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Abstract

In Model-based Reinforcement Learning (MBRL), model learning is critical since
an inaccurate model can bias policy learning via generating misleading samples.
However, learning an accurate model can be difficult since the policy is continually
updated and the induced distribution over visited states used for model learning
shifts accordingly. Prior methods alleviate this issue by quantifying the uncertainty
of model-generated samples. However, these methods only quantify the uncertainty
passively after the samples were generated, rather than foreseeing the uncertainty
before model trajectories fall into those highly uncertain regions. The resulting low-
quality samples can induce unstable learning targets and hinder the optimization
of the policy. Moreover, while being learned to minimize one-step prediction
errors, the model is generally used to predict for multiple steps, leading to a
mismatch between the objectives of model learning and model usage. To this end,
we propose Plan To Predict (P2P), an MBRL framework that treats the model
rollout process as a sequential decision making problem by reversely considering
the model as a decision maker and the current policy as the dynamics. In this
way, the model can quickly adapt to the current policy and foresee the multi-step
future uncertainty when generating trajectories. Theoretically, we show that the
performance of P2P can be guaranteed by approximately optimizing a lower bound
of the true environment return. Empirical results demonstrate that P2P achieves
state-of-the-art performance on several challenging benchmark tasks.

1 Introduction

Through learning an approximate dynamics of the environment and then using it to assist policy
learning, Model-based Reinforcement Learning (MBRL) methods [ s ] have
been shown to be much more sample-efficient than model-free methods both theoretically and
empirically [ , , ]. The learning of the model is
critical for MBRL, since an 1naccurate model can blas policy learning through generating misleading
pseudo samples, which is also referred to as the model bias issue [ , ].
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Figure 1: (a) Intuition for an uncertainty-foreseeing model; (b) A specific maze task modified from the D4RL
benchmark [Fu et al., 2020], where an ant falls from the sky and randomly lands on the two sides of a wall. The
ant aims to reach the goal using shortest time (assuming that the goal cannot be seen from the sky).

However, learning an accurate model can be difficult, since the update of the policy continually
shifts the distribution over visited states, and due to lack of enough training data for the modified
distribution, the model can suffer from overfitting and become inaccurate in regions where the updated
policy is likely to visit. This issue is further aggravated when using expressive models like deep
neural networks, which are inherently prone to overfitting.

Prior methods mitigate this issue by applying uncertainty quantification techniques, typically by
using a bootstrapped model ensemble [Kurutach et al., 2018, Chua et al., 2018, Janner et al., 2019].
However, due to the lack of explicit considerations of the aforementioned policy shift issue, these
methods can only quantify the uncertainty passively after the samples were generated, and thus fail to
prevent the trajectories induced by the current policy from running into regions with high uncertainty.
This incapability to avoid uncertain regions can result in low quality of the generated samples, which
provides unstable learning targets and thus may hinder the learning of the policy. Moreover, the
model in the existing methods is usually used to predict for multiple steps, while the model learning
objective is commonly to minimize the one-step prediction errors. In other words, there exists an
objective mismatch [Lambert et al., 2020] between model learning and model usage, which means
that the policy optimization generally expects accurate multi-step trajectories (i.e., model usage), yet
the model is only estimated to consider the accuracy of immediate predictions (i.e., model learning).

To gain a conceptual understanding of the above two motivations, consider the scenario in Figure 1(a):
1) The approximate model P of the true environment dynamics P predicts P(s1|zo) > 0, P(s}|20) >
0 and P(s|zo) = 0,Vs & {s1, s, } at the state-action pair zo; and 2) The policy is updated from 7eq
to Thew to exploit the regions with high values predicted by the value function in the model, and
the resulting distribution shift exposes the model’s inaccuracy at s; to the current policy, leading to
large expected prediction error in the next step, i.e., >, Wnew(a’|sl)D(P(~ |s1,a’), P(:|s1,a")) >>
Yo ﬂnew(a’|s/1)D(]5(~|s’1, a'), P(-|s},a’)), where D(-,-) is some distance metrics and the symbol
>> means significantly greater than. Now starting from x(, under the updated policy 7w, predicting
s1 is likely to direct the trajectory into highly uncertain regions with spurious high values (e.g., the
grey region in Figure 1(b)), and cause considerably larger error in the subsequent trajectory generation
than that of predicting s}. In contrast, if the model can foresee this uncertainty through explicit
considerations of the current policy, then it can learn to plan for future predictions and thus jump
to s} more often to prevent the trajectory from falling into uncertain regions (e.g., the ant falls into
the right hand side of the wall in Figure 1(b)). Therefore, to generate trajectories that have small
accumulation errors, the model should be aware of the update of the policy and change its predicting
“strategy” by taking into account the long-term effect of immediate predictions.

Inspired by the above intuition, we propose a new framework for MBRL, named Plan To Predict
(P2P). Our core idea is to treat the model rollout process as a sequential decision making problem and
learn the model by the corresponding algorithms, such as reinforcement learning and model predictive
control. During the learning of the model, the current policy is fixed and serves as the environment
dynamics, while at the same time the model becomes a decision maker and is penalized via the



prediction errors at each step. Through actively interacting with the current policy and minimizing
the accumulative prediction errors on the resulting state distribution, the model can quickly adapt
to the state distribution shift by considering the long-term effect of the immediate predictions, thus
foreseeing the uncertainty of regions that model trajectories are likely to fall into. Such foresight of
uncertainty enables the model to plan to predict for multiple steps, which improves the quality of
the pseudo samples generated by the model and eventually benefits policy learning. Note that the
typical treatment of minimizing one-step prediction errors regardless of the current policy is in fact
a greedy optimization process, and thus can be viewed as a special case of P2P. Some prior works,
such as [Nagabandi et al., 2018, Luo et al., 2019], adopt similar multi-step prediction loss to learn the
model, yet these works simply compute the loss on trajectories collected by previous policies and can
still suffer from severe distribution shift due to the lack of considerations of the policy update.

Theoretically, we prove that P2P approximately optimizes a lower bound of the true environment
return. Different from prior works [Luo et al., 2019, Janner et al., 2019], our theoretical analysis does
not scale up the step-wise prediction errors to their maximum over timesteps when considering the
impact of model error on the return approximation, thus resulting in a tighter bound of the true return
and also justifying the objective mismatch issue. Optimizing this bound not only provides a stronger
guarantee for policy improvement, but also enables the model to quickly adapt to the current policy.
Empirical results demonstrate that P2P outperforms the existing state-of-the-art methods on several
challenging benchmark tasks. It also deserves to note that, due to the capability to avoid model
error, P2P may be particularly suited for offline learning tasks, where incremental data collection
is not allowed and thus the model error is harder to be corrected than in online settings, inducing
an irreversible bias on policy learning. Therefore, we also provide an evaluation of P2P in offline
learning settings in the experiments, and present an interpretative visualization on how the learning
objective of P2P affects the model predictions.

2 Preliminaries and Notations

A discrete time Markov desision process (MDP) M is defined by tuple (S, A, R, P, pg,), where S is
the state space, A the action space, R(s, a) a scalar reward function of s € Sand a € A, P(s'|s,a) €
[0, 1] the transition dynamics which is assumed to be unknown, v € [0, 1) the discount factor and
po the initial state distribution. A stochastic policy 7(a|s) maps states to a probability distribution
over the action space. The expected return of 7 defined by J(7) := Ex p [> 1o V' R(st, ar)] is
the expectation of the sum of discounted rewards induced by 7. Following the general setting of
reinforcement learning, the goal is to search for an optimal policy that maximizes the expected return
from the environment, i.e., arg max,. J().

MBRL methods learn a model P to approximate the unknown dynamics P, and then use this model to
aid policy learning. While the model can be utilized in various ways, this paper focuses on the usage of
generating pseudo samples to enrich the dataset, which is one of the most common usages of the model.

The expected return of 7 predicted by the model P is denoted as .J (m) :=E_ s[>0V R(st,ar)].

In our analysis, the reward function is assumed to be available, > and the policy obtained in the last
iteration is denoted as the data-collecting policy 7p,

3 The Plan To Predict (P2P) Framework

In this section, we present a detailed description of our proposed algorithmic framework for MBRL,
i.e., Plan To Predict (P2P). In Section 3.1, the model rollout process is reformulated as a sequential
decision making problem using the notion of MDP and then a meta-algorithm of the P2P framework
is provided as a generic solution to this reformulated problem. In Section 3.2, theoretical results are
provided to guarantee the performance of P2P. In Section 3.3, two practical algorithms are developed
under the P2P framework by handling some practical issues.

2Note that this is a commonly used assumption since the sample complexity of learning the reward function
with supervised learning is a lower order term compared to the one of learning the transition model [Ghesh-
laghi Azar et al., 2013].



Algorithm 1 Meta-Algorithm of the P2P Framework

1: Initialize the policy 7 and the approximate model P;

2: Initialize empty dataset D;

3: for each epoch do

4: Collect data with 7 in real environment: D < D U {(s;, a;, 4, sL)}z,
5

6

7

Optimize P for multi- step prediction under the current policy 7: P« argmax; A (]5/)

Optimize 7 under P: 7+ argmax_, J jr (7")
: end for

3.1 The Overall Framework

We now define the model MDP to reformulate the model rollout problem and outline our overall
algorithm design.

Definition 1. The model MDP M is defined by tuple (S™,A™, R™, P™,~,pi"), where at
timestep t, sj" := (sy,a;) € S™, af* := s41 € A™, R™(s]",a}") = —(P(s¢41]se,a¢) —

P(st+1\st7at))2, P (sTy|si af) i= m(aps|se41)P(seq1se, i),y is the discount factor
ot = 7(aglso)po, and py is the initial state distribution of the true environment.

In the model learning process of P2P, the roles played by the policy 7 and the model P are reversed:

7 is fixed to serve as the environment dynamics and P, now as the decision maker, interacts with
7 and is updated to minimize the accumulative prediction error along the generated trajectories.
Similar to the optimization of the policy, the objective of this learning process can be written as
argmaxp J7 (P) where J7 (P) = E[}, v"R™(s}", a})]. The overall algorithmic framework of
P2P is depicted in Algorithm 1, where the main difference compared to most existing MBRL methods
lies in Line 5, i.e., the learning of the model. Specifically, this process can be achieved in a way
similar to policy learning, i.e., generating samples by actively interacting with the policy (now
viewed as the background environment), and optimizing the expected return J™ (P) accordingly.
This optimization can in principle be done by any approaches solving sequential decision making
problems. As two representatives of these approaches, Model Predictive Control (MPC) [Camacho
and Alba, 2013] and Reinforcement Learning (RL) [Sutton and Barto, 2018] are both applied in
our practical version of P2P, which are detailed in Section 3.3. In addition, one of the biggest gaps
between this theoretical construction of the model MDP and the practical implementation may lie
in the derivation of R™. According to Definition 1, the true environment dynamics is required to
compute this reward function, while in practice the true dynamics is not accessible in the model
learning phase. Therefore, depending on which underlying approach (i.e., MPC or RL) is chosen for
model optimization, we propose two different alternative plans to approximate R™ in Section 3.3.

3.2 Theoretical Results

In general, MBRL methods learn an approximate model of the real world dynamics and learn the
policy by maximizing the expected return predicted by the model. The better this pseudo return
approximates the true environment return, the stronger guarantee the model can provide for policy
improvement. Thus, a critical problem in theory is how to bound the gap between the expected return
of the model and the true environment, i.e., (m)—J (7r)| Suppose that this gap can be upper
bounded by C, and the policy is updated from 7p to 7 with the expected model return improved by
2C, then the policy improvement in terms of the true environment can be guaranteed:

J(x) — J(7p) > (JP( ) — 0) - (JP (1p) + c)
> JP(z) — JP(np) — 2C > 0.

Our main theoretical result is the following theorem:

Theorem 1. The gap between the expected return of the model and the environment is bounded as:

5 2R maz L m
J(m) = J" (m) §W<(2 ZV >7 (D



where e, := max; Dry(mp(-|s)||w(:|s)) denotes the policy distribution shift, € =
Eop, o (s0im) [Dry (P(-|s,a)||P(-|s,a))] denotes the upper bound of one-step model prediction
error at timestep t of the model rollout trajectory, Drv (p||q) refers to the total variation between dis-
tribution p and ¢, Ry,qy = max, o R(s,a), and P,_1(s,a; ) denotes the state-action distribution
at t under P and .

Proof. Please refer to Appendix A. O

Transforming the inequality in Eq. (1) results in J(x) > JF (x) — 2C(P, 7), where C(P, ) denotes
the right hand side in Eq. (1). Thus by iteratively applying the update rule in Eq. (2), the above lower
bound of the policy performance can be monotonically improved:

7, P+ arg max Jp(ﬂ') —2C(P, ). )
P

This update rule is ideal and usually impractical since it involves an exhaustive search in the state
and action space to compute C, and requires full-horizon rollouts in the model for estimating the
accumulative model errors. Thus, similar to how algorithms like TRPO [Schulman et al., 2015]
approximate their theoretically monotonic version, P2P approximates this update rule by maximizing
the expected model return while keeping the accumulative model error small. Specifically, via
replacing the computationally expensive D7y with an expectation over P in the definition of €,

it can be easily derived that maximizing J™ (]5) defined in Section 3.1 is equivalent to minimizing
> e, As for the policy shift term e, though the bound suggests that this term may also be
constrained, we found empirically that it is sufficient to only control the model error. This may
be explained by the relatively small scale of policy shift with respect to model error, as observed
in [Janner et al., 2019].

It is worth noting that the accumulative error here is not simply summing up the multi-step errors on
trajectories collected by any other policies as in [Nagabandi et al., 2018, Luo et al., 2019], because
the definition of the step-wise model error (i.e., €;*) in Theorem 1 involves a policy-dependent
expectation over the state space, indicating that this error is also affected by the update of the policy.
To enable quick adaptation to this policy update, P2P minimizes the accumulative error on the state
distribution induced by an active interaction between the model and the current policy, and thus better
approximates the accumulative error defined in Theorem 1.

Different from most of prior work [Luo et al., 2019, Janner et al., 2019], in Theorem 1 the step-
wise model prediction errors are not scaled up to their maximum over timesteps (i.e., max; €;"),
leading to a tighter error bound. As a result, this bound not only provides stronger guarantee for
policy improvement, but also justifies the objective mismatch issue between the model learning
and model usage from a theoretical perspective: Scaling up these error terms by such a potentially
large magnitude yields a loose bound which leads to algorithms aiming at minimizing the upper
bound of individual one-step prediction losses. However, to obtain better policy improvement, the
tighter bound in Eq. (1) implies that a more fine-grained model learning process is desired, which
considers consecutive rollout steps and minimizes the accumulative prediction error, i.e., Zt vte;".
Using the notion of model MDP defined in Section 3.1, the model induced by minimizing one-step
prediction errors can be intuitively interpreted as a greedy decision maker, which is often considered
shortsighted and may easily lead to severe suboptimality.

3.3 Practical Implementation

In this subsection, we instantiate Algorithm 1 by specifying explicit approaches to learn the model
and providing solutions to some practical issues. Detailed pseudo codes can be found in Appendix E.

P2P-MPC: Since in our problem formulation the “dynamics” of the model rollout process, i.e.,
the current policy T, is accessible, one of the simplest yet effective ways to learn the model can
be the model predictive control (MPC) [Camacho and Alba, 2013], which utilizes the dynamics to
plan and optimize for a sequence of actions. Given the state s;* at step ¢, the MPC controller first
optimizes the sequence of actions ay’; , ; over a finite horizon H, and then employs the first action of

. . . t+H—1 .
the optimal action sequence, i.e., af; , := arg max,m Ep Zf:t R™(s}', a}’). Computing the
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Figure 2: Comparisons against baselines on MuJoCo. Solid curves represent the mean of runs over 5 different
random seeds, and shaded regions correspond to standard deviation among these runs.

exact arg max is computationally challenging due to the dimension of the state and action spaces,
so we adopt the random-sampling shooting method [Rao, 2009] which generates random action
sequences, executes them respectively, and chooses the one with highest return predicted by the
dynamics. Besides, the reward R™, which cannot be directly computed by definition, is approximated
here using a neural network and trained on the environment dataset. Specifically, during each training
iteration, P2P-MPC first trains the model via traditional one-step prediction loss, and then trains the

R™ network by taking transitions sampled from the environment dataset as inputs, and the minus
prediction errors on these transitions as labels. The prediction error of an environment transition

(s,a,r, ') is computed via ||§' — s'|| 4 ||#* — r||, where &', # are sampled from P(-, -|s, a).

P2P-RL: It is well-known that though effective, RL methods often suffer from high sample
complexity. Hence, the model is trained on the environment dataset instead of the samples generated
by the interaction of the model and policy. However, there are two issues to be addressed: 1) As the
“environment dynamics”, the policy is highly non-stationary due to its continuing update; and 2) The
decision maker which generates the dataset is the true environment rather than our model. The first
issue can be addressed by updating the next state in each sampled transitions by applying the current
policy, i.e., s7%; < (S¢41,7(S14+1)). As for the second issue, since the model-generated samples
are not used in model learning, it can be seen approximately as an offline learning problem and thus
can be addressed by well-developed offline RL methods [Fujimoto et al., 2019, Levine et al., 2020].
Due to the effectiveness and the implementational simplicity, we adopt SAC [Haarnoja et al., 2018]
with behavior cloning as the underlying learning algorithm, which bears similarities to the TD3+BC
approach proposed by [Fujimoto and Gu, 2021]. Besides, an approach called DualDICE [Nachum
etal., 2019] is also applied to correct the estimation of the state distribution. Finally, since the samples
come from the true environment, the reward R™ can be simply approximated by re-predicting the
dynamics in the sampled transitions and computing the prediction errors for the current model.
Specifically, P2P-RL trains the model on the environment dataset and treats the model learning
process as an offline RL problem, where the true dynamics becomes the "decision maker" of the
environment dataset in our problem formulation. Thus, regarding a transition (s, a,r, s’), R™ can be

directly approximated by computing —||§' — /|| — ||# — r|| , where §,7 ~ P(-,-|s, a).

4 Experiments

In this section, we first evaluate the empirical performance of P2P on a set of MuJoCo continuous
control tasks [Todorov et al.,, 2012] in Section 4.1, and then present an quantitative analysis for
the model error in Section 4.2. The ablation study provided in Section 4.3 verifies the necessity of
an active policy-model interaction when computing the multi-step prediction loss. Besides, a key
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Figure 3: Quantitative analysis of the accumulative model errors. While the true environment dynamics is not
accessible during learning, the errors are approximated via supervised learning on the environment dataset.

parameter of P2P-MPC is also studied in Section 4.3. Finally, to gain a deeper understanding of how
P2P work in offline settings, a visualization of the model’s rollout trajectories is shown in Section 4.4.

4.1 Comparisons with Baselines

We compare P2P 3 against some state-of-the-art model-free and model-based methods. The model-free
baseline is SAC [Haarnoja et al., 2018], which is the model-free counterpart of P2P. The model-based
baselines include MBPO [Janner et al., 2019], which uses short-horizon rollouts branched from the
state distribution of previous policies, SLBO [Luo et al., 2019], which enjoys theoretical performance
guarantee and uses model rollouts from the initial state distribution, and STEVE [Buckman et al.,
2018], which also generates short rollouts but uses model data for estimating target values instead
of policy learning. Note that our framework only focuses on model learning and can be employed
as a flexible plug-in component by most MBRL algorithms that generate pseudo samples to assist
policy learning. In our experiments, we plug the model learning process of P2P into MBPO since it
is a widely accepted strong baseline in MBRL. The implementational details and the hyperparameter
settings of P2P, as well as the environment settings, are all described in Appendix B.

As shown in Figure 2, P2P-MPC significantly outperforms the baselines on several tasks, especially
on Hopper, Humanoid and Ant, which are generally considered to be the most challenging MuJoCo
tasks. In Walker2d, the best rollout length is one step in our implementation and MBPO, thus resulting
in similar performance between these two methods. Compared to P2P-MPC, the performance of
P2P-RL is less stable. Through an investigation on the model learning process (see Appendix C),
we find that P2P-RL sometimes struggles to balance the loss of behavior cloning and RL, leading to
the difficulty in hyperparameter tuning and the instability of learning network parameters, while the
optimization of P2P-MPC is non-parametric and thus does not suffer from this issue.

4.2 Model Error Analysis

The theoretical result presented in Section 3.2 implies that to guarantee better policy improvement, the
model should learn to minimize the accumulative errors along the trajectories induced by the current
policy and the model. Since P2P is designed based on this principle, the empirical results in Figure 2
verify the theoretical result in terms of the final performance. To further verify the effectiveness of
this algorithmic design, we study the accumulative prediction error on three tasks that require rollouts
with relative long horizons, i.e., Hopper, Ant and Humanoid. The results shown in Figure 3 together
with Figure 2 strongly support our theoretical claims by demonstrating that the algorithm inducing
less accumulative error achieves better performance. Besides, we can also observe that in Hopper
the model errors of P2P-MPC in the first few steps are slightly larger than the other two methods.
Nevertheless, as the rollout trajectory goes longer, the accumulative error induced by P2P-MPC
grows significantly slower than the other methods. This further agrees with the intuition mentioned
in Figure 1 by showing that P2P is able to trade the one-step model error for accumulative model
error by considering the long-term effect of the immediate prediction.

4.3 Ablation Study

Multi-Step Prediction Loss In Section 3.2, we emphasize that the loss of P2P is essentially
different from the multi-step prediction loss used in prior work, since P2P computes the multi-step
loss on the state distribution induced from an active interaction between the model and the current

3Code available at https://github. com/ZifanWu/Plan-to-Predict.
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policy, and on the contrary, prior work computes this loss on the trajectories collected by previous
policies. The empirical results in Figure 4 compare the performances induced by these two kind of
losses and highlight the importance of the interactive model learning process in P2P.

Planning Horizon Different from most RL methods, MPC methods can assign an explicit horizon
for planning, hence P2P-MPC is able to set the planning horizon of the model to be exactly the same
with the rollout horizon. This difference may partially explain the superior performance of P2P-MPC
against P2P-RL. Nevertheless, longer planning horizon incurs higher computational cost, especially
in tasks with high-dimensional state spaces. To trade-off the performance and the computational
cost, our solution is to simply limit the planning horizon, and the empirical results shown in Figure 5
suggests that a horizon of 6 is satisfactory for the tasks experimented.

4.4 An Interpretative Experiment

To gain an intuitive understanding of how the learning objective of P2P affects the model predictions,
here we present a visualization of the rollout trajectories in maze2d-medium, an offline learning
task in the D4RL benchmark [Fu et al., 2020]. As shown in Figure 6, the envi-
ronment is slightly modified by lengthening the wall at the middle of the maze
and fixing the goal to the top right corner. Besides, the number of offline samples
that involve the grey region are partially discarded to increase this region’s uncer- N\
tainty. Figure 6 shows the top four trajectories that are most frequently generated VI
from a fixed starting point using our methods and MOPO [Yu et al., 2020], a
well-known offline model-based RL method that uses one-step error for model e
learning. The visualization clearly demonstrates the different rollout preferences
of the two kinds of models: the model of P2P-MPC tends to generate trajectories Figure 6: Visualiza-
heading to the regions with low uncertainty, while the model of MOPO fails to  on of models’ rollout
prevent the trajectories from being absorbed into the highly uncertain region. The trajectories.  The blue
resulting accumulative model errors are quantified in Figure 7, and as shown in gajem’“es are generated
. N A y MOPO, while the yel-
Table 1, the final performance of the induced policy of P2P-MPC is significantly  1ow ones are generated by
better than MOPO. Note that in online settings, the model error is possible to P2P-MPC.
be corrected by the newly collected data from the environment, while in offline
settings this incremental data-collecting process is not allowed. Thus, the model error can have a
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the rollout trajectories on the modified maze2d-
medium task.

more detrimental effect on policy learning, which may severely degrade the asymptotic performance
as evidenced in Table 1. Additional results on a much harder task (i.e., maze2d-large-v1) are also
provided in Table 1 to further verifies the effectiveness of P2P-MPC.

5 Related Work

MBRL aims at improving the sample efficiency of model-free methods while maintaining high
asymptotic performance. The research of MBRL can be roughly divided into two lines: the model
usage and the model learning. The most common usage of the model is generating pseudo samples to
enrich the data buffer, so as to reduce the interaction with the environment and thus accelerate policy
learning [Sutton, 1990, 1991, Deisenroth et al., 2013, Kalweit and Boedecker, 2017, Luo et al., 2019,
Janner et al., 2019, Pan et al., 2020]. The main challenge of this kind of usage is the compounding
model error of long-term predictions, which is also known as the model bias issue [Deisenroth and
Rasmussen, 201 1]. A number of approaches are proposed to address this issue, varying from using
Dyna-like short-horizon rollouts [Sutton, 1991, Janner et al., 2019], interpolating between real and
pseudo samples [Kalweit and Boedecker, 2017], learning an uncertainty-aware probabilistic model
ensemble [Chua et al., 2018], to masking the rollouts according to the uncertainty estimation [Pan
et al., 2020]. Falling into this category of model usage, the focus of our work is to improve the quality
of model-generated trajectories by reducing the accumulative model error along these trajectories.
Through an active interaction between the model and the current policy, P2P reinforces a quick
model adaptation to the update of policy, so as to foresee and thus avoid the uncertainty in the future
trajectory during rollout. Hence, one of the major differences between P2P and prior work can be
interpreted as: not just to passively estimate the uncertainty after encountering it, but to actively avoid
it before this encounter.

It is worth noting that there are also methods based on the optimism in face of uncertainty, which try
to exploit the uncertainty of the model for sufficient exploration in the real environment, such as [Curi
et al., 2021]. If the model’s promise of large return turns out to be false, executing the policy trained
by such a model will hopefully collect real-world counterfactual data to the previously erroneous
model. However, this correcting process itself requires additional samples, which may run counter to
the principle of developing model-based methods. Furthermore, exploring the erroneous part of the
model may not only provides the agent with false information about the real environment, but also be
prone to the model exploitation issue which severely hurts the asymptotic performance of the policy.
Therefore, how to carefully exploit the model uncertainty remains an open question.

In the line of model learning, the most commonly used objective is to simply minimize each one-step
prediction error for transitions available in the environment dataset [Kurutach et al., 2018, Chua
et al., 2018, Janner et al., 2019]. However, since the data distribution of the environment dataset
varies with the update of policy, it is unlikely to learn an accurate model for all the transitions in
complex environments. Thus, when the model is used to predict for multiple steps, there exists an
objective mismatch [Lambert et al., 2020] between model usage and model learning. To address
this issue, we propose to minimize the accumulative prediction error under the state distribution
of the current policy. The most relevant work to ours includes [Nagabandi et al., 2018, Luo et al.,
2019], where a similar multi-step prediction loss is employed for model learning. The essential
difference between their multi-step loss and ours is clarified in Section 3.1 and 3.2. Generative
models [Kingma and Welling, 2014] have also been utilized to perform multi-step prediction [Mishra
etal., 2017, Ha and Schmidhuber, 2018]. However, the need for a highly exploratory dataset limits
their application to relatively simple and low-dimensional tasks. Other learning objectives improve
traditional model learning from angles that are less similar to ours, including goal-aware model



learning that predicts how far the current state is from the goal state [Nair et al., 2020] and decision-
aware model learning that aims to better aids policy learning by re-weighting the model error on
different samples [Farahmand et al., 2017, Farahmand, 2018, D’Oro et al., 2020].

In recent years, a series of work has attempted to learn the model by treating the model rollout
process as a sequential decision-making problem. While these work shares some similarity with our
work, the targeted problems and the proposed solutions are not exactly the same as P2P. Shang et al.
[2019] propose an environment reconstruction method which models the influence of the hidden
confounder on the environment by treating the platform, the user and the confounder as three agents
interacting with each other. They focus on the offline setting (i.e., RL-based recommendation) and
simultaneously train the model and the policy using a multi-agent imitation learning method. Xu et al.
[2020] treat the model as a dual agent and analyze the error bounds of the model. They propose to
train the model using imitation learning methods. Chen et al. [2022] also consider multi-step model
error, yet they mainly focus on handling counterfactual data queried by adversarial policies. Unlike
the above two work [Xu et al., 2020, Chen et al., 2022] that both focus solely on model learning, P2P
aims at proposing a general MBRL framework and attempts to adapt the model to the continuously
updating policy quickly.

6 Conclusion and Future Work

In this paper, we propose an MBRL framework named Plan To Predict (P2P), which novelly treats
the model rollout process as a sequential decision making problem. In this problem reformulation,
the roles played by the model and the policy are reversed, where the model becomes a decision maker
and the policy instead serves as the outer environment. Through an active interaction between the
model and the current policy, the model can minimize the multi-step accumulative errors on the
induced trajectories and thus quickly adapt to the state distribution of the current policy. We provide
theoretical guarantee for P2P, which also clarifies the difference of our multi-step loss from prior
methods and justifies the mismatch of objectives between model learning and model usage. Empirical
results on several challenging benchmark tasks verify the effectiveness of P2P. Moreover, observing
that the capability to avoid model error makes P2P promising for offline settings, we also provide
preliminary results on some offline learning tasks. While this is not the major focus of this paper,
studying how P2P can be applied in offline tasks more properly is left as an important future work.
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