

FUNCTIONAL DISTRIBUTION NETWORKS (FDN)

000
 001
 002
 003 **Anonymous authors**
 004 Paper under double-blind review
 005
 006
 007
 008
 009

ABSTRACT

010 Modern probabilistic regressors often remain overconfident under distribution
 011 shift. Functional Distribution Networks (FDN) place input-conditioned distri-
 012 butions over network weights, producing predictive mixtures whose dispersion
 013 adapts to the input; we train them with a Monte Carlo β -ELBO objective. We
 014 pair FDN with an evaluation protocol that separates interpolation from extrap-
 015 olation and emphasizes simple OOD sanity checks. On controlled 1D tasks and
 016 small/medium UCI-style regression benchmarks, FDN remains competitive in ac-
 017 curacy with strong Bayesian, ensemble, dropout, and hypernetwork baselines,
 018 while providing strongly input-dependent, shift-aware uncertainty and competi-
 019 tive calibration under matched parameter and update budgets.
 020

1 INTRODUCTION

021 Modern neural predictors are routinely deployed under dataset shift, where test inputs depart from
 022 the training distribution. In these regimes, point predictions from deterministic networks and naïve
 023 uncertainty surrogates from traditional stochastic heuristics often become *overconfident*—assigning
 024 high probability to wrong outcomes, particularly off-support/extrapolation—undermining reliable
 025 decision making. Bayesian Neural Networks (BNNs), MLP with dropout, Deep Ensembles, and
 026 Hypernetworks are strong practical baselines, yet they can still under-react outside the training sup-
 027 port or require substantial ensembling/sampling to behave robustly (Quiñonero-Candela et al., 2009;
 028 Ovadia et al., 2019; Guo et al., 2017; MacKay, 1992; Neal, 1996; Graves, 2011; Blundell et al., 2015;
 029 Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Ha et al., 2017).

030 This motivates architectures that are *uncertainty-aware* and *calibrated*—sharp in-distribution (ID)
 031 and widening appropriately OOD (higher CRPS, wider intervals). We pursue this with *Functional*
 032 *Distribution Networks (FDN)*, which place input-conditional distributions over weights to modulate
 033 uncertainty locally in x . Concretely, FDN amortizes an input-conditional posterior $q_\phi(\theta | x)$ via
 034 small Hypernetworks and trains it with a Monte Carlo likelihood and a β -ELBO. Under matched
 035 budgets, FDN is ID-competitive and well-calibrated by *scale* on controlled 1D shifts: on low-
 036 frequency or piecewise-smooth tasks (step, quadratic) it achieves near-unity MSE-Var slopes with
 037 high Spearman correlation and favorable AURC/CRPS, indicating that predictive variance tracks er-
 038 rror growth both in- and out-of-distribution. On more oscillatory shifts (sine) FDN preserves strong
 039 rank calibration and increases variance OOD, but its variance still under-scales relative to the error—
 040 an explicit target for future improvement. Beyond 1D toy functions, we evaluate We further evaluate
 041 FDN on standard small/medium UCI-style regression benchmarks—Airfoil Self-Noise, Combined
 042 Cycle Power Plant, and Energy Efficiency (Brooks et al., 1989; Tüfekci & Kaya, 2014; Tsanas
 043 & Xifara, 2012)—under feature-based ID/OOD splits. On these real datasets FDN remains ID-
 044 competitive and typically exhibits large positive Δ Var with moderate Δ MSE and Δ CRPS, i.e., it
 045 widens uncertainty under shift while maintaining sensible accuracy and calibration relative to strong
 046 Bayesian, ensemble, and hypernetwork baselines.
 047

048 **Overview.** Rather than treating weights as fixed (or globally random), FDN places an input-
 049 conditioned distribution over weights:

$$\theta | x \sim p(\theta | x), \quad y | x, \theta \sim p(y | x, \theta).$$

050 For tractability we fix an input-agnostic prior $p(\theta | x) = p_0(\theta) = \mathcal{N}(0, \sigma_0^2 I)$, so all input de-
 051 pendence is carried by an amortized posterior $q_\phi(\theta | x)$ implemented via small Hypernetworks.
 052 Many standard uncertainty-aware architectures can be cast in this template via different choices of
 053

054 $q_\phi(\theta | x)$; we detail these instantiations in Appendix A. Sampling $\theta \sim q_\phi(\theta | x)$ yields locally adaptive functions, and as x moves off the training support the induced weight distribution can broaden, producing wider and more appropriately uncertain predictive densities.

058 **Training and evaluation.** We train with a Monte Carlo β -ELBO over $q_\phi(\theta | x)$ and also report an
 059 IWAE variant; explicit expressions for the layer-wise KL and its LP-FDN factorization are given in
 060 the Appendix B. Our evaluation protocol splits test points into interpolation (ID) and extrapolation
 061 (OOD) regions and summarizes shift via deltas $\Delta(\cdot) = \mathbb{E}_{\text{OOD}}[\cdot] - \mathbb{E}_{\text{ID}}[\cdot]$, focusing on ΔMSE , ΔVar ,
 062 and ΔCRPS together with MSE-variance fits and risk-coverage curves.

064 **Contributions.** (i) **Model.** We introduce Functional Distribution Networks (FDN), a simple mod-
 065 ule that amortizes input-conditioned weight distributions via small Hypernetworks, in two variants:
 066 IC-FDNet (conditioning on x) and LP-FDNet (conditioning layer-wise on previous activations).
 067 (ii) **Protocol.** We propose a small-suite extrapolation protocol that targets $\Delta\text{Var} > 0$ under shift
 068 and complements it with calibration diagnostics (MSE-variance slope, rank correlation, and risk-
 069 coverage). (iii) **Empirical study.** Under matched parameter, update, and predictive-sample budgets,
 070 we benchmark FDN against strong Bayesian, ensemble, dropout, and hypernetwork baselines on
 071 controlled 1D function families and UCI-style regression tasks, showing that FDN remains ID-
 072 competitive while providing practically useful, shift-aware uncertainty.

073 **Scope.** We focus on low-dimensional regression with homoscedastic scalar Gaussian heads and
 074 relatively shallow backbones in order to isolate ID vs. OOD behavior under tightly matched budgets.
 075 All code, configurations, and scripts to reproduce the experiments will be released upon acceptance.

078 2 RELATED WORK

080 **Uncertainty in neural regression.** BNN place distributions over weights and infer posteriors via
 081 variational approximations or MCMC (MacKay, 1992; Neal, 1996; Graves, 2011; Blundell et al.,
 082 2015). Deep Ensembles average predictions from independently trained networks and are a strong
 083 practical baseline (Lakshminarayanan et al., 2017; Maddox et al., 2019). MLP (with dropout) inter-
 084 preters dropout at test time as approximate Bayesian inference (Gal & Ghahramani, 2016). Het-
 085 eroscedastic regression learns input-dependent output variance but retains deterministic weights
 086 (Nix & Weigend, 1994; Kendall & Gal, 2017).

087 **Hypernetworks and conditional weight generation.** Hypernetworks generate the weights of a
 088 primary network using an auxiliary network (Ha et al., 2017); related work explores dynamic, input-
 089 conditioned filters and conditional computation (De Brabandere et al., 2016; Brock et al., 2018).
 090 Bayesian/uncertainty-aware Hypernetworks place distributions over generated weights and train
 091 them variationally (Krueger et al., 2017). Our FDN differs by explicitly conditioning the weight
 092 distributions on the current input (or intermediate activations) in order to modulate epistemic un-
 093 certainty itself, not only deterministic weights. This input-aware weight stochasticity is what enables
 094 FDN to widen uncertainty under distributional shift while maintaining competitive ID accuracy un-
 095 der matched budgets.

096 **Meta-learning and context-conditioned predictors.** Neural Processes (NP) learn a distribution
 097 over functions conditioned on a context set \mathcal{C} via a global latent, yielding $p(y | x, \mathcal{C})$ (Garnelo et al.,
 098 2018; Kim et al., 2019); gradient-based meta-learning (e.g., MAML) instead adapts an initialization
 099 per task via inner-loop gradients (Finn et al., 2017). FDN is complementary: it amortizes *local*
 100 weight uncertainty directly on x (and optionally a compact context) through $q_\phi(\theta | x, c)$, requires
 101 no inner-loop adaptation, and injects uncertainty at the layer level rather than via a single global
 102 latent.

103 **Calibration and OOD behavior.** Proper scoring rules such as the continuous ranked probability
 104 score (CRPS) are strictly proper and reward calibrated predictive distributions (Gneiting & Raftery,
 105 2007). Empirical studies highlight overconfidence under dataset shift and introduce OOD bench-
 106 marks (Ovadia et al., 2019). Our evaluation therefore separates interpolation from extrapolation and
 107 uses the monotonic relationship between per-sample squared error (MSE) and predicted variance as
 a simple diagnostic calibration check.

Figure 1: Single-layer view of FDNet. For layer ℓ , the previous activation $a_{\ell-1}$ (with $a_0 = x$ for the first layer) is fed to both the hypernetwork and the main layer. For IC-FDNet $s_\ell = x$ while for LP-FDNet $s_\ell = a_{\ell-1}$. The hypernetwork takes s_ℓ and a random draw ε to generate weights/ biases (Gaussian Head with reparametrization technique) $\theta_\ell = (W_\ell, b_\ell)$, which are then used by the main layer $a_\ell = f_\ell(a_{\ell-1}; \theta_\ell)$.

Positioning. Compared to BNNs, FDN sidesteps global posteriors by amortizing *local* weight distributions $q_\phi(\theta | x)$. Compared to Deep Ensembles, FDN uses shared parameters and stochastic generation instead of replicating full models. Compared to Hypernetworks, FDN explicitly models *uncertainty over* generated weights and regularizes it with a KL prior, enabling principled OOD expansion.

3 METHOD

For convenience, a summary of the main symbols and dimensions used throughout the paper is provided in Table 1 in Appendix C.

3.1 PRELIMINARIES

We model $y \in \mathbb{R}^{d_y}$ with a neural network $f_\theta : \mathbb{R}^{d_x} \rightarrow \mathbb{R}^{D_y}$ ($D_y = 2d_y$ for a diagonal covariance and $D_y = d_y(d_y + 1)/2$ for full covariance) whose final layer parameterizes a Gaussian predictive head,

$$f_\theta(x) = (\mu_\theta(x), \Sigma_\theta(x)), \quad p(y | x, \theta) = \mathcal{N}(y; \mu_\theta(x), \Sigma_\theta(x)),$$

In the main experiments we restrict to scalar outputs and use a homoscedastic Gaussian likelihood $p(y | x, \theta) = \mathcal{N}(y; \mu_\theta(x), \sigma^2)$ with fixed variance σ^2 , shared across all models. For such a head the per-example contribution to the β -ELBO reduces to a rescaled squared-error term plus the KL penalty between the input-conditioned weight posterior and the prior; constants can be absorbed into the trade-off parameter β . We therefore optimize a weighted $MSE + \beta KL$ objective and use the same Gaussian head for all baselines to ensure a fair comparison. More general multivariate, heteroscedastic, and structured-covariance likelihoods are discussed in Appendix D.

3.2 FDN: INPUT-CONDITIONED WEIGHT DISTRIBUTIONS

We drop explicit context and condition only on signals from the network itself. For each layer ℓ , FDN places a diagonal-Gaussian over its weights whose parameters are produced by a small Hypernetwork $A_\ell(\cdot)$. We choose the conditioning signal

$$s_\ell^{(k)} \in \begin{cases} x, & \text{IC-FDNet} \\ a_{\ell-1}^{(k)}, & \text{LP-FDNet (with } a_0^{(k)} = x\text{),} \end{cases}$$

and set

$$(\mu_{W,\ell}, \rho_{W,\ell}, \mu_{b,\ell}, \rho_{b,\ell}) = A_\ell(s_\ell^{(k)}), \quad \sigma_{W,\ell} = \varepsilon + \text{softplus}(\rho_{W,\ell}), \quad \sigma_{b,\ell} = \varepsilon + \text{softplus}(\rho_{b,\ell}),$$

with a small floor $\varepsilon = 10^{-3}$ for numerical stability. Sampling then proceeds as

$$W_\ell^{(k)} = \mu_{W,\ell} + \sigma_{W,\ell} \odot z_{W,\ell}^{(k)}, \quad b_\ell^{(k)} = \mu_{b,\ell} + \sigma_{b,\ell} \odot z_{b,\ell}^{(k)}, \quad z_{\{\cdot\},\ell}^{(k)} \sim \mathcal{N}(0, I),$$

with the conditioning signal chosen as $s_\ell = x$ for IC-FDNet and $s_\ell = a_{\ell-1}^{(k)}$ for LP-FDNet, where in both cases the layer output is $a_\ell^{(k)} = f_\ell(a_{\ell-1}^{(k)}; W_\ell^{(k)}, b_\ell^{(k)})$ (sequential across layers). Figure 1

162 illustrates a single FDN layer: a small hypernetwork maps s_ℓ to the parameters of a Gaussian dis-
 163 tribution over weights and biases; a sample $\theta_\ell = (W_\ell, b_\ell)$ from this distribution is then used to
 164 compute $a_\ell = f_\ell(a_{\ell-1}; \theta_\ell)$.
 165

166 **Variational family (compact).** FDN uses a layer-wise diagonal-Gaussian over weights, condi-
 167 tioned on $s_\ell \in \{x, a_{\ell-1}^{(k)}\}$:
 168

$$169 \quad q_\phi(\theta | x) = \prod_{\ell=1}^L \mathcal{N}(\text{vec}(W_\ell); \mu_{W,\ell}(s_\ell), \text{diag } \sigma_{W,\ell}^2(s_\ell)) \mathcal{N}(b_\ell; \mu_{b,\ell}(s_\ell), \text{diag } \sigma_{b,\ell}^2(s_\ell)),$$

172 In compact form (concatenating all layers),
 173

$$174 \quad q_\phi(\theta | x) = \mathcal{N}(\theta; \mu_\phi(x), \text{diag } \sigma_\phi^2(x)), \quad \theta^{(k)} = \mu_\phi(x) + \sigma_\phi(x) \odot \varepsilon^{(k)}, \quad \varepsilon^{(k)} \sim \mathcal{N}(0, I),$$

175 and the predictive density is the Monte Carlo mixture
 176

$$177 \quad p(y | x) \approx \frac{1}{K} \sum_{k=1}^K p(y | x, \theta^{(k)}), \quad \theta^{(k)} \sim q_\phi(\theta | x).$$

180 **Prior and regularization.** We regularize $q_\phi(\theta | x)$ toward a simple reference $p_0(\theta) =$
 181 $\prod_\ell \mathcal{N}(0, \sigma_0^2 I)$ via a β -weighted KL term (we use $\sigma_0 = 1$ in all experiments). For diagonal Gaus-
 182 sians,
 183

$$184 \quad D_{\text{KL}}(\mathcal{N}(\mu, \text{diag } \sigma^2) \| \mathcal{N}(0, \sigma_0^2 I)) = \frac{1}{2} \sum_j \left(\frac{\sigma_j^2 + \mu_j^2}{\sigma_0^2} - 1 - \log \frac{\sigma_j^2}{\sigma_0^2} \right),$$

187 and we sum this over all layers (for both W_ℓ and b_ℓ). The variance floor is implemented by the ε in
 188 $\sigma = \varepsilon + \text{softplus}(\rho)$ rather than a hard bound.

189 Algorithm 1 (Appendix E) summarizes training (β -ELBO with re-parameterized gradients) and in-
 190 ference (Monte-Carlo mixtures over weight draws) for both IC-FDN and LP-FDN.
 191

192 **IC-FDNet vs. LP-FDNet.** We study two conditioning schemes. *IC-FDNet* (Input-Conditioned)
 193 uses the raw input x at every layer, $s_\ell(x) = x$, so all layers see the same features when sam-
 194 pling weights. *LP-FDNet* (Layer-Progressive) instead uses hidden activations, with $s_0(x) = x$
 195 and $s_\ell(x) = a_{\ell-1}(x)$ for $\ell \geq 1$, yielding a depth-aware conditioning scheme. Empirically, the
 196 two variants achieve similar in-distribution accuracy across our benchmarks, while LP-FDNet often
 197 produces somewhat larger increases in predictive variance under distribution shift (larger ΔVar) at
 198 comparable MSE.
 199

200 4 EXPERIMENTS

202 **Tasks and splits.** We evaluate FDN on (i) controlled 1D regression tasks where the ground-truth
 203 function is known and interpolation vs. extrapolation is precisely defined in input space, and (ii)
 204 standard small/medium UCI-style regression benchmarks with feature-based ID/OOD splits. In
 205 both settings we report metrics separately on the interpolation (ID) region, the extrapolation (OOD)
 206 region, and the aggregated test set, and we summarize distribution shift by deltas $\Delta(\cdot) = \mathbb{E}_{\text{OOD}}[\cdot] -$
 207 $\mathbb{E}_{\text{ID}}[\cdot]$.
 208

209 4.1 TOY FUNCTION FAMILIES AND ID/OOD PROTOCOL

210 We first benchmark on 1D toy regression tasks, where the ground-truth function $f : \mathbb{R} \rightarrow \mathbb{R}$ is
 211 known. For each run we select one of three families:
 212

- 213 • **Step:** $f(x) = H(x) = \mathbf{1}\{x \geq x_0\}$, with a discontinuity at $x_0 = 0$.
- 214 • **Sine:** $f(x) = A \sin(\omega x)$, with amplitude A and frequency ω .
- 215 • **Quadratic:** $f(x) = ax^2 + b$, with (a, b) fixed across runs.

257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: MSE vs. predicted variance on three 1D regression tasks (rows: step, sine, quadratic). Left/right panels in each row show interpolation (ID) and extrapolation (OOD) test points with shared axes; the dashed line marks the ideal $MSE = Var$. Legends report per-model Spearman's ρ in each region.

Unless otherwise stated we use the specific instantiations shown in Figure 2 (step $H(x)$, sine $1.54 \sin(2.39x)$, and quadratic $0.43x^2 - 0.41$) to match all reported plots. We define a symmetric interpolation region $R_{\text{interp}} = [-\ell, \ell]$ and an extrapolation region $R_{\text{extrap}} = \mathbb{R} \setminus R_{\text{interp}}$. Training and validation inputs are sampled uniformly from R_{interp} ; test inputs cover both R_{interp} and R_{extrap} on a dense grid. We report all metrics separately on the ID split (test points in R_{interp}), the OOD split (test points outside R_{interp}), and on the full test set. This protocol ensures that “OOD” strictly corresponds to extrapolation in input space.

Figure 3: MSE vs. predicted variance on three real regression datasets: Airfoil Self-Noise, CCPP Power Plant, and Energy Efficiency (heating). For each dataset, left/right panels show ID and OOD test points with shared axes, and the dashed line marks $\text{MSE} = \text{Var}$. Legends report per-model Spearman’s ρ .

4.2 REAL REGRESSION DATASETS AND ID/OOD SPLITS

To test FDNs beyond 1D toy functions we use three standard UCI regression datasets: Airfoil Self-Noise, Combined Cycle Power Plant (CCPP), and Energy Efficiency (heating load as the primary target). For each dataset we follow a consistent preprocessing and ID/OOD protocol: we choose a single “ID feature” z with a natural interpretation (e.g., frequency for Airfoil, ambient temperature for CCPP, relative compactness for Energy), define the interpolation band as the 20th–80th percentiles of this feature and treat the extremes as extrapolation, split train/validation/test by quantiles of z , and

Figure 4: ID→OOD deltas on the real regression datasets. Bars show ΔMSE , ΔVar , and ΔCRPS for Airfoil, CCPP, and Energy. Well-behaved models exhibit large positive ΔVar together with moderate ΔMSE and ΔCRPS , indicating that uncertainty widens under shift while accuracy and calibration degrade gracefully.

standardize all inputs and targets using training statistics. We fix a single train/validation/test split shared across all methods and seeds. Exact dataset sizes are summarized in Table 3 (Appendix F).

4.3 COMPLEXITY, CAPACITY, AND FAIRNESS

Baselines. We evaluate four stochastic baselines: MLP with dropout (**MLPDropoutNet**), Deep Ensemble of MLP (**DeepEnsemblesNet**), Variational BNN (**BayesNet**), and Gaussian Hypernetwork (**GaussianHyperNet**). Because our study centers on calibrated *predictive distributions* (CRPS, MSE–Var slope/intercept, AURC), we omit the **Deterministic MLP** and the (input-conditioned) **Hypernetwork** from the main uncertainty analysis; their ID/OOD MSE is comparable to Ensembles/Dropout. Training details (optimizer, batch size, learning rate, prior scale σ_0 , variance floor σ_{\min}) appear in Table 2 (Appendix F).

Link-budget. We consider networks with a single hidden layer and fix the parameter budget to $P \approx 1000$ ($\pm 5\%$) for all models, counting *all* trainable parameters, including any Hypernetwork components; counts appear in Table 4 (Appendix F). To equalize the *update* budget, ensembles with M members use *epoch-split* training (epochs divided by M). For non-ensemble networks we use

378 one Monte Carlo draw per update ($K = 1$), keeping per-step cost comparable and the total number
 379 of parameter updates matched across models.
 380

381 *Note:* To hit the P target, MLPDropoutNet uses widened hidden layers, increasing capacity/
 382 expressive power and potentially improving ID MSE independent of uncertainty quality; hence
 383 our emphasis on calibration-centric metrics.
 384

385 **Computational complexity and scalability.** For all models, the per-epoch training cost scales
 386 linearly in the number of examples N and quadratically in the layer widths, $O(N \sum_{\ell} d_{\ell-1} d_{\ell})$. Both
 387 IC-FDN and LP-FDN inherit this scaling from the base MLP: the per-layer Hypernetworks add only
 388 a small constant-factor overhead because their hidden width h_{hyp} and the Monte Carlo count K are
 389 fixed (parameter count remains $O(d_{\ell-1} d_{\ell})$ per layer), matching the baselines. A full discussion of
 390 parameter-count and architectural trade-offs for larger models are given in Appendix G.
 391

392 4.4 METRICS AND CALIBRATION DIAGNOSTICS

393 We assess models with standard metrics for accuracy, uncertainty, and calibration: mean squared
 394 error (MSE), predictive variance, continuous ranked probability score (CRPS), risk–coverage curves
 395 (area under the risk–coverage curve, AURC), and ID→OOD deltas (ΔMSE , ΔVar , ΔCRPS). For
 396 calibration we use both rank- and scale-based diagnostics: (i) Spearman correlation $\rho(\text{Var}, \text{MSE})$
 397 between per-point variance and squared error, and (ii) a linear fit $\text{MSE} \approx a + b \text{Var}$, with the ideal
 398 calibration corresponding to $a \approx 0$ and $b \approx 1$. We visualize these diagnostics via MSE–Var scatter
 399 plots in the ID and OOD regions for toy tasks (Figure 2) and real datasets (Figure 3), together with
 400 grouped bar charts of ID→OOD deltas on the real tasks (Figure 4). Precise definitions and Monte
 401 Carlo estimators for all metrics are collected in Appendix H.
 402

403 **Representative seed selection.** To avoid cherry-picking individual runs, all qualitative plots are
 404 based on a *representative* seed chosen by a fixed aggregation procedure. For each dataset and config-
 405 uration we run all models over multiple random seeds (20 seeds per toy task, 100 for Airfoil, and 3
 406 for the remaining UCI datasets) and collect summary metrics per seed (e.g., MSE_{ID} , MSE_{OOD} , Var_{ID} ,
 407 Var_{OOD} , ΔCRPS , AURC). For IC-FDNet (or LP-FDNet) we compute the coordinate-wise median
 408 of these metrics over seeds and then select the seed whose metric vector is closest (in Euclidean
 409 distance) to this median. All per-seed plots in the main text are generated from this representa-
 410 tive seed, using the same rule for every dataset, so that the shown behavior is typical rather than
 411 hand-picked. On the Airfoil Self-Noise dataset, Figure 5 (Appendix F) visualizes the resulting seed-
 412 aggregated MSE–variance scatter, confirming that the selected representative seed lies close to the
 413 overall across-seed trend.
 414

415 4.5 RESULTS

416 **Toy tasks.** Across the three toy tasks (Tables 5–7; Figure 2), FDN’s core strength is scale cal-
 417ibration under smooth shifts. On the step and quadratic tasks, IC-/LP-FDNet achieve MSE–Var
 418 slopes closer to the ideal $b \approx 1$ with strong rank agreement (Spearman ρ close to 1) and large positive
 419 ΔVar , so predictive variance increases in lock-step with difficulty. This comes at the cost of
 420 higher AURC and ΔCRPS than the sharpest baselines on the step task, while on the quadratic task
 421 their AURC and ΔCRPS are broadly comparable. In contrast, several classical baselines that fit ID
 422 sharply (e.g., Deep Ensembles, BayesNet) exhibit much steeper MSE–Var fits ($b \gg 1$) and smaller
 423 increases in variance (ΔVar), indicating sharper but less conservative uncertainty even when they
 424 rank hard points reasonably well.
 425

426 On the highly oscillatory sine shift, all methods degrade, but the trade-offs differ. FDN preserves
 427 excellent ranking (Spearman ρ near 1) and raises variance substantially OOD (large ΔVar), yet its
 428 error grows faster than its variance (large b , large ΔMSE), yielding worse AURC. Deep ensembles
 429 show smaller ΔMSE and hence better AURC, but their ranking can be weaker. Overall, under
 430 matched capacity and update budgets, FDN’s main advantages are (i) calibrated scaling on smooth
 431 or piecewise-smooth shifts, where many baselines remain overconfident, and (ii) consistently high
 432 rank correlation across tasks, which makes FDN a strong triage signal even when absolute scale
 433 lags on rapidly oscillatory OOD. This highlights a clear avenue for improvement: stronger variance
 434 scaling on such shifts (e.g., temperature/flooring on σ_{ϕ} , richer priors, or layer-wise β schedules).
 435

432 **Real regression benchmarks.** On the real regression tasks (Airfoil, CCPP, Energy), the same
 433 patterns largely persist (Figures 3 and 4; Tables 8–10). FDN achieves reasonable in-distribution
 434 MSE and typically exhibits large positive Δ Var, indicating that uncertainty widens under feature-
 435 based shift. This comes with somewhat larger Δ MSE and Δ CRPS than the sharpest baselines on
 436 Airfoil, but more moderate values on CCPP and Energy, so calibration degrades gradually rather than
 437 catastrophically. On Airfoil, for example, FDN’s ID scatter lies close to the ideal $\text{MSE} = \text{Var}$ line and
 438 spreads out smoothly OOD, with strong Spearman correlation; on CCPP and Energy the predictive
 439 variances remain shift-aware and provide useful selective-risk behavior, even when the absolute
 440 scale is not always better than the strongest baselines. Taken together, the toy and UCI results
 441 suggest that input-conditioned weight stochasticity is a viable and modular route to OOD-aware
 442 regression: FDN behaves like a drop-in “uncertainty layer” that can be tuned via β and hypernetwork
 443 capacity to trade off in-distribution sharpness against OOD conservatism.

444 Additional qualitative diagnostics, including predictive means (Figure 6, 7), aggregated MSE–
 445 variance scatters (Figure 8, 9), and risk–coverage curves for all datasets (Figure 10, 11), are provided
 446 in (Appendix F).

448 5 LIMITATIONS

450 FDN’s input-conditioned *weight* stochasticity, like similar stochastic layers, can overfit spurious cues
 451 if β is too small or the prior is too loose; careful KL scheduling and priors are important. LP-FDN
 452 samples weights layer-by-layer, adding latency versus a deterministic pass; sampling at test time also
 453 incurs a compute/latency trade-off with K , although in our experiments we keep K small. Our study
 454 focuses on low-dimensional regression with small/medium tabular datasets and relatively shallow
 455 architectures; scaling to high-dimensional inputs (e.g., images), deeper backbones, and structured
 456 outputs will require additional engineering, such as low-rank or adapter-style Hypernetworks and
 457 more aggressive capacity control.

458 On the calibration side, FDN still under-scales variance on highly oscillatory OOD regimes (the sine
 459 task), and nothing in the current design explicitly enforces frequency-aware or spectral robustness.
 460 We also restrict attention to homoscedastic scalar Gaussian likelihoods; heteroscedastic and full-
 461 covariance heads, as well as structured priors that tie together different layers or groups of weights,
 462 are left to future work. Finally, we only consider regression; applying FDN to classification would
 463 require discrete predictive mixtures and calibration metrics beyond CRPS (e.g., ECE/Brier), and
 464 may interact non-trivially with common tricks such as label smoothing or temperature scaling.

465 6 CONCLUSION

468 We introduced Functional Distribution Networks (FDN), which amortize input-conditioned *distribu-*
 469 *tions* over weights to produce predictive densities that remain sharp in-distribution yet expand
 470 appropriately under shift. Trained with a Monte Carlo objective and a β -weighted KL to a simple
 471 prior, FDN delivers strong *rank* calibration across tasks and near-ideal *scale* calibration on smooth
 472 and piecewise-smooth shifts (step, quadratic), as evidenced by Spearman correlation, MSE–Var
 473 slope/intercept, Δ Var, Δ CRPS, and AURC. Under a fair protocol that matches parameters, up-
 474 dates, and predictive-sample budgets, FDN remains competitive with standard Bayesian, ensemble,
 475 dropout, and hypernetwork baselines on both 1D toy functions and real UCI-style regression bench-
 476 marks, and provides uncertainty that is practically useful for abstention and risk-aware inference.

477 Looking forward, we see several promising directions. On the modeling side, stronger variance
 478 scaling mechanisms (temperature/floors, layer-wise β scheduling, structured priors) and frequency-
 479 aware conditioning may close the remaining gap on highly oscillatory OOD tasks. On the systems
 480 side, adapter-style deployments that apply FDN only to a small subset of middle or head layers could
 481 allow one to inject uncertainty awareness in new or existing large-scale architectures with modest
 482 overhead. Finally, extending FDN to classification, sequence models, and structured prediction—as
 483 well as integrating it with other uncertainty-aware modules (e.g., Neural Processes or diffusion-
 484 style generative priors over weights)—could yield a general toolkit for calibrated, shift-aware deep
 485 learning in practical applications.

486 REFERENCES
487

488 Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
489 bottleneck. In *International Conference on Learning Representations (ICLR)*, 2017.

490 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
491 neural networks. In *International Conference on Machine Learning (ICML)*, 2015.

492 Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Smash: One-shot model architecture
493 search through hypernetworks. In *International Conference on Learning Representations (ICLR)*,
494 2018. URL <https://openreview.net/forum?id=rydeCEhs->.

495 Thomas Brooks, David Pope, and Michael Marcolini. Airfoil self-noise. <https://doi.org/10.24432/C5VW2C>, 1989. UCI Machine Learning Repository.

496 Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In *Inter-
497 500 national Conference on Learning Representations (ICLR)*, 2016.

498 Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 667–675, 2016.

499 501 Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
502 504 deep (stochastic) neural networks via pac-bayes. In *International Conference on Learning Rep-
505 506 resentations (ICLR)*, 2017.

507 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
508 509 of deep networks. In *Proceedings of the 34th International Conference on Machine Learning (ICML)*,
510 volume 70 of *Proceedings of Machine Learning Research*, pp. 1126–1135. PMLR, 2017.
URL <https://proceedings.mlr.press/v70/finn17a.html>.

511 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
512 513 uncertainty in deep learning. In *Proceedings of the 33rd International Conference on Machine
514 Learning*, volume 48 of *Proceedings of Machine Learning Research*, pp. 1050–1059. PMLR,
2016.

515 Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali
516 517 Eslami, and Yee Whye Teh. Neural processes. *arXiv preprint arXiv:1807.01622*, 2018. URL
518 <https://arxiv.org/abs/1807.01622>.

519 Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
520 *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 69(2):243–268, 2007.

521 522 Alex Graves. Practical variational inference for neural networks. In *Advances in Neural Information
523 Processing Systems (NeurIPS)*, 2011.

524 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
525 526 networks. In *International Conference on Machine Learning (ICML)*, 2017.

527 David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In *International Conference on
528 529 Learning Representations (ICLR)*, 2017. URL <https://openreview.net/forum?id=rkpACellx>.

530 Irina Higgins et al. beta-VAE: Learning basic visual concepts with a constrained variational frame-
531 532 work. In *International Conference on Learning Representations (ICLR)*, 2017.

533 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
534 535 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
536 NLP. In *Proceedings of the 36th International Conference on Machine Learning*, pp. 2790–2799,
2019.

537 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
538 539 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *Proceedings
of the 10th International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

540 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
 541 vision? In *Advances in Neural Information Processing Systems*, 2017.

542

543 Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan Rosenbaum,
 544 Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In *International Conference on*
 545 *Learning Representations (ICLR)*, 2019. URL <https://openreview.net/forum?id=SkE6PjC9KX>.

546

547 David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
 548 Courville. Bayesian hypernetworks. *arXiv preprint arXiv:1710.04759*, 2017.

549

550 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 551 uncertainty estimation using deep ensembles. In *Advances in Neural Information Processing*
 552 *Systems (NeurIPS)*, 2017.

553

554 David J. C. MacKay. A practical bayesian framework for backpropagation networks. *Neural Com-
 555 putation*, 4(3):448–472, 1992.

556

557 Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson. A
 558 simple baseline for bayesian uncertainty in deep learning. In *Advances in Neural Information
 559 Processing Systems*, 2019.

560

561 Radford M. Neal. *Bayesian Learning for Neural Networks*, volume 118 of *Lecture Notes in Statistics*.
 562 Springer, 1996.

563

564 David A. Nix and Andreas S. Weigend. Estimating the mean and variance of the target probability
 565 distribution. In *IEEE International Conference on Neural Networks*, 1994.

566

567 Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
 568 Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating
 569 predictive uncertainty under dataset shift. In *Advances in Neural Information Processing Systems*
 570 (*NeurIPS*), 2019.

571

572 Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence (eds.).
 573 *Dataset Shift in Machine Learning*. MIT Press, 2009.

574

575 Athanasios Tsanas and Angeliki Xifara. Energy efficiency. [https://doi.org/10.24432/
 576 C51307](https://doi.org/10.24432/C51307), 2012. UCI Machine Learning Repository.

577

578 Pinar Tüfekci and Heysem Kaya. Combined cycle power plant. [https://doi.org/10.
 579 24432/C5002N](https://doi.org/10.24432/C5002N), 2014. UCI Machine Learning Repository.

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A UNIFIED VIEW VIA $q_\phi(\theta | x)$
595596 All methods we consider can be written as
597

598
$$p(y | x) = \int p(y | x, \theta) q_\phi(\theta | x) d\theta \approx \frac{1}{K} \sum_{k=1}^K p(y | x, \theta^{(k)}), \quad \theta^{(k)} \sim q_\phi(\theta | x).$$

599

600 In this paper, architectural layers are specified by the choice of $q_\phi(\theta | x)$. Framing models through
601 $q_\phi(\theta | x)$ enables apples-to-apples comparisons: (i) how they set the spread of plausible weights,
602 (ii) whether that spread adapts to the input, and (iii) how much compute they expend to form the
603 predictive mixture. FDN’s module-level approach directly targets this knob: it provides local, input-
604 aware uncertainty where it is inserted (e.g., the head or later blocks), broadens off-support as inputs
605 drift from the training domain, and leaves the surrounding backbone and training loop unchanged.
606607 **FDN (IC/LP)** *FDN* makes q_ϕ **input-conditional and stochastic**. A common choice is diagonal-
608 Gaussian, factorized by layer:
609

610
$$q_\phi(\theta | x) = \prod_\ell \mathcal{N}(\mu_\ell(x), \text{diag } \sigma_\ell^2(x)).$$

611 This **input-conditional** variant is *IC-FDN*. For **layer-propagated** conditioning (*LP-FDN*), the ℓ -th
612 layer’s weight distribution depends *only* on the previous activation:
613

614
$$q_\phi(\theta_\ell | x) = \mathcal{N}(\mu_\ell(a_{\ell-1}), \text{diag } \sigma_\ell^2(a_{\ell-1})), \quad a_0 := x,$$

615 and sampling proceeds sequentially across layers along the same Monte Carlo sample path. This
616 induces a first-order Markov structure in depth, allowing uncertainty to expand as signals propa-
617 gate—later layers can broaden even when early layers remain sharp. We regularize with a per-layer
618 KL:
619

620
$$\beta \sum_{\ell=1}^L D_{\text{KL}}(q_\phi(\theta_\ell | x) \| p_0(\theta_\ell)).$$

621

622 More generally, one could condition longer histories $a_{0:\ell-1}$; in this paper, we restrict to first-order
623 (one-step) conditioning. Note, in the limit $\sigma_\ell \rightarrow 0$ for all ℓ , the model collapses to a deterministic
624 layer-conditioned Hypernetwork.
625626 **Deterministic Hypernetwork.** A deterministic Hypernetwork G_ϕ maps the input to weights,
627 yielding a **degenerate** q :
628

629
$$q_\phi(\theta | x) = \delta(\theta - G_\phi(x)), \quad p(y | x) = p(y | x, G_\phi(x)).$$

630

631 Training typically uses NLL or MSE; weight decay on ϕ can be interpreted as a MAP prior on the
632 Hypernetwork parameters. Because q_ϕ is a Dirac-Delta, there is no weight-space uncertainty: any
633 predictive uncertainty must come from the observation model (e.g., a heteroscedastic head) or post-
634 hoc calibration. Compared to stochastic variants, this adds no KL term and no MC averaging, but
635 can increase per-example compute due to generating weights via G_ϕ .
636637 **Gaussian HyperNetwork** A *Stochastic* Hypernetwork outputs a **global** posterior (or context-
638 only):
639

640
$$q_\phi(\theta | x) \equiv q_\phi(\theta | h) = \prod_\ell \mathcal{N}(\mu_\ell(h), \text{diag } \sigma_\ell^2(h)),$$

641

642 i.e., independent of the query x (but dependent on a learnable latent task vector h). This is variational
643 BNN with parameters produced by a Hypernetwork.
644645 **Bayesian Neural Network (Bayes-by-Backprop).** A standard variational BNN uses an x -
646 **independent** approximate posterior:
647

648
$$q_\phi(\theta | x) \equiv q_\phi(\theta) = \prod_\ell \mathcal{N}(\mu_\ell, \text{diag } \sigma_\ell^2),$$

649

650 and the same β -ELBO objective with closed-form diagonal-Gaussian KL. Because $q_\phi(\theta | x)$ is global,
651 predictive uncertainty does not adapt to x except via the likelihood term, which can under-react off-
652 support compared to input-conditional alternatives. On the other hand, the objective is simple and
653 sampling cost is amortized across inputs, though matching ensemble-like diversity typically requires
654 larger posterior variances or multiple posterior samples at test time.
655

648 **MLP with Dropout.** MLP with dropout induces a distribution over effective weights via random
 649 masks m :

650 $q_\phi(\theta | x) \equiv q_\phi(\theta)$ (implicit via dropout masks, independent of x),
 651 and inference averages predictions over sampled masks (Gal & Ghahramani, 2016).

653 **Deep Ensembles.** An M -member ensemble of MLPs corresponds to a **finite mixture of deltas**:

$$655 \quad q(\theta | x) \equiv \frac{1}{M} \sum_{m=1}^M \delta(\theta - \theta_m), \quad p(y | x) = \frac{1}{M} \sum_{m=1}^M p(y | x, \theta_m),$$

657 where each θ_m is trained independently from a different initialization (and typically a different data
 658 order/augmentation). There is no explicit KL regularizer; diversity arises implicitly from indepen-
 659 dent training trajectories. Inference cost scales linearly with M (one forward pass per member), and
 660 for fair comparisons we match total update or compute budgets by reducing epochs.

662 B TRAINING OBJECTIVE

664 FDN is amortized variational inference with the latent weights θ and input-conditional posterior
 665 $q_\phi(\theta | x)$ realized by small hypernetworks via the reparameterization $\theta^{(k)} = g_\phi(x, \varepsilon^{(k)})$ with $\varepsilon^{(k)} \sim$
 666 $\mathcal{N}(0, I)$. For a single (x, y) the ELBO is

$$667 \quad \log p(y | x) \geq \underbrace{\mathbb{E}_{q_\phi(\theta | x)} [\log p(y | x, \theta)]}_{\text{data term}} - \underbrace{D_{\text{KL}}(q_\phi(\theta | x) \| p_0(\theta))}_{\text{regularizer}}, \quad (1)$$

669 with a simple prior $p_0(\theta) = \prod_\ell \mathcal{N}(0, \sigma_0^2 I)$.

671 **(A) β -ELBO (mean of logs).** We minimize the negative β -ELBO with K Monte Carlo draws:

$$673 \quad \mathcal{L}_{\beta\text{-ELBO}} = -\frac{1}{K} \sum_{k=1}^K \log p(y | x, \theta^{(k)}) + \beta D_{\text{KL}}(q_\phi(\theta | x) \| p_0(\theta)), \quad \theta^{(k)} \sim q_\phi(\theta | x). \quad (2)$$

676 Here $\beta=1$ recovers standard VI; $\beta \neq 1$ implements capacity control / tempered VI (Higgins et al.,
 677 2017; Alemi et al., 2017; Dziugaite & Roy, 2017). We use simple warm-ups for β early in training.

678 **(B) IWAE variant (log of means; tighter bound).** As a reference, the importance-weighted
 679 bound is

$$681 \quad \mathcal{L}_{\text{IWAE}} = -\log \left(\frac{1}{K} \sum_{k=1}^K \frac{p_0(\theta^{(k)}) p(y | x, \theta^{(k)})}{q_\phi(\theta^{(k)} | x)} \right), \quad \theta^{(k)} \sim q_\phi(\theta | x), \quad (3)$$

683 which implicitly accounts for the KL via the weights and typically needs no extra β (Burda et al.,
 684 2016). We report main results with (A) for simplicity and stability.

686 **KL decomposition (IC vs. LP).** For *IC-FDN*, layer posteriors condition directly on x , so the KL
 687 sums over layers and averages over the minibatch. For *LP-FDN*, layer ℓ conditions on a sampled
 688 hidden state $a_{\ell-1}^{(k)}(x)$; the KL is therefore averaged over this upstream randomness:

$$689 \quad D_{\text{KL}}(q_{\phi,\ell}(\theta_\ell | a_{\ell-1}^{(k)}(x)) \| p_0) \quad \text{with} \quad \mathbb{E}_k[\cdot] \text{ across samples } k.$$

691 With diagonal Gaussians, each layer's closed-form term is

$$692 \quad D_{\text{KL}}(\mathcal{N}(\mu, \text{diag } \sigma^2) \| \mathcal{N}(0, \sigma_0^2 I)) = \frac{1}{2} \sum_j \left(\frac{\sigma_j^2 + \mu_j^2}{\sigma_0^2} - 1 - \log \frac{\sigma_j^2}{\sigma_0^2} \right),$$

695 and we implement the variance floor via $\sigma = \varepsilon + \text{softplus}(\rho)$ (no hard clamp).

696 *Remark.* Future work should investigate *layer-specific* β schedules to control where uncertainty is
 697 expressed across depth (e.g., larger β in early layers for stability, smaller β near the output to permit
 698 output-scale variance), with the aim of tightening scale calibration ($b \rightarrow 1$, $a \rightarrow 0$) and improving
 699 AURC/CRPS under oscillatory OOD.

701 C NOTATION AND SYMBOLS

Table 1: Key symbols, parameters, and dimensions used throughout the paper.

Symbol	Description	Dimension / Type
x	Input / covariate	\mathbb{R}^{d_x}
y	Target / response	\mathbb{R}^{d_y}
\mathcal{D}	Training dataset	$\{(x_i, y_i)\}_{i=1}^N$
N	Number of training examples	\mathbb{N}
T	Number of test examples	\mathbb{N}
d_x	Input dimension	scalar
d_y	Output dimension	scalar
D_y	Gaussian head output dim.	$\frac{d_y(d_y+3)}{2}$
f_θ	Base network (predictive head)	$f_\theta : \mathbb{R}^{d_x} \rightarrow \mathbb{R}^{D_y}$
θ	All base-network weights (all layers)	\mathbb{R}^P
ϕ	FDN / variational / hypernetwork params	parameter vector
$p(y x, \theta)$	Likelihood (Gaussian head)	$\mathcal{N}(y; \mu_\theta(x), \Sigma_\theta(x))$
$p_0(\theta)$	Weight prior	$\mathcal{N}(0, \sigma_0^2 I)$
$q_\phi(\theta x)$	Input-conditioned weight posterior	$\mathcal{N}(\mu_\phi(x), \text{diag } \sigma_\phi^2(x))$
β	KL weight in β -ELBO	scalar ≥ 0
$\mathcal{L}_{\beta\text{-ELBO}}$	Training loss (per-example)	scalar
L	Number of layers in base net	scalar
d_ℓ	Width of layer ℓ	scalar
s_ℓ	Conditioning signal for layer ℓ	$\mathbb{R}^{d_{s,\ell}}$
$d_{s,\ell}$	Dimension of s_ℓ	d_x (IC) or $d_{\ell-1}$ (LP)
A_ℓ	Per-layer hypernetwork	$A_\ell : \mathbb{R}^{d_{s,\ell}} \rightarrow \mathbb{R}^{P_\ell}$
P_ℓ	# Gaussian params for layer ℓ	$2(d_{\ell-1}d_\ell + d_\ell)$
P	Total # trainable parameters	$\sum_\ell P_\ell$ (plus head)
h_{hyp}	Hypernetwork hidden width	scalar
K	MC samples per input (train/test)	\mathbb{N}
M	Ensemble size (DeepEnsembleNet)	\mathbb{N}
σ_0	Prior std. for weights	scalar > 0
σ^2	Observation noise variance (homoscedastic)	scalar > 0
ε	Variance floor in $\sigma = \varepsilon + \text{softplus}(\rho)$	scalar > 0
$\hat{\mu}(x)$	Predictive mean	\mathbb{R}^{d_y}
$\text{Var}[Y x]$	Predictive variance estimator	scalar (for $d_y=1$)
MSE	Mean squared error	scalar
CRPS	Continuous ranked prob. score	scalar
NLL	Neg. log predictive density	scalar
ρ	Spearman rank correlation	scalar $\in [-1, 1]$
AURC	Area under risk-coverage curve	scalar
$\Delta(\cdot)$	ID \rightarrow OOD metric delta	$\mathbb{E}_{\text{OOD}}[\cdot] - \mathbb{E}_{\text{ID}}[\cdot]$

D HETEROSCEDASTIC LIKELIHOOD AND VARIANCE DECOMPOSITION

We briefly collect the forms of the Gaussian β -ELBO used in this work and the associated decomposition of predictive variance into epistemic and aleatoric components.

General Gaussian head. For a Gaussian predictive head with possibly heteroscedastic, full-covariance noise, the per-example β -ELBO for datum (x_i, y_i) is

$$\mathcal{L}_{\text{Gauss}}^{(i)} = \frac{1}{2K} \sum_{k=1}^K \left[\|y_i - \mu_{\theta_k}(x_i)\|_{(\Sigma_{\theta_k}(x_i))^{-1}}^2 + \log \det(2\pi \Sigma_{\theta_k}(x_i)) \right] + \beta D_{\text{KL}}(q_\phi(\theta | x_i) \| p_0(\theta)), \quad (4)$$

where $\|v\|_A^2 := v^\top A v$. In the *homoscedastic* case the covariance is constant across inputs, so a full Σ encodes a single, global correlation structure among output dimensions; if Σ is diagonal, the data term reduces to a (constant-)weighted least-squares plus a constant log-determinant. In

756 contrast, *heteroscedastic* models use an input-dependent $\Sigma_\theta(x)$, so the weights (and, for full $\Sigma_\theta(x)$,
 757 correlations) vary with x and with the sampled weights θ .
 758

759 For $d_y = 1$ the covariance reduces to a scalar $\sigma_\theta^2(x)$. We say the noise is *homoscedastic in x* if
 760 $\sigma_\theta^2(x) \equiv \sigma_\theta^2$ (constant across inputs for a fixed θ), and *heteroscedastic in x* if $\sigma_\theta^2(x)$ varies with
 761 x . Orthogonally, because we draw stochastic weights $\theta^{(k)}$, one can distinguish dependence on the
 762 sampled weights: *homoscedastic in θ* means $\sigma_\theta^2(x)$ is effectively deterministic (identical across $\theta^{(k)}$
 763 for a given x), while *heteroscedastic in θ* means $\sigma_{\theta^{(k)}}^2(x)$ changes with the sampled weights (as in
 764 FDN/BNN where the variance head depends on $\theta^{(k)}$).

765 In the **isotropic heteroscedastic** case, $\Sigma_{\theta^{(k)}}(x) = \sigma_{\theta^{(k)}}^2(x)I$, the Gaussian negative log-likelihood
 766 (NLL) contribution is
 767

$$768 \quad 769 \quad 770 \quad \frac{1}{2K} \sum_{k=1}^K \left[\left(\frac{y_i - \mu_{\theta^{(k)}}(x_i)}{\sigma_{\theta^{(k)}}(x_i)} \right)^2 + \log(2\pi \sigma_{\theta^{(k)}}^2(x_i)) \right], \quad (5)$$

771 i.e., a *per-input, per-sample weighted* MSE plus a variance penalty. If one instead assumes **isotropic**
 772 **homoscedastic** noise (σ^2 constant), the data term is proportional to the MSE up to an additive
 773 constant; in practice the fit–regularization trade-off can be tuned either by setting σ^2 or, equivalently,
 774 by adjusting β to re-balance the data term against the KL.

775 Since our main focus is on uncertainty-aware metrics rather than cross-output correlations, in the
 776 experiments we restrict attention to $d_y = 1$ and use the isotropic homoscedastic case, with a single
 777 constant variance σ^2 that we absorb into β .
 778

779 **Scalar homoscedastic β –ELBO.** Consider the latent-weight model
 780

$$781 \quad \theta \sim p_0(\theta), \quad y \mid x, \theta \sim \mathcal{N}(f_\theta(x), \sigma^2),$$

783 with a variational family $q_\phi(\theta \mid x)$ (IC-/LP-FDN). For one datum (x_i, y_i) the standard ELBO is
 784

$$785 \quad \log p(y_i \mid x_i) \geq \underbrace{\mathbb{E}_{q_\phi}[\log p(y_i \mid x_i, \theta)]}_{\text{data term}} - \underbrace{D_{\text{KL}}(q_\phi(\theta \mid x_i) \parallel p_0(\theta))}_{\text{regularizer}}.$$

787 Using the Gaussian likelihood,

$$789 \quad 790 \quad 791 \quad \log p(y_i \mid x_i, \theta) = -\frac{1}{2\sigma^2} (y_i - f_\theta(x_i))^2 - \frac{1}{2} \log(2\pi\sigma^2).$$

792 Plugging into the bound and negating yields the per-example loss
 793

$$794 \quad \mathcal{L}_{\text{ELBO}}^{(i)} = \frac{1}{2\sigma^2} \mathbb{E}_{q_\phi(\theta \mid x_i)}[(y_i - f_\theta(x_i))^2] + D_{\text{KL}}(q_\phi(\theta \mid x_i) \parallel p_0(\theta)) + \frac{1}{2} \log(2\pi\sigma^2).$$

796 Using K reparameterized samples $\theta^{(k)} \sim q_\phi(\theta \mid x_i)$ gives the unbiased Monte Carlo estimator
 797

$$798 \quad 799 \quad 800 \quad 801 \quad \mathcal{L}_{\text{ELBO}}^{(i)} \approx \frac{1}{2K\sigma^2} \sum_{k=1}^K (y_i - f_{\theta^{(k)}}(x_i))^2 + D_{\text{KL}}(q_\phi(\theta \mid x_i) \parallel p_0(\theta)) + \frac{1}{2} \log(2\pi\sigma^2).$$

802 Since $\frac{1}{2} \log(2\pi\sigma^2)$ does not depend on ϕ or θ , it can be dropped during optimization. If σ^2 is fixed,
 803 the data term is just a rescaled MSE, so
 804

$$805 \quad 806 \quad 807 \quad (2\sigma^2) \mathcal{L}_{\text{ELBO}}^{(i)} \doteq \frac{1}{K} \sum_{k=1}^K (y_i - f_{\theta^{(k)}}(x_i))^2 + \underbrace{(2\sigma^2)}_{\beta} D_{\text{KL}}(q_\phi(\theta \mid x_i) \parallel p_0(\theta)),$$

808 showing that choosing constant σ^2 is equivalent to training with a β –ELBO, with β simply rescaling
 809 the effective KL weight (capacity control). In this paper we directly use a β –ELBO for training.

810 **Heteroscedastic observation model (scalar case).** If we allow the observation variance to depend
 811 on x and the sampled weights θ ,

$$813 \quad Y \mid x, \theta \sim \mathcal{N}(f_\theta(x), \sigma_\theta^2(x)) \quad (d_y = 1),$$

814 the per-example β -ELBO becomes

$$816 \quad \mathcal{L}_{\text{het}}^{(i)} = \frac{1}{2K} \sum_{k=1}^K \left[\frac{(y_i - f_{\theta^{(k)}}(x_i))^2}{\sigma_{\theta^{(k)}}^2(x_i)} + \log(2\pi \sigma_{\theta^{(k)}}^2(x_i)) \right] + \beta D_{\text{KL}}(q_\phi(\theta \mid x_i) \parallel p_0(\theta)),$$

819 i.e., a weighted least-squares (WLS) term plus a variance penalty, with weights $w^{(k)}(x_i) = 1/\sigma_{\theta^{(k)}}^2(x_i)$ learned jointly with the mean.

821 *Parameterization and stability.* We parameterize

$$822 \quad \sigma_\theta(x) = \varepsilon + \text{softplus}(\rho_\theta(x)), \quad \varepsilon = 10^{-3},$$

824 which guarantees positivity and avoids numerical collapse. To mitigate variance blow-up in early
 825 training, one can (i) apply gentle weight decay on ρ_θ , (ii) clip $s_\theta(x) = \log \sigma_\theta^2(x)$ to a reasonable
 826 range, or (iii) use a short β warm-up so the likelihood term dominates initially.

827 **Predictive variance decomposition.** Let $\theta \sim q_\phi(\theta \mid x)$ and, given (x, θ) ,

$$829 \quad Y \mid x, \theta \sim \mathcal{N}(\mu_\theta(x), \sigma_\theta^2(x)).$$

831 *Scalar case.* The predictive (marginal) variance decomposes as

$$833 \quad \text{Var}[Y \mid x] = \underbrace{\mathbb{E}_{\theta \sim q_\phi}[\sigma_\theta^2(x)]}_{\text{aleatoric}} + \underbrace{\text{Var}_{\theta \sim q_\phi}[\mu_\theta(x)]}_{\text{epistemic}}. \quad (6)$$

836 *Proof.* By the law of total expectation, $\mathbb{E}[Y \mid x] = \mathbb{E}_\theta[\mathbb{E}[Y \mid x, \theta]] = \mathbb{E}_\theta[\mu_\theta(x)]$. By the law of total
 837 variance,

$$838 \quad \text{Var}[Y \mid x] = \mathbb{E}_\theta[\text{Var}(Y \mid x, \theta)] + \text{Var}_\theta(\mathbb{E}[Y \mid x, \theta]) = \mathbb{E}_\theta[\sigma_\theta^2(x)] + \text{Var}_\theta[\mu_\theta(x)]. \quad \square$$

840 *Vector-output version.* For $Y \in \mathbb{R}^{d_y}$ with $Y \mid x, \theta \sim \mathcal{N}(\mu_\theta(x), \Sigma_\theta(x))$ the predictive covariance is

$$842 \quad \text{Cov}[Y \mid x] = \underbrace{\mathbb{E}_\theta[\Sigma_\theta(x)]}_{\text{aleatoric}} + \underbrace{\text{Cov}_\theta[\mu_\theta(x)]}_{\text{epistemic}}, \quad (7)$$

844 obtained by the matrix form of the law of total variance.

846 **Monte Carlo estimators.** With samples $\theta^{(k)} \sim q_\phi(\theta \mid x)$ we estimate the predictive mean and
 847 epistemic variance as

$$849 \quad \hat{\mu}(x) = \frac{1}{K} \sum_{k=1}^K \mu_{\theta^{(k)}}(x), \quad \widehat{\text{Var}}_{\text{epi}}(x) = \frac{1}{K} \sum_{k=1}^K (\mu_{\theta^{(k)}}(x) - \hat{\mu}(x))^2,$$

852 and obtain the total predictive variance via the decomposition equation 6,

$$854 \quad \widehat{\text{Var}}[Y \mid x] = \frac{1}{K} \sum_{k=1}^K \sigma_{\theta^{(k)}}^2(x) + \widehat{\text{Var}}_{\text{epi}}(x).$$

856 For $d_y > 1$, replace squared deviations by outer products to estimate covariances, in accordance
 857 with equation 7.

859 In our experiments we use the homoscedastic scalar case ($\sigma_\theta^2(x) \equiv \sigma^2$), so the aleatoric variance
 860 reduces to a constant and all input-dependent variability in $\text{Var}[Y \mid x]$ comes from the epistemic
 861 component $\text{Var}_\theta[\mu_\theta(x)]$; the heteroscedastic extension above is included for completeness.

863 E FDN TRAINING AND PREDICTION ALGORITHM

864
865
866
867
868
869
870
871
872
873
874
875
876
877

Algorithm 1 FDN (Unified for IC-/LP-FDN): Training and Prediction

880 1: **Inputs:** dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$; base net f_θ with layers $1:L$; per-layer samplers $q_\phi^l(\theta_l | c_l)$
881 (diag. Gaussians); prior $p_0(\theta) = \prod_l p_0^l(\theta_l)$; MC K ; KL schedule $\{\beta_t\}$; variant $v \in \{\text{IC}, \text{LP}\}$.
882 2: **for** step $t = 1, 2, \dots$ **do**
883 3: Sample minibatch \mathcal{B} ; set $\Sigma_{\text{NLL}} \leftarrow 0$, $\Sigma_{\text{KL}} \leftarrow 0$
884 4: **for** each $(x, y) \in \mathcal{B}$ **do**
885 5: **for** $k = 1, \dots, K$ **do**
886 6: $h_0^{(k)} \leftarrow x$
887 7: **for** $l = 1, \dots, L$ **do**
888 8: $c_l \leftarrow \begin{cases} x & \text{if } v = \text{IC} \\ h_{l-1}^{(k)} & \text{if } v = \text{LP} \end{cases}$
889 9: $\varepsilon_l^{(k)} \sim \mathcal{N}(0, I)$, $\theta_l^{(k)} \leftarrow \mu_\phi^l(c_l) + \sigma_\phi^l(c_l) \odot \varepsilon_l^{(k)}$
890 10: $h_l^{(k)} \leftarrow \text{layer}_l(h_{l-1}^{(k)}; \theta_l^{(k)})$
891 11: $\Sigma_{\text{KL}} += D_{\text{KL}}(q_\phi^l(\theta_l | c_l) \| p_0^l(\theta_l))$
892 12: **end for**
893 13: $(\mu^{(k)}, \Sigma^{(k)}) \leftarrow \text{head}(h_L^{(k)})$ $\{\Sigma^{(k)} \text{ may be fixed (homoscedastic)}\}$
894 14: $\ell_k \leftarrow \log \mathcal{N}(y; \mu^{(k)}, \Sigma^{(k)})$
895 15: **end for**
896 16: $\Sigma_{\text{NLL}} += -\frac{1}{K} \sum_{k=1}^K \ell_k$ $\{\text{ELBO (mean-of-logs)}\}$
897 17: **end for**
898 18: $\mathcal{L} \leftarrow \frac{1}{N} (\Sigma_{\text{NLL}} + \beta_t \Sigma_{\text{KL}})$; update ϕ by backprop on \mathcal{L}
899 19: **end for**
900 20: **Predict at** x_\star : repeat the per-layer sampling with $c_l = \{x_\star \text{ or } h_{l-1}^{(k)}\}$ per v to obtain $(\mu_\star^{(k)}, \Sigma_\star^{(k)})$,
901 and return $\hat{p}(y | x_\star) \approx \frac{1}{K} \sum_k \mathcal{N}(y; \mu_\star^{(k)}, \Sigma_\star^{(k)})$.

905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920 Table 2: Monte Carlo and training Hyperparameters (defaults unless noted).
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

Component	Symbol	Setting
MC samples (train)	K_{train}	1
MC samples (validate)	K_{val}	100
MC samples (test)	K_{test}	100
Epochs	ϵ	400
Optimizer	—	ADAM
Learning rate	η	1×10^{-3}
Batch size	B	64
Weight prior std	σ_0	1.0
Variance floor	ε	10^{-3} in $\sigma = \varepsilon + \text{softplus}(\rho)$
KL schedule	β_t	linear
Maximum β	β_{max}	1.0
Warm up updates	—	200
Toy Grid Seed	—	0
Step Seed	—	13
Sine Seed	—	19
Quadratic Seed	—	6
Airfoil Self-Noise Seed	—	64
CCPP Power Plant Seed	—	2
Energy Efficiency Heating Seed	—	2
Stochastic Checkpoint	—	minimum CRPS in interpolation
Deterministic Checkpoint	—	minimum MSE in interpolation

942
943 Table 3: Number of training, validation, and test examples used for the toy 1D regression tasks and
944 the three UCI real datasets.

Dataset	N_{train}	N_{val}	N_{test}	N_{total}
Toy 1D functions	1024	512	2001	3537
Airfoil Self-Noise	597	199	707	1503
CCPP Power Plant	3444	1148	4976	9568
Energy Efficiency (heating load)	307	102	359	768

951
952 F SUPPLEMENTARY FIGURES AND TABLES
953954
955 In this appendix we provide additional qualitative diagnostics. Figure 6 and Figure 7 plot predictive
956 means versus input for the toy and real tasks, respectively. Figure 8 and Figure 9 show aggregated
957 MSE-variance scatter plots complementing Figure 2 and Figure 3 in the main text, while Figure 10
958 and Figure 11 report full risk-coverage curves (AURC) for toy and real datasets, complementing the
959 summary statistics in Table 5, Table 6, Table 7, Table 8, Table 9, and Table 10.

972
 973 Table 4: Model configurations and compute. Columns: base hidden width d_{hid} ; hypernetwork hidden
 974 width d_{hyper} ; latent dim d_h (for Gaussian Hypernetwork); ensemble size M ; parameter count P (per
 975 model). Use “—” where not applicable.

Model	d_{hid}	d_{hyper}	d_h	M	P
MLPDropoutNet	333	—	—	1	1000
Deep Ensemble	64	—	—	10	1000
BayesNet	166	—	—	1	998
Gaussian HyperNet	24	5	9	1	994
IC-FDNet	23	6	—	1	1004
LP-FDNet	24	5	—	1	1011

983 Notes. We can see that the parameter count is roughly equal. In order to keep a fair comparison we scale the
 984 number of epochs by the ensemble size so the number of updates is roughly the same.

985
 986 Table 5: Step function: unified calibration/uncertainty summary. Lower is better for AURC and
 987 deltas ($\Delta = \text{OOD-ID}$); ideal MSE–Var fit has $a \approx 0, b \approx 1$.

Model	ρ	b	a	AURC \downarrow	Δ_{Var} (OOD-ID) \uparrow	Δ_{MSE} (OOD-ID) \downarrow	Δ_{CRPS} (OOD-ID) \downarrow
MLPDropoutNet	0.990	1.340	-0.020	1.100	2.700	3.600	0.433
DeepEnsembleNet	0.986	4.390	-0.080	3.100	2.600	11.300	1.579
BayesNet	0.987	71.820	-3.500	8.200	0.400	29.600	4.081
GaussHyperNet	1.000	1.020	0.590	54.000	167.300	169.800	2.386
IC-FDNet	0.992	2.520	-475.800	373.100	1725.400	3820.500	16.230
LP-FDNet	1.000	1.040	-17.930	468.500	6306.700	6529.400	8.774

996 Table 6: Sine function: unified calibration/uncertainty summary. Lower is better for AURC and
 997 deltas ($\Delta = \text{OOD-ID}$); ideal MSE–Var fit has $a \approx 0, b \approx 1$.

Model	ρ	b	a	AURC \downarrow	Δ_{Var} (OOD-ID) \uparrow	Δ_{MSE} (OOD-ID) \downarrow	Δ_{CRPS} (OOD-ID) \downarrow
MLPDropoutNet	0.966	32.680	476.110	1 178.400	112.600	4 209.700	50.061
DeepEnsembleNet	0.632	1.160	1.160	1.500	1.000	1.100	-0.179
BayesNet	0.999	1.000	1.200	19.700	55.700	55.700	1.066
GaussHyperNet	1.000	1.020	0.850	59.000	183.800	187.000	2.265
IC-FDNet	0.973	1.730	1 098.340	623.400	1 436.300	3 705.100	20.842
LP-FDNet	0.999	1.050	38.140	382.900	3 170.000	3 362.400	6.527

1007 Table 7: Quadratic function: unified calibration/uncertainty summary. Lower is better for AURC
 1008 and deltas ($\Delta = \text{OOD-ID}$); ideal MSE–Var fit has $a \approx 0, b \approx 1$.

Model	ρ	b	a	AURC \downarrow	Δ_{Var} (OOD-ID) \uparrow	Δ_{MSE} (OOD-ID) \downarrow	Δ_{CRPS} (OOD-ID) \downarrow
MLPDropoutNet	0.990	3 459.120	-67.320	38.700	0.100	231.700	11.176
DeepEnsembleNet	0.979	811.630	-68.320	56.400	0.500	306.200	13.003
BayesNet	0.953	3 855.460	-89.490	81.300	0.100	389.100	15.136
GaussHyperNet	0.993	2.810	-112.410	142.500	253.900	603.600	9.137
IC-FDNet	0.988	1.420	225.670	377.800	1 743.900	2 721.700	14.073
LP-FDNet	0.997	1.420	-107.080	308.600	2 547.300	3 510.600	10.325

1017 Table 8: Airfoil Self-Noise: unified calibration/uncertainty summary. Lower is better for AURC and
 1018 deltas ($\Delta = \text{OOD-ID}$); ideal MSE–Var fit has $a \approx 0, b \approx 1$.

Model	ρ	b	a	AURC \downarrow	Δ_{Var} (OOD-ID) \uparrow	Δ_{MSE} (OOD-ID) \downarrow	Δ_{CRPS} (OOD-ID) \downarrow
MLPDropoutNet	0.601	10.140	0.210	0.400	0.100	1.100	0.535
DeepEnsembleNet	0.177	9.740	0.570	0.600	0.000	0.800	0.353
BayesNet	0.330	4.490	0.400	0.700	0.200	1.100	0.335
GaussHyperNet	0.987	1.010	0.900	10.000	18.900	19.100	0.340
IC-FDNet	0.976	1.400	-3.400	7.600	19.400	25.300	0.493
LP-FDNet	0.983	1.000	1.010	9.300	28.500	28.800	0.363

1026
 1027
 1028
 1029
 1030 Table 9: CCPP Power Plant: unified calibration/uncertainty summary. Lower is better for AURC
 1031 and deltas (Δ =OOD-ID); ideal MSE–Var fit has $a \approx 0$, $b \approx 1$.

Model	ρ	b	a	AURC \downarrow	Δ Var (OOD-ID) \uparrow	Δ MSE (OOD-ID) \downarrow	Δ CRPS (OOD-ID) \downarrow
MLPDropoutNet	0.417	6.070	0.083	0.142	0.023	0.156	0.095
DeepEnsembleNet	0.126	20.050	0.127	0.139	0.002	0.071	0.065
BayesNet	0.470	1.750	0.099	0.201	0.065	0.132	0.045
GaussHyperNet	0.998	1.020	0.108	4.884	7.134	7.159	0.283
IC-FDNet	0.970	1.200	−0.303	2.731	2.916	3.401	0.211
LP-FDNet	0.902	0.990	0.903	2.844	2.129	2.820	0.260

1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045 Table 10: Energy Efficiency: unified calibration/uncertainty summary. Lower is better for AURC
 1046 and deltas (Δ =OOD-ID); ideal MSE–Var fit has $a \approx 0$, $b \approx 1$.

Model	ρ	b	a	AURC \downarrow	Δ Var (OOD-ID) \uparrow	Δ MSE (OOD-ID) \downarrow	Δ CRPS (OOD-ID) \downarrow
MLPDropoutNet	0.696	4.420	0.000	0.100	0.000	0.300	0.258
DeepEnsembleNet	0.426	7.580	0.010	0.100	0.000	0.000	0.051
BayesNet	0.549	4.130	−0.100	0.200	0.000	0.100	0.106
GaussHyperNet	0.996	1.040	0.420	32.400	30.300	30.900	0.454
IC-FDNet	0.993	1.020	0.260	14.100	6.600	6.800	0.114
LP-FDNet	0.989	0.970	1.450	14.100	6.800	6.200	0.005

1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071 Figure 5: Seed-aggregated MSE–variance scatter on the Airfoil Self-Noise dataset over 100 random
 1072 initializations. Each point summarizes one seed by its OOD MSE and OOD predictive variance, and
 1073 the representative seed used in the main-text plots lies close to the overall across-seed trend.

1074
 1075
 1076
 1077
 1078
 1079

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

(a) Airfoil Self-Noise

(b) CCPP Power Plant

(c) Energy Efficiency

Figure 7: Predictive mean vs. standardized split feature x for the three real regression datasets (Airfoil Self-Noise, CCPP Power Plant, Energy Efficiency). Shaded region corresponds to the interpolation/ ID points.

1234 Figure 8: MSE vs. predicted variance scatter plots for the three toy tasks. Each panel aggregates ID
 1235 and OOD test points; the dashed line shows the ideal calibration $MSE = Var$. Legends in the PDFs
 1236 report Spearman's ρ and linear-fit slope/intercept.
 1237
 1238
 1239
 1240
 1241

Figure 9: MSE vs. predicted variance scatter plots for the three real datasets. The dashed line marks $MSE = Var$; legends report Spearman's ρ and linear-fit parameters.

1296

1297

1298

1299

1300

1301

1302

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Figure 10: Risk-coverage curves (AURC) for the three toy tasks. Curves plot average squared error as a function of coverage as high-variance predictions are rejected. Lower AURC indicates better selective regression.

Figure 11: Risk-coverage curves (AURC) for the three real datasets. Lower area under the curve indicates better ability to abstain on high-error points as coverage decreases.

1404 G COMPUTATIONAL COMPLEXITY AND SCALABILITY

1405
 1406 **Deterministic MLP.** Let N denote the number of training examples, d_x the input dimension, d_y
 1407 the output dimension, and consider a base network with widths $\{d_\ell\}_{\ell=0}^L$ with $d_0 = d_x$, $d_L = d_y$. A
 1408 deterministic MLP has per-epoch cost

$$1409 \quad 1410 \quad 1411 \quad O\left(N \sum_{\ell=1}^L d_{\ell-1} d_\ell\right),$$

1412 i.e., linear in N and quadratic in the layer widths.
 1413

1414 **FDN and Hypernetworks.** FDN replaces each fixed weight matrix by an input-conditioned diagonal
 1415 Gaussian $q_\phi(W_\ell, b_\ell \mid s_\ell(x))$ whose parameters are generated by a small per-layer Hypernetwork.
 1416 For layer ℓ , the Hypernetwork takes a conditioning vector

$$1417 \quad 1418 \quad s_\ell(x) = \begin{cases} x, & \text{IC-FDN,} \\ a_{\ell-1}(x), & \text{LP-FDN,} \end{cases}$$

1419 with dimension $d_{s,\ell} \in \{d_x, d_{\ell-1}\}$, and outputs $(\mu_{W_\ell}, \log \sigma_{W_\ell}^2, \mu_{b_\ell}, \log \sigma_{b_\ell}^2) \in \mathbb{R}^{P_\ell}$, where $P_\ell =$
 1420 $2(d_{\ell-1} d_\ell + d_\ell)$. In our implementation, each Hypernetwork A_ℓ is a two-layer MLP with hidden
 1421 width h_{hyp} . For a mini-batch of size B and K Monte Carlo samples per example, the per-epoch
 1422 complexity is

$$1423 \quad 1424 \quad 1425 \quad O\left(NK \sum_{\ell=1}^L (d_{s,\ell} h_{\text{hyp}} + h_{\text{hyp}} P_\ell + d_{\ell-1} d_\ell)\right).$$

1426 The three bracketed terms correspond to (i) the Hypernetwork input transform, (ii) projection to the
 1427 P_ℓ Gaussian parameters, and (iii) the base-layer matrix–vector product. In all experiments we use
 1428 $K = 1$ and small Hypernetwork widths (chosen to satisfy a global $\approx 10^3$ parameter budget), making
 1429 $h_{\text{hyp}} P_\ell$ comparable to $d_{\ell-1} d_\ell$. As a result: (i) the training cost of IC-/LP-FDN remains linear in N ;
 1430 (ii) the runtime overhead relative to a deterministic MLP is a small constant factor (typically 2–4×),
 1431 set by h_{hyp} and K .
 1432

1433 **Parameter-count clarification.** A concern raised in the reviews was that LP-FDN parameter
 1434 count might scale cubically in model size (e.g., as $O(d_\ell^3)$ in the width of a layer). This would
 1435 occur only for a specific design where the Hypernetwork directly maps a d_ℓ -dimensional activation
 1436 to all d_ℓ^2 entries of a dense weight matrix via a fully connected layer, which would require a $d_\ell^2 \times d_\ell$
 1437 matrix.

1438 In our implementation, however, the Hypernetwork hidden width h_{hyp} is a small constant, indepen-
 1439 dent of d_ℓ :

$$1440 \quad P_\ell^{\text{hyper}} = d_{s,\ell} h_{\text{hyp}} + h_{\text{hyp}} \cdot 2(d_{\ell-1} d_\ell + d_\ell) \sim O(h_{\text{hyp}} d_{\ell-1} d_\ell) \sim O(d_{\ell-1} d_\ell).$$

1441 Thus IC-FDN and LP-FDN both have the same $O(d_{\ell-1} d_\ell)$ scaling as the corresponding base MLP
 1442 layer; in particular, there is no cubic dependence on layer width.
 1443

1444 **Architectural trade-offs for larger scales.** FDN is compatible with standard complexity-
 1445 reduction techniques without changing the formulation: (i) low-rank factorizations $W_\ell = U_\ell V_\ell^\top$
 1446 with the Hypernetwork generating only (U_ℓ, V_ℓ) ; (ii) row- or column-wise generation instead of full
 1447 matrices; and (iii) a shared Hypernetwork with layer-specific output heads. In the main experiments
 1448 we keep the architecture minimal to match parameter and update budgets across baselines, but these
 1449 options make FDN readily extendable to higher-dimensional and large- N settings.

1450 **Middle-layer usage and adapter-style deployment.** In practice, Hypernetworks need not be ap-
 1451 plied to *every* layer of a deep backbone. FDN is layer-local, so one can restrict stochastic, input-
 1452 conditioned weights to a small subset of higher layers (or even just the predictive head), keeping
 1453 earlier blocks deterministic and frozen. This is analogous in spirit to LoRA and adapter modules (Hu
 1454 et al., 2022; Houlsby et al., 2019): a narrow, trainable “uncertainty adapter” is inserted on top of a
 1455 largely fixed backbone, so the additional parameters and compute scale with the adapter width rather
 1456 than with the full network depth or width. In such configurations the overall parameter and FLOP
 1457 overhead of FDN remains a small fraction of the backbone, even for large architectures, while still
 1458 enabling input-dependent uncertainty where it is most needed.

1458 H EVALUATION METRICS AND CALIBRATION DIAGNOSTICS

1460 For a test set $\{(x_i, y_i)\}_{i=1}^T$ and a stochastic predictor that yields K samples $\{y_i^{(k)}\}_{k=1}^K$ from the
 1461 predictive distribution $p(y | x_i, \mathcal{D})$, we use the following metrics.

1463 **Point prediction error.** The predictive mean at x_i is

$$1465 \quad \hat{\mu}_i = \frac{1}{K} \sum_{k=1}^K y_i^{(k)}.$$

1468 We define the *per-point* Monte Carlo MSE and bias as

$$1470 \quad \text{MSE}_i = \frac{1}{K} \sum_{k=1}^K (y_i^{(k)} - y_i)^2, \quad \text{Bias}_i = \hat{\mu}_i - y_i = \frac{1}{K} \sum_{k=1}^K (y_i^{(k)} - y_i).$$

1472 For any subset of test inputs $S \subseteq \{1, \dots, T\}$ (e.g., all, ID, or OOD), we aggregate by averaging
 1473 over $i \in S$:

$$1474 \quad \text{MSE}_S = \frac{1}{|S|} \sum_{i \in S} \text{MSE}_i, \quad \text{Bias}_S = \frac{1}{|S|} \sum_{i \in S} \text{Bias}_i.$$

1477 Unless otherwise noted, reported MSE and Bias refer to these region-averaged quantities.

1478 **Predictive variance and epistemic uncertainty.** The Monte Carlo estimator of predictive vari-
 1479 ance at x_i is

$$1481 \quad \widehat{\text{Var}}[Y | x_i] = \frac{1}{K} \sum_{k=1}^K (y_i^{(k)} - \hat{\mu}_i)^2,$$

1483 which we aggregate over ID or OOD test splits by averaging across i . In the homoscedastic Gaussian
 1484 setting this decomposes into aleatoric and epistemic components via the law of total variance; we
 1485 focus on the epistemic part induced by the weight distribution.

1487 **Continuous ranked probability score (CRPS).** For a univariate predictive CDF $F_i(y)$ and real-
 1488 ization y_i , the CRPS is

$$1490 \quad \text{CRPS}(F_i, y_i) = \int_{-\infty}^{\infty} (F_i(z) - \mathbf{1}\{z \geq y_i\})^2 dz.$$

1492 Using samples $y_i^{(k)} \sim F_i$, we apply the standard Monte Carlo estimator

$$1494 \quad \widehat{\text{CRPS}}_i = \frac{1}{K} \sum_{k=1}^K |y_i^{(k)} - y_i| - \frac{1}{2K^2} \sum_{k=1}^K \sum_{\ell=1}^K |y_i^{(k)} - y_i^{(\ell)}|.$$

1497 We report the average CRPS over ID and OOD test splits. Lower CRPS within a region (ID or OOD)
 1498 indicates a sharper and better calibrated predictive distribution: mass is concentrated near y_i without
 1499 being spuriously overconfident. Under shift we typically expect $\text{CRPS}_{\text{OOD}} > \text{CRPS}_{\text{ID}}$ because the
 1500 task is harder; for a fixed OOD difficulty, smaller CRPS_{OOD} (or smaller ΔCRPS , see below) is
 1501 better.

1502 **Calibration: MSE-variance relation.** To assess calibration we compare the predicted variance
 1503 $\widehat{\text{Var}}[Y | x_i]$ with the empirical per-point MSE

$$1505 \quad e_i = \text{MSE}_i = \frac{1}{K} \sum_{k=1}^K (y_i^{(k)} - y_i)^2.$$

1508 We first compute Spearman rank correlation $\rho = \text{corr}_{\text{Spearman}}(\{\widehat{\text{Var}}_i\}, \{e_i\})$ and fit the linear
 1509 relation $e_i \approx a + b \widehat{\text{Var}}_i$ by least squares; the ideal fit has $a \approx 0$ and $b \approx 1$. High ρ means that larger
 1510 predicted variance reliably flags larger squared error (good ranking), while (a, b) measure the *scale*
 1511 of the variances relative to the errors.

1512 In addition, we form *variance–MSE calibration curves* by binning test points into B quantiles of
 1513 predicted variance. In each bin b (with index set S_b) we compute the mean predicted variance $\text{Var}_b =$
 1514 $\frac{1}{|S_b|} \sum_{i \in S_b} \widehat{\text{Var}}_i$ and empirical MSE $\text{MSE}_b = \frac{1}{|S_b|} \sum_{i \in S_b} \text{MSE}_i$, and plot the pairs $(\text{Var}_b, \text{MSE}_b)$
 1515 together with the ideal $y=x$ line. Points lying close to this diagonal indicate that the typical error
 1516 magnitude in each confidence bin matches the predicted variance scale.
 1517

1518 **Risk–coverage (AURC).** Using variance as an inverse-confidence score, we sort test points by
 1519 increasing $\widehat{\text{Var}}[Y | x_i]$. For a coverage level $c \in (0, 1]$ (fraction of most-confident points retained)
 1520 we compute the cumulative risk $R(c)$ as the average per-point MSE over the retained subset:
 1521

$$1522 R(c) = \frac{1}{|S(c)|} \sum_{i \in S(c)} \text{MSE}_i,$$

1523 where $S(c)$ contains the most-confident fraction c of test points. The area under the risk–coverage
 1524 curve, $\text{AURC} = \int_0^1 R(c) dc$, is estimated numerically. Lower AURC is better: for a fixed difficulty,
 1525 it means that as we keep only high-confidence predictions, the resulting risk drops more quickly.
 1526

1527 **ID vs. OOD deltas.** For each model and dataset we compute MSE, variance, and CRPS separately
 1528 on ID (interpolation) and OOD (extrapolation) regions, using the region averages defined above, and
 1529 report
 1530

$$1531 \Delta\text{MSE} = \text{MSE}_{\text{OOD}} - \text{MSE}_{\text{ID}}, \quad \Delta\text{Var} = \text{Var}_{\text{OOD}} - \text{Var}_{\text{ID}}, \quad \Delta\text{CRPS} = \text{CRPS}_{\text{OOD}} - \text{CRPS}_{\text{ID}}.$$

1532 For a fixed notion of shift, good uncertainty estimates should exhibit small ΔMSE (robust accuracy),
 1533 *large and positive* ΔVar (higher uncertainty OOD than ID), and small ΔCRPS (predictive
 1534 distributions that degrade gracefully rather than collapsing or becoming wildly miscalibrated).
 1535

1536 **On NLL / NLPD.** Negative log predictive density (NLL / NLPD) is another strictly proper scoring
 1537 rule for probabilistic regression and is closely related to CRPS. We computed NLL in preliminary
 1538 experiments, but found that in our setting it was (i) strongly correlated with CRPS and MSE, and
 1539 (ii) much more sensitive to occasional extreme errors due to the logarithm, which can dominate the
 1540 average and obscure more typical behavior. CRPS, by contrast, remains finite, can be estimated
 1541 directly from samples without specifying a parametric density or bandwidth, and provides a more
 1542 interpretable summary of the overall predictive distribution (both sharpness and calibration) under
 1543 dataset shift. For these reasons, and to avoid redundant plots/tables, we report CRPS (together with
 1544 MSE, variance, and AURC) as our primary proper scoring rule and omit NLL/NLPD from the main
 1545 results.
 1546

1547 LLM DISCLOSURE

1548 ChatGPT assisted with minor copy-editing, LaTeX phrasing, and bibliography chores (suggesting
 1549 candidate references and drafting BibTeX). The authors independently reviewed the literature and
 1550 verified all citation metadata (titles, authors, venues, DOIs/arXiv).
 1551

1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565