
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FUNCTIONAL DISTRIBUTION NETWORKS (FDN)

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern probabilistic regressors often remain overconfident under distribution
shift. Functional Distribution Networks (FDN) place input-conditioned distri-
butions over network weights, producing predictive mixtures whose dispersion
adapts to the input; we train them with a Monte Carlo β–ELBO objective. We
pair FDN with an evaluation protocol that separates interpolation from extrapo-
lation and emphasizes simple OOD sanity checks. On controlled 1D tasks and
small/medium UCI-style regression benchmarks, FDN remains competitive in ac-
curacy with strong Bayesian, ensemble, dropout, and hypernetwork baselines,
while providing strongly input-dependent, shift-aware uncertainty and competi-
tive calibration under matched parameter and update budgets.

1 INTRODUCTION

Modern neural predictors are routinely deployed under dataset shift, where test inputs depart from
the training distribution. In these regimes, point predictions from deterministic networks and naı̈ve
uncertainty surrogates from traditional stochastic heuristics often become overconfident—assigning
high probability to wrong outcomes, particularly off-support/extrapolation—undermining reliable
decision making. Bayesian Neural Networks (BNNs), MLP with dropout, Deep Ensembles, and
Hypernetworks are strong practical baselines, yet they can still under-react outside the training sup-
port or require substantial ensembling/sampling to behave robustly (Quiñonero-Candela et al., 2009;
Ovadia et al., 2019; Guo et al., 2017; MacKay, 1992; Neal, 1996; Graves, 2011; Blundell et al., 2015;
Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Ha et al., 2017).

This motivates architectures that are uncertainty-aware and calibrated—sharp in-distribution (ID)
and widening appropriately OOD (higher CRPS, wider intervals). We pursue this with Functional
Distribution Networks (FDN), which place input-conditional distributions over weights to modulate
uncertainty locally in x. Concretely, FDN amortizes an input-conditional posterior qϕ(θ | x) via
small Hypernetworks and trains it with a Monte Carlo likelihood and a β-ELBO. Under matched
budgets, FDN is ID-competitive and well-calibrated by scale on controlled 1D shifts: on low-
frequency or piecewise-smooth tasks (step, quadratic) it achieves near-unity MSE–Var slopes with
high Spearman correlation and favorable AURC/CRPS, indicating that predictive variance tracks er-
ror growth both in- and out-of-distribution. On more oscillatory shifts (sine) FDN preserves strong
rank calibration and increases variance OOD, but its variance still under-scales relative to the error—
an explicit target for future improvement. Beyond 1D toy functions, we evaluate We further evaluate
FDN on standard small/medium UCI-style regression benchmarks—Airfoil Self-Noise, Combined
Cycle Power Plant, and Energy Efficiency (Brooks et al., 1989; Tüfekci & Kaya, 2014; Tsanas
& Xifara, 2012)—under feature-based ID/OOD splits. On these real datasets FDN remains ID-
competitive and typically exhibits large positive ∆Var with moderate ∆MSE and ∆CRPS, i.e., it
widens uncertainty under shift while maintaining sensible accuracy and calibration relative to strong
Bayesian, ensemble, and hypernetwork baselines.

Overview. Rather than treating weights as fixed (or globally random), FDN places an input-
conditioned distribution over weights:

θ | x ∼ p(θ | x), y | x, θ ∼ p(y | x, θ).

For tractability we fix an input-agnostic prior p(θ | x) = p0(θ) = N (0, σ2
0I), so all input de-

pendence is carried by an amortized posterior qϕ(θ | x) implemented via small Hypernetworks.
Many standard uncertainty-aware architectures can be cast in this template via different choices of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

qϕ(θ | x); we detail these instantiations in Appendix A. Sampling θ ∼ qϕ(θ | x) yields locally adap-
tive functions, and as x moves off the training support the induced weight distribution can broaden,
producing wider and more appropriately uncertain predictive densities.

Training and evaluation. We train with a Monte Carlo β–ELBO over qϕ(θ | x) and also report an
IWAE variant; explicit expressions for the layer-wise KL and its LP-FDN factorization are given in
the Appendix B. Our evaluation protocol splits test points into interpolation (ID) and extrapolation
(OOD) regions and summarizes shift via deltas ∆(·) = EOOD[·]−EID[·], focusing on ∆MSE, ∆Var,
and ∆CRPS together with MSE–variance fits and risk–coverage curves.

Contributions. (i) Model. We introduce Functional Distribution Networks (FDN), a simple mod-
ule that amortizes input-conditioned weight distributions via small Hypernetworks, in two variants:
IC-FDNet (conditioning on x) and LP-FDNet (conditioning layer-wise on previous activations).
(ii) Protocol. We propose a small-suite extrapolation protocol that targets ∆Var > 0 under shift
and complements it with calibration diagnostics (MSE–variance slope, rank correlation, and risk–
coverage). (iii) Empirical study. Under matched parameter, update, and predictive-sample budgets,
we benchmark FDN against strong Bayesian, ensemble, dropout, and hypernetwork baselines on
controlled 1D function families and UCI-style regression tasks, showing that FDN remains ID-
competitive while providing practically useful, shift-aware uncertainty.

Scope. We focus on low-dimensional regression with homoscedastic scalar Gaussian heads and
relatively shallow backbones in order to isolate ID vs. OOD behavior under tightly matched budgets.
All code, configurations, and scripts to reproduce the experiments will be released upon acceptance.

2 RELATED WORK

Uncertainty in neural regression. BNN place distributions over weights and infer posteriors via
variational approximations or MCMC (MacKay, 1992; Neal, 1996; Graves, 2011; Blundell et al.,
2015). Deep Ensembles average predictions from independently trained networks and are a strong
practical baseline (Lakshminarayanan et al., 2017; Maddox et al., 2019). MLP (with dropout) inter-
prets dropout at test time as approximate Bayesian inference (Gal & Ghahramani, 2016). Het-
eroscedastic regression learns input-dependent output variance but retains deterministic weights
(Nix & Weigend, 1994; Kendall & Gal, 2017).

Hypernetworks and conditional weight generation. Hypernetworks generate the weights of a
primary network using an auxiliary network (Ha et al., 2017); related work explores dynamic, input-
conditioned filters and conditional computation (De Brabandere et al., 2016; Brock et al., 2018).
Bayesian/uncertainty-aware Hypernetworks place distributions over generated weights and train
them variationally (Krueger et al., 2017). Our FDN differs by explicitly conditioning the weight
distributions on the current input (or intermediate activations) in order to modulate epistemic uncer-
tainty itself, not only deterministic weights. This input-aware weight stochasticity is what enables
FDN to widen uncertainty under distributional shift while maintaining competitive ID accuracy un-
der matched budgets.

Meta-learning and context-conditioned predictors. Neural Processes (NP) learn a distribution
over functions conditioned on a context set C via a global latent, yielding p(y | x, C) (Garnelo et al.,
2018; Kim et al., 2019); gradient-based meta-learning (e.g., MAML) instead adapts an initialization
per task via inner-loop gradients (Finn et al., 2017). FDN is complementary: it amortizes local
weight uncertainty directly on x (and optionally a compact context) through qϕ(θ | x, c), requires
no inner-loop adaptation, and injects uncertainty at the layer level rather than via a single global
latent.

Calibration and OOD behavior. Proper scoring rules such as the continuous ranked probability
score (CRPS) are strictly proper and reward calibrated predictive distributions (Gneiting & Raftery,
2007). Empirical studies highlight overconfidence under dataset shift and introduce OOD bench-
marks (Ovadia et al., 2019). Our evaluation therefore separates interpolation from extrapolation and
uses the monotonic relationship between per-sample squared error (MSE) and predicted variance as
a simple diagnostic calibration check.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

aℓ−1 qϕ(θℓ | sℓ)
Layer ℓ

aℓ = fℓ(aℓ−1; θℓ)

ε

θℓ

input-conditioned weight distribution single draw θℓ∼ qϕ(θℓ | sℓ−1)

Figure 1: Single-layer view of FDNet. For layer ℓ, the previous activation aℓ−1 (with a0 = x for
the first layer) is fed to both the hypernetwork and the main layer. For IC-FDNet sℓ = x while for
LP-FDNet sℓ = aℓ−1. The hypernetwork takes sℓ and a random draw ε to generate weights/ biases
(Gaussian Head with reparametrization technique) θℓ = (Wℓ, bℓ), which are then used by the main
layer aℓ = fℓ(aℓ−1; θℓ).

Positioning. Compared to BNNs, FDN sidesteps global posteriors by amortizing local weight
distributions qϕ(θ | x). Compared to Deep Ensembles, FDN uses shared parameters and stochastic
generation instead of replicating full models. Compared to Hypernetworks, FDN explicitly models
uncertainty over generated weights and regularizes it with a KL prior, enabling principled OOD
expansion.

3 METHOD

For convenience, a summary of the main symbols and dimensions used throughout the paper is
provided in Table 1 in Appendix C.

3.1 PRELIMINARIES

We model y ∈ Rdy with a neural network fθ : Rdx→RDy (Dy = 2dy for a diagonal covariance
and Dy = dy(dy + 1)/2 for full covariance) whose final layer parameterizes a Gaussian predictive
head,

fθ(x) =
(
µθ(x),Σθ(x)

)
, p(y | x, θ) = N

(
y; µθ(x), Σθ(x)

)
,

In the main experiments we restrict to scalar outputs and use a homoscedastic Gaussian likelihood
p(y | x, θ) = N

(
y;µθ(x), σ

2
)

with fixed variance σ2, shared across all models. For such a head
the per-example contribution to the β–ELBO reduces to a rescaled squared-error term plus the KL
penalty between the input-conditioned weight posterior and the prior; constants can be absorbed
into the trade-off parameter β. We therefore optimize a weighted MSE + βKL objective and use
the same Gaussian head for all baselines to ensure a fair comparison. More general multivariate,
heteroscedastic, and structured-covariance likelihoods are discussed in Appendix D.

3.2 FDN: INPUT-CONDITIONED WEIGHT DISTRIBUTIONS

We drop explicit context and condition only on signals from the network itself. For each layer
ℓ, FDN places a diagonal-Gaussian over its weights whose parameters are produced by a small
Hypernetwork Aℓ(·). We choose the conditioning signal

s
(k)
ℓ ∈

{
x, IC-FDN
a
(k)
ℓ−1, LP-FDN (with a

(k)
0 = x),

and set

(µW,ℓ, ρW,ℓ, µb,ℓ, ρb,ℓ) = Aℓ(s
(k)
ℓ), σW,ℓ = ε+softplus(ρW,ℓ), σb,ℓ = ε+softplus(ρb,ℓ),

with a small floor ε = 10−3 for numerical stability. Sampling then proceeds as

W
(k)
ℓ = µW,ℓ + σW,ℓ ⊙ z

(k)
W,ℓ, b

(k)
ℓ = µb,ℓ + σb,ℓ ⊙ z

(k)
b,ℓ , z

(k)
{·},ℓ ∼ N (0, I),

with the conditioning signal chosen as sℓ = x for IC-FDNet and sℓ = a
(k)
ℓ−1 for LP-FDNet, where

in both cases the layer output is a
(k)
ℓ = fℓ(a

(k)
ℓ−1;W

(k)
ℓ , b

(k)
ℓ) (sequential across layers). Figure 1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

illustrates a single FDN layer: a small hypernetwork maps sℓ to the parameters of a Gaussian dis-
tribution over weights and biases; a sample θℓ = (Wℓ, bℓ) from this distribution is then used to
compute aℓ = fℓ(aℓ−1; θℓ).

Variational family (compact). FDN uses a layer-wise diagonal-Gaussian over weights, condi-
tioned on sℓ∈{x, a(k)ℓ−1}:

qϕ(θ | x) =
L∏

ℓ=1

N
(
vec(Wℓ);µW,ℓ(sℓ), diag σ

2
W,ℓ(sℓ)

)
N
(
bℓ;µb,ℓ(sℓ), diag σ

2
b,ℓ(sℓ)

)
,

In compact form (concatenating all layers),

qϕ(θ | x) = N
(
θ; µϕ(x), diag σ

2
ϕ(x)

)
, θ(k) = µϕ(x) + σϕ(x)⊙ ε(k), ε(k) ∼ N (0, I),

and the predictive density is the Monte Carlo mixture

p(y | x) ≈ 1

K

K∑
k=1

p
(
y | x, θ(k)

)
, θ(k) ∼ qϕ(θ | x).

Prior and regularization. We regularize qϕ(θ |x) toward a simple reference p0(θ) =∏
ℓN (0, σ2

0I) via a β-weighted KL term (we use σ0 = 1 in all experiments). For diagonal Gaus-
sians,

DKL

(
N (µ, diag σ2)

∥∥N (0, σ2
0I)
)
= 1

2

∑
j

(
σ2
j + µ2

j

σ2
0

− 1 − log
σ2
j

σ2
0

)
,

and we sum this over all layers (for both Wℓ and bℓ). The variance floor is implemented by the ε in
σ = ε+ softplus(ρ) rather than a hard bound.

Algorithm 1 (Appendix E) summarizes training (β-ELBO with re-parameterized gradients) and in-
ference (Monte-Carlo mixtures over weight draws) for both IC-FDN and LP-FDN.

IC-FDNet vs. LP-FDNet. We study two conditioning schemes. IC-FDNet (Input-Conditioned)
uses the raw input x at every layer, sℓ(x) = x, so all layers see the same features when sam-
pling weights. LP-FDNet (Layer-Progressive) instead uses hidden activations, with s0(x) = x
and sℓ(x) = aℓ−1(x) for ℓ ≥ 1, yielding a depth-aware conditioning scheme. Empirically, the
two variants achieve similar in-distribution accuracy across our benchmarks, while LP-FDNet often
produces somewhat larger increases in predictive variance under distribution shift (larger ∆Var) at
comparable MSE.

4 EXPERIMENTS

Tasks and splits. We evaluate FDN on (i) controlled 1D regression tasks where the ground-truth
function is known and interpolation vs. extrapolation is precisely defined in input space, and (ii)
standard small/medium UCI-style regression benchmarks with feature-based ID/OOD splits. In
both settings we report metrics separately on the interpolation (ID) region, the extrapolation (OOD)
region, and the aggregated test set, and we summarize distribution shift by deltas ∆(·) = EOOD[·]−
EID[·].

4.1 TOY FUNCTION FAMILIES AND ID/OOD PROTOCOL

We first benchmark on 1D toy regression tasks, where the ground-truth function f : R → R is
known. For each run we select one of three families:

• Step: f(x) = H(x) = 1{x ≥ x0}, with a discontinuity at x0 = 0.

• Sine: f(x) = A sin(ωx), with amplitude A and frequency ω.

• Quadratic: f(x) = ax2 + b, with (a, b) fixed across runs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 2 4 6
Variance

0

20000

40000

60000

80000

M
SE

Interp (ID)

0 20000 40000 60000 80000
Variance

Extrap (OOD)

IC-FDNet (ID=0.83, OOD=0.99)
LP-FDNet (ID=0.89, OOD=1.00)
BayesNet (ID=-0.75, OOD=0.99)
GaussHyperNet (ID=0.82, OOD=1.00)
MLPDropoutNet (ID=0.36, OOD=0.99)
DeepEnsembleNet (ID=0.34, OOD=0.99)
Ideal: MSE=Var

(a) Step: H(x)

0.0 2.5 5.0 7.5
Variance

0

10000

20000

30000

40000

M
SE

Interp (ID)

0 10000 20000 30000 40000
Variance

Extrap (OOD)

IC-FDNet (ID=0.63, OOD=0.99)
LP-FDNet (ID=0.62, OOD=1.00)
BayesNet (ID=0.43, OOD=1.00)
GaussHyperNet (ID=0.82, OOD=1.00)
MLPDropoutNet (ID=-0.23, OOD=0.99)
DeepEnsembleNet (ID=0.09, OOD=0.73)
Ideal: MSE=Var

(b) Sine: 1.54 sin(2.39x)

0 5 10 15
Variance

0

10000

20000

30000

40000

50000

M
SE

Interp (ID)

0 10000 20000 30000
Variance

Extrap (OOD)

IC-FDNet (ID=1.00, OOD=0.98)
LP-FDNet (ID=1.00, OOD=1.00)
BayesNet (ID=0.36, OOD=0.94)
GaussHyperNet (ID=1.00, OOD=0.99)
MLPDropoutNet (ID=0.95, OOD=0.99)
DeepEnsembleNet (ID=0.60, OOD=0.97)
Ideal: MSE=Var

(c) Quadratic: 0.43x2 − 0.41

Figure 2: MSE vs. predicted variance on three 1D regression tasks (rows: step, sine, quadratic).
Left/right panels in each row show interpolation (ID) and extrapolation (OOD) test points with
shared axes; the dashed line marks the ideal MSE = Var. Legends report per-model Spearman’s ρ
in each region.

Unless otherwise stated we use the specific instantiations shown in Figure 2 (step H(x), sine
1.54 sin(2.39x), and quadratic 0.43x2 − 0.41) to match all reported plots. We define a symmetric
interpolation region Rinterp = [−ℓ, ℓ] and an extrapolation region Rextrap = R \ Rinterp. Training
and validation inputs are sampled uniformly from Rinterp; test inputs cover both Rinterp and Rextrap

on a dense grid. We report all metrics separately on the ID split (test points in Rinterp), the OOD
split (test points outside Rinterp), and on the full test set. This protocol ensures that “OOD” strictly
corresponds to extrapolation in input space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 15 20
Variance

0

100

200

300

400

500

600

700

800

M
SE

Interp (ID)

0 200 400 600
Variance

Extrap (OOD)

IC-FDNet (ID=0.96, OOD=0.97)
LP-FDNet (ID=0.96, OOD=0.98)
BayesNet (ID=0.13, OOD=0.25)
GaussHyperNet (ID=0.97, OOD=0.99)
MLPDropoutNet (ID=0.34, OOD=0.42)
DeepEnsembleNet (ID=0.14, OOD=-0.01)
Ideal: MSE=Var

(a) Airfoil Self-Noise

0 5 10 15 20 25
Variance

0

10

20

30

40

50

M
SE

Interp (ID)

0 10 20 30 40
Variance

Extrap (OOD)

IC-FDNet (ID=0.95, OOD=0.97)
LP-FDNet (ID=0.93, OOD=0.93)
BayesNet (ID=0.30, OOD=0.35)
GaussHyperNet (ID=0.98, OOD=1.00)
MLPDropoutNet (ID=0.07, OOD=0.35)
DeepEnsembleNet (ID=-0.08, OOD=0.08)
Ideal: MSE=Var

(b) CCPP Power Plant

0 10 20 30 40 50
Variance

0

20

40

60

80

100

120

M
SE

Interp (ID)

0 25 50 75 100
Variance

Extrap (OOD)

IC-FDNet (ID=0.99, OOD=0.99)
LP-FDNet (ID=0.96, OOD=0.99)
BayesNet (ID=0.45, OOD=0.38)
GaussHyperNet (ID=0.99, OOD=0.99)
MLPDropoutNet (ID=0.81, OOD=0.45)
DeepEnsembleNet (ID=0.36, OOD=0.36)
Ideal: MSE=Var

(c) Energy Efficiency Heating

Figure 3: MSE vs. predicted variance on three real regression datasets: Airfoil Self-Noise, CCPP
Power Plant, and Energy Efficiency (heating). For each dataset, left/right panels show ID and OOD
test points with shared axes, and the dashed line marks MSE = Var. Legends report per-model
Spearman’s ρ.

4.2 REAL REGRESSION DATASETS AND ID/OOD SPLITS

To test FDNs beyond 1D toy functions we use three standard UCI regression datasets: Airfoil Self-
Noise, Combined Cycle Power Plant (CCPP), and Energy Efficiency (heating load as the primary tar-
get). For each dataset we follow a consistent preprocessing and ID/OOD protocol: we choose a sin-
gle “ID feature” z with a natural interpretation (e.g., frequency for Airfoil, ambient temperature for
CCPP, relative compactness for Energy), define the interpolation band as the 20th–80th percentiles
of this feature and treat the extremes as extrapolation, split train/validation/test by quantiles of z, and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0

5

10

15

20

25

30

M
SE

 (O
O

D

 ID
)

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0

5

10

15

20

25

Va
r (

O
O

D

 ID
)

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0.0

0.1

0.2

0.3

0.4

0.5

C
R

PS
 (O

O
D

 ID

)

(a) Airfoil Self-Noise

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0

1

2

3

4

5

6

7

M
SE

 (O
O

D

 ID
)

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0

1

2

3

4

5

6

7

Va
r (

O
O

D

 ID
)

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0.00

0.05

0.10

0.15

0.20

0.25

C
R

PS
 (O

O
D

 ID

)

(b) CCPP Power Plant

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0

5

10

15

20

25

30

M
SE

 (O
O

D

 ID
)

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0

5

10

15

20

25

30

Va
r (

O
O

D

 ID
)

IC-FDNet

LP-FDNet

BayesNet

GaussH
yperNet

MLPDropoutNet

DeepEnsembleNet
0.0

0.1

0.2

0.3

0.4

C
R

PS
 (O

O
D

 ID

)

(c) Energy Efficiency Heating

Figure 4: ID→OOD deltas on the real regression datasets. Bars show ∆MSE, ∆Var, and ∆CRPS
for Airfoil, CCPP, and Energy. Well-behaved models exhibit large positive ∆Var together with
moderate ∆MSE and ∆CRPS, indicating that uncertainty widens under shift while accuracy and
calibration degrade gracefully.

standardize all inputs and targets using training statistics. We fix a single train/validation/test split
shared across all methods and seeds. Exact dataset sizes are summarized in Table 3 (Appendix F).

4.3 COMPLEXITY, CAPACITY, AND FAIRNESS

Baselines. We evaluate four stochastic baselines: MLP with dropout (MLPDropoutNet), Deep
Ensemble of MLP (DeepEnsemblesNet), Variational BNN (BayesNet), and Gaussian Hyper-
network (GaussianHyperNet). Because our study centers on calibrated predictive distributions
(CRPS, MSE–Var slope/intercept, AURC), we omit the Deterministic MLP and the (input-
conditioned) Hypernetwork from the main uncertainty analysis; their ID/OOD MSE is comparable
to Ensembles/Dropout. Training details (optimizer, batch size, learning rate, prior scale σ0, variance
floor σmin) appear in Table 2 (Appendix F).

Link-budget. We consider networks with a single hidden layer and fix the parameter budget to
P ≈ 1000 (±5%) for all models, counting all trainable parameters, including any Hypernetwork
components; counts appear in Table 4 (Appendix F). To equalize the update budget, ensembles with
M members use epoch-split training (epochs divided by M). For non-ensemble networks we use

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

one Monte Carlo draw per update (K = 1), keeping per-step cost comparable and the total number
of parameter updates matched across models.

Note: To hit the P target, MLPDropoutNet uses widened hidden layers, increasing capac-
ity/expressive power and potentially improving ID MSE independent of uncertainty quality; hence
our emphasis on calibration-centric metrics.

Computational complexity and scalability. For all models, the per-epoch training cost scales
linearly in the number of examples N and quadratically in the layer widths, O(N

∑
ℓ dℓ−1dℓ). Both

IC-FDN and LP-FDN inherit this scaling from the base MLP: the per-layer Hypernetworks add only
a small constant-factor overhead because their hidden width hhyp and the Monte Carlo count K are
fixed (parameter count remains O(dℓ−1dℓ) per layer), matching the baselines. A full discussion of
parameter-count and architectural trade-offs for larger models are given in Appendix G.

4.4 METRICS AND CALIBRATION DIAGNOSTICS

We assess models with standard metrics for accuracy, uncertainty, and calibration: mean squared
error (MSE), predictive variance, continuous ranked probability score (CRPS), risk–coverage curves
(area under the risk–coverage curve, AURC), and ID→OOD deltas (∆MSE,∆Var,∆CRPS). For
calibration we use both rank- and scale-based diagnostics: (i) Spearman correlation ρ(Var,MSE)
between per-point variance and squared error, and (ii) a linear fit MSE ≈ a + bVar, with the ideal
calibration corresponding to a ≈ 0 and b ≈ 1. We visualize these diagnostics via MSE–Var scatter
plots in the ID and OOD regions for toy tasks (Figure 2) and real datasets (Figure 3), together with
grouped bar charts of ID→OOD deltas on the real tasks (Figure 4). Precise definitions and Monte
Carlo estimators for all metrics are collected in Appendix H.

Representative seed selection. To avoid cherry-picking individual runs, all qualitative plots are
based on a representative seed chosen by a fixed aggregation procedure. For each dataset and config-
uration we run all models over multiple random seeds (20 seeds per toy task, 100 for Airfoil, and 3
for the remaining UCI datasets) and collect summary metrics per seed (e.g., MSEID, MSEOOD, VarID,
VarOOD, ∆CRPS, AURC). For IC-FDNet (or LP-FDNet) we compute the coordinate-wise median
of these metrics over seeds and then select the seed whose metric vector is closest (in Euclidean
distance) to this median. All per-seed plots in the main text are generated from this representa-
tive seed, using the same rule for every dataset, so that the shown behavior is typical rather than
hand-picked. On the Airfoil Self-Noise dataset, Figure 5 (Appendix F) visualizes the resulting seed-
aggregated MSE–variance scatter, confirming that the selected representative seed lies close to the
overall across-seed trend.

4.5 RESULTS

Toy tasks. Across the three toy tasks (Tables 5–7; Figure 2), FDN’s core strength is scale cal-
ibration under smooth shifts. On the step and quadratic tasks, IC-/LP-FDNet achieve MSE–Var
slopes closer to the ideal b ≈ 1 with strong rank agreement (Spearman ρ close to 1) and large pos-
itive ∆Var, so predictive variance increases in lock-step with difficulty. This comes at the cost of
higher AURC and ∆CRPS than the sharpest baselines on the step task, while on the quadratic task
their AURC and ∆CRPS are broadly comparable. In contrast, several classical baselines that fit ID
sharply (e.g., Deep Ensembles, BayesNet) exhibit much steeper MSE–Var fits (b ≫ 1) and smaller
increases in variance (∆Var), indicating sharper but less conservative uncertainty even when they
rank hard points reasonably well.

On the highly oscillatory sine shift, all methods degrade, but the trade-offs differ. FDN preserves
excellent ranking (Spearman ρ near 1) and raises variance substantially OOD (large ∆Var), yet its
error grows faster than its variance (large b, large ∆MSE), yielding worse AURC. Deep ensembles
show smaller ∆MSE and hence better AURC, but their ranking can be weaker. Overall, under
matched capacity and update budgets, FDN’s main advantages are (i) calibrated scaling on smooth
or piecewise-smooth shifts, where many baselines remain overconfident, and (ii) consistently high
rank correlation across tasks, which makes FDN a strong triage signal even when absolute scale
lags on rapidly oscillatory OOD. This highlights a clear avenue for improvement: stronger variance
scaling on such shifts (e.g., temperature/flooring on σϕ, richer priors, or layer-wise β schedules).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Real regression benchmarks. On the real regression tasks (Airfoil, CCPP, Energy), the same
patterns largely persist (Figures 3 and 4; Tables 8–10). FDN achieves reasonable in-distribution
MSE and typically exhibits large positive ∆Var, indicating that uncertainty widens under feature-
based shift. This comes with somewhat larger ∆MSE and ∆CRPS than the sharpest baselines on
Airfoil, but more moderate values on CCPP and Energy, so calibration degrades gradually rather than
catastrophically. On Airfoil, for example, FDN’s ID scatter lies close to the ideal MSE=Var line and
spreads out smoothly OOD, with strong Spearman correlation; on CCPP and Energy the predictive
variances remain shift-aware and provide useful selective-risk behavior, even when the absolute
scale is not always better than the strongest baselines. Taken together, the toy and UCI results
suggest that input-conditioned weight stochasticity is a viable and modular route to OOD-aware
regression: FDN behaves like a drop-in “uncertainty layer” that can be tuned via β and hypernetwork
capacity to trade off in-distribution sharpness against OOD conservatism.

Additional qualitative diagnostics, including predictive means (Figure 6, 7), aggregated MSE–
variance scatters (Figure 8, 9), and risk–coverage curves for all datasets (Figure 10, 11), are provided
in (Appendix F).

5 LIMITATIONS

FDN’s input-conditioned weight stochasticity, like similar stochastic layers, can overfit spurious cues
if β is too small or the prior is too loose; careful KL scheduling and priors are important. LP-FDN
samples weights layer-by-layer, adding latency versus a deterministic pass; sampling at test time also
incurs a compute/latency trade-off with K, although in our experiments we keep K small. Our study
focuses on low-dimensional regression with small/medium tabular datasets and relatively shallow
architectures; scaling to high-dimensional inputs (e.g., images), deeper backbones, and structured
outputs will require additional engineering, such as low-rank or adapter-style Hypernetworks and
more aggressive capacity control.

On the calibration side, FDN still under-scales variance on highly oscillatory OOD regimes (the sine
task), and nothing in the current design explicitly enforces frequency-aware or spectral robustness.
We also restrict attention to homoscedastic scalar Gaussian likelihoods; heteroscedastic and full-
covariance heads, as well as structured priors that tie together different layers or groups of weights,
are left to future work. Finally, we only consider regression; applying FDN to classification would
require discrete predictive mixtures and calibration metrics beyond CRPS (e.g., ECE/Brier), and
may interact non-trivially with common tricks such as label smoothing or temperature scaling.

6 CONCLUSION

We introduced Functional Distribution Networks (FDN), which amortize input-conditioned distri-
butions over weights to produce predictive densities that remain sharp in-distribution yet expand
appropriately under shift. Trained with a Monte Carlo objective and a β-weighted KL to a simple
prior, FDN delivers strong rank calibration across tasks and near-ideal scale calibration on smooth
and piecewise-smooth shifts (step, quadratic), as evidenced by Spearman correlation, MSE–Var
slope/intercept, ∆Var, ∆CRPS, and AURC. Under a fair protocol that matches parameters, up-
dates, and predictive-sample budgets, FDN remains competitive with standard Bayesian, ensemble,
dropout, and hypernetwork baselines on both 1D toy functions and real UCI-style regression bench-
marks, and provides uncertainty that is practically useful for abstention and risk-aware inference.

Looking forward, we see several promising directions. On the modeling side, stronger variance
scaling mechanisms (temperature/floors, layer-wise β scheduling, structured priors) and frequency-
aware conditioning may close the remaining gap on highly oscillatory OOD tasks. On the systems
side, adapter-style deployments that apply FDN only to a small subset of middle or head layers could
allow one to inject uncertainty awareness in new or existing large-scale architectures with modest
overhead. Finally, extending FDN to classification, sequence models, and structured prediction—as
well as integrating it with other uncertainty-aware modules (e.g., Neural Processes or diffusion-
style generative priors over weights)—could yield a general toolkit for calibrated, shift-aware deep
learning in practical applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. In International Conference on Learning Representations (ICLR), 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. In International Conference on Machine Learning (ICML), 2015.

Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Smash: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations (ICLR),
2018. URL https://openreview.net/forum?id=rydeCEhs-.

Thomas Brooks, David Pope, and Michael Marcolini. Airfoil self-noise. https://doi.org/
10.24432/C5VW2C, 1989. UCI Machine Learning Repository.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In Inter-
national Conference on Learning Representations (ICLR), 2016.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 667–675, 2016.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks via pac-bayes. In International Conference on Learning Rep-
resentations (ICLR), 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning
(ICML), volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135. PMLR, 2017.
URL https://proceedings.mlr.press/v70/finn17a.html.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1050–1059. PMLR,
2016.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali
Eslami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018. URL
https://arxiv.org/abs/1807.01622.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–268, 2007.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning (ICML), 2017.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In International Conference on
Learning Representations (ICLR), 2017. URL https://openreview.net/forum?id=
rkpACe1lx.

Irina Higgins et al. beta-VAE: Learning basic visual concepts with a constrained variational frame-
work. In International Conference on Learning Representations (ICLR), 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, pp. 2790–2799,
2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings
of the 10th International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=nZeVKeeFYf9.

10

https://openreview.net/forum?id=rydeCEhs-
https://doi.org/10.24432/C5VW2C
https://doi.org/10.24432/C5VW2C
https://proceedings.mlr.press/v70/finn17a.html
https://arxiv.org/abs/1807.01622
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in Neural Information Processing Systems, 2017.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan Rosenbaum,
Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on
Learning Representations (ICLR), 2019. URL https://openreview.net/forum?id=
SkE6PjC9KX.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv preprint arXiv:1710.04759, 2017.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Com-
putation, 4(3):448–472, 1992.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson. A
simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, 2019.

Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statis-
tics. Springer, 1996.

David A. Nix and Andreas S. Weigend. Estimating the mean and variance of the target probability
distribution. In IEEE International Conference on Neural Networks, 1994.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence (eds.).
Dataset Shift in Machine Learning. MIT Press, 2009.

Athanasios Tsanas and Angeliki Xifara. Energy efficiency. https://doi.org/10.24432/
C51307, 2012. UCI Machine Learning Repository.

Pınar Tüfekci and Heysem Kaya. Combined cycle power plant. https://doi.org/10.
24432/C5002N, 2014. UCI Machine Learning Repository.

11

https://openreview.net/forum?id=SkE6PjC9KX
https://openreview.net/forum?id=SkE6PjC9KX
https://doi.org/10.24432/C51307
https://doi.org/10.24432/C51307
https://doi.org/10.24432/C5002N
https://doi.org/10.24432/C5002N

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A UNIFIED VIEW VIA qϕ(θ | x)

All methods we consider can be written as

p(y | x) =

∫
p(y | x, θ) qϕ(θ | x) dθ ≈

1

K

K∑
k=1

p
(
y | x, θ(k)

)
, θ(k) ∼ qϕ(θ | x).

In this paper, architectural layers are specified by the choice of qϕ(θ | x). Framing models through
qϕ(θ | x) enables apples-to-apples comparisons: (i) how they set the spread of plausible weights,
(ii) whether that spread adapts to the input, and (iii) how much compute they expend to form the
predictive mixture. FDN’s module-level approach directly targets this knob: it provides local, input-
aware uncertainty where it is inserted (e.g., the head or later blocks), broadens off-support as inputs
drift from the training domain, and leaves the surrounding backbone and training loop unchanged.

FDN (IC/LP) FDN makes qϕ input-conditional and stochastic. A common choice is diagonal-
Gaussian, factorized by layer:

qϕ(θ | x) =
∏
ℓ

N
(
µℓ(x), diag σ

2
ℓ (x)

)
.

This input-conditional variant is IC-FDN. For layer-propagated conditioning (LP-FDN), the ℓ-th
layer’s weight distribution depends only on the previous activation:

qϕ(θℓ | x) = N
(
µℓ(aℓ−1), diag σ

2
ℓ (aℓ−1)

)
, a0 := x,

and sampling proceeds sequentially across layers along the same Monte Carlo sample path. This
induces a first-order Markov structure in depth, allowing uncertainty to expand as signals propa-
gate—later layers can broaden even when early layers remain sharp. We regularize with a per-layer
KL:

β

L∑
ℓ=1

DKL(qϕ(θℓ | x)∥p0(θℓ)).

More generally, one could condition longer histories a0:ℓ−1; in this paper, we restrict to first-order
(one-step) conditioning. Note, in the limit σℓ → 0 for all ℓ, the model collapses to a deterministic
layer-conditioned Hypernetwork.

Deterministic Hypernetwork. A deterministic Hypernetwork Gϕ maps the input to weights,
yielding a degenerate q:

qϕ(θ | x) = δ
(
θ −Gϕ(x)

)
, p(y | x) = p

(
y | x,Gϕ(x)

)
.

Training typically uses NLL or MSE; weight decay on ϕ can be interpreted as a MAP prior on the
Hypernetwork parameters. Because qϕ is a Dirac-Delta, there is no weight-space uncertainty: any
predictive uncertainty must come from the observation model (e.g., a heteroscedastic head) or post-
hoc calibration. Compared to stochastic variants, this adds no KL term and no MC averaging, but
can increase per-example compute due to generating weights via Gϕ.

Gaussian HyperNetwork A Stochastic Hypernetwork outputs a global posterior (or context-
only):

qϕ(θ | x) ≡ qϕ(θ | h) =
∏
ℓ

N (µℓ(h), diag σ
2
ℓ (h)),

i.e., independent of the query x (but dependent on a learnable latent task vector h). This is variational
BNN with parameters produced by a Hypernetwork.

Bayesian Neural Network (Bayes-by-Backprop). A standard variational BNN uses an x-
independent approximate posterior:

qϕ(θ | x) ≡ qϕ(θ) =
∏
ℓ

N
(
µℓ, diag σ

2
ℓ

)
,

and the same β-ELBO objective with closed-form diagonal-Gaussian KL. Because qϕ(θ|x) is global,
predictive uncertainty does not adapt to x except via the likelihood term, which can under-react off-
support compared to input-conditional alternatives. On the other hand, the objective is simple and
sampling cost is amortized across inputs, though matching ensemble-like diversity typically requires
larger posterior variances or multiple posterior samples at test time.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

MLP with Dropout. MLP with dropout induces a distribution over effective weights via random
masks m:

qϕ(θ | x) ≡ qϕ(θ) (implicit via dropout masks, independent of x),
and inference averages predictions over sampled masks (Gal & Ghahramani, 2016).

Deep Ensembles. An M -member ensemble of MLPs corresponds to a finite mixture of deltas:

q(θ | x) ≡ 1

M

M∑
m=1

δ
(
θ − θm

)
, p(y | x) =

1

M

M∑
m=1

p
(
y | x, θm

)
,

where each θm is trained independently from a different initialization (and typically a different data
order/augmentation). There is no explicit KL regularizer; diversity arises implicitly from indepen-
dent training trajectories. Inference cost scales linearly with M (one forward pass per member), and
for fair comparisons we match total update or compute budgets by reducing epochs.

B TRAINING OBJECTIVE

FDN is amortized variational inference with the latent weights θ and input-conditional posterior
qϕ(θ | x) realized by small hypernetworks via the reparameterization θ(k) = gϕ(x, ε

(k)) with ε(k)∼
N (0, I). For a single (x, y) the ELBO is

log p(y | x) ≥ Eqϕ(θ|x)
[
log p(y | x, θ)

]︸ ︷︷ ︸
data term

− DKL

(
qϕ(θ | x) ∥ p0(θ)

)︸ ︷︷ ︸
regularizer

, (1)

with a simple prior p0(θ) =
∏

ℓN (0, σ2
0I).

(A) β–ELBO (mean of logs). We minimize the negative β–ELBO with K Monte Carlo draws:

Lβ-ELBO = − 1

K

K∑
k=1

log p
(
y | x, θ(k)

)
+ β DKL

(
qϕ(θ | x) ∥ p0(θ)

)
, θ(k)∼ qϕ(θ | x). (2)

Here β=1 recovers standard VI; β ̸= 1 implements capacity control / tempered VI (Higgins et al.,
2017; Alemi et al., 2017; Dziugaite & Roy, 2017). We use simple warm-ups for β early in training.

(B) IWAE variant (log of means; tighter bound). As a reference, the importance-weighted
bound is

LIWAE = − log

(
1

K

K∑
k=1

p0(θ
(k)) p(y | x, θ(k))
qϕ(θ(k) | x)

)
, θ(k)∼ qϕ(θ | x), (3)

which implicitly accounts for the KL via the weights and typically needs no extra β (Burda et al.,
2016). We report main results with (A) for simplicity and stability.

KL decomposition (IC vs. LP). For IC-FDN, layer posteriors condition directly on x, so the KL
sums over layers and averages over the minibatch. For LP-FDN, layer ℓ conditions on a sampled
hidden state a

(k)
ℓ−1(x); the KL is therefore averaged over this upstream randomness:

DKL

(
qϕ,ℓ(θℓ | a(k)ℓ−1(x)) ∥ p0

)
with Ek[·] across samples k.

With diagonal Gaussians, each layer’s closed-form term is

DKL

(
N (µ, diag σ2) ∥N (0, σ2

0I)
)
= 1

2

∑
j

(
σ2
j + µ2

j

σ2
0

− 1− log
σ2
j

σ2
0

)
,

and we implement the variance floor via σ = ε+ softplus(ρ) (no hard clamp).

Remark. Future work should investigate layer-specific β schedules to control where uncertainty is
expressed across depth (e.g., larger β in early layers for stability, smaller β near the output to permit
output-scale variance), with the aim of tightening scale calibration (b→ 1, a→ 0) and improving
AURC/CRPS under oscillatory OOD.

C NOTATION AND SYMBOLS

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 1: Key symbols, parameters, and dimensions used throughout the paper.

Symbol Description Dimension / Type

x Input / covariate Rdx

y Target / response Rdy

D Training dataset {(xi, yi)}Ni=1

N Number of training examples N
T Number of test examples N
dx Input dimension scalar
dy Output dimension scalar
Dy Gaussian head output dim. dy(dy+3)

2

fθ Base network (predictive head) fθ : Rdx →RDy

θ All base-network weights (all layers) RP

ϕ FDN / variational / hypernetwork params parameter vector
p(y | x, θ) Likelihood (Gaussian head) N (y;µθ(x),Σθ(x))
p0(θ) Weight prior N (0, σ2

0I)
qϕ(θ | x) Input-conditioned weight posterior N (µϕ(x),diag σ

2
ϕ(x))

β KL weight in β–ELBO scalar ≥ 0
Lβ-ELBO Training loss (per-example) scalar

L Number of layers in base net scalar
dℓ Width of layer ℓ scalar
sℓ Conditioning signal for layer ℓ Rds,ℓ

ds,ℓ Dimension of sℓ dx (IC) or dℓ−1 (LP)
Aℓ Per-layer hypernetwork Aℓ : Rds,ℓ →RPℓ

Pℓ # Gaussian params for layer ℓ 2(dℓ−1dℓ + dℓ)
P Total # trainable parameters

∑
ℓ Pℓ (plus head)

hhyp Hypernetwork hidden width scalar

K MC samples per input (train/test) N
M Ensemble size (DeepEnsembleNet) N
σ0 Prior std. for weights scalar > 0
σ2 Observation noise variance (homoscedastic) scalar > 0
ε Variance floor in σ = ε+ softplus(ρ) scalar > 0
µ̂(x) Predictive mean Rdy

V̂ar[Y | x] Predictive variance estimator scalar (for dy=1)

MSE Mean squared error scalar
CRPS Continuous ranked prob. score scalar
NLL Neg. log predictive density scalar
ρ Spearman rank correlation scalar ∈ [−1, 1]
AURC Area under risk–coverage curve scalar
∆(·) ID→OOD metric delta EOOD[·]− EID[·]

D HETEROSCEDASTIC LIKELIHOOD AND VARIANCE DECOMPOSITION

We briefly collect the forms of the Gaussian β–ELBO used in this work and the associated decom-
position of predictive variance into epistemic and aleatoric components.

General Gaussian head. For a Gaussian predictive head with possibly heteroscedastic, full-
covariance noise, the per-example β–ELBO for datum (xi, yi) is

L(i)
Gauss =

1

2K

K∑
k=1

[∥∥yi − µθk(xi)
∥∥2
(Σθk

(xi))
−1 + log det

(
2πΣθk(xi)

)]
+ β DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
,

(4)

where ∥v∥2A := v⊤Av. In the homoscedastic case the covariance is constant across inputs, so a
full Σ encodes a single, global correlation structure among output dimensions; if Σ is diagonal,
the data term reduces to a (constant-)weighted least-squares plus a constant log-determinant. In

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

contrast, heteroscedastic models use an input-dependent Σθ(x), so the weights (and, for full Σθ(x),
correlations) vary with x and with the sampled weights θ.

For dy = 1 the covariance reduces to a scalar σ2
θ(x). We say the noise is homoscedastic in x if

σ2
θ(x) ≡ σ2

θ (constant across inputs for a fixed θ), and heteroscedastic in x if σ2
θ(x) varies with

x. Orthogonally, because we draw stochastic weights θ(k), one can distinguish dependence on the
sampled weights: homoscedastic in θ means σ2

θ(x) is effectively deterministic (identical across θ(k)
for a given x), while heteroscedastic in θ means σ2

θ(k)(x) changes with the sampled weights (as in
FDN/BNN where the variance head depends on θ(k)).

In the isotropic heteroscedastic case, Σθ(k)(x) = σ2
θ(k)(x)I , the Gaussian negative log-likelihood

(NLL) contribution is

1

2K

K∑
k=1

[(
yi − µθ(k)(xi)

σθ(k)(xi)

)2

+ log
(
2π σ2

θ(k)(xi)
)]

, (5)

i.e., a per-input, per-sample weighted MSE plus a variance penalty. If one instead assumes isotropic
homoscedastic noise (σ2 constant), the data term is proportional to the MSE up to an additive
constant; in practice the fit–regularization trade-off can be tuned either by setting σ2 or, equivalently,
by adjusting β to re-balance the data term against the KL.

Since our main focus is on uncertainty-aware metrics rather than cross-output correlations, in the
experiments we restrict attention to dy = 1 and use the isotropic homoscedastic case, with a single
constant variance σ2 that we absorb into β.

Scalar homoscedastic β–ELBO. Consider the latent-weight model

θ ∼ p0(θ), y | x, θ ∼ N
(
fθ(x), σ

2
)
,

with a variational family qϕ(θ | x) (IC-/LP-FDN). For one datum (xi, yi) the standard ELBO is

log p(yi | xi) ≥ Eqϕ

[
log p(yi | xi, θ)

]︸ ︷︷ ︸
data term

− DKL

(
qϕ(θ | xi) ∥ p0(θ)

)︸ ︷︷ ︸
regularizer

.

Using the Gaussian likelihood,

log p(yi | xi, θ) = −
1

2σ2

(
yi − fθ(xi)

)2 − 1
2 log(2πσ

2).

Plugging into the bound and negating yields the per-example loss

L(i)
ELBO =

1

2σ2
Eqϕ(θ|xi)

[
(yi − fθ(xi))

2
]
+ DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
+ 1

2 log(2πσ
2).

Using K reparameterized samples θ(k)∼ qϕ(θ | xi) gives the unbiased Monte Carlo estimator

L(i)
ELBO ≈

1

2Kσ2

K∑
k=1

(
yi − fθ(k)(xi)

)2
+ DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
+ 1

2 log(2πσ
2) .

Since 1
2 log(2πσ

2) does not depend on ϕ or θ, it can be dropped during optimization. If σ2 is fixed,
the data term is just a rescaled MSE, so

(2σ2)L(i)
ELBO

.
=

1

K

K∑
k=1

(
yi − fθ(k)(xi)

)2
+ (2σ2)︸ ︷︷ ︸

β

DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
,

showing that choosing constant σ2 is equivalent to training with a β–ELBO, with β simply rescaling
the effective KL weight (capacity control). In this paper we directly use a β–ELBO for training.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Heteroscedastic observation model (scalar case). If we allow the observation variance to depend
on x and the sampled weights θ,

Y | x, θ ∼ N
(
fθ(x), σ

2
θ(x)

)
(dy = 1),

the per-example β–ELBO becomes

L(i)
het =

1

2K

K∑
k=1

[(
yi − fθ(k)(xi)

)2
σ2
θ(k)(xi)

+ log
(
2π σ2

θ(k)(xi)
)]

+ β DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
,

i.e., a weighted least-squares (WLS) term plus a variance penalty, with weights w(k)(xi) =
1/σ2

θ(k)(xi) learned jointly with the mean.

Parameterization and stability. We parameterize

σθ(x) = ε+ softplus
(
ρθ(x)

)
, ε = 10−3,

which guarantees positivity and avoids numerical collapse. To mitigate variance blow-up in early
training, one can (i) apply gentle weight decay on ρθ, (ii) clip sθ(x) = log σ2

θ(x) to a reasonable
range, or (iii) use a short β warm-up so the likelihood term dominates initially.

Predictive variance decomposition. Let θ∼qϕ(θ | x) and, given (x, θ),

Y | x, θ ∼ N
(
µθ(x), σ

2
θ(x)

)
.

Scalar case. The predictive (marginal) variance decomposes as

Var[Y | x] = Eθ∼qϕ

[
σ2
θ(x)

]︸ ︷︷ ︸
aleatoric

+ Varθ∼qϕ

[
µθ(x)

]︸ ︷︷ ︸
epistemic

. (6)

Proof. By the law of total expectation, E[Y | x] = Eθ[E[Y | x, θ]] = Eθ[µθ(x)]. By the law of total
variance,

Var[Y | x] = Eθ

[
Var(Y | x, θ)

]
+Varθ

(
E[Y | x, θ]

)
= Eθ

[
σ2
θ(x)

]
+Varθ

[
µθ(x)

]
. □

Vector-output version. For Y ∈ Rdy with Y | x, θ ∼ N (µθ(x),Σθ(x)) the predictive covariance is

Cov[Y | x] = Eθ

[
Σθ(x)

]︸ ︷︷ ︸
aleatoric

+ Covθ
[
µθ(x)

]︸ ︷︷ ︸
epistemic

, (7)

obtained by the matrix form of the law of total variance.

Monte Carlo estimators. With samples θ(k) ∼ qϕ(θ | x) we estimate the predictive mean and
epistemic variance as

µ̂(x) =
1

K

K∑
k=1

µθ(k)(x), V̂arepi(x) =
1

K

K∑
k=1

(
µθ(k)(x)− µ̂(x)

)2
,

and obtain the total predictive variance via the decomposition equation 6,

V̂ar[Y | x] = 1

K

K∑
k=1

σ2
θ(k)(x) + V̂arepi(x).

For dy > 1, replace squared deviations by outer products to estimate covariances, in accordance
with equation 7.

In our experiments we use the homoscedastic scalar case (σ2
θ(x) ≡ σ2), so the aleatoric variance

reduces to a constant and all input-dependent variability in Var[Y | x] comes from the epistemic
component Varθ[µθ(x)]; the heteroscedastic extension above is included for completeness.

E FDN TRAINING AND PREDICTION ALGORITHM

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 FDN (Unified for IC-/LP-FDN): Training and Prediction

1: Inputs: dataset D = {(xi, yi)}Ni=1; base net fθ with layers 1:L; per-layer samplers qlϕ(θl | cl)
(diag. Gaussians); prior p0(θ) =

∏
l p

l
0(θl); MC K; KL schedule {βt}; variant v ∈ {IC,LP}.

2: for step t = 1, 2, . . . do
3: Sample minibatch B; set ΣNLL← 0, ΣKL← 0
4: for each (x, y) ∈ B do
5: for k = 1, . . . ,K do
6: h

(k)
0 ← x

7: for l = 1, . . . , L do

8: cl ←

{
x if v = IC
h
(k)
l−1 if v = LP

9: ε
(k)
l ∼N (0, I), θ

(k)
l ←µl

ϕ(cl) + σl
ϕ(cl)⊙ ε

(k)
l

10: h
(k)
l ← layerl

(
h
(k)
l−1; θ

(k)
l

)
11: ΣKL += DKL

(
qlϕ(θl |cl) ∥ pl0(θl)

)
12: end for
13: (µ(k),Σ(k))← head

(
h
(k)
L

)
{Σ(k) may be fixed (homoscedastic)}

14: ℓk ← logN
(
y;µ(k),Σ(k)

)
15: end for
16: ΣNLL += − 1

K

∑K
k=1 ℓk {ELBO (mean-of-logs)}

17: end for
18: L ← 1

N

(
ΣNLL + βt ΣKL

)
; update ϕ by backprop on L

19: end for
20: Predict at x⋆: repeat the per-layer sampling with cl={x⋆ or h(k)

l−1} per v to obtain (µ
(k)
⋆ ,Σ

(k)
⋆),

and return p̂(y |x⋆)≈ 1
K

∑
kN
(
y;µ

(k)
⋆ ,Σ

(k)
⋆

)
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Monte Carlo and training Hyperparameters (defaults unless noted).

Component Symbol Setting
MC samples (train) Ktrain 1
MC samples (validate) Kval 100
MC samples (test) Ktest 100
Epochs ϵ 400
Optimizer — ADAM
Learning rate η 1× 10−3

Batch size B 64
Weight prior std σ0 1.0
Variance floor ε 10−3 in σ = ε+ softplus(ρ)
KL schedule βt linear
Maximum β βmax 1.0
Warm up updates — 200
Toy Grid Seed — 0
Step Seed — 13
Sine Seed — 19
Quadratic Seed — 6
Airfoil Self-Noise Seed — 64
CCPP Power Plant Seed — 2
Energy Efficiency Heating Seed — 2
Stochastic Checkpoint — minimum CRPS in interpolation
Deterministic Checkpoint — minimum MSE in interpolation

Table 3: Number of training, validation, and test examples used for the toy 1D regression tasks and
the three UCI real datasets.

Dataset Ntrain Nval Ntest Ntotal

Toy 1D functions 1024 512 2001 3537
Airfoil Self-Noise 597 199 707 1503
CCPP Power Plant 3444 1148 4976 9568
Energy Efficiency (heating load) 307 102 359 768

F SUPPLEMENTARY FIGURES AND TABLES

In this appendix we provide additional qualitative diagnostics. Figure 6 and Figure 7 plot predictive
means versus input for the toy and real tasks, respectively. Figure 8 and Figure 9 show aggregated
MSE–variance scatter plots complementing Figure 2 and Figure 3 in the main text, while Figure 10
and Figure 11 report full risk–coverage curves (AURC) for toy and real datasets, complementing the
summary statistics in Table 5, Table 6, Table 7, Table 8, Table 9, and Table 10.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Model configurations and compute. Columns: base hidden width dhid; hypernetwork hidden
width dhyper; latent dim dh (for Gaussian Hypernetwork); ensemble size M ; parameter count P (per
model). Use “—” where not applicable.

Model dhid dhyper dh M P

MLPDropoutNet 333 — — 1 1000
Deep Ensemble 64 — — 10 1000
BayesNet 166 — — 1 998
Gaussian HyperNet 24 5 9 1 994
IC-FDNet 23 6 — 1 1004
LP-FDNet 24 5 — 1 1011

Notes. We can see that the parameter count is roughly equal. In order to keep a fair comparison we scale the
number of epochs by the ensemble size so the number of updates is roughly the same.

Table 5: Step function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.990 1.340 −0.020 1.100 2.700 3.600 0.433
DeepEnsembleNet 0.986 4.390 −0.080 3.100 2.600 11.300 1.579
BayesNet 0.987 71.820 −3.500 8.200 0.400 29.600 4.081
GaussHyperNet 1.000 1.020 0.590 54.000 167.300 169.800 2.386
IC-FDNet 0.992 2.520−475.800 373.100 1 725.400 3 820.500 16.230
LP-FDNet 1.000 1.040 −17.930 468.500 6 306.700 6 529.400 8.774

Table 6: Sine function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.966 32.680 476.110 1 178.400 112.600 4 209.700 50.061
DeepEnsembleNet 0.632 1.160 1.160 1.500 1.000 1.100 −0.179
BayesNet 0.999 1.000 1.200 19.700 55.700 55.700 1.066
GaussHyperNet 1.000 1.020 0.850 59.000 183.800 187.000 2.265
IC-FDNet 0.973 1.730 1 098.340 623.400 1 436.300 3 705.100 20.842
LP-FDNet 0.999 1.050 38.140 382.900 3 170.000 3 362.400 6.527

Table 7: Quadratic function: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.990 3 459.120 −67.320 38.700 0.100 231.700 11.176
DeepEnsembleNet 0.979 811.630 −68.320 56.400 0.500 306.200 13.003
BayesNet 0.953 3 855.460 −89.490 81.300 0.100 389.100 15.136
GaussHyperNet 0.993 2.810−112.410 142.500 253.900 603.600 9.137
IC-FDNet 0.988 1.420 225.670 377.800 1 743.900 2 721.700 14.073
LP-FDNet 0.997 1.420−107.080 308.600 2 547.300 3 510.600 10.325

Table 8: Airfoil Self-Noise: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.601 10.140 0.210 0.400 0.100 1.100 0.535
DeepEnsembleNet 0.177 9.740 0.570 0.600 0.000 0.800 0.353
BayesNet 0.330 4.490 0.400 0.700 0.200 1.100 0.335
GaussHyperNet 0.987 1.010 0.900 10.000 18.900 19.100 0.340
IC-FDNet 0.976 1.400 −3.400 7.600 19.400 25.300 0.493
LP-FDNet 0.983 1.000 1.010 9.300 28.500 28.800 0.363

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: CCPP Power Plant: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.417 6.070 0.083 0.142 0.023 0.156 0.095
DeepEnsembleNet 0.126 20.050 0.127 0.139 0.002 0.071 0.065
BayesNet 0.470 1.750 0.099 0.201 0.065 0.132 0.045
GaussHyperNet 0.998 1.020 0.108 4.884 7.134 7.159 0.283
IC-FDNet 0.970 1.200−0.303 2.731 2.916 3.401 0.211
LP-FDNet 0.902 0.990 0.903 2.844 2.129 2.820 0.260

Table 10: Energy Efficiency: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.696 4.420 0.000 0.100 0.000 0.300 0.258
DeepEnsembleNet 0.426 7.580 0.010 0.100 0.000 0.000 0.051
BayesNet 0.549 4.130 −0.100 0.200 0.000 0.100 0.106
GaussHyperNet 0.996 1.040 0.420 32.400 30.300 30.900 0.454
IC-FDNet 0.993 1.020 0.260 14.100 6.600 6.800 0.114
LP-FDNet 0.989 0.970 1.450 14.100 6.800 6.200 0.005

Figure 5: Seed-aggregated MSE–variance scatter on the Airfoil Self-Noise dataset over 100 random
initializations. Each point summarizes one seed by its OOD MSE and OOD predictive variance, and
the representative seed used in the main-text plots lies close to the overall across-seed trend.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

50

0

50

100

150

M
ea

n

Ground truth
IC-FDNet
LP-FDNet
BayesNet
GaussHyperNet
MLPDropoutNet
DeepEnsembleNet

(a) Step: H(x)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

150

100

50

0

50

100

M
ea

n

Ground truth
IC-FDNet
LP-FDNet
BayesNet
GaussHyperNet
MLPDropoutNet
DeepEnsembleNet

(b) Sine: 1.54 sin(2.39x)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

25

0

25

50

75

100

125

150

175

M
ea

n

Ground truth
IC-FDNet
LP-FDNet
BayesNet
GaussHyperNet
MLPDropoutNet
DeepEnsembleNet

(c) Quadratic: 0.43x2 − 0.41

Figure 6: Predictive mean vs. input x for the three synthetic 1D toy tasks (step, sine, quadratic), with
the ground-truth function overlaid. Shaded region corresponds to the interpolation/ ID points.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2 0 2 4 6 8 10 12
x

15

10

5

0

M
ea

n

Ground truth
IC-FDNet
LP-FDNet
BayesNet
GaussHyperNet
MLPDropoutNet
DeepEnsembleNet

(a) Airfoil Self-Noise

4 3 2 1 0 1 2 3 4
x

2

0

2

4

6

M
ea

n

Ground truth
IC-FDNet
LP-FDNet
BayesNet
GaussHyperNet
MLPDropoutNet
DeepEnsembleNet

(b) CCPP Power Plant

2 1 0 1 2 3
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M
ea

n

Ground truth
IC-FDNet
LP-FDNet
BayesNet
GaussHyperNet
MLPDropoutNet
DeepEnsembleNet

(c) Energy Efficiency

Figure 7: Predictive mean vs. standardized split feature x for the three real regression datasets
(Airfoil Self-Noise, CCPP Power Plant, Energy Efficiency). Shaded region corresponds to the inter-
polation/ ID points.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000
Predicted variance

0

1

2

3

4

5

6

Em
pi

ric
al

 M
SE

1e6

Ideal: MSE=Var
IC-FDNet (a=-4.8e+02, b=2.5)
LP-FDNet (a=-18, b=1)

BayesNet (a=-3.5, b=72)
GaussHyperNet (a=0.59, b=1)

MLPDropoutNet (a=-0.016, b=1.3)
DeepEnsembleNet (a=-0.076, b=4.4)

(a) Step: H(x)

0 5000 10000 15000 20000 25000 30000 35000 40000
Predicted variance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Em
pi

ric
al

 M
SE

1e6

Ideal: MSE=Var
IC-FDNet (a=-8.5e+02, b=3.3)
LP-FDNet (a=-30, b=1.1)

BayesNet (a=1.1, b=1.1)
GaussHyperNet (a=1.3, b=1)

MLPDropoutNet (a=95, b=34)
DeepEnsembleNet (a=1.2, b=1.1)

(b) Sine: 1.54 sin(2.39x)

0 5000 10000 15000 20000 25000 30000
Predicted variance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Em
pi

ric
al

 M
SE

1e8

Ideal: MSE=Var
IC-FDNet (a=2.3e+02, b=1.4)
LP-FDNet (a=-1.1e+02, b=1.4)

BayesNet (a=-89, b=3.9e+03)
GaussHyperNet (a=-1.1e+02, b=2.8)

MLPDropoutNet (a=-67, b=3.5e+03)
DeepEnsembleNet (a=-68, b=8.1e+02)

(c) Quadratic: 0.43x2 − 0.41

Figure 8: MSE vs. predicted variance scatter plots for the three toy tasks. Each panel aggregates ID
and OOD test points; the dashed line shows the ideal calibration MSE = Var. Legends in the PDFs
report Spearman’s ρ and linear-fit slope/intercept.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600 700
Predicted variance

0

1000

2000

3000

4000

5000

6000

7000

Em
pi

ric
al

 M
SE

Ideal: MSE=Var
IC-FDNet (a=-3.4, b=1.4)
LP-FDNet (a=1, b=1)

BayesNet (a=0.4, b=4.5)
GaussHyperNet (a=0.9, b=1)

MLPDropoutNet (a=0.21, b=10)
DeepEnsembleNet (a=0.57, b=9.7)

(a) Airfoil Self-Noise

0 10 20 30 40
Predicted variance

0

200

400

600

800

Em
pi

ric
al

 M
SE

Ideal: MSE=Var
IC-FDNet (a=-0.3, b=1.2)
LP-FDNet (a=0.9, b=0.99)

BayesNet (a=0.099, b=1.7)
GaussHyperNet (a=0.11, b=1)

MLPDropoutNet (a=0.083, b=6.1)
DeepEnsembleNet (a=0.13, b=20)

(b) CCPP Power Plant

0 20 40 60 80 100
Predicted variance

0

200

400

600

800

Em
pi

ric
al

 M
SE

Ideal: MSE=Var
IC-FDNet (a=0.26, b=1)
LP-FDNet (a=1.5, b=0.97)

BayesNet (a=-0.097, b=4.1)
GaussHyperNet (a=0.42, b=1)

MLPDropoutNet (a=-4.3e-06, b=4.4)
DeepEnsembleNet (a=0.0059, b=7.6)

(c) Energy Efficiency

Figure 9: MSE vs. predicted variance scatter plots for the three real datasets. The dashed line marks
MSE = Var; legends report Spearman’s ρ and linear-fit parameters.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0

1000

2000

3000

4000

5000

6000

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=373.092)
LP-FDNet (AURC=468.466)

BayesNet (AURC=8.201)
GaussHyperNet (AURC=53.978)

MLPDropoutNet (AURC=1.081)
DeepEnsembleNet (AURC=3.141)

(a) Step: H(x)

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0

500

1000

1500

2000

2500

3000

3500

4000

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=378.785)
LP-FDNet (AURC=414.633)

BayesNet (AURC=18.396)
GaussHyperNet (AURC=64.173)

MLPDropoutNet (AURC=1159.217)
DeepEnsembleNet (AURC=1.574)

(b) Sine: 1.54 sin(2.39x)

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0

500

1000

1500

2000

2500

3000

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=377.828)
LP-FDNet (AURC=308.589)

BayesNet (AURC=81.287)
GaussHyperNet (AURC=142.504)

MLPDropoutNet (AURC=38.709)
DeepEnsembleNet (AURC=56.388)

(c) Quadratic: 0.43x2 − 0.41

Figure 10: Risk–coverage curves (AURC) for the three toy tasks. Curves plot average squared error
as a function of coverage as high-variance predictions are rejected. Lower AURC indicates better
selective regression.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0

5

10

15

20

25

30

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=7.606)
LP-FDNet (AURC=9.311)

BayesNet (AURC=0.682)
GaussHyperNet (AURC=10.033)

MLPDropoutNet (AURC=0.355)
DeepEnsembleNet (AURC=0.607)

(a) Airfoil Self-Noise

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0

2

4

6

8

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=2.731)
LP-FDNet (AURC=2.844)

BayesNet (AURC=0.201)
GaussHyperNet (AURC=4.884)

MLPDropoutNet (AURC=0.142)
DeepEnsembleNet (AURC=0.139)

(b) CCPP Power Plant

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0

10

20

30

40

50

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=14.090)
LP-FDNet (AURC=14.140)

BayesNet (AURC=0.158)
GaussHyperNet (AURC=32.354)

MLPDropoutNet (AURC=0.072)
DeepEnsembleNet (AURC=0.071)

(c) Energy Efficiency

Figure 11: Risk–coverage curves (AURC) for the three real datasets. Lower area under the curve
indicates better ability to abstain on high-error points as coverage decreases.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G COMPUTATIONAL COMPLEXITY AND SCALABILITY

Deterministic MLP. Let N denote the number of training examples, dx the input dimension, dy
the output dimension, and consider a base network with widths {dℓ}Lℓ=0 with d0 = dx, dL = dy . A
deterministic MLP has per-epoch cost

O

(
N

L∑
ℓ=1

dℓ−1dℓ

)
,

i.e., linear in N and quadratic in the layer widths.

FDN and Hypernetworks. FDN replaces each fixed weight matrix by an input-conditioned diago-
nal Gaussian qϕ(Wℓ, bℓ | sℓ(x)) whose parameters are generated by a small per-layer Hypernetwork.
For layer ℓ, the Hypernetwork takes a conditioning vector

sℓ(x) =

{
x, IC-FDN,

aℓ−1(x), LP-FDN,

with dimension ds,ℓ ∈ {dx, dℓ−1}, and outputs (µWℓ
, log σ2

Wℓ
, µbℓ , log σ

2
bℓ
) ∈ RPℓ , where Pℓ =

2(dℓ−1dℓ + dℓ). In our implementation, each Hypernetwork Aℓ is a two-layer MLP with hidden
width hhyp. For a mini-batch of size B and K Monte Carlo samples per example, the per-epoch
complexity is

O

(
NK

L∑
ℓ=1

(
ds,ℓhhyp + hhypPℓ + dℓ−1dℓ

))
.

The three bracketed terms correspond to (i) the Hypernetwork input transform, (ii) projection to the
Pℓ Gaussian parameters, and (iii) the base-layer matrix–vector product. In all experiments we use
K = 1 and small Hypernetwork widths (chosen to satisfy a global≈ 103 parameter budget), making
hhypPℓ comparable to dℓ−1dℓ. As a result: (i) the training cost of IC-/LP-FDN remains linear in N ;
(ii) the runtime overhead relative to a deterministic MLP is a small constant factor (typically 2–4×),
set by hhyp and K.

Parameter-count clarification. A concern raised in the reviews was that LP-FDN parameter
count might scale cubically in model size (e.g., as O(d3ℓ) in the width of a layer). This would
occur only for a specific design where the Hypernetwork directly maps a dℓ-dimensional activation
to all d2ℓ entries of a dense weight matrix via a fully connected layer, which would require a d2ℓ × dℓ
matrix.

In our implementation, however, the Hypernetwork hidden width hhyp is a small constant, indepen-
dent of dℓ:

P hyper
ℓ = ds,ℓhhyp + hhyp · 2(dℓ−1dℓ + dℓ) ∼ O

(
hhypdℓ−1dℓ

)
∼ O(dℓ−1dℓ).

Thus IC-FDN and LP-FDN both have the same O(dℓ−1dℓ) scaling as the corresponding base MLP
layer; in particular, there is no cubic dependence on layer width.

Architectural trade-offs for larger scales. FDN is compatible with standard complexity-
reduction techniques without changing the formulation: (i) low-rank factorizations Wℓ = UℓV

⊤
ℓ

with the Hypernetwork generating only (Uℓ, Vℓ); (ii) row- or column-wise generation instead of full
matrices; and (iii) a shared Hypernetwork with layer-specific output heads. In the main experiments
we keep the architecture minimal to match parameter and update budgets across baselines, but these
options make FDN readily extendable to higher-dimensional and large-N settings.

Middle-layer usage and adapter-style deployment. In practice, Hypernetworks need not be ap-
plied to every layer of a deep backbone. FDN is layer-local, so one can restrict stochastic, input-
conditioned weights to a small subset of higher layers (or even just the predictive head), keeping
earlier blocks deterministic and frozen. This is analogous in spirit to LoRA and adapter modules (Hu
et al., 2022; Houlsby et al., 2019): a narrow, trainable “uncertainty adapter” is inserted on top of a
largely fixed backbone, so the additional parameters and compute scale with the adapter width rather
than with the full network depth or width. In such configurations the overall parameter and FLOP
overhead of FDN remains a small fraction of the backbone, even for large architectures, while still
enabling input-dependent uncertainty where it is most needed.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

H EVALUATION METRICS AND CALIBRATION DIAGNOSTICS

For a test set {(xi, yi)}Ti=1 and a stochastic predictor that yields K samples {y(k)i }Kk=1 from the
predictive distribution p(y | xi,D), we use the following metrics.

Point prediction error. The predictive mean at xi is

µ̂i =
1

K

K∑
k=1

y
(k)
i .

We define the per-point Monte Carlo MSE and bias as

MSEi =
1

K

K∑
k=1

(
y
(k)
i − yi

)2
, Biasi = µ̂i − yi =

1

K

K∑
k=1

(
y
(k)
i − yi

)
.

For any subset of test inputs S ⊆ {1, . . . , T} (e.g., all, ID, or OOD), we aggregate by averaging
over i ∈ S:

MSES =
1

|S|
∑
i∈S

MSEi, BiasS =
1

|S|
∑
i∈S

Biasi.

Unless otherwise noted, reported MSE and Bias refer to these region-averaged quantities.

Predictive variance and epistemic uncertainty. The Monte Carlo estimator of predictive vari-
ance at xi is

V̂ar[Y | xi] =
1

K

K∑
k=1

(
y
(k)
i − µ̂i

)2
,

which we aggregate over ID or OOD test splits by averaging across i. In the homoscedastic Gaussian
setting this decomposes into aleatoric and epistemic components via the law of total variance; we
focus on the epistemic part induced by the weight distribution.

Continuous ranked probability score (CRPS). For a univariate predictive CDF Fi(y) and real-
ization yi, the CRPS is

CRPS(Fi, yi) =

∫ ∞

−∞

(
Fi(z)− 1{z ≥ yi}

)2
dz.

Using samples y(k)i ∼ Fi, we apply the standard Monte Carlo estimator

ĈRPSi =
1

K

K∑
k=1

|y(k)i − yi| −
1

2K2

K∑
k=1

K∑
ℓ=1

|y(k)i − y
(ℓ)
i |.

We report the average CRPS over ID and OOD test splits. Lower CRPS within a region (ID or OOD)
indicates a sharper and better calibrated predictive distribution: mass is concentrated near yi without
being spuriously overconfident. Under shift we typically expect CRPSOOD > CRPSID because the
task is harder; for a fixed OOD difficulty, smaller CRPSOOD (or smaller ∆CRPS, see below) is
better.

Calibration: MSE–variance relation. To assess calibration we compare the predicted variance
V̂ar[Y | xi] with the empirical per-point MSE

ei = MSEi =
1

K

K∑
k=1

(
y
(k)
i − yi

)2
.

We first compute Spearman rank correlation ρ = corrSpearman({V̂ari}, {ei}) and fit the linear
relation ei ≈ a+ b V̂ari by least squares; the ideal fit has a ≈ 0 and b ≈ 1. High ρ means that larger
predicted variance reliably flags larger squared error (good ranking), while (a, b) measure the scale
of the variances relative to the errors.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

In addition, we form variance–MSE calibration curves by binning test points into B quantiles of
predicted variance. In each bin b (with index set Sb) we compute the mean predicted variance Varb =
1

|Sb|
∑

i∈Sb
V̂ari and empirical MSE MSEb = 1

|Sb|
∑

i∈Sb
MSEi, and plot the pairs (Varb,MSEb)

together with the ideal y=x line. Points lying close to this diagonal indicate that the typical error
magnitude in each confidence bin matches the predicted variance scale.

Risk–coverage (AURC). Using variance as an inverse-confidence score, we sort test points by
increasing V̂ar[Y | xi]. For a coverage level c ∈ (0, 1] (fraction of most-confident points retained)
we compute the cumulative risk R(c) as the average per-point MSE over the retained subset:

R(c) =
1

|S(c)|
∑

i∈S(c)

MSEi,

where S(c) contains the most-confident fraction c of test points. The area under the risk–coverage
curve, AURC =

∫ 1

0
R(c) dc, is estimated numerically. Lower AURC is better: for a fixed difficulty,

it means that as we keep only high-confidence predictions, the resulting risk drops more quickly.

ID vs. OOD deltas. For each model and dataset we compute MSE, variance, and CRPS separately
on ID (interpolation) and OOD (extrapolation) regions, using the region averages defined above, and
report

∆MSE = MSEOOD −MSEID, ∆Var = VarOOD −VarID, ∆CRPS = CRPSOOD − CRPSID.

For a fixed notion of shift, good uncertainty estimates should exhibit small ∆MSE (robust accu-
racy), large and positive ∆Var (higher uncertainty OOD than ID), and small ∆CRPS (predictive
distributions that degrade gracefully rather than collapsing or becoming wildly miscalibrated).

On NLL / NLPD. Negative log predictive density (NLL / NLPD) is another strictly proper scoring
rule for probabilistic regression and is closely related to CRPS. We computed NLL in preliminary
experiments, but found that in our setting it was (i) strongly correlated with CRPS and MSE, and
(ii) much more sensitive to occasional extreme errors due to the logarithm, which can dominate the
average and obscure more typical behavior. CRPS, by contrast, remains finite, can be estimated
directly from samples without specifying a parametric density or bandwidth, and provides a more
interpretable summary of the overall predictive distribution (both sharpness and calibration) under
dataset shift. For these reasons, and to avoid redundant plots/tables, we report CRPS (together with
MSE, variance, and AURC) as our primary proper scoring rule and omit NLL/NLPD from the main
results.

LLM DISCLOSURE

ChatGPT assisted with minor copy-editing, LaTeX phrasing, and bibliography chores (suggesting
candidate references and drafting BibTeX). The authors independently reviewed the literature and
verified all citation metadata (titles, authors, venues, DOIs/arXiv).

29

	Introduction
	Related Work
	Method
	Preliminaries
	FDN: Input-Conditioned Weight Distributions

	Experiments
	Toy function families and ID/OOD protocol
	Real regression datasets and ID/OOD splits
	Complexity, capacity, and fairness
	Metrics and calibration diagnostics
	Results

	Limitations
	Conclusion
	Unified view via q(x)
	Training objective
	Notation and symbols
	Heteroscedastic likelihood and variance decomposition
	FDN Training and Prediction Algorithm
	Supplementary Figures and Tables
	Computational complexity and scalability
	Evaluation metrics and calibration diagnostics

