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ABSTRACT

Federated learning (FL) enables collaboratively training a model while keeping
the training data decentralized and private. However, one significant impediment
to training a model using FL, especially large models, is the resource constraints
of devices with heterogeneous computation and communication capacities as well
as varying task sizes. Such heterogeneity would render significant variations in the
training time of clients, resulting in a longer overall training time as well as a waste
of resources in faster clients. To tackle these heterogeneity issues, we propose the
Dynamic Tiering-based Federated Learning (DTFL) system where slower clients
dynamically offload part of the model to the server to alleviate resource constrains
and speed up training. By leveraging the concept of Split Learning, DTFL offloads
different portions of the global model to clients in different tiers and enables each
client to update the models in parallel via local-loss-based training. This helps
reduce the computation and communication demand on resource-constrained de-
vices and thus mitigates the straggler problem. DTFL introduces a dynamic tier
scheduler that uses tier profiling to estimate the expected training time of each
client, based on their historical training time, communication speed, and dataset
size. The dynamic tier scheduler assigns clients to suitable tiers to minimize the
overall training time in each round. We first theoretically prove the convergence
properties of DTFL. We then train large models (ResNet-56 and ResNet-110) on
popular image datasets (CIFAR-10, CIFAR-100, CINIC-10, and HAM10000) un-
der both IID and non-IID systems. Extensive experimental results show that com-
pared with state-of-the-art FL methods, DTFL can significantly reduce the training
time while maintaining model accuracy.

1 INTRODUCTION

Federated learning (FL), which allows clients to train a global model collaboratively without shar-
ing their sensitive data with others, has become a popular privacy-preserving distributed learning
paradigm. In FL, clients update the global model using their locally trained weights to avoid shar-
ing raw data with the server or other clients. This training process, however, becomes a significant
hurdle for training large models when clients are resource-constrained devices (e.g., mobile/IoT de-
vices, and edge servers) with heterogeneous computation and communication capacities in addition
to different dataset sizes. Such heterogeneity would incur a significant impact on training time and
model accuracy in conventional FL systems (i.e., larger training time is required to reach similar
accuracy compared to non-heterogeneous systems) Yang et al. (2021); Abdelmoniem et al. (2023).

To train large models with resource-constrained devices, various methods have been proposed in the
literature. One solution is to split the global model into a client-side model (i.e., the first a few layers
of the global model) and a server-side model, where the clients only need to train the small client-side
model via Split Learning (SL) Gupta & Raskar (2018); Vepakomma et al. (2018). Liao et al. (2023)
improves model training speed in split federated learning (SFL) by giving local clients control over
both the local updating frequency and batch size. However, in SFL, each client needs to wait for
the back-propagated gradients from the server to update its model, and the communication overhead
for transmitting the forward/backward signals between the server and clients can be substantial at
each training round (i.e., time needed to complete a round of training). To address these issues,
He et al. (2020a); Cho et al. (2023) uses a knowledge transfer training algorithm, to train small
models at clients and periodically transfer their knowledge via knowledge distillation to a large
server-side model. Han et al. (2021) develops a federated SL algorithm that addresses the latency
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and communication issues by integrating local-loss-based training into SL. However, the client-side
models in He et al. (2020a); Han et al. (2021) are fixed throughout the training process, and choosing
suitable client-side models in heterogeneous environments is challenging as the resources of clients
may change over time. Another solution is to divide clients into tiers based on their training speed
and select clients from the same tier in each training round to mitigate the straggler problem Chai
et al. (2020; 2021). However, existing tier-based works Chai et al. (2020; 2021) still require clients
to train the entire global model, which is not suitable for training large models.

In this paper, we propose the Dynamic Tiering-based Federated Learning (DTFL) system, to speed
up FL for training large models in heterogeneous environments. DTFL aims to not only incorpo-
rate benefits from both SFL Han et al. (2021) and tier-based FL Chai et al. (2020), but also address
the latency issues and reduce the training time of these works in heterogeneous environments. In
DTFL, we divide clients into different tiers. In different tiers, DTFL offloads different portions of
the global model from each client to the server. Then each client and the server update the models
in parallel using local-loss-based training Nøkland & Eidnes (2019); Belilovsky et al. (2020); Huo
et al. (2018); Han et al. (2021). In a heterogeneous environment, the training time of each client
can change over time. Static tier assignments can result in severe straggler issues when clients with
limited computation and communication resources (e.g., due to other concurrently running applica-
tions on mobile devices) are allocated to tiers demanding high levels of resources. To address this
challenge, we propose a dynamic tier scheduler that assigns clients to suitable tiers based on their
capacities, their task size, and their current training speed. The tier scheduler employs tier profiling
to estimate client-side training time, using only the measured training time, communicated network
speed, and observed dataset size of clients, making it a low-overhead solution which is suitable for
real system implementation. We theoretically show the convergence of DTFL on convex and non-
convex loss functions under standard assumptions in FL Li et al. (2019); Reisizadeh et al. (2020) and
local-loss-based training Belilovsky et al. (2020); Huo et al. (2018); Han et al. (2021). Using DTFL,
we train large models (ResNet-56 and ResNet-110 He et al. (2016)) on different number of clients
using popular datasets (CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009),
CINIC-10 Darlow et al. (2018), and HAM10000Tschandl et al. (2018)) and their non-I.I.D. (non-
identical and independent distribution) variants. We also evaluate the performance of DTFL when
employing privacy measures, such as minimizing the distance correlation between raw data and
intermediate representations, and shuffling patches of data. The results indicate that DTFL can ef-
fectively incorporate privacy techniques without significantly impacting model accuracy. Extensive
experimental results show that DTFL can significantly reduce the training time while maintaining
model accuracy comparable to state-of-the-art FL methods.

2 BACKGROUND AND RELATED WORKS

Federated Learning. Existing FL methods (see a comprehensive study of FL Kairouz et al. (2021))
require clients to repeatedly download and update the global model, which is not suitable for training
large models with resource-constrained devices in heterogeneous environments and may suffer a
severe straggler problem. To address the straggler problem, Li et al. (2019) selects a smaller set
of clients for training in each global iteration, but requires more training rounds. Bonawitz et al.
(2019) mitigates stragglers by neglecting the slowest 30% clients, while FedProx Li et al. (2020)
uses distinct local epoch numbers for clients. Both Bonawitz et al. (2019) and Li et al. (2020) face
the challenge of determining the perfect parameters (i.e., percentage of slowest clients and number
of local epochs). Recently, tier-based FL methods Chai et al. (2020; 2021); Reisizadeh et al. (2022)
propose to divide clients into tiers based on their training speed and select clients from the same tier
in each training round to mitigate the straggler problem. However, clients in existing FL methods are
required to train the whole global model, which renders significant hurdles in training large models
on resource-constrained devices.

Split Learning. To tackle the computational limitation of resource-constrained devices, Split Learn-
ing (SL) Vepakomma et al. (2018); Gupta & Raskar (2018) splits the global model into a client-side
model and a server-side model, and clients need to only update the small client-side model, com-
pared to FL. To increase SL training speed Thapa et al. (2022) incorporated FL into SL, and Wu et al.
(2023) proposed a first-parallel-then-sequential approach that clusters clients and sequentially trains
a model in SL fashion in each cluster, and then transfers the updated cluster model to the next clus-
ters. In SL, clients must wait for the server’s backpropagated gradients to update their models, which
can cause significant communication overhead. To address these issues, He et al. (2020a) proposes
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FedGKT, to train small models at clients and periodically transfer their knowledge by knowledge
distillation to a large server-side model. Han et al. (2021) develops a federated SL algorithm that
addresses latency and communication issues by integrating local-loss-based training. Clients train
a model using local error signals, which eliminates the need to communicate with the server. How-
ever, the client-side models in current SL approaches He et al. (2020a); Han et al. (2021); Zhang
et al. (2023) are fixed throughout the training process, and choosing suitable client-side models in
heterogeneous environments is challenging as clients’ resources may change over time. Compared
to these works, the proposed DTFL can dynamically adjust the size of the client-side model for each
client over time, which can significantly reduce the training time and mitigate the straggler problem.

3 DYNAMIC TIERING-BASED FEDERATED LEARNING

3.1 PROBLEM STATEMENT

Figure 1: Overview of dynamic tiering-based federated
learning. The purple layer at the client-side denotes the
auxiliary network in different tiers.

We aim to collaboratively train a large model
(e.g., ResNet, or AlexNet) by K clients on a
range of heterogeneous resource-constrained
devices that lack powerful computation and
communication resources without centraliz-
ing the dataset on the server-side. Let
{(xi, yi)}Nk

i=1 denote the dataset of client k,
where xi denotes the ith training sample, yi is
the associated label of xi, and Nk is the num-
ber of samples in client k’s dataset. The FL
problem can be formulated as a distributed
optimization problem:

min
w

f(w)
def
= min

w

K∑
k=1

Nk

N · fk(w) (1)

where fk(w) = 1
Nk

Nk∑
i=1

ℓ ((xi, yi) ;w) (2)

where w denotes the model parameters and
N =

∑K
k=1 Nk. f(w) denotes the global objective function, and fk(w) denotes the kth client’s

local objective function, which evaluates the local loss over its dataset using loss function ℓ.

One main drawback of existing federated optimization techniques (e.g., McMahan et al. (2017); Li
et al. (2020); Wang et al. (2020b); Reddi et al. (2020)) for solving (1) is that they cannot efficiently
train large models on a variety of heterogeneous resource-constrained devices. Such heterogeneity
would lead to the severe straggler problem that clients may have significantly different response
latencies (i.e., the time between a client receives the training task and returning the results) in the FL
process, which would severely slow down the training (see experimental results in Sec. 4.2).

To address these issues, we propose a Dynamic Tiering-based Federated Learning (DTFL) system
(see Figure 1), in which we develop a dynamic tier scheduler that assigns clients to suitable tiers
based on their training speed. In different tiers, DTFL offloads different portions of the global model
to clients and enables each client to update the models in parallel via local-loss-based training, which
can reduce the computation and communication demand on resource-constrained devices, while
mitigating the straggler problem. Compared with existing works (e.g., He et al. (2020a); Han et al.
(2021); Chai et al. (2020)), which can be treated as a single-tier case in DTFL, DTFL provides more
flexibility via multiple tiers to cater to a variety of heterogeneous resource-constrained devices in
heterogeneous environments. As shown in experimental results in Sec. 4.2, DTFL can significantly
reduce the training time while maintaining model accuracy, compared with these methods.

3.2 TIERING LOCAL-LOSS-BASED TRAINING

To cater for heterogeneous resource-constrained devices, DTFL divides the clients into M tiers
based on their training speed. In different tiers, DTFL offloads different portions of the global
model w to the server and enables each client to update the models in parallel via local-loss-based
training. Specifically, in tier m, the model w is split into a client-side model wcm and a server-side
model wsm . Clients in tier m train the client-side model wcm and an auxiliary network wam . The
auxiliary network is the extra layers connected to the client-side model, and the auxiliary network is
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Table 1: Comparison of training time (in seconds) for 10 clients under different tiers when M = 6 to achieve
80% accuracy on the I.I.D. CIFAR-10 dataset using ResNet-110. In each experiment, all the clients are assigned
to the same tier. Randomly assign clients to different CPU and network speed profiles. Profiles in Case 1: 2
CPUs with 30 Mbps, 1 CPU with 30 Mbps, 0.2 CPU with 30 Mbps. Profiles in Case 2: 4 CPUs with 100 Mbps,
1 CPU with 30 Mbps, 0.1 CPU with 10 Mbps. The experimental setup can be found in Sec. 4.

Tier 1 2 3 4 5 6 FedAvg

Case1
Computation Time 4622 8106 9982 10681 11722 12250 13396

Communication Time 5911 5995 2187 2189 1018 908 16
Overall Training Time 10533 14101 12170 12871 12741 13158 13408

Case2
Computation Time 8384 14634 17993 19027 21428 22344 24428

Communication Time 17754 18090 6720 6762 2941 2653 43
Overall Training Time 26138 32724 24713 25989 24369 24997 24471

used to compute the local loss on the client-side. By introducing the auxiliary network, we enable
each client to update the models in parallel with the server Han et al. (2021), which avoids the severe
synchronization and substantial communication in SL that significantly slows down the training pro-
cess Vepakomma et al. (2018); Gupta & Raskar (2018). In this paper, we use a few fully connected
layers for the auxiliary network as in Han et al. (2021); Belilovsky et al. (2020); Laskin et al. (2020).

Under this setting, we define f c
k(w

cm ,wam) as the client-side loss function and fs
k(w

sm ,wcm)
as the corresponding server-side loss function in tier m. Our goal is to find wcm∗ and wam∗ that
minimizes the client-side loss function in each tier m:

min
wcm ,wam

∑
k∈Acm

Nk

Nm · f c
k(w

cm ,wam) (3)

where f c
k(w

cm ,wam) = 1
Nk

∑Nk

i=1 ℓ ((xi, yi) ;w
cm ,wam) and Nm =

∑
k∈Acm Nk. Acm denotes

the set of clients in tier m. Given the optimal client-side model wcm∗, the server finds wsm∗ that
minimizes the server-side loss function:

min
wsm

∑
k∈Acm

Nk

Nm · fs
k(w

sm ,wcm∗) (4)

where fs
k(w

sm ,wcm∗) = 1
Nk

∑Nk

i=1 ℓ ((zi, yi) ;w
sm) and zi = hwcm∗(xi) is the intermediate

output of the client-side model wcm∗ given the input xi.

Offloading the model to the server can effectively reduce the total training time, as illustrated in
Table 1. As a client offloads more layers to the server (moving towards tier m = 1), the model size
on the client’s side decreases, thereby reducing the computational workload. Meanwhile, this may
increase the amount of data transmitted (i.e., the size of the intermediate data and partial model).
As indicated in Table 1, there exists a non-trivial tier assignment that minimizes the overall training
time. To find the optimal tier assignment, DTFL needs to consider multiple factors, including the
communication link speed between the server and the clients, the computation power of each client,
and the local dataset size.

3.3 DYNAMIC TIER SCHEDULING

In a heterogeneous environment with multiple clients, the proposed dynamic tier scheduling aims to
minimize the overall training time by determining the optimal tier assignments for each client.

Specifically, let m(r)
k denote the tier of client k in the training round r. T c

k (m
(r)
k ), T com

k (m
(r)
k )

and T s
k (m

(r)
k ) represent the training time of the client-side model, the communication time, and the

training time of the server-side model of client k at round r, respectively. Using the proposed local-
loss-based split training algorithm, each client and the server train the model in parallel. The overall
training time Tk for client k in each round can be presented as:

Tk(m
(r)
k ) = max{T c

k (m
(r)
k ) + T com

k (m
(r)
k ), T s

k (m
(r)
k ) + T com

k (m
(r)
k )}. (5)

As clients train their models in parallel, the overall training time in each round r is determined by
the slowest client (i.e., straggler). To minimize the overall training time, we minimize the maximum
training time of clients in each round:

min
{m(r)

k }
max

k
Tk(m

(r)
k ), subject to {m(r)

k } ∈M ∀k, (6)

where M denotes the set of tiers. Note that problem (6) is an integer programming problem. To
solve (6), it requires the knowledge of each client’s training time {Tk(m

(r)
k )} under each tier. As
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Table 2: The normalized training times for both client-side and server-side models in different tiers for each
client relative to Tier 1, using ResNet-56 with 10 clients. In each experiment, all the clients are assigned to the
same tier. We change the CPU capacities of clients in each experiment to evaluate the impact of CPU capacities.

Tier 1 2 3 4 5 6

Client-side Training Time 1.00 ± 0.04 1.63 ± 0.10 2.16 ± 0.15 2.68 ± 0.22 3.30 ± 0.24 3.81 ± 0.28
Server-side Training Time 1.00 ± 0.07 0.82 ± 0.06 0.65 ± 0.06 0.51 ± 0.04 0.33 ± 0.03 0.20 ± 0.01

the capacities of each client in a heterogeneous environment may change over time, a static tier
assignment may still lead to a severe straggler problem. The key question is how to efficiently solve
(6) in a heterogeneous environment.

To address this challenge, we develop a dynamic tier scheduler to efficiently determine the optimal
tier assignments for each client in each round. The idea is to use tier profiling to estimate the training
time of each client under each tier, based on which each client will be assigned to the optimal tier.

• Tier Profiling. Before the training starts, the server conducts tier profiling to estimate T c
k (m

(r)
k ),

T com
k (m

(r)
k ) and T s

k (m
(r)
k ) for each client. Specifically, using a standard data batch, the server

profiles the transferred data size (i.e., model parameter and intermediate data size) for each tier
m, as Dsize(m

(r)
k ). Then, for each client k in tier m, the communication time can be estimated

as Dsize(m
(r)
k )Ñk/ν

(r)
k , where ν

(r)
k represents the client’s communication speed and Ñk denotes

the number of data batches. To track clients’ training time for their respective client-side models,
the server maintains and updates the set of historical client-side training times for each client k
in tier m, denoted as T cm

k . To mitigate measurement noise, the server uses Exponential Moving
Average (EMA) on historical client-side training time (i.e, T̄ cm

k (m
(r)
k ) ← EMA(T cm

k (m
(r)
k ))) as

the current client’s training time in tier m. One main challenge of tier profiling is that to capture
the dynamics of the training time of each client in a heterogeneous environment, we need the
knowledge of the training time of each client in each tier, but only the training time of each client
in the assigned tier is available in each round. To estimate the training times in other tiers, we
study the relationship of the normalized training times among different tiers for each client, where
the normalized training time refers to the model training time using a standard data batch. Table 2
shows the normalized training times of different tiers relative to tier 1. As indicated in Table 2, for
any client, the normalized training times for both client-side and server-side models in different
tiers are the same. This is because the ratio between the normalized model training times under
two different tiers depends on only the model sizes of these two tiers, which does not change if the
design of the models under different tiers is given. Based on this tier profiling, we can estimate
the training times in other tiers using the observed training time of each client in the assigned tier
(see lines 24 to 29 in Algorithm 1).

• Tier Scheduling. In each round, the tier scheduler minimizes the maximum training time of
clients. First, it identifies the maximum time (i.e., the straggler training time), denoted as Tmax,
by estimating the maximum training time of all clients if they are assigned to a tier that minimizes
their training time (see line 31 in Algorithm 1). Then, it assigns other clients to a tier with an
estimated training time that is less than or equal to Tmax (see line 33 in Algorithm 1). To better
utilize the resources of each client, the tier scheduler selects tier m that minimizes the offloading
to the server while still ensuring that its estimated training time remains below Tmax by m

(r+1)
k ←

argmax
m

(
{T̂k(m

(r)
k ) ≤ Tmax}

)
.

The dynamic tier scheduler is detailed in TierScheduler(·) function in Algorithm 1. The DTFL
training process (illustrated in Figure 1) is described in in Algorithm 1.

3.4 CONVERGENCE ANALYSIS

We show the convergence of both client-side and server-side models in DTFL on convex and non-
convex loss functions based on standard assumptions in FL and local-loss-based training. We assume
that (A1) client-side f cm

k and server-side fsm
k objective functions of each client in each tier are dif-

ferentiable and L-smooth; (A2) f cm
k and fsm

k have expected squared norm bounded by G2
1; (A3)

the variance of the gradients of f cm
k and fsm

k is bounded by σ2; (A4) f cm
k and fsm

k are µ-convex
for µ ≥ 0 for some results; (A5) the client-side objective functions are (G2, B)-BGD (Bounded
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Algorithm 1 DTFL’s Training Process,
Initialization
MainServer()

1: for each round r = 0 to R− 1 do
2: m(r)←TierScheduler(T cm(m

(r)
k ),ν(r), Ñ )

3: for each client k in parallel do
4: (z(r)

k , yk )← ClientUpdate(wc
(r)
m

k )
5: Measure T cm

k (m
(r)
k ), ν(r)

k and Ñk

//server updates the server-side model

6: Forward propagation of z(r)
k on ws

(r)
m

k

7: Calculate loss, back propagation on ws
(r)
m

k

8: ws
(r+1)
m

k ← ws
(r)
m

k - η∇fs
k(w

sm ,wcm∗)

9: Receive updated wc
(r+1)
m

k from client k

10: w
(r+1)
k = {wc

(r+1)
m

k ,ws
(r+1)
m

k }
11: end for
12: w(r+1) = 1

K

∑
k w

(r+1)
k

13: Update all models (wc
(r+1)
m and ws

(r+1)
m ) in

each tier using w(r+1)

14: end for
ClientUpdate(wc

(r)
m

k )
15: Forward propagate on local data to calculate z(r)

k

16: Send (z(r)
k , yk ) to the server

17: Forward propagation to the auxiliary layer
18: Calculate local loss, back propagation

19: wc
(r+1)
m

k ← wc
(r)
m

k − η∇fcm
k (wc

(r)
m ,wa

(r)
m )

20: Send wc
(r+1)
m

k to the server
TierScheduler(T cm(m

(r)
k ),ν(r), Ñ )

21: for all client k do
22: Add

(
T cm
k (m

(r)
k )− DmÑk

ν
(r)
k

)
into

T cm
k (m

(r)
k )

23: T̄ cm
k (m

(r)
k )← EMA

(
T cm
k (m

(r)
k )

)
24: for all tier m(r+1)

k do
//estimate T̂k(m

(r+1)
k )

25: T̂ com
k (m

(r+1)
k )← Dsize(m

(r)
k

)Ñk

ν
(r)
k

26: T̂ c
k (m

(r+1)
k )← Tcp (m

(r+1)
k

)

Tcp (m
(r)
k

)
T̄ cm
k (m

(r)
k )

27: T̂ s
k (m

(r+1)
k )← T sp(m

(r+1)
k )Ñk

28: Compute T̂k(m
(r+1)
k ) using Equation (5)

29: end for
30: end for
31: Tmax ← max

k
min
m
{T̂k(m

(r+1)
k )}

32: for all clients k do
33: m

(r+1)
k ← argmax

m

(
{T̂k(m

(r+1)
k ) ≤ Tmax}

)
34: end for
35: Return m(r+1)

Gradient Dissimilarity); (A6) the time-varying parameter satisfies dc
(r)
m < ∞. These assumptions

are well-established and frequently utilized in the machine learning literature for convergence anal-
yses, as in previous works such as Stich (2018); Li et al. (2019); Belilovsky et al. (2020); Yu et al.
(2019); Karimireddy et al. (2020). We adopt the approach of Belilovsky et al. (2020) for local-loss-
based training, where the server input distribution varies over time and depends on client-side model
convergence.

Theorem 1 (Convergence of DTFL) Under assumptions (A1), (A2), (A3), and (A5), the con-
vergence properties of DTFL for both convex and non-convex functions are summarized as fol-
lows: Convex: Under (A4), η ≤ 1

8L(1+B2) and R ≥ 4L(1+B2)
µ , the client-side model con-

verges at the rate of O
(
µD2 exp

(
−η

2µR
)
+

ηH2
1

µRAm

)
and the server-side model converges at

the rate of O
(

C1

R + H2

√
F s0m√

RAm
+ F s0m

ηmaxR

)
. Non-convex: If both f cm and fsm are non-convex

with η ≤ 1
8L(1+B2) , then the client-side model converges at the rate of O

(
H1

√
F c0m√

RAm
+ F c0m

ηmaxR

)
and the server-side model converges at the rate of O

(
C2

R + H2

√
F s0m√

RAm
+ F s0m

ηmaxR

)
, where ηmax

is the maximum of learning rate η, H2
1 := σ2 +

(
1− Am

K

)
G2

2, H
2
2 := L3

(
B2 + 1

)
F s0m +(

1− Am

K

)
L2G2

2, D :=
∥∥∥wc0m −wc⋆m

∥∥∥, F c0m := f cm
(
wc0m

)
, and F s0m := fsm

(
ws0m

)
. C1 =

G1

√
G2

2 + 2LB2F s0m
∑

r d
c
(r)
m and C2 = G1

√
G2

2 +B2G2
1

∑
r d

c
(r)
m are convergent based on

(A6). Am = minr{Ac(r)m > 0}, where Ac(r)m denotes the number of clients in tier m at round r.
dc

(r)
m denotes the distance between the density function of the output of the client-side model and its

converged state.

According to Theorem 1, both client-side and server-side models converge as the number of rounds
R increases, with varying convergence rates across different tiers. Note that as DTFL leverages
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the local-loss-based split training, the convergence of the server-side model depends on the conver-
gence of the client-side model, which is explicitly characterized by C1 and C2 in the analysis. The
complete proof of the theorem is given in Appendix B.

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

Dataset. We consider image classification on four public image datasets, including CIFAR-10
Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), CINIC-10 Darlow et al. (2018),
and HAM10000Tschandl et al. (2018). We also consider label distribution skew Li et al. (2022)
(i.e., the distribution of labels varies across clients) to generate their non-I.I.D. variants using He
et al. (2020b). Appendix A describes the dataset distributions used in these experiments.

Baselines. We compare DTFL with state-of-the-art FL/SL methods, including FedAvg McMahan
et al. (2017), SplitFed Thapa et al. (2022), FedYogi Reddi et al. (2020), and FedGKT He et al.
(2020a). For the same reasons as in He et al. (2020a), we do not compare with FedProx Li et al.
(2020) and FedMA Wang et al. (2020a). FedProx Li et al. (2020) performs worse than FedAvg in
the large convolutional neural networks, CNN, setting and FedMA cannot work on modern DNNs
that contain batch normalization layers (e.g., ResNet).

Implementation. We conducted the experiment using Python 3.11.3 and the PyTorch library version
1.13.1, which is available online in Anonymous (2023). The DTFL and the baselines are deployed
in a server, which is equipped with dual-sockets Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
with hyper-threading disabled, and four NVIDIA GeForce GTX 1080 Ti GPUs, 64 GB of memory.
Each client is assigned a different simulated CPU and communication resource in order to simulate
heterogeneous resources (i.e., simulate the training time of different CPU/network profiles). By
using these resource profiles, we simulate a heterogeneous environment where clients’ capacity
varies in both cross-solo and cross-device FL settings. We consider 5 resource profiles: 4 CPUs
with 100 Mbps, 2 CPUs with 30 Mbps, 1 CPU with 30 Mbps, 0.2 CPU with 30 Mbps, and 0.1 CPU
with 10 Mbps communication speed to the server. Each client is assigned one resource profile at the
beginning of the training, and the profile can be changed during the training process to simulate the
dynamic environment.

Model Architecture. DTFL is a versatile approach suitable for training a wide range of neural net-
work models (e.g., Multilayer Perceptron, MLP, Recurrent Neural Networks, RNN, and CNN), par-
ticularly benefiting large-scale models. In the experiments, we evaluate large CNN models, ResNet-
56 and ResNet-110 He et al. (2016) that work well on the selected datasets. Furthermore, DTFL
can also be applied to large language models (LLM) like BERT Devlin et al. (2018) by splitting
techniques as proposed in Tian et al. (2022); Lit et al. (2022). For each tier, we split a global model
to create client and server-side models. The split layer is different in tiers, and it moves toward the
last layer as the tier increases. For each client-side model, we add a fully connected (f.c.) and an
average pooling (avgpool) layer as the auxiliary network. More details can be found in Appendix
A.5. We follow the same setting as He et al. (2020a) for FedGKT. We split the global model after
module 2 (as defined in Appendix A.5) for the SplitFed model.

4.2 TRAINING TIME IMPROVEMENT OF DTFL

Training time comparison of DTFL to baselines. In Table 3, we summarize all experimental
results of training a global model (i.e., ResNet-56 or ResNet-110) with 7 tiers (i.e., M = 7) when
using different federated learning methods. The experiments were conducted on a heterogeneous
client population, with 20% assigned to each profile at the experiment’s outset. Every 50 rounds,
the client profiles (i.e., number of simulated CPUs and communication speed) of 30% of the clients
were randomly changed to simulate a dynamic environment, while all clients participated in every
training round. The training time of each method to achieve a target accuracy is provided in Table
3. In all cases for both I.I.D. and non-I.I.D. settings, DTFL significantly reduces the training time,
compared to baselines (FedAvg, SplitFed, FedYogi, FedGKT). For example, DTFL reduces the
training time of FedAvg by 80% to reach the target accuracy on I.I.D. CIFAR-10 with ResNet-110.
This experiment illustrates the capabilities of DTFL which can significantly reduce training time
when training on distributed heterogeneous clients. Figure 2 illustrates the curve of the test accuracy
during the training process of all the methods for the I.I.D. CIFAR-10 case with ResNet-110, where
we observe a faster convergence using DTFL, compared with baselines.
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Table 3: Comparison of training time (in seconds) to baseline approaches with 10 clients on different datasets.
The numbers represent the training time used to achieve the target accuracy (i.e., CIFAR-10 I.I.D. 80%, CIFAR-
10 non-I.I.D. 70%, CIFAR-100 I.I.D. 55%, CIFAR-100 non-I.I.D. 50%, CINIC-10 I.I.D. 75%, CINIC-10 non-
I.I.D. 65%, and HAM10000 75%).

Method Global Model CIFAR-10 CIFAR-100 CINIC-10 HAM10000I.I.D. non-I.I.D. I.I.D. non-I.I.D. I.I.D. non-I.I.D.

DTFL ResNet-56 2750 3986 3585 6093 23968 40138 2353
ResNet-110 4816 7054 5678 9874 42099 70469 3615

FedAvg ResNet-56 13157 20773 19170 35350 114509 197926 11566
ResNet-110 24471 39094 36360 66317 210468 395423 22328

SplitFed ResNet-56 35877 46514 54174 97859 271873 510156 19549
ResNet-110 67265 84342 101783 183122 521334 896627 43581

FedYogi ResNet-56 9122 13130 12727 19216 82083 113464 8071
ResNet-110 19299 25668 23978 35356 155212 219134 14932

FedGKT ResNet-56 25458 30808 36838 59461 184589 218065 37181
ResNet-110 39676 47458 64457 98754 321534 411259 61755
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Figure 2: Comparing the training process of DTFL with baselines for the I.I.D. CIFAR-10 dataset.

4.3 UNDERSTANDING DTFL UNDER DIFFERENT SETTINGS

Performance of DTFL with different numbers of clients. We evaluate the performance of DTFL

Table 4: Performance of DTFL with different numbers
of clients.

# Clients DTFL FedAvg SplitFed FedYogi FedGKT

20 1877 7950 21350 6341 14595
50 2547 10435 29026 8073 17872
100 3102 14032 36449 10760 24438
200 3594 16060 43942 12786 27632

with different numbers of clients to better
understand the scalability of DTFL. Table 4
shows the training time for various training
methods using different numbers of clients on
the I.I.D. CIFAR-10 dataset, to reach a target
accuracy 80% with the ResNet-110 model. In
these experiments, we randomly sampled 10%
of all clients to be involved in each round of
the training process. Note that DTFL can also
be employed in other FL client selection meth-
ods (e.g., Chai et al. (2020; 2021)). In general, increasing the number of clients has no adverse
effects on DTFL performance and significantly reduces training time compared to other methods.
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Figure 3: Impact of the number of tiers on the total
training time.

Impact of the number of tiers on DTFL perfor-
mance. We evaluate the DTFL performance un-
der different numbers of tiers while employing the
global ResNet-110 model (model details under dif-
ferent tiers are provided in Table 11 in the appendix).
In Figure 3, we present the total training time for
the I.I.D. CIFAR-10 dataset and 10 clients with dif-
ferent numbers of tiers. We conducted experiments
with two different cases, similar to those in Table 1,
where clients’ CPU profiles randomly switch to an-
other profile every 20 rounds of training within the
profiles of the same case. Experiments show that to reach the target accuracy of 80%, the training
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time generally decreases with the number of tiers, as DTFL would have more flexibility to fine-tune
the tier of each client based on the heterogeneous resources of each client. It should be noted that the
model under each tier needs to be carefully designed based on the structure of the global model. A
client-side model obtained by arbitrarily splitting the global model may negatively impact the model
accuracy. Thus, the maximum suitable number of tiers is much less than the number of layers of a
global model. For ResNet-110, we find 7 tiers provided in Table 11 in the appendix can significantly
reduce the training time while maintaining the model accuracy.

4.4 PRIVACY DISCUSSION

Using DTFL, we can significantly reduce the training time. However, exchanging hidden feature
maps (i.e., the intermediate output zi) may potentially leak privacy. A potential threat to DTFL
is model inversion attacks, extracting client data by analyzing feature maps or model parameter
transfers from clients to servers. Prior research Yin et al. (2021); Zhu et al. (2019) has shown
that attackers need access to all model parameters or gradients to recover client data. This is not
feasible from partial or fragmented models. Thus, similar to Thapa et al. (2022), DTFL can use
separate servers for model aggregation and training to prevent a single server from having access to
all model parameters and intermediate data. Another potential threat to DTFL is that an attacker can
infer client model parameters by inputting dummy data into the client’s local model and training a
replicating model on the resulting feature maps Shen et al. (2023). DTFL can prevent this attack by
denying clients access to external datasets, query services, and dummy data, thereby preventing the
attacker from obtaining the necessary data.

However, for attackers with strong eavesdropping capabilities, there may be potential privacy leak-
age. As DTFL is compatible with privacy-preserving federated learning approaches, existing data
privacy protection methods can be easily integrated into DTFL to mitigate potential privacy leak-
age, e.g., distance correlation Vepakomma et al. (2020), differential privacy Abadi et al. (2016),
patch shuffling Yao et al. (2022), PixelDP Lecuyer et al. (2019), SplitGuard Erdogan et al. (2022),
and cryptography techniques Sami & Güler (2023); Qiu et al. (2023). For example, we can add
a regularization term into the client’s local training objective to reduce the mutual information be-
tween hidden feature maps and raw data Wang et al. (2021), making it more difficult for attack-
ers to reconstruct raw data. Each client decorrelates its input xi and related feature map zi, i.e.,
f c,private
k (wcm ,wam) = (1−α)f c

k(w
cm ,wam)+αDCor(xi, zi), where α balances the model per-

formance and the data privacy, and DCor denotes the distance correlation defined in Vepakomma
et al. (2020). Distance correlation enhances the privacy of DTFL against reconstruction attacks
Vepakomma et al. (2020).

Table 5: Impact of integrating privacy protection
into DTFL on the CIFAR-10 dataset using ResNet-
56 with 20 clients.

Method Distance Correlation (α) Patch
0.00 0.25 0.50 0.75 Shuffling

Accuracy 87.1 86.8 83.5 75.6 85.4

Integration of privacy protection methods. We
evaluate the model accuracy and privacy trade-offs
of DTFL when integrating distance correlation and
patch shuffling techniques. Table 5 illustrates the
model accuracy of DTFL with distance correla-
tion, showing a decreasing trend as α increases.
This suggests that integrating distance correlation
can enhance data privacy without significant accu-
racy loss, especially for relatively smaller values of α. Notably, applying patch shuffling with the
same settings as in Yao et al. (2022) to intermediate data has minimal impact on accuracy. The
server lacks information about the clients’ α values, which can vary between clients. This prevents
the server from inferring the data of the clients.

5 CONCLUSION

In this paper, we developed DTFL as an effective solution to address the challenges of training
large models collaboratively in a heterogeneous environment. DTFL offloads different portions of
the global model to clients in different tiers and allows each client to update the models in paral-
lel using local-loss-based training, which can meet computation and communication requirements
on resource-constrained devices and mitigate the straggler problem. We developed a dynamic tier
scheduling algorithm, which dynamically assigns clients to appropriate tiers based on their training
time. The convergence of DTFL is analyzed theoretically. Extensive experiments on large datasets
with different numbers of highly heterogeneous clients show that DTFL can significantly reduce the
training time while maintaining model accuracy, compared with state-of-the-art FL methods.
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APPENDIX

A MORE DETAILS ABOUT EXPERIMENTS

Table 6 summarizes the notations used in this paper.

Table 6: Summary of notations used in the paper

Symbol Description

K, k Number and index of clients
xi, yi ith training sample and associated label
Nk, N Size of kth training dataset and total training dataset size
R, r Number and index of global rounds

Ac(r)m , Ac(r)m Number and Set of clients in tier m, at round r
xn, yn, n nth training sample, nth label, index of datapoint

w Model parameters
d, p Distance to converged output of client-side model, probability distribution
D Distance of the model to the optimal model

Dsize(·) Size of data transferred (MB) using profiling
m

(r)
k , M , M Tier of client k at round r, number, and set of tiers

ν Communication speed

A.1 DATASET

As this paper considers training large models, we do not use the LEAF benchmark Caldas et al.
(2018) datasets because the benchmark datasets offered are either very small or the datasets they
contain are too simple for large convolutional neural networks (CNN) which cannot suitably evaluate
our algorithm when running on large CNN models.

As the performance of different models is affected by the data distribution in a non-I.I.D. setting, we
fixed the distribution of the non-I.I.D. dataset (Dirichlet distribution with a concentration parameter
of 0.5) with a fixed random seed for a fair comparison. Table 7 describes the non-I.I.D. distribution
that is used in the experiments with 10 clients.

A.2 NUMBER OF TIERS.

DTFL is adaptable to diverse client dynamics and can be applied to various neural network mod-
els. In our experiments with ResNet-56 and ResNet-110, we examine different tier configurations,
focusing on a 7-tier setup (M = 7) based on our models and client profiles.

A.3 HYPER-PARAMETERS.

We tuned hyperparameters to the dataset and used the same hyperparameters for the client and
server sides in each experiment. ADAM optimizer is selected for all datasets and their variations.
We set the initial learning rate η0 as 0.001 for CIFAR-10, CIFAR-100, CINIC-10, and 0.0001 for
HAM10000. Once the accuracy has reached a plateau the learning rate is reduced by a factor of 0.9.
The local batch size of each client is 50 when there are 200 clients and in all other experiments is
100. The local epoch is 1 for all experiments.

A.4 HETEROGENEOUS DATA DISTRIBUTION (NON-I.I.D.)

We have observed that DTFL outperforms baselines in various non-I.I.D. distributions. To ensure
fair comparisons across different approaches, we adopt a consistent non-I.I.D. distribution. Specif-
ically, we employ a Dirichlet distribution with a concentration parameter of 0.5 and a fixed random
seed for experiments involving non-I.I.D. datasets. For instance, you can refer to Table 7 for details
regarding the non-I.I.D. distribution used in experiments with 10 clients.

A.5 MODEL ARCHITECTURE

ResNet-56 and ResNet-110 are large Residual Networks that we used as the global model in our
experiments. We define modules of the model as part of a model that contains some adjacent layers.
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Table 7: The heterogeneous data label distribution (non-I.I.D.) for CIFAR-10

Client ID Numbers of Samples in Each Class
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 Total

k = 0 372 2398 518 2 1036 641 210 0 0 0 5177
k = 1 191 84 77 1008 917 305 0 263 1295 736 4876
k = 2 23 362 1281 40 358 1011 123 451 316 284 4249
k = 3 97 1032 289 185 670 0 178 84 1048 1467 5050
k = 4 40 130 1209 186 5 57 3307 1176 0 0 6110
k = 5 1639 0 296 121 68 717 403 372 1932 0 5548
k = 6 1 866 60 101 451 598 120 83 323 2316 4919
k = 7 1307 15 428 0 290 2 356 1448 50 192 4088
k = 8 849 0 88 910 1187 1414 24 229 36 4 4741
k = 9 481 113 754 2447 18 225 279 894 0 1 5242

Then for each tier, we split a global model between the client-side and the server-side based on these
modules. Table 8 and 9 show details of the ResNet-56 and ResNet-110 models and how we split
these models into 8 modules. For each client-side model, we add a fully connected (f.c.) and an
average pooling (avgpool) layer as the auxiliary network. The input dimension of the f.c. layer is
adjusted to match the output of each client-side model. Table 10 shows the model architecture of
each tier for the different number of modules (m) used in this paper.

We follow the same setting as He et al. (2020a) for FedGKT. We split the global model after module
md2 for SplitFed.

A.6 DIFFERENT NUMBER OF TIERS

Table 11 shows how the model is split between client and server as the number of tiers changes.

A.7 THE DETAILED TRAINING PROCESS OF DTFL

The training process of DTFL in each round is described in the following steps, which are detailed
in Algorithm 1 and illustrated in Figure 1.

1⃝ Model download. In round r, the dynamic tier scheduler assigns each client k to an appropriate

tier m(r)
k using TierScheduler(·) function. Then each client downloads the client-side model wc(r)m

k
from the server.

2⃝ Local forward propagation. Each client performs forward propagation in parallel using its local

data on the downloaded model wc(r)m

k and passes the intermediate data z
(r)
k and the corresponding

label yk to the server.

3⃝ Local training and update. Based on the local loss, each client k updates its model wc(r)m

k (i.e.,

w
c(r+1)
m

k ← w
c(r)m

k − η∇f cm
k (wc(r)m ,wa(r)

m )).

4⃝ Server-side training and update, which runs in parallel with step 3⃝. The server con-

tinues the forward-propagation and back-propagation on the server-side model w
s(r)m

k for each

client k in parallel. Then server updates the server-side model ws(r)m

k (i.e., ws(r+1)
m

k ← w
s(r)m

k -
η∇fs

k(w
s(r)m ,wcm∗)).

5⃝ Global model update and aggregation. At the final step of each round r, the server first aggre-

gates the client-side and the server-side models for each client (i.e., w(r+1)
k = {wc(r+1)

m

k ,w
s(r+1)
m

k }).
Then the server updates the global model by averaging all the models w

(r+1)
k , (i.e., w(r+1) =

1
N

∑
k w

(r+1)
k ). Based on w(r+1), the server updates all the models (wc(r+1)

m and ws(r+1)
m ) in each

tier.
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Table 8: Detailed architecture of the ResNet-56 used in our experiment

Module Parameter & Shape (cin, cout, kernal size) #

md1 conv1: 3× 16× 3× 3, stride:(1,1); padding:(1,1) ×1maxpool: 3× 1

md2

conv1: 16× 16× 1× 1, stride: (1, 1)

×1conv2: 16× 16× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 16× 64× 1× 1, stride: (1, 1)
downsample.conv: 16× 64× 1× 1, stride: (1, 1)

– conv1: 64× 16× 1× 1, stride: (1, 1)
×2conv2: 16× 16× 3× 3, stride: (1, 1); padding: (1, 1)

conv3: 16× 64× 1× 1, stride: (1, 1)

md3
conv1: 64× 16× 1× 1, stride: (1, 1)

×3conv2: 16× 16× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 16× 64× 1× 1, stride: (1, 1)

md4

conv1: 64× 32× 1× 1, stride: (1, 1)

×1conv2: 32× 32× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 32× 128× 1× 1, stride: (1, 1)
downsample.conv: 64× 128× 1× 1, stride: (2, 2)

– conv1: 128× 32× 1× 1, stride: (1, 1)
×2conv2: 32× 32× 3× 3, stride: (1, 1); padding: (1, 1)

conv3: 32× 128× 1× 1, stride: (1, 1)

md5
conv1: 128× 32× 1× 1, stride: (1, 1)

×3conv2: 32× 32× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 32× 128× 1× 1, stride: (1, 1)

md6

conv1: 128× 64× 1× 1, stride: (1, 1)

×1conv2: 64× 64× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 64× 256× 1× 1, stride: (1, 1)
downsample.conv: 128× 256× 1× 1, stride: (2, 2)

– conv1: 256× 64× 1× 1, stride: (1, 1)
×2conv2: 64× 64× 3× 3, stride: (1, 1); padding: (1, 1)

conv3: 64× 256× 1× 1, stride: (1, 1)

md7
conv1: 256× 64× 1× 1, stride: (1, 1)

×3conv2: 64× 64× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 64× 256× 1× 1, stride: (1, 1)

md8 avgpool ×1
fc: 256× 10 ×1

Steps 1⃝ to 5⃝ are repeated in each round to train a global model.
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Table 9: Detailed architecture of the ResNet-110 used in our experiment

Module Parameter & Shape (cin, cout, kernal size) #

md1 conv1: 3× 16× 3× 3, stride:(1,1); padding:(1,1) ×1maxpool: 3× 1

md2

conv1: 16× 16× 1× 1, stride: (1, 1)

×1conv2: 16× 16× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 16× 64× 1× 1, stride: (1, 1)
downsample.conv: 16× 64× 1× 1, stride: (1, 1)

– conv1: 64× 16× 1× 1, stride: (1, 1)
×5conv2: 16× 16× 3× 3, stride: (1, 1); padding: (1, 1)

conv3: 16× 64× 1× 1, stride: (1, 1)

md3
conv1: 64× 16× 1× 1, stride: (1, 1)

×6conv2: 16× 16× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 16× 64× 1× 1, stride: (1, 1)

md4

conv1: 64× 32× 1× 1, stride: (1, 1)

×1conv2: 32× 32× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 32× 128× 1× 1, stride: (1, 1)
downsample.conv: 64× 128× 1× 1, stride: (2, 2)

– conv1: 128× 32× 1× 1, stride: (1, 1)
×5conv2: 32× 32× 3× 3, stride: (1, 1); padding: (1, 1)

conv3: 32× 128× 1× 1, stride: (1, 1)

md5
conv1: 128× 32× 1× 1, stride: (1, 1)

×6conv2: 32× 32× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 32× 128× 1× 1, stride: (1, 1)

md6

conv1: 128× 64× 1× 1, stride: (1, 1)

×1conv2: 64× 64× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 64× 256× 1× 1, stride: (1, 1)
downsample.conv: 128× 256× 1× 1, stride: (2, 2)

– conv1: 256× 64× 1× 1, stride: (1, 1)
×5conv2: 64× 64× 3× 3, stride: (1, 1); padding: (1, 1)

conv3: 64× 256× 1× 1, stride: (1, 1)

md7
conv1: 256× 64× 1× 1, stride: (1, 1)

×6conv2: 64× 64× 3× 3, stride: (1, 1); padding: (1, 1)
conv3: 64× 256× 1× 1, stride: (1, 1)

md8 avgpool ×1
fc: 256× 10 ×1
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Table 10: Architectural details of tiers in the experiment with 7 tiers (M = 7). Client-side models include
avgpool and f.c. layers as auxiliary components.

Tier (m) 1 2 3 4 5 6 7

Client-side

md1 md1 md1 md1 md1 md1 md1
md2 md2 md2 md2 md2 md2

md3 md3 md3 md3 md3
md4 md4 md4 md4

md5 md5 md5
md6 md6

md7
avgpool avgpool avgpool avgpool avgpool avgpool avgpool

(f.c.) 16× 10 64× 10 64× 10 128× 10 128× 10 256× 10 256× 10

Server-side

md2
md3 md3
md4 md4 md4
md5 md5 md5 md5
md6 md6 md6 md6 md6
md7 md7 md7 md7 md7 md7
md8 md8 md8 md8 md8 md8 md8

Table 11: Modules in each tier for experiments with varying numbers of tiers (M ).

# Tiers (M ) Tier Client-side Server-side

1 1 md1, md2, md3, md4, md5, md6, md7 md8

2 1 md1, md2, md3, md4, md5, md6 md7, md8
2 md1, md2, md3, md4, md5, md6, md7 md8

3
1 md1, md2,md3, md4, md5 md6, md7, md8
2 md1, md2 , md3, md4, md5, md6 md7, md8
3 md1, md2 , md3, md4, md5, md6, md7 md8

4

1 md1, md2, md3, md4 md5, md6, md7, md8
2 md1, md2,md3, md4, md5 md6, md7, md8
3 md1, md2 , md3, md4, md5, md6 md7, md8
4 md1, md2 , md3, md4, md5, md6, md7 md8

5

1 md1, md2,md3 md4, md5, md6, md7, md8
2 md1, md2, md3, md4 md5, md6, md7, md8
3 md1, md2,md3, md4, md5 md6, md7, md8
4 md1, md2 , md3, md4, md5, md6 md7, md8
5 md1, md2 , md3, md4, md5, md6, md7 md8

6

1 md1, md2 md3, md4, md5, md6, md7, md8
2 md1, md2,md3 md4, md5, md6, md7, md8
3 md1, md2, md3, md4 md5, md6, md7, md8
4 md1, md2,md3, md4, md5 md6, md7, md8
5 md1, md2 , md3, md4, md5, md6 md7, md8
6 md1, md2 , md3, md4, md5, md6, md7 md8

7

1 md1 md2, md3, md4, md5, md6, md7, md8
2 md1, md2 md3, md4, md5, md6, md7, md8
3 md1, md2,md3 md4, md5, md6, md7, md8
4 md1, md2, md3, md4 md5, md6, md7, md8
5 md1, md2,md3, md4, md5 md6, md7, md8
6 md1, md2 , md3, md4, md5, md6 md7, md8
7 md1, md2 , md3, md4, md5, md6, md7 md8
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B PROOF OF THEOREM 1

B.1 ADDITIONAL DEFINITIONS

We provide precise definitions of assumptions as follows:

Assumption 1 (A1: L-smoothness) The loss function is differentiable and L-smooth, i.e.,
∥∇f(u)−∇f(v)∥ ≤ L∥u− v∥, ∀ f , u, v.

Assumption 2 (A2: Bounded gradients) The expected squared norm of stochastic gradients of
each objective function is upper bounded: E ∥∇f(u)∥2 ≤ G2

1,∀f,u.

Assumption 3 (A3: Bounded variance) The stochastic gradient g(x) := ∇f(u) is unbiased,
E[gi(u)] = ∇fi(u), and has bounded variance E[|gi(u)−∇fi(u)|2] ≤ σ2,∀f,u .

Assumption 4 (A4: µ-convex) f is µ-convex for µ ≥ 0, and it satisfies: f(u)+∇T f(u)(v−u)+
µ
2 ∥v − u∥2 ≤ f(v),∀f,u,v.

Assumption 5 (A5: Bounded gradient dissimilarity) For both client and server sides and all
tier models, there are constants G2 ≥ 0; B ≥ 1 such that 1

K

∑K
i=1 ∥∇fi(u)∥

2 ≤ G2
2 +

B2∥∇f(u)∥2,∀u.

If {fi} are convex, we can relax the assumption to 1
K

∑K
i=1 ∥∇fi(u)∥

2 ≤ G2
2 +

2LB2 (f(u)− f⋆) ,∀u.

Assumption 6 (A6: Bounded distance) The time-varying parameter satisfies dc
(r)
m <∞ ∀m, r.

B.2 KEY LEMMAS

To make our proof clear, we introduce some useful lemmas.

Lemma 1 (linear convergence rate, lemma 1 of Karimireddy et al. (2020)) For every non-
negative sequence {dr−1}r≥1 and any parameters µ > 0, ηmax ∈ (0, 1/µ], q ≥ 0, R ≥ 1

2ηmaxµ
,

there exists a constant step-size η ≤ ηmax and weights wr := (1 − µη)1−r such that for
WR :=

∑R+1
r=1 wr

ΨR :=
1

WR

R+1∑
r=1

(
wr

η
(1− µη)dr−1 −

wr

η
dr + qηwr

)
= O

(
µd0 exp (−µηmaxR) +

q

µR

)
.

Lemma 2 (convergence rate on non-convex functions, lemma 2 of Karimireddy et al. (2020))
For every non-negative sequence {dr−1}r≥1 and any parameters ηmax ≥ 0, q ≥ 0, R ≥ 0, there
exists a constant step-size η ≤ ηmax and weights wr = 1 such that,

ΨR :=
1

R+ 1

R+1∑
r=1

(
dr−1

η
− dr

η
+ q1η + q2η

2

)
≤

d0
ηmax(R+ 1)

+
2
√
q1d0√

R+ 1
+ 2

(
d0

R+ 1

) 2
3

q
1
3
2 .

Lemma 3 (Relaxed triangle inequality, lemma 3 of Karimireddy et al. (2020)) Let
{v1, . . . , vτ} be τ vectors in Rd. Then the following are true:

1. ∥vi + vj∥2 ≤ (1 + a) ∥vi∥2 +
(
1 + 1

a

)
∥vj∥2 for any a > 0, and

2. ∥
∑τ

i=1 vi∥
2 ≤ τ

∑τ
i=1 ∥vi∥

2.

Lemma 4 (separating mean and variance, lemma 4 of Karimireddy et al. (2020)) Let
{Ξ1, . . . ,Ξκ} be κ random variables in Rd which are not necessarily independent. First
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suppose that their mean is E [Ξi] = ξi and variance is bounded as E
[
∥Ξi − ξi∥2

]
≤ σ2. Then, the

following holds

E

∥∥∥∥∥
κ∑

i=1

Ξi

∥∥∥∥∥
2
 ≤ ∥∥∥∥∥

κ∑
i=1

ξi

∥∥∥∥∥
2

+ κ2σ2

Now, let’s consider the conditional mean of the variables Ξi is denoted as E[Ξi|Ξi−1, . . . ,Ξ1] = ξi.
Then,

E

∥∥∥∥∥
κ∑

i=1

Ξi

∥∥∥∥∥
2
 ≤ 2

∥∥∥∥∥
κ∑

i=1

ξi

∥∥∥∥∥
2

+ 2κσ2

Lemma 5 (perturbed strong convexity, lemma 5 of Karimireddy et al. (2020)) The following
holds for any L-smooth and µ-strongly convex function h, and any u,v,w in the domain of h:

⟨∇h(u),w − v⟩ ≥ h(w)− h(v) +
L

4
∥v −w∥2 − L∥w − u∥2

B.3 PROOF OF CONVERGENCE

We prove the rate of convergence for both client-side and server-side convex functions in the fol-
lowing. The proof for non-convex functions follows similar steps and is easy to derive using the
techniques in the rest of the paper.

B.3.1 CONVEX FUNCTIONS

Client-side model convergence. Initially, we demonstrate client-side function convergence. Sup-
pose that client-side functions satisfy the following assumptions: (1), (3), (4), and (5). The update
of the model satisfies the following:

∆wcm = − η

Ac
(r)
m

∑
k∈Ac

(r)
m

gcmk (wcm
k )⇒ E[∆wcm ] = − η

K

∑
k

E [∇f cm
k (wcm

k )] .

where gcmk (·) is unbiased stochastic gradient of∇f cm
k (·). We implicitly incorporate auxiliary layers

wam in wcm
k for simplicity in the proof. We define Ac(r)m and Ac(r)m as the number and the set of

clients in tier m at round r. We denote the expectation over all the randomness generated in the prior
round, r, using E. According to the above observation, we proceed as follows:

E
∥∥∥wcm +∆wcm −wc⋆m

∥∥∥2 =
∥∥∥wcm −wc⋆m

∥∥∥2 − 2η

K

∑
k

〈
∇f cm

k (wcm
k ) ,wcm −wc⋆m

〉

+ η2E

∥∥∥∥∥∥∥
1

Ac
(r)
m

∑
k∈Ac

(r)
m

gcmk (wcm
k )

∥∥∥∥∥∥∥
2

Lem. 4
≤

∥∥∥wcm −wc⋆m

∥∥∥2−2η

K

∑
k

〈
∇f cm

k (wcm
k ) ,wcm −wc⋆m

〉
︸ ︷︷ ︸

T1

+ η2E

∥∥∥∥∥∥∥
1

Ac
(r)
m

∑
k∈Ac

(r)
m

∇f cm
k (wcm

k )

∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
T2

+
η2σ2

Ac
(r)
m

.

(7)
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By using Lemma 5 with h = f cm
k ,u = wcm

k ,v = wc⋆m , and w = wcm to the first term T1.

T1 =
2η

K

∑
k

〈
∇f cm

k (wcm
k ) ,wc⋆m −wcm

〉
≤ 2η

K

∑
k

(
f cm
k

(
wc⋆m

)
− f cm

k (wcm) + L ∥wcm
k −wcm∥2 − µ

4

∥∥∥wcm −wc⋆m

∥∥∥2)
= −2η

(
f cm(wcm)− f cm

(
wc⋆m

)
+

µ

4

∥∥∥wcm −wc⋆m

∥∥∥2)

While DTFL can be used with more than one local epoch, to simplify the discussion, we will con-
sider the case where the local epoch is equal to 1. In this case, the last equality holds because
wcm

k = wcm .

To evaluate T2, we utilize the relaxed triangle inequality repeatedly (Lemma 3).

T2 = η2E

∥∥∥∥∥∥∥
1

Ac
(r)
m

∑
k∈Ac

(r)
m

[∇f cm
k (wcm

k )−∇f cm
k (wcm) +∇f cm

k (wcm)]

∥∥∥∥∥∥∥
2

≤ 2η2E

∥∥∥∥∥∥∥
1

Ac
(r)
m

∑
k∈Ac

(r)
m

[∇f cm
k (wcm

k )−∇f cm
k (wcm)]

∥∥∥∥∥∥∥
2

+ 2η2E

∥∥∥∥∥∥∥
1

Ac
(r)
m

∑
k∈Ac

(r)
m

∇f cm
k (wcm)

∥∥∥∥∥∥∥
2

≤ 2η2

K

∑
k

E ∥∇f cm
k (wcm

k )−∇f cm
k (wcm)∥2

+ 2η2E

∥∥∥∥∥∥∥
1

Ac
(r)
m

∑
k∈Ac

(r)
m

∇f cm
k (wcm)−∇f cm(wcm) +∇f cm(wcm)

∥∥∥∥∥∥∥
2

≤ 2η2L2

K

∑
k

E ∥wcm
k −wcm∥2

+ 2η2∥∇f(wcm)∥2 +

(
1− Ac(r)m

K

)
4η2

1

Ac
(r)
m K

∑
k

∥∇f cm
k (wcm)∥2

Assump.5

≤ 2η2L2

K

∑
k

E ∥wcm
k −wcm∥2 + 8η2L

(
B2 + 1

) (
f cm(wcm)− f cm

(
wc⋆m

))
+

(
1− Ac(r)m

K

)
4η2

Ac
(r)
m

G2
2

= 8η2L
(
B2 + 1

) (
f cm(wcm)− f cm

(
wc⋆m

))
+

(
1− Ac(r)m

K

)
4η2

Ac
(r)
m

G2
2

Substituting the obtained bounds for T1 and T2 back into the equation (7),
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E
∥∥∥wcm +∆wcm −wc⋆m

∥∥∥2 ≤(1− µη

2

)∥∥∥wcm −wc⋆m

∥∥∥2
−
(
2η − 8Lη2

(
B2 + 1

)) (
f cm(wcm)− f cm(wc⋆m)

)
+

1

Ac
(r)
m

η2σ2 +

(
1− Ac(r)m

K

)
4η2

Ac
(r)
m

G2
2

Moving the (f cm(wcm)− f cm(wc⋆m)) term,

(
2η − 8Lη2

(
B2 + 1

)) (
f cm(wcm)− f cm(wc⋆m)

)
≤
(
1− µη

2

)∥∥∥wcm −wc⋆m

∥∥∥2
− E

∥∥∥wcm +∆wcm −wc⋆m

∥∥∥2
+

1

Ac
(r)
m

η2σ2 +

(
1− Ac(r)m

K

)
4η2

Ac
(r)
m

G2
2

=
(
1− µη

2

)∥∥∥wc(r)m −wc⋆m

∥∥∥2
−
∥∥∥wc(r+1)

m −wc⋆m

∥∥∥2
+

1

Ac
(r)
m

η2σ2 +

(
1− Ac(r)m

K

)
4η2

Ac
(r)
m

G2
2

Considering 8Lη
(
B2 + 1

)
≤ 1, and divide by η yields,

f cm(wcm)− f cm(wc⋆m) ≤1

η

(
1− µη

2

)∥∥∥wc(r)m −wc⋆m

∥∥∥2 − 1

η

∥∥∥wc(r+1)
m −wc⋆m

∥∥∥2
+ η

[
1

Ac
(r)
m

σ2 +

(
1− Ac(r)m

K

)
4

Ac
(r)
m

G2
2

]

By applying Lemma 1 with q =

(
σ2

Ac
(r)
m

+

(
1− Ac

(r)
m

K

)
4G2

2

Ac
(r)
m

)
, which holds true for R ≥ 1

2ηmaxµ
,

and considering 8Lη
(
B2 + 1

)
≤ 1, we can rewrite the bound for R as R ≥ 4L(1+B2)

µ . Therefore,
we obtain,

E
[
f cm(wcm

R
)
]
− f cm(wc⋆m) ≤

∥∥∥wc0m −wc⋆m

∥∥∥2µ exp
(
−η

2
µR
)

+
η

µR

(
σ2

Ac
(r)
m

+

(
1− Ac(r)m

K

)
4G2

2

Ac
(r)
m

)

We derive the desired learning rate for the client-side objective function of tier m, which relies on
Ac(r)m . Notably, a tier with a larger number of clients experiences faster convergence. Therefore,
when more clients are assigned to a tier, it converges in fewer rounds. However, the total training
time depends on various factors discussed in Section 3. To establish an upper bound on the conver-
gence rate for each tier, we introduce the notation Am = minr{Ac(r)m > 0}. Consequently, we can
determine the following convergence rates:
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E
[
f cm(wcm

R
)
]
− f cm(wc⋆m) ≤

∥∥∥wc0m −wc⋆m

∥∥∥2︸ ︷︷ ︸
:=D2

µ exp
(
−η

2
µR
)

+
η

µR

(
σ2

Am
+

(
1− Am

K

)
4G2

2

Am

)
Utilizing asymptotic notation, we obtain the following expression for the client-side convergence
rate:

E
[
f cm(wcm

R
)
]
− f cm(wc⋆) = O

(
µD2 exp

(
−η

2
µR
)
+

ηH2
1

µRAm

)
where H2

1 := σ2 +
(
1− Am

K

)
G2

2, and D :=
∥∥∥wc0m −wc⋆m

∥∥∥. The global model converges once all
tiers have converged, with the convergence rate being determined by the tier with the slowest rate of
convergence.

Server-side model convergence. Now, we demonstrate the server-side non-convex convergence
rate and the corresponding rate for the convex function can be derived using the previously described
technique and by applying Lemma 1.

Suppose that server-side functions satisfy the following Assumptions: 1, 2, 3, 5, and 6. The update
of the model satisfies the following:

∆wsm = − η

Ac
(r)
m

∑
k∈Ac

(r)
m

gsmk (wsm
k )⇒ E[∆wsm ] = − η

K

∑
k

E [∇fsm
k (zcm

k ;wsm
k )] .

Based on L-smoothness Assumption 1, we have:

fsm
k

(
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k ;w

s(r+1)
m

k

)
≤ fsm

k

(
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k ;w

s(r)m

k

)
+∇fsm

k

(
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k ;w

s(r)m

k

)T
(w

s(r+1)
m

k −ws(r)m

k )+
L

2
∥ws(r+1)

m

k −ws(r)m

k ∥.

We utilize the weight update formula and incorporate it into the above inequality. Then, by taking
the expectation across all randomness, we arrive at the following.

E
[
fsm(zc(r)m ;ws(r+1)

m )
]
≤E

[
fsm(zc(r)m ;ws(r)m )

]
− η E

∇fsm(zc(r)m ;ws(r)m )T

 1
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(r)
m

∑
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(r)
m
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k

(
zc(r)m ;ws(r)m

)


︸ ︷︷ ︸
T3

+
L

2
η2E
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1
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(r)
m

∑
k∈Ac

(r)
m

∇fsm
k (zcm

k ;wsm
k )

∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
T4

.

(8)

We now demonstrate that both T3 and T4 are bounded. Using Assumption 4 and adopting a similar
approach to the one used for the client-side function, we can establish that T4 is bounded:

η2E


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1

Ac
(r)
m

∑
k∈Ac

(r)
m

∇fsm
k (zcm

k ;wsm
k )

∥∥∥∥∥∥∥
2 ≤

8η2L
(
B2 + 1

) (
fsm
k (wsm

k )− fsm
k

(
w

s⋆m
k

))
+

(
1− Ac(r)m

K

)
4η2

Ac
(r)
m

G2
2

23



Under review as a conference paper at ICLR 2024

To show T3 is bounded, we consider the following inequality:∥∥∥∥∥∥∥∥∥∥∥∥
1
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(r)
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(9)

where we used Cauchy-Schwartz inequality in step (a). To show T3 is bounded, we begin to show
T5 and T6 are bounded. Based on Assumption 2 the T5 is bounded as T5 ≤

√
G2

1 = G1.

To show T6 is bounded, we have:∥∥∥∥∥∥∥
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where we define the output of the client-side model zc(r)m which follows the density function pc
(r)
m (z),

with the converged density of the client-side represented as pc
(⋆)
m (z). By applying the Cauchy-

Swchartz inequality again, we observe that:∥∥∥∥∥∥∥
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where dc
(r)
m ≜

∫ ∣∣∣pc(r)m (z)− pc
(⋆)
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∣∣∣ dz. To bound the inequality above, we proceed as follows:
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By substituting (11) and (12) into (10), we can observe:
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Based on T5 and T6, we can write (9) as:∣∣∣∣∣∣∣
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Thus we obtain the following bound for T3:
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As previously defined, Am = minr{Ac(r)m > 0}. By employing the bounds from T3 and T4 in (8),
we have:
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Rearranging the inequality above, we obtain:
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By defining F sm := maxr{fsm
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− fs⋆m}, and then applying Lemma 2 with q1 =
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2 to the first two terms while averaging the

summation over the third term, we obtain.
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According to Assumptions 6, the convergence of
∑

dc
(r)
m implies the convergence of the third term.

Consequently, the right term is bounded and converges as the number of rounds R increases, thereby
concluding the proof. By employing asymptotic notation, we derive the following expression for the
server-side convergence rate:
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r d
c
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m .

B.3.2 NON-CONVEX FUNCTIONS

The convergence rates for client-side non-convex functions can be determined using techniques
similar to those employed in the previous section. The corresponding convergence rate can be
expressed as follows, using Lemma 2:

E
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)
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where, F c0m := f cm
(
wc0m

)
.

The convergence rates for server-side non-convex functions can be determined using techniques
similar to server-side convex functions. The resulting convergence rate is as follows:

E
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√
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2 +B2G2
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∑
r d

c
(r)
m .
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