 294 284 2.49 2.56 0.97
Walker-run at 100K 305 372 468 457 1.50 1.23 0.98
Humanoid-stand at 100K 5 5 37 52 10.4 10.4 1.41
Humanoid-walk at 100K 1 1 57 40 40 40 0.70
Humanoid-run at 250K 2 18 59 61 30.5 3.39 1.03
Average at early stage - - - - 13.71 7.59 1.02

Table 9: Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the DMC environments. On average, AQE performs 1.37
times better than SAC, 1.08 times better than TQC and 1.03 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 1M 734 829 844 856 1.17 1.03 1.01
Fish-swim at 1M 639 722 753 747 1.17 1.03 0.99
Hopper-hop at 1M 293 256 279 294 1.00 1.15 1.05
Quadruped-walk at 1M 871 948 949 948 1.09 1.00 1.00
Quadruped-run at 1M 676 893 904 928 1.37 1.04 1.03
Walker-run at 1M 660 780 826 808 1.22 1.04 0.98
Humanoid-stand at 1M 323 429 547 546 1.69 1.27 1.00
Humanoid-walk at 1M 325 427 596 576 1.77 1.35 0.97
Humanoid-run at 4.5M 146 324 216 271 1.86 0.84 1.25
Average at late stage - - - - 1.37 1.08 1.03
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Table 10: Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show the
amount of data collected when the specified performance level is reached (roughly corresponding
to 90% of SAC’s final performance). The last three columns show how many times AQE is more
sample efficient than SAC, TQC and REDQ in reaching that performance level.

Performance SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 700 746K 440K 506K 350K 2.13 1.26 1.45
Fish-swim at 600 794K 494K 317K 417K 1.90 1.18 0.76
Hopper-hop at 250 580K 856K 451K 371K 1.56 2.31 1.22
Quadruped-walk at 800 844K 301K 302K 236K 3.58 1.28 1.28
Quadruped-run at 650 942K 521K 267K 248K 3.80 2.10 1.08
Walker-run at 600 516K 201K 156K 174K 2.97 1.16 0.90
Humanoid-stand at 250 626K 429K 279K 342K 1.83 1.25 0.82
Humanoid-walk at 300 820K 523K 279K 300K 2.73 1.74 0.93
Humanoid-run at 120 3940K 1100K 602K 603K 6.53 1.82 1.00
Average - - - - 3.00 1.57 1.05
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D Additional Results for AQE, SAC-5 and TQC-5

Figure 5 presents the performance of AQE, SAC-5 and TQC-5 for all the environments. SAC-5 and
TQC-5 uses UTD ratio G = 5 for SAC and TQC, respectively. We can see that AQE continues to
outperform both algorithms except for Humanoid, where TQC performs somewhat better than AQE
in the final stage training. SAC becomes more sample efficient with G = 5; however, AQE still beats
SAC-5 by a large margin.

(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 5: Performance, average and std of normalized Q bias for AQE, SAC-5 and TQC-5. All of the
algorithms in this experiment use UTD = 5.

16



E Additional Results for parameter K

Due to lack of space, Figure 3 only compares different AQE keep numbers K for Ant. Figure 6 shows
the performance, average estimation bias and standard deviation for all five environments. Consistent
with the theoretical result in Theorem 1, by decreasing K, we lower the average bias.

(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 6: Performance, average and std of normalized Q bias for AQE with different values of K.
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F Additional Results for Multi-head Architecture

Due to lack of space, Figure 3 only compares the different size of the ensemble N and the number of
heads h for Ant. Figure 7 shows the results for all five environments. We can see that the combination
of N = 10, h = 2 and N = 20, h = 1 have comparable performance. However, N = 10 and h = 2
is faster in terms of computation time.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 7: Performance for AQE with different combinations of number of Q networks and number of
heads.

Will the performance of REDQ match that of AQE if we also provide REDQ a multi-head architec-
ture? Figure 8 examines the performance of REDQ when it is endowed with the same multi-head
architecture as AQE. We see that the performance of REDQ does not substantially improve.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 8: Performance of REDQ with N=10 and heads = 2 as compared with REDQ and AQE.
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G Theoretical Results

In this section, we characterize how changing the size of the ensemble N and the keep parameter K
affects the estimation bias term in the AQE algorithm. We will restrict our analysis to the tabular
version of AQE shown in algorithm 2.

Our analysis will follow similar lines of reasoning as Lan et al. (2020) and Chen et al. (2021) which
extends upon the theoretical framework introduced in Thrun and Schwartz (1993).

For each a ∈ A, let EK,N (s, a) be the ensemble members in {1, . . . , N} with the K lowest values
of Qj(s, a), j = 1, . . . , N . In the tabular case, the target for the Q networks take the form:

r + γmax
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

 . (1)

Define the post-update estimation bias as

ZK,N := r + γmax
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

− (
r + γmax

a′
Qπ(s′, a′)

)

= γ

max
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

−max
a′

Qπ(s′, a′)

 (2)

Under this definition, if E[ZK,N ] > 0, then the expected post-update estimation bias is positive and
there is a tendency for the positive bias to accumulate during updates. Similarly, if E[ZK,N ] < 0,
then the expected post-update estimation bias is negative and there is a tendency for the negative bias
to accumulate during updates. Ideally, we would like E[ZK,N ] ≈ 0

Also let
Qj(s, a) = Qπ(s, a) + ej(s, a) (3)

where ej(s, a) is an independent and identically distributed error term across all j’s and all a’s for
each fixed s. We further assume that E[ej(s, a)] = 0. Note that with this assumption

E

 1

N

N∑
j=1

Qj(s, a)

−Qπ(s, a) = 0,

that is the pre-update estimation bias is zero. The following theorem shows how the expected
estimation bias changes with N and K:
Theorem 1. The following results hold for E[ZK,N ]:

1. E[ZN,N ] ≥ 0 for all N ≥ 1.

2. E[ZK−1,N ] ≤ E[ZK,N ] for all K ≤ N .

3. E[ZK,N+1] ≤ E[ZK,N ].

4. Suppose that ejsa ≤ c for some c > 0 for all s, a and j. Then there exists an N sufficiently
large and K < N such that E[ZK,N ] < 0.

Proof Sketch. Part 1 is a result of Jensen’s Inequality, and Parts 2 and 3 can be shown by analyzing
how the average of the K smallest ensembles changes when adding an extra ensemble model. Given
the first three parts, we only need to show that E[Z1,N ] < 0 to show that there exists a K for a
sufficiently large N where the expected bias is negative. See the next section for full proof.

Theorem 1 shows that we can control the expected post-update bias E[ZK,N ] through adjusting K
and N . More concretely, we can bring the bias term from above zero (i.e. over estimation) to under
zero (i.e. under estimation) by decreasing K and/or increasing N .

We note also that similar to Chen et al. (2021), we make very few assumptions on the error term es,a.
This is in contrary to Thrun and Schwartz (1993) and Lan et al. (2020), both of whom assume that
the error term is uniformly distributed.
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G.1 Tabular AQE with N ensemble members and d drops

Algorithm 2 Tabular AQE

Initialize: Qj(s, a) for all s ∈ S, a ∈ A, j = 1, . . . , N .
1: repeat
2: For some state s ∈ S, choose a ∈ A based on

{
Qj(s, a)

}N

j=1
, observe r, s′.

3: For each a′ ∈ A, let EK,N (s′, a′) be the ensemble members in {1, . . . , N} with the K
lowest values of Qj(s′, a′), j = 1, . . . , N .

4: Get target

y = r + γmax
a′∈A

1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

5: for j = 1, . . . , N do
6: Update each Qj(s, a)

Qj(s, a)← Qj(s, a) + α(y −Qj(s, a))

7: s← s′

8: until end
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H Proofs

We first present the following lemma:

Lemma 1 (Chen et al., 2021). Let X1, X2, . . . be an infinite sequence of i.i.d. random variables with
cdf F (x) and let τ = inf x : F (x) > 0. Also let YN = min{X1, X2, . . . , XN}. Then Y1, Y2, . . .
converges to τ almost surely.

Proof. See Appendix A.2 of Chen et al. (2021)

Theorem 1. The following results hold for E[ZK,N ]:

1. E[ZN,N ] ≥ 0 for all N ≥ 1.

2. E[ZK−1,N ] ≤ E[ZK,N ] for all K ≤ N .

3. E[ZK,N+1] ≤ E[ZK,N ].

4. Suppose that ejsa ≤ c for some c > 0 for all s, a and j. Then there exists an N sufficiently
large and K < N such that E[ZK,N ] < 0.

Proof. 1. By definition,

E[ZN,N ] = γ E

max
a′

 1

N

N∑
j=1

Qj(s′, a′)

−max
a′

Qπ(s′, a′)


≥ γ

max
a′

E

 1

N

N∑
j=1

Qj(s′, a′)

−max
a′

Qπ(s′, a′)


= γ

[
max
a′

Qπ(s′, a′)−max
a′

Qπ(s′, a′)
]
= 0

(4)

2. Let

Q̄K,N (s, a) =
1

K

∑
j∈EK,N

Qj(s, a). (5)

Since for any state s, maxa Q̄K+1,N (s, a) ≥ maxa Q̄K,N (s, a),

E[ZK+1,N ] = γ E
[
max
a′

Q̄K+1,N (s′, a′)−max
a′

Qπ(s′, a′)
]

≥ γ E
[
max
a′

Q̄K,N (s′, a′)−max
a′

Qπ(s′, a′)
]

= E[ZK,N ]

(6)

3. Comparing E[ZK,N ] and E[ZK,N+1] is equivalent to comparing Q̄K,N (s, a) and
Q̄K,N+1(s, a). Since ej(s, a) is i.i.d., by extension Qj(s, a) is also i.i.d. for j = 1, 2, · · · .
Suppose Qj(s, a) is drawn from some probability distribution F , then given Q̄K,N (s, a),
Q̄K,N+1(s, a) can be calculated by generating an additional Qi(s, a) from F . The new
sample Qi(s, a) affects the calculation of Q̄K,N+1(s, a) under the following two cases:

• If Qi(s, a) > maxj∈EK,N
Qj(s, a), then the lowest K values remain unchanged hence

Q̄K,N (s, a) = Q̄K,N+1(s, a).
• Else if Qi(s, a) ≤ maxj∈EK,N

Qj(s, a), then maxj∈EK,N
Qj(s, a) would be re-

moved from and Qi(s, a) would be added to the set of lowest K values, therefore
Q̄K,N+1(s, a) ≤ Q̄K,N (s, a).

Combining the two cases Q̄K,N+1(s, a) ≤ Q̄K,N (s, a), therefore E[ZK,N+1] ≤ E[ZK,N ]
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4. Since E[ZN,N ] ≥ 0, E[ZK,N ] ≤ E[ZK+1,N ] and E[ZK,N+1] ≤ E[ZK,N ]. It is suffice to
show that E[Z1,N ] < 0 for some N . The rest of the proof largely follows Theorem 1 of
Chen et al. (2021).

Let τ = inf{x : Fa(x) > 0} where Fa(x) is the cdf of Qj(s, a), j = 1, 2, . . . . By Lemma
1, Q̄1,N (s, a) = min1≤j≤N Qj(s, a) converges almost surely to to τa for each a. Since the
action space is finite, it then follows that maxa Q̄1,N (s, a) converges almost surely to to
τ = maxa τa. Due to our assumption that ej(s, a) ≤ c and that Qπ(s, a) is finite, it then
follows that maxa Q̄1,N (s, a) is also bounded above. By Part 3 of the theorem, Q̄1,N (s, a)
is monotonoically decreasing w.r.t. N . and since maxa Q̄1,N (s, a) is also bounded above
and converges almost surely to τ , we have

E[Z1,N ] = γ

(
E[max

a
min

1≤j≤N
Qj(s, a)]−max

a
Qπ(s, a)

)
= γ

(
E[max

a
Y N
a ]−max

a
Qπ(s, a)

)
N→∞−→ γ

(
max

a
τa −max

a
Qπ(s, a)

)
< 0

(7)
where the last equality follows from the assumption that the error ej(s, a) is non-trivial, and
hence τa < maxa Q

π(s, a) for all a. Therefore for a sufficiently large N , there exists a
1 ≤ K ≤ N such that EK,N < 0.

I Computing Infrastructure

Each experiment is run on a single Nvidia 2080-Ti GPU with CentOS Linux System.
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