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ABSTRACT

Modern probabilistic regressors often remain overconfident under distribution
shift. We present Functional Distribution Networks (FDN), an input-conditioned
distribution over network weights that induces predictive mixtures whose disper-
sion adapts to the input. FDN is trained with a S-ELBO and Monte Carlo sam-
pling. We further propose an evaluation protocol that cleanly separates interpo-
lation from extrapolation and stresses OOD sanity checks—e.g., that predictive
likelihood degrades under shift while in-distribution accuracy and calibration are
maintained. On standard regression tasks, we benchmark against strong Bayesian,
ensemble, dropout, and hypernetwork baselines under matched parameter and up-
date budgets, and assess accuracy, calibration, and shift-awareness with standard
diagnostics. Together, the framework and protocol aim to make OOD-aware, well-
calibrated neural regression practical and modular.

1 INTRODUCTION

Modern neural predictors are routinely deployed under dataset shift, where test inputs depart from
the training distribution. In these regimes, point predictions from deterministic networks and naive
uncertainty surrogates from traditional stochastic heuristics often become overconfident—assigning
high probability to wrong outcomes, particularly off-support/extrapolation—undermining reliable
decision making. Bayesian Neural Networks (BNNs), MLP with dropout, Deep Ensembles, and
Hypernetworks are strong practical baselines, yet they can still under-react outside the training sup-
port or require substantial ensembling/sampling to behave robustly (Quifionero-Candela et al.,[2009;
Ovadia et al.,2019;|Guo et al.,[2017; MacKay| 1992; Neall |1996; |Graves, [201 1; Blundell et al., 2015;
Gal & Ghahramanil [2016; |Lakshminarayanan et al.,|2017; |Ha et al., ) 2017).

This motivates architectures that are uncertainty-aware and calibrated—sharp in-distribution (ID)
and widening appropriately OOD (higher CRPS, wider intervals). We pursue this with Functional
Distribution Networks (FDN), which place input-conditional distributions over weights to modulate
uncertainty locally in . Concretely, FDN amortizes an input-conditional posterior g,(6 | x) via
small Hypernetworks and trains it with a Monte Carlo likelihood and a 5-ELBO. Under matched
budgets, FDN is ID-competitive and well-calibrated by scale: on low-frequency/piecewise-smooth
shifts (step, quadratic tasks) it achieves near-unity MSE—Var slopes with high Spearman and fa-
vorable AURC/CRPS; on oscillatory shifts (sine task) it retains rank but under-scales variance—an
explicit target for improvement.

Overview. Rather than treating weights as fixed (or globally random), FDN places an input-
conditioned distribution over weights:

Ole~p@|z), ylxzb~ply|z0). (D

For tractability, we set the conditional prior to be input-agnostic, p(6 | z) = po(0) = N(0,031).
This keeps the KL term in the ELBO simple and provides a stable regularizer; all input dependence
is carried by the amortized posterior g, (6 | ). Many common models can be cast in this form via
different choices of g, (6 | x); we detail these instantiations in Appendix [A]

Intuitively, sampling 0 from an x-dependent posterior lets the function adapt locally; when x lies far
from the training support, the conditional weight distribution can broaden, yielding wider, appropri-
ately uncertain predictive densities.
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Training objective. We train with a Monte Carlo 5S—ELBO over g4 (6 | ), report an IWAE variant,
and derive the LP-FDN layer-wise KL (averaged over sampled activations); details in Appendix

Evaluation protocol. We split test points into interpolation (ID) and extrapolation (OOD). We
summarize shift by deltas A(-) = Eoop[-] — Emp[-]. A well-behaved model should widen un-
certainty off-distribution: typically AVar > 0, with higher error and worse distributional score
(AMSE > 0, ACRPS > 0). Calibration is assessed via the MSE—variance relation (ideal slope
~ 1, intercept ~ () and positive rank agreement (Spearman p > 0).

Contributions.

* Model: We define FDN as an input-conditioned distribution over network weights, realized
by a lightweight hypernetwork and optimized by the 5-ELBO. We consider two variants:
Input-Conditioned Functional Distribution Network (IC-FDN), which conditions only on
the input, and Layer-Progressive Functional Distribution Network (LP-FDN), which con-
ditions each layer on the previous activation and samples sequentially through depth.

* Protocol: We propose a simple, reproducible extrapolation protocol that makes the target
behavior explicit (AVar > 0) and complements it with calibration diagnostics (MSE—
variance slope and rank correlation; Risk-Coverage curves).

* Fair comparisons: To avoid confounding factors, we match parameter counts and update
budgets across methods, ensuring apples-to-apples comparisons with baseline.

* Empirical findings. Under matched budgets, FDN delivers competitive ID accuracy and
the strongest scale calibration on low-frequency or piecewise-smooth shifts (quadratic,
step tasks)—near-unity MSE—Var slopes with small intercepts and high rank. On highly
oscillatory shift (sine), FDN preserves rank but under-scales variance, increasing AURC.

Scope, significance, and modularity. FDN is simple to implement, compatible with standard
training pipelines, and agnostic to the backbone. By conditioning weight uncertainty on the input
(and, optionally, compact context), it yields uncertainty that is sharp in-distribution yet broadens
gracefully off-support. Crucially, FDN is a layer-level component: it can replace conventional MLP
layers, variational (Bayesian) layers, or Hypernetwork layers with minimal code changes. This al-
lows practitioners to retrofit predictive uncertainty into existing architectures without a full redesign:
keeping the backbone and training loop, swapping selected blocks for FDN layers, and training un-
der the same objective (plus a KL term).

Position relative to Neural Processes. Unlike Neural Processes (NP), which amortize a predictive
distribution directly from a context set, FDN does not access the output head in that way. Instead,
it modulates weight uncertainty via an input-conditional variational family ¢4 (@ | «) while leaving
the predictive head unchanged. The goal is not to replace NP-style predictors, but to plug into and
compete with standard layer stacks.

Code availability. All code, configs, and scripts to reproduce the experiments will be released
upon acceptance.

2 RELATED WORK

Uncertainty in neural regression. BNN place distributions over weights and infer posteriors via
variational approximations or MCMC (MacKay, (1992} Neall |1996} |Graves, 2011} |Blundell et al.,
2015)). Deep Ensembles average predictions from independently trained networks and are a strong
practical baseline (Lakshminarayanan et al.,2017; Maddox et al.,[2019). MLP (with dropout) inter-
prets dropout at test time as approximate Bayesian inference (Gal & Ghahramani, 2016). Het-
eroscedastic regression learns input-dependent output variance but retains deterministic weights
(Nix & Weigend, |1994; Kendall & Gal,[2017)).

Hypernetworks and conditional weight generation. Hypernetworks generate the weights of a
primary network using an auxiliary network (Ha et al.| 2017)); related work explores dynamic, input-
conditioned filters and conditional computation (De Brabandere et al., [2016} |Brock et al.| [2018]).
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Bayesian/uncertainty-aware Hypernetworks place distributions over generated weights and train
them variationally (Krueger et al., |2017). Our FDN differs by conditioning weight distributions
on inputs to modulate uncertainty itself, not only deterministic weights.

Meta-learning and context-conditioned predictors. Neural Processes (NP) learn a distribution
over functions conditioned on a context set C, typically via a global latent that captures function-level
uncertainty and yields p(y | z,C) (Garnelo et al., 2018; [Kim et al., 2019). Gradient-based meta-
learning (e.g., MAML) instead optimizes an initialization that is adapted per task via inner-loop
gradients (Finn et al., 2017)). FDN is complementary: it amortizes weight uncertainty directly on the
input (and optionally a lightweight context) through g4(8 | z,c), requires no inner-loop adaptation
or explicit context set, and injects uncertainty at the layer level rather than through a single global
function latent. Practically, this makes FDN a drop-in module for standard backbones, enabling
input-aware epistemic uncertainty without redesigning the predictive head or training pipeline.

Calibration and OOD behavior. Proper scoring rules such as the continuous ranked probability
score (CRPS) are strictly proper and reward calibrated predictive distributions (Gneiting & Raftery,
2007). Empirical studies highlight overconfidence under dataset shift and introduce OOD bench-
marks (Ovadia et al.,|2019). Our evaluation therefore separates interpolation from extrapolation and
uses the monotonic relationship between per-sample squared error (MSE) and predicted variance as
a simple diagnostic calibration check.

Positioning. Compared to BNNs, FDN sidesteps global posteriors by amortizing local weight
distributions g, (6 | «). Compared to Deep Ensembles, FDN uses shared parameters and stochastic
generation instead of replicating full models. Compared to Hypernetworks, FDN explicitly models
uncertainty over generated weights and regularizes it with a KL prior, enabling principled OOD
expansion.

3 METHOD

3.1 PRELIMINARIES

Let fp : R% — RPv denote a network that outputs the parameters of a d,-dimensional Gaussian pre-

dictive head. Here d,, and d,, are the input and output dimensions, and D, = 44(dy+3) 44 the number

of free parameters for a full-covariance d,-Gaussian (mean plus Cholesky-coded covariance). We
write the observation model as

p(y | #,0) = N(y; po(x), Bo(2)),  where  fo(z) := (uo(2), So()).

Homoscedastic means the noise covariance is constant across inputs (Xg(x) = X); heteroscedastic
means it varies with x, 8 (X¢(x)). This is orthogonal to the correlation structure:

« Isotropic (uncorrelated, equal variance): ¥ = 0>] (homoscedastic) or Xg(z) = o2 (z)]
(heteroscedastic).

* Diagonal (uncorrelated, per-dimension variance): ¥ = diag(o?,. .. ,afly), or Yg(z) =
diag( exp sg(x)) with sp(z) = log 03 ().

 Full (correlated): any symmetric positive-definite covariance admits a Cholesky factor-
ization, homoscedastic or heteroscedastic:

S =LL" or Yy(z)=Le(z)Le(x)", diagL()>0.

The per-example S-ELBO then becomes

K
; 1
L8 = 3¢ 2 [[p=r0@ll{s, ) + logdet(2m Do, (2:)) ] + B Dict.(as(8 | 2 Ipo(0)),
k=1

where |[v]|% := v Av. In the homoscedastic case the covariance is constant across inputs, so a
full ¥ encodes a single, global correlation structure among output dimensions; if 3 is diagonal,
the data term reduces to a (constant-)weighted least-squares plus a constant log-determinant. In
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contrast, heteroscedastic models use an input-dependent ¥y (), so the weights (and, for full ¥y (x),
correlations) vary with x, 6.

For d, = 1 the covariance reduces to a scalar 03(z). Homoscedastic in x means 03(z) = o}
(constant across inputs for a fixed 6), whereas heteroscedastic in x means o3(z) varies with z.
Orthogonally, because we draw stochastic weights #(*), one can distinguish dependence on the
sampled weights: homoscedastic in 6 means o2 () is effectively deterministic (identical across %)
for a given x), while heteroscedastic in 6 means crg(k) (z) changes with the sampled weights (as in

FDN/BNN where the variance head depends on (%)),

In the isotropic heteroscedastic case (S () = 0., (2)1) the Gaussian NLL/NLPD contribution

1S
1 | (41 = oo () ) 2
ﬁz T )+ log(2mapon (1)) |-
k=1

T (i)

Thus, the data term is a per-input, per-sample weighted MSE plus a variance penalty. If one assumes
isotropic homoscedastic noise (o2 constant), the data term is proportional to MSE up to an additive
constant; in practice the fit-regularization trade-off can be tuned either by setting o2 or, equivalently,
by adjusting 3 to re-balance the data term against the KL. Since our focus is on uncertainty-aware
metrics rather than cross-output correlations, we restrict attention to d,, = 1 and adopt the isotropic
homoscedastic case (a single, constant variance o> which we will absorb into 3). A more general
treatment—including heteroscedastic and full-covariance models, as well as structured priors—is
left to future work.

Why homoscedastic noise? We fix the observation variance to a single scalar o2 (set to 1 in our
runs) for three reasons: (i) isolation of epistemic effects: our focus is on input-conditional weight
uncertainty ¢4(6 | x); a fixed o2 avoids confounding with an input-dependent noise head; (ii)
fairness and simplicity: all baselines use the same likelihood, so differences reflect how each method
models weight uncertainty rather than aleatoric parameterization; (iii) capacity control equivalence:
with fixed o2, the data term is a rescaled MSE and changing o2 simply rescales the KL weight
(effective (3).

We refer the reader to Appendix |C| for the heteroscedastic variant and the predictive-variance de-
composition.

3.2 FDN: INPUT-CONDITIONED WEIGHT DISTRIBUTIONS

We drop explicit context and condition only on signals from the network itself. For each layer
¢, FDN places a diagonal-Gaussian over its weights whose parameters are produced by a small
Hypernetwork Ay(-). We choose the conditioning signal

(k) z, IC-FDN
S .
¢ al¥), LP-FDN (with o{" = ),

and set
(Lw,es PW,es Moy Pbe) = Ae(s((gk)), ow,e = e+tsoftplus(pwy), ope = e+softplus(py,),
with a small floor € = 10~3 for numerical stability. Sampling then proceeds as

W = pwet owe © 2y B = e+ one© 27, ng})f ~N(0, 1),

and, for LP-FDN, s, = a,g’i)l with aék) = fg(aé}i)l; Wz(k), bgk)) (sequential across layers).

Variational family (compact). FDN uses a layer-wise diagonal-Gaussian over weights, condi-

tioned on s, € {z, agli)l :
L
q5(0 | 2) = [ [ Mvec(We); pwie(se), diag oo (s0)) N(be; o e (se), diag o3 o(se)),
=1
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Algorithm 1 FDN (Unified for IC-/LP-FDN): Training and Prediction

1: Inputs: dataset D = {(z;,v;)}},; base net fy with layers 1:L; per-layer samplers qé(@l | er)
(diag. Gaussians); prior po(6) = [], ph(6;); MC K; KL schedule {f3;}; variant v € {IC,LP}.
2: forstept =1,2,... do

3:  Sample minibatch B; set XNy, + 0, Xk, 0
4:  foreach (z,y) € Bdo
5: fork=1,...,Kdo
6: h(()k) —
7: fori=1,...,Ldo
o - x ifv=1IC

: c

PR ifv=Lp

9: el(k) ~N(0,1), G(k) —pl(e) +al(a) © 5(k)
10: hl(k) — layerl(hl(k)l, H(k))
11: YKL += DKL(C]¢(9l|Cl Hpé(@l))
12: end for
13: (p®), (k) head(h(Lk)) {2*) may be fixed (homoscedastic)}
14: O, + log N(y; n™, £*))
15: end for
16: YNoL += —% Zle {5, {ELBO (mean-of-logs)}
17:  end for
18: L« % (ENLL + By EKL); update ¢ by backprop on £
19: end for

20: Predict at z,: repeat the per-layer sampling with ¢;={z, or hl(ﬁ)l} per v to obtain (uik), Eik)),

and return p(y |z,.)~ %>, (y,,u*) E(k))

with Hypernetwork outputs (fuw.e, pw, e, to,¢, Po.e) = Ae(s¢) and
owe = 1073 + softplus(pw.¢), Opp = 1073 + softplus(pp.e).
In compact form (concatenating all layers),
45(0 | ) = N6 pola), dingo3()), 6% = py(a) + o5() 0¥, W~ N (0,1),

and the predictive density is the Monte Carlo mixture
ply|z) ~ Zp(ylw 0®), 6%~ gy(6 ] ).

Prior and regularization. We regularize ¢,(6|z) toward a simple reference po(f) =
Hz N(0,021) via a B-weighted KL term (we use o9 = 1 in all experiments). For diagonal Gaus-
sians,

0'2 + 2 0'2,
Dy (N (u, diag o) || N(0,031)) = & E (JUQ'MJ — 1 — log aj2> ,
j 0 0

and we sum this over all layers (for both W, and b,). The variance floor is implemented by the ¢ in
o = ¢ + softplus(p) rather than a hard bound.

Algorithm [I] summarizes training (5-ELBO with re-parameterized gradients) and inference (Monte-
Carlo mixtures over weight draws) for both IC-FDN and LP-FDN.

4 EXPERIMENTS

Tasks and splits. We evaluate FDN on synthetic 1D meta—regression tasks and standard
small/medium regression benchmarks. For the 1D analysis, let the ambient domainbe R = (—L, L)
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(a) Step: 0(x) (b) Sine: 1.54 sin(2.39 ) (c) Quadratic: 0.432% — 0.41

(d) Step: 6(z) (e) Sine: 1.54 sin(2.39 x) (f) Quadratic: 0.43z — 0.41

Figure 1: Suite of 1D regression evaluations across three functions: (a—c) Risk—Coverage (AURC)
curves (lower is better) for the step 0(z), sine 1.54 sin(2.39 ), and quadratic 0.43z2 — 0.41; (d—f)
corresponding MSE vs. predicted variance scatter plots (dashed line shows the ideal MSE = Var).
Colors denote models; legends within each panel report per-model statistics (e.g., AURC or Spear-
man’s p).

and define the interpolation region Rinterp = [—{,!] C R. Training inputs satisfy z; € Rinterp With
yi = f(x;). At test time we report metrics separately on the ID split Rinerp and the OOD split
Rextrap = R \ Rinterp, and we also include the aggregation of both. This protocol cleanly isolates
ID interpolation from OOD extrapolation.

4.1 COMPLEXITY, CAPACITY, AND FAIRNESS

Baselines. We evaluate four stochastic baselines: MLP with dropout (MLPDropoutNet), Deep
Ensemble of MLP (DeepEnsemblesNet), Variational BNN (BayesNet), and Gaussian Hyper-
network (GaussianHyperNet). Because our study centers on calibrated predictive distributions
(CRPS, MSE—Var slope/intercept, AURC), we omit the Deterministic MLP and the (input-
conditioned) Hypernetwork from the main uncertainty analysis; their ID/OOD MSE is comparable
to Ensembles/Dropout. Training details (optimizer, batch size, learning rate, prior scale o, variance
floor o'in) appear in Table[T] (Appendix D).

Link-budget. We consider networks with a single hidden layer and fix the parameter budget to
P =~ 1000 (£5%) for all models, counting all trainable parameters, including any Hypernetwork
components; counts appear in Table[2] (Appendix D). To equalize the update budget, ensembles with
M members use epoch-split training (epochs divided by M). For non-ensemble networks we use
one Monte Carlo draw per update (K = 1), keeping per-step cost comparable and the total number
of parameter updates matched across models.

Note: To hit the P target, MLPDropoutNet uses widened hidden layers, increasing capac-
ity/expressive power and potentially improving ID MSE independent of uncertainty quality; hence
our emphasis on calibration-centric metrics.

Metrics, diagnostics, and reporting. We evaluate five axes with compact visuals: Accuracy
(MSE]); Uncertainty quality (predicted Var[j | z]—small ID, increasing in OOD); Calibra-
tion via the MSE-variance relation—(i) rank agreement, Spearman p(Var, MSE), and (ii) scale
fit MSE= a + b Var with ideal a =0 (error offset at near-zero variance) and b~ 1 (maps uncertainty
to error; b > 1 = variances too small/overconfident; b < 1 = too large/underconfident); Robustness
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Figure 2: MSE vs. predicted variance on three 1D regression tasks in a 3 x 2 grid: rows correspond
to tasks 0(z), 1.54 sin(2.39 x), and 0.43z2 — 0.41; left column shows test interpolation (ID), right
column shows test extrapolation (OOD). Colors denote models; legend entries include Spearman’s
p between variance and MSE. The dashed line marks the ideal relation MSE = Var.

(CRPSJ, strictly proper, full-predictive); and Selective risk (AURC/ from variance-ranked absten-
tion, capturing decision usefulness). We plot MSE—Var scatter with an MSE = Var guide and
risk—coverage curves across tasks (Fig. [T); ID/OOD MSE-Var scatter (Fig. [2); and bar charts of
ID—0OO0D deltas (e.g., AMSE = MSEOOD — MSEID) (Flg EI)

4.2 RESULTS

Discussion. Across the three tasks (Table in Appendix @), FDNet’sE| core strength is cali-
bration by scale: on step and quadratic, both IC-FDNet and LP-FDNet achieve MSE—Var slopes
close to the ideal (b~ 1; e.g., b € [1.04, 1.25]) with small intercepts, while maintaining strong rank
agreement (Spearman p > 0.85, often = 1.0 on quadratic). In these regimes, FDNet’s predictive vari-
ance increases in lock—step with difficulty (AVar large) and its selective abstention is competitive
(AURC low—moderate). Importantly, classical baselines that fit ID sharply (e.g., Dropout, Ensem-

"Terminology. FDN denotes the framework. We use FDNet for the specific architectures considered in the
experiments.
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Figure 3: AMSE, AVar, and ACRPS for three 1D regression tasks: (a) step 6(z), (b) sine

1.54 sin(2.39 ), and (c) quadratic 0.432% — 0.41.

bles) show mis-scaled uncertainties on these tasks (very large b on quadratic and step), indicating
that even when they rank hard points reasonably well, their variance does not track the magnitude

of the error.

On the sine task—our most oscillatory OOD setting—the picture flips. All methods suffer, but
FDNet’s magnitude calibration deteriorates (very large b with negative a), despite excellent ranking
(p > 0.93). FDNet (and MLPDropoutNet) do raise variance substantially OOD (AVar ~ 3), yet
the error explodes faster than the variance grows (huge AMSE), yielding poor AURC. In contrast,
DeepEnsembleNet and Gaussian HyperNet see far smaller error increases (much lower AMSE),
which mechanically keeps their AURC low even though their ranking can be weak (e.g., p = 0.28
for Ensembles). The takeaway is that AURC blends both calibration and absolute error growth:
excellent rank calibration cannot compensate for large OOD error if the scale is under-estimated.

Calibration and ranking across splits (ID vs OOD). On ID, all methods cluster near the origin
(low error and variance), so Spearman is low-information and calibration is judged mostly by small
intercepts. OOD reveals the separation: on step and quadratic, I[C/LP-FDN maintain strong rank-
ing and sit close to the MSE = Var diagonal (near-unity slopes, small intercepts), i.e., variance
scales with error; several baselines lie visibly above the guide (steep fits), signaling overconfidence
in magnitude. On sine, FDNet still ranks difficult points well (high Spearman) but under-scales
uncertainty (steep fitted lines), so errors grow faster than variance. These patterns are evident in the
MSE-Var scatters (Fig.[2) and consistent with the ID-OOD deltas (Fig.[3): FDN shows large AVar
on step/quadratic (tracking difficulty), whereas on sine the surge in AMSE dwarfs AVar. In short,
on smooth shifts (step, quadratic) multiple methods rank well but FDN is best on scale; on oscil-
latory OOD (sine task), FDN uniquely preserves high rank while most baselines ranking degrades,

though FDN’s variance still under-scales the error.
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Where FDNet is strong. (i) Scale calibration on smooth shifts: near-ideal slopes on step/quadratic
show that FDNet’s input-conditioned weight uncertainty translates into variances that numerically
match error growth. (ii) Ranking: consistently high p means FDNet reliably flags risky points. (iii)
Sensitivity to shift: large AVar indicates FDN reacts to OOD, avoiding the flat-variance pathology
seen in some baselines.

Where FDNet is weak. (i) Highly oscillatory OOD: on sine, variance grows but not enough relative
to error (large b, poor AURC), pointing to an under-scaled uncertainty head under rapid frequency
mismatch. (ii) CRPS under severe shift: large ACRPS mirrors the magnitude miscalibration.

Advantages and implications. FDNet’s principal advantage is calibrated scaling when the OOD
distortion is smooth/monotone (step/quadratic), where many standard methods remain overconfident
(large b). Its high p across tasks suggests FDNet is a strong triage signal even when the absolute scale
lags (sine). Practically, this favors FDNet in settings where errors grow gradually outside the training
manifold (safety margins, defer policies), while highlighting a clear avenue for improvement on
oscillatory shifts: stronger variance scaling (e.g., temperature on o, variance-floor tuning), richer
priors, or layer-wise 3 schedules. Overall, under matched capacity and update budgets, FDN delivers
robust rank calibration and, on two of three tasks, near-ideal error—uncertainty scaling—precisely
the behaviors a stochastic regressor should exhibit under controlled distribution shift.

High-level observations and takeaways. Under matched budgets, ID MLPDropoutNet and
DeepEnsembleNet typically attain the lowest MSE; FDNet is slightly less sharp but already shows
strong rank calibration (high Spearman). OOD separates methods: on step and quadratic, IC/LP-
FDNet most consistently grow variance in proportion to error—near-unity MSE—Var slopes with
small intercepts and high Spearman, yielding large AVar, smaller ACRPS, and competitive AURC,
while several baselines remain overconfident (steep fits). On the oscillatory sine task, FDNet pre-
serves ranking but under-scales variance relative to error (steep slopes, higher AURC), a focused
improvement area. For risk-aware use cases that depend on “knowing when you don’t know,” FD-
Net’s uncertainty that generalizes under shift is often preferable to marginal gains in ID sharpness.

5 LIMITATIONS

FDN’s input-conditioned weight stochasticity, like similar stochastic layers, can overfit spurious
cues if 3 is too small or the prior is too loose; careful KL scheduling and priors are important.
LP-FDN samples weights layer-by-layer, adding latency vs. a deterministic pass; sampling at test
time also incurs a compute/latency trade-off with K. Our study focuses on regression: extending to
classification requires discrete predictive mixtures and calibration beyond CRPS (e.g., ECE/Brier).
Finally, while our Hypernetworks are lightweight, scaling to very deep backbones may benefit from
structured or low-rank generators and variance-temperature/floor controls, particularly to address
under-scaling on oscillatory OOD.

6 CONCLUSION

We introduced Functional Distribution Networks (FDN), which amortize input-conditioned dis-
tributions over weights to produce predictive densities that remain sharp in-distribution yet ex-
pand appropriately under shift. Trained with a Monte Carlo objective and a S-weighted KL to
a simple prior, FDN delivers strong rank calibration across tasks and near-ideal scale calibration
on smooth/piecewise-smooth shifts (step, quadratic tasks), as evidenced by Spearman, MSE—Var
slope/intercept, AVar, CRPS, and AURC. Under a fair protocol that matches parameters, updates,
and predictive-sample budgets, FDN provides uncertainty that is practically useful for abstention
and risk-aware inference. Future work includes stronger variance scaling (temperature/floors, layer-
wise 3 scheduling), structured/priors for deep backbones, frequency-aware conditioning to handle
oscillatory OOD (sine task), and calibrated extensions to classification.
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Q

NN B> e

(i)

diag(a)

{0,1}
{0,1,...,n}
[a, 0]

(a,0]

A\B

Pag(x;)

Numbers and Arrays

A scalar (integer or real)

A vector

A matrix

A tensor

Identity matrix with n rows and n columns

Identity matrix with dimensionality implied by context
Standard basis vector [0,...,0,1,0,...,0] with a 1 at po-
sition ¢

A square, diagonal matrix with diagonal entries given by a
A scalar random variable

A vector-valued random variable

A matrix-valued random variable
Sets and Graphs
A set

The set of real numbers

The set containing 0 and 1

The set of all integers between 0 and n
The real interval including a and b

The real interval excluding a but including b

Set subtraction, i.e., the set containing the elements of A

that are not in B
A graph
The parents of x; in G

Indexing

Element ¢ of vector a, with indexing starting at 1
All elements of vector a except for element ¢
Element ¢, j of matrix A

Row i of matrix A

Column 4 of matrix A

Element (4, j, k) of a 3-D tensor A

2-D slice of a 3-D tensor

Element ¢ of the random vector a

Calculus

10
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Z—i Derivative of y with respect to =
y . . .
e Partial derivative of y with respect to x
Vazy Gradient of y with respect to x
Vxy Matrix derivatives of y with respect to X
Vxy Tensor containing derivatives of y with respect to X
% Jacobian matrix J € R™*™ of f : R™ — R™
V2 f(x)or H(f)(x)  The Hessian matrix of f at input point
/ f(x)dx Definite integral over the entire domain of
: f(x)dx Definite integral with respect to & over the set S

Probability and Information Theory

P(a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or
over a variable whose type has not been specified

a~ P Random variable a has distribution P

Ex~p[f(z)]or Ef(xz) Expectation of f(z) with respect to P(x)

Var(f(x)) Variance of f(z) under P(x)

Cov(f(z),g(x)) Covariance of f(z) and g(x) under P(x)

H(x) Shannon entropy of the random variable x

DxL(P|Q) Kullback-Leibler divergence of P and Q

N(z;p, %) gaussian distribution over © with mean p and covariance

Functions

f:A—DB The function f with domain A and range B

fog Composition of the functions f and g

f(z;0) A function of @ parametrized by 6. (Sometimes we write
f () and omit the argument 6 to lighten notation)

log x Natural logarithm of x

o(x) Logistic sigmoid, m

¢(z) Softplus, log(1 + exp(x))

llz||, LP norm of

||| L? norm of

xt Positive part of z, i.e., max(0, )

1condition is 1 if the condition is true, O otherwise

11
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A UNIFIED VIEW VIA ¢,(0 | )

All methods we consider can be written as
K
1
pula) = [ply|2.0)as®]2)d0 ~ £> plyl26%). 0¥~ gu(6 ] 2)
k=1

In this paper, architectural layers are specified by the choice of g4(# | ). Framing models through
q4(0 | ) enables apples-to-apples comparisons: (i) how they set the spread of plausible weights,
(ii) whether that spread adapts to the input, and (iii) how much compute they expend to form the
predictive mixture. FDN’s module-level approach directly targets this knob: it provides local, input-
aware uncertainty where it is inserted (e.g., the head or later blocks), broadens off-support as inputs
drift from the training domain, and leaves the surrounding backbone and training loop unchanged.

FDN (IC/LP) FDN makes g, input-conditional and stochastic. A common choice is diagonal-
Gaussian, factorized by layer:

460 | 2) = [ [Mpue(2), diag o7 ().
J4

This input-conditional variant is /C-FDN. For layer-propagated conditioning (LP-FDN), the {-th
layer’s weight distribution depends only on the previous activation:

qs(0¢ | ) = ./\/(,ug(ag_ﬁ, diag ag(ag_l)), ap == x,
and sampling proceeds sequentially across layers along the same Monte Carlo sample path. This
induces a first-order Markov structure in depth, allowing uncertainty to expand as signals propa-

gate—later layers can broaden even when early layers remain sharp. We regularize with a per-layer

KL:
L

B Dkr(gs(0r | )llpo(6r))-
=1
More generally, one could condition longer histories ag.¢—1; in this paper, we restrict to first-order
(one-step) conditioning. Note, in the limit o, — 0O for all ¢, the model collapses to a deterministic
layer-conditioned Hypernetwork.

Deterministic Hypernetwork. A deterministic Hypernetwork G maps the input to weights,
yielding a degenerate g:

050 ) =80 — Gy(x)),  plylz)=py|z,Gs(x)).
Training typically uses NLL or MSE; weight decay on ¢ can be interpreted as a MAP prior on the
Hypernetwork parameters. Because g4 is a Dirac-Delta, there is no weight-space uncertainty: any
predictive uncertainty must come from the observation model (e.g., a heteroscedastic head) or post-
hoc calibration. Compared to stochastic variants, this adds no KL term and no MC averaging, but
can increase per-example compute due to generating weights via G .

Gaussian HyperNetwork A Stochastic Hypernetwork outputs a global posterior (or context-
only):

46(0 | 2) = qs(0 | h) = [ [NV (pe(h), diag o7 (1)),
4

i.e., independent of the query « (but dependent on alearnable latent task vector h). This is variational
BNN with parameters produced by a Hypernetwork.

Bayesian Neural Network (Bayes-by-Backprop). A standard variational BNN uses an z-
independent approximate posterior:

46(0 | 2) = 45(0) = [[ Mue. ding o).
L

and the same S-ELBO objective with closed-form diagonal-Gaussian KL. Because ¢, (6|z) is global,
predictive uncertainty does not adapt to = except via the likelihood term, which can under-react off-
support compared to input-conditional alternatives. On the other hand, the objective is simple and
sampling cost is amortized across inputs, though matching ensemble-like diversity typically requires
larger posterior variances or multiple posterior samples at test time.

14
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MLP with Dropout. MLP with dropout induces a distribution over effective weights via random
masks m:
gs(0 | ) = q4(0) (implicit via dropout masks, independent of z),

and inference averages predictions over sampled masks (Gal & Ghahramani, 2016).

Deep Ensembles. An M-member ensemble of MLPs corresponds to a finite mixture of deltas:

M
1
q(9|x)EMZ(5(0—9m), p(y | x) :MZ y|z,0m),
m=1

where each 6,,, is trained independently from a different initialization (and typically a different data
order/augmentation). There is no explicit KL regularizer; diversity arises implicitly from indepen-
dent training trajectories. Inference cost scales linearly with M (one forward pass per member), and
for fair comparisons we match total update or compute budgets by reducing epochs.

B TRAINING OBJECTIVE

FDN is amortized variational inference with the latent weights € and input-conditional posterior

qs(0 | x) realized by small hypernetworks via the reparameterization *) = g, (z,e*)) with e(*) ~
N(0, I). For a single (z, y) the ELBO is

logp(y | z) > Eq, (o) [logp(y | 2,0)] — Dki(as(0 | z) || po(6)), 2)

data term regularizer

with a simple prior py(0) = [, N (0, 031).

(A) S-ELBO (mean of logs). We minimize the negative /—~ELBO with K Monte Carlo draws:

K
1
LsELBO = T Zlogp(y | 2,0%)) + BDxi(as(0 ] 2) [ o(0)), 0%~ qy(0 | ). (3)
k=1

Here =1 recovers standard VI; 5 # 1 implements capacity control / tempered VI (Higgins et al.|
2017} |Alemi et al.,[2017; Dziugaite & Roy, [2017). We use simple warm-ups for (3 early in training.

(B) IWAE variant (log of means; tighter bound). As a reference, the importance-weighted
bound is

z, o(k)
Liwag = —10g< Z Pol0 Py || ) )> ) o) ~ %(9 | ), “4)
=1

which implicitly accounts for the KL via the welghts and typically needs no extra S (Burda et al.
2016). We report main results with (A) for simplicity and stability.

KL decomposition (IC vs. LP). For IC-FDN, layer posteriors condition directly on z, so the KL
sums over layers and averages over the minibatch. For LP-FDN, layer ¢ conditions on a sampled

hidden state agli)l (x); the KL is therefore averaged over this upstream randomness:

Dy (qg,e(6¢| ayi)l (z)) || po) with Ej[-] across samples k.
With diagonal Gaussians, each layer’s closed-form term is
2

. 0'2+,u2 o“
DKL(N(,U,dlagO')HN(O 0'0 :§Z<Jo'2]_1_10go.é ’
i 0 0

and we implement the variance floor via o = ¢ + softplus(p) (no hard clamp).

Remark. Future work should investigate layer-specific 5 schedules to control where uncertainty is
expressed across depth (e.g., larger (3 in early layers for stability, smaller /5 near the output to permit
output-scale variance), with the aim of tightening scale calibration (b — 1, @ — 0) and improving
AURC/CRPS under oscillatory OOD.

15
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C HETEROSCEDASTIC LIKELIHOOD AND VARIANCE DECOMPOSITION

Variance decomposition (scalar case). Let 0~ ¢4 (0 | ) and, given (z, 6), let

Y |20 ~ Mug(), o3(x)).
Then the predictive (marginal) variance decomposes as
Var[Y | z] = Egg,[05(2)] + Varg.q,[pe(z)] .

aleatoric epistemic

Proof. By the law of total expectation, E[Y" | z] = Eg[E[Y | z, 0]] = Eg[uo(z)]. By the law of total
variance,

Var[Y | z] = Eg[Var(Y | z,0)] + Varg(E[Y | z,0]) = Eo[o5(2)] + Varg[pe(z)]. O

Vector-output version. For Y € R% with Y | z,0 ~ N (ug(z), Zo(x)),
Cov]Y | 2] = Eg[So(z)] + Covgpe(z)].
N—— ——
aleatoric epistemic

The proof is identical, replacing variance by covariance and using the matrix form of the law of total
variance.

Special cases. (i) Homoscedastic, isotropic noise (c2(z) = 0?): Var[Y | z] = 0 + Varg[ o(2)]-
(ii) Heteroscedastic noise (03 () depends on x, 0): the first term becomes an average Eq[oZ ().

Monte Carlo estimators. With samples 6%) ~ g, (6 | z),

K K

1 N 2

= §§ pow (z),  Vargi(z E poan (x) — (),
k=1 k:

Var Y | 2] =% Z ogu () + Vare(x).
For d,, > 1, replace squares by outer products to estimate covariances.

Derivation of the 3-ELBO for d,=1 and homoscedastic noise. Consider the latent-weight

model
GNpO(e)a y|1‘,0NN(fg($),O'2)7
with a variational family ¢, (6 | ) (IC-/LP-FDN). For one datum (z;, y;) the 5-ELBO is

logp(yi | @) > Eq,[logp(yi | zi,0)] — Dxi(qe(0] i) || po(6))-

data term regularizer
Using the Gaussian likelihood,
1
log p(y: | ®i,0) = ~5 — (i — folz )) — 1log(2mo?).

Plugging into the bound and negating yields the per-example loss

i 1
£5km0 = 53 Easoreo[wi = fo(@))’] + Difas(0 | 2:) [ po(9)) + Flog(2mo?).

Using K re-parameterized samples 6(F) ~ g, (6 | ;) gives the unbiased MC estimator

i 1 2
£8kmo = 5=z D (= Jow (@0))* + Dicafas(8 | 21) [ po(8) + §log(2no?) |
k=1
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Since % log(2ma?) does not depend on ¢ or 6, it can be dropped during optimization. If o2 is fixed,
the data term is just a rescaled MSE. Equivalently,

K
(202) L350 = —= 3 (0 — fow (x0))* + (202) Dicaas(® | 1) [ po6)),
B-ELBO — & kz=:1( 0(F) ) - KL( ¢ 0 )

showing that choosing constant o2 is equivalent to training with 3-ELBO, hence, it simply rescales
the effective KL weight (capacity control). In this paper we will utilize 5-ELBO for training, the
heteroscedastic case is discussed below.

Heteroscedastic observation model (general form). If we allow the observation variance to de-
pend on x and the sampled weights 6,

Y‘l’,GNN(fg(IE),CTg($)) (dy:]-)v
the per-example S-ELBO becomes
K

i 1 (yi — fom (%))2
51(152 = 5K kZ:l W + 10g(277 Ug(k) (xz)) + DKL<(]¢(9 | ;) ||P0(9))~

Thus, the data term is weighted least squares (WLS) plus a variance penalty, with weights
w® (z;) = 1/02, (x;) learned jointly.
Parameterization and stability. We parameterize

og(z) = e+ softplus (pg(z)), e=10"3,

which guarantees positivity and avoids numerical collapse. To mitigate variance blow-up in early
training, one can (i) apply gentle weight decay on py, (ii) clip sp(x) = logos(z) to a reasonable
range, or (iii) use a short 5 warm up so the likelihood term dominates initially.

Predictive variance. With heteroscedastic noise, the predictive variance decomposes as
2
VarlY | 2] = Eg[oj ()] 4+ Varg[ fo(z)],
——— N———
aleatoric epistemic

so both terms adapt with x; the first is averaged over the sampled weights.
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Table 1: Monte Carlo and training Hyperparameters (defaults unless noted).

Component Symbol Setting

MC samples (train) Kivain 1

MC samples (validate) Ky 100

MC samples (test) Kiest 100

Epochs € 400

Optimizer — ADAM

Learning rate n 1x1073

Batch size B 64

Weight prior std 0o 1.0

Variance floor € 1073 in 0 = & + softplus(p)
KL schedule B cosine

Maximum /3 Bmax 0.01

Warm up updates — 200

Seeds — [7,8,9]

Stochastic Checkpoint — minimum MSE in interpolation
Deterministic Checkpoint — minimum MSE in interpolation

Table 2: Model configurations and compute. Columns: base hidden width dy;q; hypernetwork hidden
width dpyper; latent dim dy, (for Gaussian Hypernetwork); ensemble size M ; parameter count P (per
model). Use “— where not applicable.

Model dhia  dhyper A M P
MLPDropoutNet 333 — — 1 1000
Deep Ensemble 64 — — 10 1000
BayesNet 166 — — 1 998
Gaussian HyperNet 24 5 9 1 994
IC-FDNet 23 6 — 1 1004
LP-FDNet 24 5 — 1 1011

Notes. We can see that the parameter count is roughly equal. In order to keep a fair comparison we scale the
number of epochs by the ensemble size so the number of updates is roughly the same.

D TABLES
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Table 3: Step function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (A=00D-ID); ideal MSE—Var fit has a~0, b~ 1.

AVar AMSE  ACRPS
Model P b a AURC L 60D-ID) 4 (0OD-ID) | (OOD-ID) |
MLPDropoutNet  0.904  0.995 0.041  0.223 _ 0.561 0.516 0.033
LP-FDNet 0955 1.250 0.032 0320  1.200 1.440 0.147
IC-FDNet 0.848 1.180 0303 0484  0.643 0.990 0.252
DeepEnsembleNet 0.911 19.600 0.412  0.632  0.093 2.150 0.883
BayesNet 0.940 201.000 —2.750  0.704  0.014 2.760 1.170
GaussHyperNet ~ 0.942  3.690 —0.356  1.010  1.060 3.700 0.780

Table 4: Sine function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (A=00D-ID); ideal MSE—Var fit has a~0, b~ 1.

AVar AMSE  ACRPS
Model P b a  AURC (0p_ID)4 (0OD-ID) | (OOD-ID) |
DeepEnsembleNet 0.283  2.120 1.160  1.090  0.131 0381  —0.022
GaussHyperNet 0,508 1.200 1.120 1.460  0.689 0.840  —0.068
BayesNet 0.875 14.100—4.760  3.690  1.500 18.000  2.440
LP-FDNet 0.933 29.400-17.200 6.970  3.600 87.100  5.320
MLPDropoutNet  0.974 32.200—4.850 16.900  3.190 99.000  7.700
IC-FDNet 0.996 99.400-36.800 40.100  3.420 310,000  13.700

Table 5: Quadratic function: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (A=00D-ID); ideal MSE—Var fit has a~0, b~ 1.

AVar AMSE  ACRPS
Model P b a AURCL (00D-ID) 4 (OOD-ID) | (OOD-ID) |
MLPDropoutNet  0.994 70.700—0.003  0.002  0.000 0.014 0.083
DeepEnsembleNet 0.994 18.200—0.003  0.005  0.002 0.040 0.133
BayesNet 0.928 23.500—0.125  0.012  0.003 0.047 0.114
IC-FDNet 1.000 1.040—0.007 0.201  0.619 0.637 0.111
GaussHyperNet 1.000 1.060—-0.013 0.229 0.828 0.865 0.134
LP-FDNet 1.000 1.110-0.012  0.242  0.715 0.790 0.133
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