
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FUNCTIONAL DISTRIBUTION NETWORKS (FDN)

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern probabilistic regressors often remain overconfident under distribution
shift. We present Functional Distribution Networks (FDN), an input-conditioned
distribution over network weights that induces predictive mixtures whose disper-
sion adapts to the input. FDN is trained with a β-ELBO and Monte Carlo sam-
pling. We further propose an evaluation protocol that cleanly separates interpo-
lation from extrapolation and stresses OOD sanity checks—e.g., that predictive
likelihood degrades under shift while in-distribution accuracy and calibration are
maintained. On standard regression tasks, we benchmark against strong Bayesian,
ensemble, dropout, and hypernetwork baselines under matched parameter and up-
date budgets, and assess accuracy, calibration, and shift-awareness with standard
diagnostics. Together, the framework and protocol aim to make OOD-aware, well-
calibrated neural regression practical and modular.

1 INTRODUCTION

Modern neural predictors are routinely deployed under dataset shift, where test inputs depart from
the training distribution. In these regimes, point predictions from deterministic networks and naı̈ve
uncertainty surrogates from traditional stochastic heuristics often become overconfident—assigning
high probability to wrong outcomes, particularly off-support/extrapolation—undermining reliable
decision making. Bayesian Neural Networks (BNNs), MLP with dropout, Deep Ensembles, and
Hypernetworks are strong practical baselines, yet they can still under-react outside the training sup-
port or require substantial ensembling/sampling to behave robustly (Quiñonero-Candela et al., 2009;
Ovadia et al., 2019; Guo et al., 2017; MacKay, 1992; Neal, 1996; Graves, 2011; Blundell et al., 2015;
Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Ha et al., 2017).

This motivates architectures that are uncertainty-aware and calibrated—sharp in-distribution (ID)
and widening appropriately OOD (higher CRPS, wider intervals). We pursue this with Functional
Distribution Networks (FDN), which place input-conditional distributions over weights to modulate
uncertainty locally in x. Concretely, FDN amortizes an input-conditional posterior qϕ(θ | x) via
small Hypernetworks and trains it with a Monte Carlo likelihood and a β-ELBO. Under matched
budgets, FDN is ID-competitive and well-calibrated by scale: on low-frequency/piecewise-smooth
shifts (step, quadratic tasks) it achieves near-unity MSE–Var slopes with high Spearman and fa-
vorable AURC/CRPS; on oscillatory shifts (sine task) it retains rank but under-scales variance—an
explicit target for improvement.

Overview. Rather than treating weights as fixed (or globally random), FDN places an input-
conditioned distribution over weights:

θ | x ∼ p(θ | x), y | x, θ ∼ p(y | x, θ). (1)

For tractability, we set the conditional prior to be input-agnostic, p(θ | x) = p0(θ) = N (0, σ2
0I).

This keeps the KL term in the ELBO simple and provides a stable regularizer; all input dependence
is carried by the amortized posterior qϕ(θ | x). Many common models can be cast in this form via
different choices of qϕ(θ | x); we detail these instantiations in Appendix A.

Intuitively, sampling θ from an x-dependent posterior lets the function adapt locally; when x lies far
from the training support, the conditional weight distribution can broaden, yielding wider, appropri-
ately uncertain predictive densities.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Training objective. We train with a Monte Carlo β–ELBO over qϕ(θ | x), report an IWAE variant,
and derive the LP–FDN layer-wise KL (averaged over sampled activations); details in Appendix B.

Evaluation protocol. We split test points into interpolation (ID) and extrapolation (OOD). We
summarize shift by deltas ∆(·) = EOOD[·] − EID[·]. A well-behaved model should widen un-
certainty off-distribution: typically ∆Var > 0, with higher error and worse distributional score
(∆MSE > 0, ∆CRPS > 0). Calibration is assessed via the MSE–variance relation (ideal slope
≈ 1, intercept ≈ 0) and positive rank agreement (Spearman ρ > 0).

Contributions.

• Model: We define FDN as an input-conditioned distribution over network weights, realized
by a lightweight hypernetwork and optimized by the β-ELBO. We consider two variants:
Input-Conditioned Functional Distribution Network (IC-FDN), which conditions only on
the input, and Layer-Progressive Functional Distribution Network (LP-FDN), which con-
ditions each layer on the previous activation and samples sequentially through depth.

• Protocol: We propose a simple, reproducible extrapolation protocol that makes the target
behavior explicit (∆Var > 0) and complements it with calibration diagnostics (MSE–
variance slope and rank correlation; Risk-Coverage curves).

• Fair comparisons: To avoid confounding factors, we match parameter counts and update
budgets across methods, ensuring apples-to-apples comparisons with baseline.

• Empirical findings. Under matched budgets, FDN delivers competitive ID accuracy and
the strongest scale calibration on low-frequency or piecewise-smooth shifts (quadratic,
step tasks)—near-unity MSE–Var slopes with small intercepts and high rank. On highly
oscillatory shift (sine), FDN preserves rank but under-scales variance, increasing AURC.

Scope, significance, and modularity. FDN is simple to implement, compatible with standard
training pipelines, and agnostic to the backbone. By conditioning weight uncertainty on the input
(and, optionally, compact context), it yields uncertainty that is sharp in-distribution yet broadens
gracefully off-support. Crucially, FDN is a layer-level component: it can replace conventional MLP
layers, variational (Bayesian) layers, or Hypernetwork layers with minimal code changes. This al-
lows practitioners to retrofit predictive uncertainty into existing architectures without a full redesign:
keeping the backbone and training loop, swapping selected blocks for FDN layers, and training un-
der the same objective (plus a KL term).

Position relative to Neural Processes. Unlike Neural Processes (NP), which amortize a predictive
distribution directly from a context set, FDN does not access the output head in that way. Instead,
it modulates weight uncertainty via an input-conditional variational family qϕ(θ | x) while leaving
the predictive head unchanged. The goal is not to replace NP-style predictors, but to plug into and
compete with standard layer stacks.

Code availability. All code, configs, and scripts to reproduce the experiments will be released
upon acceptance.

2 RELATED WORK

Uncertainty in neural regression. BNN place distributions over weights and infer posteriors via
variational approximations or MCMC (MacKay, 1992; Neal, 1996; Graves, 2011; Blundell et al.,
2015). Deep Ensembles average predictions from independently trained networks and are a strong
practical baseline (Lakshminarayanan et al., 2017; Maddox et al., 2019). MLP (with dropout) inter-
prets dropout at test time as approximate Bayesian inference (Gal & Ghahramani, 2016). Het-
eroscedastic regression learns input-dependent output variance but retains deterministic weights
(Nix & Weigend, 1994; Kendall & Gal, 2017).

Hypernetworks and conditional weight generation. Hypernetworks generate the weights of a
primary network using an auxiliary network (Ha et al., 2017); related work explores dynamic, input-
conditioned filters and conditional computation (De Brabandere et al., 2016; Brock et al., 2018).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Bayesian/uncertainty-aware Hypernetworks place distributions over generated weights and train
them variationally (Krueger et al., 2017). Our FDN differs by conditioning weight distributions
on inputs to modulate uncertainty itself, not only deterministic weights.

Meta-learning and context-conditioned predictors. Neural Processes (NP) learn a distribution
over functions conditioned on a context set C, typically via a global latent that captures function-level
uncertainty and yields p(y | x, C) (Garnelo et al., 2018; Kim et al., 2019). Gradient-based meta-
learning (e.g., MAML) instead optimizes an initialization that is adapted per task via inner-loop
gradients (Finn et al., 2017). FDN is complementary: it amortizes weight uncertainty directly on the
input (and optionally a lightweight context) through qϕ(θ | x,c), requires no inner-loop adaptation
or explicit context set, and injects uncertainty at the layer level rather than through a single global
function latent. Practically, this makes FDN a drop-in module for standard backbones, enabling
input-aware epistemic uncertainty without redesigning the predictive head or training pipeline.

Calibration and OOD behavior. Proper scoring rules such as the continuous ranked probability
score (CRPS) are strictly proper and reward calibrated predictive distributions (Gneiting & Raftery,
2007). Empirical studies highlight overconfidence under dataset shift and introduce OOD bench-
marks (Ovadia et al., 2019). Our evaluation therefore separates interpolation from extrapolation and
uses the monotonic relationship between per-sample squared error (MSE) and predicted variance as
a simple diagnostic calibration check.

Positioning. Compared to BNNs, FDN sidesteps global posteriors by amortizing local weight
distributions qϕ(θ | x). Compared to Deep Ensembles, FDN uses shared parameters and stochastic
generation instead of replicating full models. Compared to Hypernetworks, FDN explicitly models
uncertainty over generated weights and regularizes it with a KL prior, enabling principled OOD
expansion.

3 METHOD

3.1 PRELIMINARIES

Let fθ : Rdx→RDy denote a network that outputs the parameters of a dy-dimensional Gaussian pre-
dictive head. Here dx and dy are the input and output dimensions, and Dy =

dy(dy+3)
2 is the number

of free parameters for a full-covariance dy-Gaussian (mean plus Cholesky-coded covariance). We
write the observation model as

p(y | x, θ) = N
(
y; µθ(x), Σθ(x)

)
, where fθ(x) :=

(
µθ(x), Σθ(x)

)
.

Homoscedastic means the noise covariance is constant across inputs (Σθ(x) ≡ Σ); heteroscedastic
means it varies with x, θ (Σθ(x)). This is orthogonal to the correlation structure:

• Isotropic (uncorrelated, equal variance): Σ = σ2I (homoscedastic) or Σθ(x) = σ2
θ(x)I

(heteroscedastic).

• Diagonal (uncorrelated, per-dimension variance): Σ = diag(σ2
1 , . . . , σ

2
dy
), or Σθ(x) =

diag
(
exp sθ(x)

)
with sθ(x) = log σ2

θ(x).

• Full (correlated): any symmetric positive-definite covariance admits a Cholesky factor-
ization, homoscedastic or heteroscedastic:

Σ = LL⊤ or Σθ(x) = Lθ(x)Lθ(x)
⊤, diagL(·)>0.

The per-example β-ELBO then becomes

L(i)
Gauss =

1

2K

K∑
k=1

[∥∥yi−µθk(xi)
∥∥2
(Σθk

(xi))
−1 + log det

(
2πΣθk(xi)

)]
+ β DKL(qϕ(θ | xi)∥p0(θ)),

where ∥v∥2A := v⊤Av. In the homoscedastic case the covariance is constant across inputs, so a
full Σ encodes a single, global correlation structure among output dimensions; if Σ is diagonal,
the data term reduces to a (constant-)weighted least-squares plus a constant log-determinant. In

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

contrast, heteroscedastic models use an input-dependent Σθ(x), so the weights (and, for full Σθ(x),
correlations) vary with x, θ.

For dy = 1 the covariance reduces to a scalar σ2
θ(x). Homoscedastic in x means σ2

θ(x) ≡ σ2
θ

(constant across inputs for a fixed θ), whereas heteroscedastic in x means σ2
θ(x) varies with x.

Orthogonally, because we draw stochastic weights θ(k), one can distinguish dependence on the
sampled weights: homoscedastic in θ means σ2

θ(x) is effectively deterministic (identical across θ(k)
for a given x), while heteroscedastic in θ means σ2

θ(k)(x) changes with the sampled weights (as in
FDN/BNN where the variance head depends on θ(k)).

In the isotropic heteroscedastic case (Σθ(k)(x) = σ2
θ(k)(x)I) the Gaussian NLL/NLPD contribution

is
1

2K

K∑
k=1

[(
yi − µθ(k)(xi)

σθ(k)(xi)

)2

+ log
(
2π σ2

θ(k)(xi)
)]

.

Thus, the data term is a per-input, per-sample weighted MSE plus a variance penalty. If one assumes
isotropic homoscedastic noise (σ2 constant), the data term is proportional to MSE up to an additive
constant; in practice the fit–regularization trade-off can be tuned either by setting σ2 or, equivalently,
by adjusting β to re-balance the data term against the KL. Since our focus is on uncertainty-aware
metrics rather than cross-output correlations, we restrict attention to dy = 1 and adopt the isotropic
homoscedastic case (a single, constant variance σ2 which we will absorb into β). A more general
treatment—including heteroscedastic and full-covariance models, as well as structured priors—is
left to future work.

Why homoscedastic noise? We fix the observation variance to a single scalar σ2 (set to 1 in our
runs) for three reasons: (i) isolation of epistemic effects: our focus is on input-conditional weight
uncertainty qϕ(θ | x); a fixed σ2 avoids confounding with an input-dependent noise head; (ii)
fairness and simplicity: all baselines use the same likelihood, so differences reflect how each method
models weight uncertainty rather than aleatoric parameterization; (iii) capacity control equivalence:
with fixed σ2, the data term is a rescaled MSE and changing σ2 simply rescales the KL weight
(effective β).

We refer the reader to Appendix C for the heteroscedastic variant and the predictive-variance de-
composition.

3.2 FDN: INPUT-CONDITIONED WEIGHT DISTRIBUTIONS

We drop explicit context and condition only on signals from the network itself. For each layer
ℓ, FDN places a diagonal-Gaussian over its weights whose parameters are produced by a small
Hypernetwork Aℓ(·). We choose the conditioning signal

s
(k)
ℓ ∈

{
x, IC-FDN
a
(k)
ℓ−1, LP-FDN (with a

(k)
0 = x),

and set

(µW,ℓ, ρW,ℓ, µb,ℓ, ρb,ℓ) = Aℓ(s
(k)
ℓ), σW,ℓ = ε+softplus(ρW,ℓ), σb,ℓ = ε+softplus(ρb,ℓ),

with a small floor ε = 10−3 for numerical stability. Sampling then proceeds as

W
(k)
ℓ = µW,ℓ + σW,ℓ ⊙ z

(k)
W,ℓ, b

(k)
ℓ = µb,ℓ + σb,ℓ ⊙ z

(k)
b,ℓ , z

(k)
{·},ℓ ∼ N (0, I),

and, for LP-FDN, sℓ = a
(k)
ℓ−1 with a

(k)
ℓ = fℓ(a

(k)
ℓ−1;W

(k)
ℓ , b

(k)
ℓ) (sequential across layers).

Variational family (compact). FDN uses a layer-wise diagonal-Gaussian over weights, condi-
tioned on sℓ∈{x, a(k)ℓ−1}:

qϕ(θ | x) =
L∏

ℓ=1

N
(
vec(Wℓ);µW,ℓ(sℓ), diag σ

2
W,ℓ(sℓ)

)
N
(
bℓ;µb,ℓ(sℓ), diag σ

2
b,ℓ(sℓ)

)
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 FDN (Unified for IC-/LP-FDN): Training and Prediction

1: Inputs: dataset D = {(xi, yi)}Ni=1; base net fθ with layers 1:L; per-layer samplers qlϕ(θl | cl)
(diag. Gaussians); prior p0(θ) =

∏
l p

l
0(θl); MC K; KL schedule {βt}; variant v ∈ {IC,LP}.

2: for step t = 1, 2, . . . do
3: Sample minibatch B; set ΣNLL← 0, ΣKL← 0
4: for each (x, y) ∈ B do
5: for k = 1, . . . ,K do
6: h

(k)
0 ← x

7: for l = 1, . . . , L do

8: cl ←

{
x if v = IC
h
(k)
l−1 if v = LP

9: ε
(k)
l ∼N (0, I), θ

(k)
l ←µl

ϕ(cl) + σl
ϕ(cl)⊙ ε

(k)
l

10: h
(k)
l ← layerl

(
h
(k)
l−1; θ

(k)
l

)
11: ΣKL += DKL

(
qlϕ(θl |cl) ∥ pl0(θl)

)
12: end for
13: (µ(k),Σ(k))← head

(
h
(k)
L

)
{Σ(k) may be fixed (homoscedastic)}

14: ℓk ← logN
(
y;µ(k),Σ(k)

)
15: end for
16: ΣNLL += − 1

K

∑K
k=1 ℓk {ELBO (mean-of-logs)}

17: end for
18: L ← 1

N

(
ΣNLL + βt ΣKL

)
; update ϕ by backprop on L

19: end for
20: Predict at x⋆: repeat the per-layer sampling with cl={x⋆ or h(k)

l−1} per v to obtain (µ
(k)
⋆ ,Σ

(k)
⋆),

and return p̂(y |x⋆)≈ 1
K

∑
kN
(
y;µ

(k)
⋆ ,Σ

(k)
⋆

)
.

with Hypernetwork outputs (µW,ℓ, ρW,ℓ, µb,ℓ, ρb,ℓ) = Aℓ(sℓ) and

σW,ℓ = 10−3 + softplus(ρW,ℓ), σb,ℓ = 10−3 + softplus(ρb,ℓ).

In compact form (concatenating all layers),

qϕ(θ | x) = N
(
θ; µϕ(x), diag σ

2
ϕ(x)

)
, θ(k) = µϕ(x) + σϕ(x)⊙ ε(k), ε(k) ∼ N (0, I),

and the predictive density is the Monte Carlo mixture

p(y | x) ≈ 1

K

K∑
k=1

p
(
y | x, θ(k)

)
, θ(k) ∼ qϕ(θ | x).

Prior and regularization. We regularize qϕ(θ |x) toward a simple reference p0(θ) =∏
ℓN (0, σ2

0I) via a β-weighted KL term (we use σ0 = 1 in all experiments). For diagonal Gaus-
sians,

DKL

(
N (µ, diag σ2)

∥∥N (0, σ2
0I)
)
= 1

2

∑
j

(
σ2
j + µ2

j

σ2
0

− 1 − log
σ2
j

σ2
0

)
,

and we sum this over all layers (for both Wℓ and bℓ). The variance floor is implemented by the ε in
σ = ε+ softplus(ρ) rather than a hard bound.

Algorithm 1 summarizes training (β-ELBO with re-parameterized gradients) and inference (Monte-
Carlo mixtures over weight draws) for both IC-FDN and LP-FDN.

4 EXPERIMENTS

Tasks and splits. We evaluate FDN on synthetic 1D meta–regression tasks and standard
small/medium regression benchmarks. For the 1D analysis, let the ambient domain beR = (−L,L)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=0.484)
LP-FDNet (AURC=0.320)
BayesNet (AURC=0.704)

GaussHyperNet (AURC=1.013)
MLPDropoutNet (AURC=0.223)
DeepEnsembleNet (AURC=0.632)

(a) Step: θ(x)
0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0

50

100

150

200

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=40.060)
LP-FDNet (AURC=6.973)
BayesNet (AURC=3.692)

GaussHyperNet (AURC=1.456)
MLPDropoutNet (AURC=16.947)
DeepEnsembleNet (AURC=1.085)

(b) Sine: 1.54 sin(2.39x)

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
is

k
(c

um
ul

at
iv

e
m

ea
n

M
SE

)

IC-FDNet (AURC=0.201)
LP-FDNet (AURC=0.242)
BayesNet (AURC=0.011)

GaussHyperNet (AURC=0.229)
MLPDropoutNet (AURC=0.002)
DeepEnsembleNet (AURC=0.005)

(c) Quadratic: 0.43x2 − 0.41

0 1 2 3 4 5 6
Variance

0

200

400

600

800

1000

1200

1400

M
SE

Ideal: MSE=Var
IC-FDNet (=0.85)
LP-FDNet (=0.96)
BayesNet (=0.94)

GaussHyperNet (=0.94)
MLPDropoutNet (=0.90)
DeepEnsembleNet (=0.91)

(d) Step: θ(x)
0 5 10 15 20 25

Variance

0

500

1000

1500

2000

2500

M
SE

Ideal: MSE=Var
IC-FDNet (=1.00)
LP-FDNet (=0.93)
BayesNet (=0.87)

GaussHyperNet (=0.51)
MLPDropoutNet (=0.97)
DeepEnsembleNet (=0.28)

(e) Sine: 1.54 sin(2.39x)

0.0 0.5 1.0 1.5 2.0 2.5
Variance

0

25

50

75

100

125

150

175

M
SE

Ideal: MSE=Var
IC-FDNet (=1.00)
LP-FDNet (=1.00)
BayesNet (=0.93)

GaussHyperNet (=1.00)
MLPDropoutNet (=0.99)
DeepEnsembleNet (=0.99)

(f) Quadratic: 0.43x2 − 0.41

Figure 1: Suite of 1D regression evaluations across three functions: (a–c) Risk–Coverage (AURC)
curves (lower is better) for the step θ(x), sine 1.54 sin(2.39x), and quadratic 0.43x2 − 0.41; (d–f)
corresponding MSE vs. predicted variance scatter plots (dashed line shows the ideal MSE = Var).
Colors denote models; legends within each panel report per-model statistics (e.g., AURC or Spear-
man’s ρ).

and define the interpolation regionRinterp = [−l, l] ⊂ R. Training inputs satisfy xi ∈ Rinterp with
yi = f(xi). At test time we report metrics separately on the ID split Rinterp and the OOD split
Rextrap = R \ Rinterp, and we also include the aggregation of both. This protocol cleanly isolates
ID interpolation from OOD extrapolation.

4.1 COMPLEXITY, CAPACITY, AND FAIRNESS

Baselines. We evaluate four stochastic baselines: MLP with dropout (MLPDropoutNet), Deep
Ensemble of MLP (DeepEnsemblesNet), Variational BNN (BayesNet), and Gaussian Hyper-
network (GaussianHyperNet). Because our study centers on calibrated predictive distributions
(CRPS, MSE–Var slope/intercept, AURC), we omit the Deterministic MLP and the (input-
conditioned) Hypernetwork from the main uncertainty analysis; their ID/OOD MSE is comparable
to Ensembles/Dropout. Training details (optimizer, batch size, learning rate, prior scale σ0, variance
floor σmin) appear in Table 1 (Appendix D).

Link-budget. We consider networks with a single hidden layer and fix the parameter budget to
P ≈ 1000 (±5%) for all models, counting all trainable parameters, including any Hypernetwork
components; counts appear in Table 2 (Appendix D). To equalize the update budget, ensembles with
M members use epoch-split training (epochs divided by M). For non-ensemble networks we use
one Monte Carlo draw per update (K = 1), keeping per-step cost comparable and the total number
of parameter updates matched across models.

Note: To hit the P target, MLPDropoutNet uses widened hidden layers, increasing capac-
ity/expressive power and potentially improving ID MSE independent of uncertainty quality; hence
our emphasis on calibration-centric metrics.

Metrics, diagnostics, and reporting. We evaluate five axes with compact visuals: Accuracy
(MSE↓); Uncertainty quality (predicted Var[ŷ | x]—small ID, increasing in OOD); Calibra-
tion via the MSE–variance relation—(i) rank agreement, Spearman ρ(Var,MSE), and (ii) scale
fit MSE≈a+ bVar with ideal a≈0 (error offset at near-zero variance) and b≈1 (maps uncertainty
to error; b > 1 = variances too small/overconfident; b < 1 = too large/underconfident); Robustness

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.00 0.05 0.10 0.15 0.20 0.25
Variance

20

15

10

5

0

5

10

M
SE

Ideal: MSE=Var
IC-FDNet (=-0.17)
LP-FDNet (=0.75)
BayesNet (=0.08)

GaussHyperNet (=-0.45)
MLPDropoutNet (=0.09)
DeepEnsembleNet (=-0.13)

(a) Step (ID): θ(x)

0 2 4 6
Variance

0

200

400

600

800

1000

1200

M
SE

Ideal: MSE=Var
IC-FDNet (=0.88)
LP-FDNet (=0.99)
BayesNet (=0.97)

GaussHyperNet (=1.00)
MLPDropoutNet (=1.00)
DeepEnsembleNet (=0.96)

(b) Step (OOD): θ(x)

0.0 0.1 0.2 0.3 0.4
Variance

0

10

20

30

40

M
SE

Ideal: MSE=Var
IC-FDNet (=0.97)
LP-FDNet (=0.80)
BayesNet (=-0.01)

GaussHyperNet (=-0.02)
MLPDropoutNet (=0.71)
DeepEnsembleNet (=0.45)

(c) Sine (ID): 1.54 sin(2.39x)

0 5 10 15 20 25
Variance

0

500

1000

1500

2000

2500

M
SE

Ideal: MSE=Var
IC-FDNet (=0.99)
LP-FDNet (=0.83)
BayesNet (=0.81)

GaussHyperNet (=0.50)
MLPDropoutNet (=0.95)
DeepEnsembleNet (=0.20)

(d) Sine (OOD): 1.54 sin(2.39x)

0.00 0.05 0.10 0.15 0.20
Variance

0.2

0.0

0.2

0.4

0.6

0.8

M
SE

Ideal: MSE=Var
IC-FDNet (=1.00)
LP-FDNet (=1.00)
BayesNet (=-0.75)

GaussHyperNet (=1.00)
MLPDropoutNet (=0.94)
DeepEnsembleNet (=0.87)

(e) Quadratic (ID): 0.43x2 − 0.41

0.0 0.5 1.0 1.5 2.0
Variance

0

25

50

75

100

125

150

175

M
SE

Ideal: MSE=Var
IC-FDNet (=1.00)
LP-FDNet (=1.00)
BayesNet (=0.99)

GaussHyperNet (=1.00)
MLPDropoutNet (=0.99)
DeepEnsembleNet (=0.99)

(f) Quadratic (OOD): 0.43x2 − 0.41

Figure 2: MSE vs. predicted variance on three 1D regression tasks in a 3× 2 grid: rows correspond
to tasks θ(x), 1.54 sin(2.39x), and 0.43x2 − 0.41; left column shows test interpolation (ID), right
column shows test extrapolation (OOD). Colors denote models; legend entries include Spearman’s
ρ between variance and MSE. The dashed line marks the ideal relation MSE = Var.

(CRPS↓, strictly proper, full-predictive); and Selective risk (AURC↓ from variance-ranked absten-
tion, capturing decision usefulness). We plot MSE–Var scatter with an MSE = Var guide and
risk–coverage curves across tasks (Fig. 1); ID/OOD MSE–Var scatter (Fig. 2); and bar charts of
ID→OOD deltas (e.g., ∆MSE = MSEOOD −MSEID) (Fig. 3).

4.2 RESULTS

Discussion. Across the three tasks (Table 3, 4, 5 in Appendix D), FDNet’s1 core strength is cali-
bration by scale: on step and quadratic, both IC–FDNet and LP–FDNet achieve MSE–Var slopes
close to the ideal (b≈ 1; e.g., b∈ [1.04, 1.25]) with small intercepts, while maintaining strong rank
agreement (Spearman ρ≥0.85, often = 1.0 on quadratic). In these regimes, FDNet’s predictive vari-
ance increases in lock–step with difficulty (∆Var large) and its selective abstention is competitive
(AURC low–moderate). Importantly, classical baselines that fit ID sharply (e.g., Dropout, Ensem-

1Terminology. FDN denotes the framework. We use FDNet for the specific architectures considered in the
experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MLPDrop
ou

tN
et

LP-FDNet

IC
-FDNet

Gau
ssH

yp
erN

et

Deep
Ense

mble
Net

Bay
esN

et
0

1

2

3

MSE (OOD ID)

MLPDrop
ou

tN
et

LP-FDNet

IC
-FDNet

Gau
ssH

yp
erN

et

Deep
Ense

mble
Net

Bay
esN

et
0.0

0.5

1.0

Var (OOD ID)

MLPDrop
ou

tN
et

LP-FDNet

IC
-FDNet

Gau
ssH

yp
erN

et

Deep
Ense

mble
Net

Bay
esN

et
0.00

0.25

0.50

0.75

1.00

CRPS (OOD ID)

(a) Step: θ(x)

Gau
ssH

yp
erN

et

Deep
Ense

mble
Net

Bay
esN

et

LP-FDNet

MLPDrop
ou

tN
et

IC
-FDNet

0

100

200

300

MSE (OOD ID)

Gau
ssH

yp
erN

et

Deep
Ense

mble
Net

Bay
esN

et

LP-FDNet

MLPDrop
ou

tN
et

IC
-FDNet

0

1

2

3

Var (OOD ID)

Gau
ssH

yp
erN

et

Deep
Ense

mble
Net

Bay
esN

et

LP-FDNet

MLPDrop
ou

tN
et

IC
-FDNet

0

5

10

CRPS (OOD ID)

(b) Sine: 1.54 sin(2.39x)

MLPDrop
ou

tN
et

IC
-FDNet

Bay
esN

et

LP-FDNet

Deep
Ense

mble
Net

Gau
ssH

yp
erN

et
0.0

0.2

0.4

0.6

0.8

MSE (OOD ID)

MLPDrop
ou

tN
et

IC
-FDNet

Bay
esN

et

LP-FDNet

Deep
Ense

mble
Net

Gau
ssH

yp
erN

et
0.0

0.2

0.4

0.6

0.8

Var (OOD ID)

MLPDrop
ou

tN
et

IC
-FDNet

Bay
esN

et

LP-FDNet

Deep
Ense

mble
Net

Gau
ssH

yp
erN

et
0.00

0.05

0.10

CRPS (OOD ID)

(c) Quadratic: 0.43x2 − 0.41

Figure 3: ∆MSE, ∆V ar, and ∆CRPS for three 1D regression tasks: (a) step θ(x), (b) sine
1.54 sin(2.39x), and (c) quadratic 0.43x2 − 0.41.

bles) show mis-scaled uncertainties on these tasks (very large b on quadratic and step), indicating
that even when they rank hard points reasonably well, their variance does not track the magnitude
of the error.

On the sine task—our most oscillatory OOD setting—the picture flips. All methods suffer, but
FDNet’s magnitude calibration deteriorates (very large b with negative a), despite excellent ranking
(ρ ≥ 0.93). FDNet (and MLPDropoutNet) do raise variance substantially OOD (∆Var ≈ 3), yet
the error explodes faster than the variance grows (huge ∆MSE), yielding poor AURC. In contrast,
DeepEnsembleNet and Gaussian HyperNet see far smaller error increases (much lower ∆MSE),
which mechanically keeps their AURC low even though their ranking can be weak (e.g., ρ = 0.28
for Ensembles). The takeaway is that AURC blends both calibration and absolute error growth:
excellent rank calibration cannot compensate for large OOD error if the scale is under-estimated.

Calibration and ranking across splits (ID vs OOD). On ID, all methods cluster near the origin
(low error and variance), so Spearman is low-information and calibration is judged mostly by small
intercepts. OOD reveals the separation: on step and quadratic, IC/LP–FDN maintain strong rank-
ing and sit close to the MSE = Var diagonal (near-unity slopes, small intercepts), i.e., variance
scales with error; several baselines lie visibly above the guide (steep fits), signaling overconfidence
in magnitude. On sine, FDNet still ranks difficult points well (high Spearman) but under-scales
uncertainty (steep fitted lines), so errors grow faster than variance. These patterns are evident in the
MSE–Var scatters (Fig. 2) and consistent with the ID→OOD deltas (Fig. 3): FDN shows large ∆Var
on step/quadratic (tracking difficulty), whereas on sine the surge in ∆MSE dwarfs ∆Var. In short,
on smooth shifts (step, quadratic) multiple methods rank well but FDN is best on scale; on oscil-
latory OOD (sine task), FDN uniquely preserves high rank while most baselines ranking degrades,
though FDN’s variance still under-scales the error.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Where FDNet is strong. (i) Scale calibration on smooth shifts: near-ideal slopes on step/quadratic
show that FDNet’s input-conditioned weight uncertainty translates into variances that numerically
match error growth. (ii) Ranking: consistently high ρ means FDNet reliably flags risky points. (iii)
Sensitivity to shift: large ∆Var indicates FDN reacts to OOD, avoiding the flat-variance pathology
seen in some baselines.

Where FDNet is weak. (i) Highly oscillatory OOD: on sine, variance grows but not enough relative
to error (large b, poor AURC), pointing to an under-scaled uncertainty head under rapid frequency
mismatch. (ii) CRPS under severe shift: large ∆CRPS mirrors the magnitude miscalibration.

Advantages and implications. FDNet’s principal advantage is calibrated scaling when the OOD
distortion is smooth/monotone (step/quadratic), where many standard methods remain overconfident
(large b). Its high ρ across tasks suggests FDNet is a strong triage signal even when the absolute scale
lags (sine). Practically, this favors FDNet in settings where errors grow gradually outside the training
manifold (safety margins, defer policies), while highlighting a clear avenue for improvement on
oscillatory shifts: stronger variance scaling (e.g., temperature on σϕ, variance-floor tuning), richer
priors, or layer-wise β schedules. Overall, under matched capacity and update budgets, FDN delivers
robust rank calibration and, on two of three tasks, near-ideal error–uncertainty scaling—precisely
the behaviors a stochastic regressor should exhibit under controlled distribution shift.

High-level observations and takeaways. Under matched budgets, ID MLPDropoutNet and
DeepEnsembleNet typically attain the lowest MSE; FDNet is slightly less sharp but already shows
strong rank calibration (high Spearman). OOD separates methods: on step and quadratic, IC/LP-
FDNet most consistently grow variance in proportion to error—near-unity MSE–Var slopes with
small intercepts and high Spearman, yielding large ∆Var, smaller ∆CRPS, and competitive AURC,
while several baselines remain overconfident (steep fits). On the oscillatory sine task, FDNet pre-
serves ranking but under-scales variance relative to error (steep slopes, higher AURC), a focused
improvement area. For risk-aware use cases that depend on “knowing when you don’t know,” FD-
Net’s uncertainty that generalizes under shift is often preferable to marginal gains in ID sharpness.

5 LIMITATIONS

FDN’s input-conditioned weight stochasticity, like similar stochastic layers, can overfit spurious
cues if β is too small or the prior is too loose; careful KL scheduling and priors are important.
LP-FDN samples weights layer-by-layer, adding latency vs. a deterministic pass; sampling at test
time also incurs a compute/latency trade-off with K. Our study focuses on regression: extending to
classification requires discrete predictive mixtures and calibration beyond CRPS (e.g., ECE/Brier).
Finally, while our Hypernetworks are lightweight, scaling to very deep backbones may benefit from
structured or low-rank generators and variance-temperature/floor controls, particularly to address
under-scaling on oscillatory OOD.

6 CONCLUSION

We introduced Functional Distribution Networks (FDN), which amortize input-conditioned dis-
tributions over weights to produce predictive densities that remain sharp in-distribution yet ex-
pand appropriately under shift. Trained with a Monte Carlo objective and a β-weighted KL to
a simple prior, FDN delivers strong rank calibration across tasks and near-ideal scale calibration
on smooth/piecewise-smooth shifts (step, quadratic tasks), as evidenced by Spearman, MSE–Var
slope/intercept, ∆Var, CRPS, and AURC. Under a fair protocol that matches parameters, updates,
and predictive-sample budgets, FDN provides uncertainty that is practically useful for abstention
and risk-aware inference. Future work includes stronger variance scaling (temperature/floors, layer-
wise β scheduling), structured/priors for deep backbones, frequency-aware conditioning to handle
oscillatory OOD (sine task), and calibrated extensions to classification.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at po-
sition i

diag(a) A square, diagonal matrix with diagonal entries given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of A
that are not in B

G A graph

PaG(xi) The parents of xi in G

Indexing

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

Calculus

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect to X
∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫
f(x)dx Definite integral over the entire domain of x∫

S
f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or
over a variable whose type has not been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P∥Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance
Σ

Functions

f : A→ B The function f with domain A and range B
f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes we write
f(x) and omit the argument θ to lighten notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)
ζ(x) Softplus, log(1 + exp(x))

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. In International Conference on Learning Representations (ICLR), 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. In International Conference on Machine Learning (ICML), 2015.

Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Smash: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations (ICLR),
2018. URL https://openreview.net/forum?id=rydeCEhs-.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In Inter-
national Conference on Learning Representations (ICLR), 2016.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 667–675, 2016.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks via pac-bayes. In International Conference on Learning Rep-
resentations (ICLR), 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning
(ICML), volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135. PMLR, 2017.
URL https://proceedings.mlr.press/v70/finn17a.html.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1050–1059. PMLR,
2016.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali
Eslami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018. URL
https://arxiv.org/abs/1807.01622.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–268, 2007.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning (ICML), 2017.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In International Conference on
Learning Representations (ICLR), 2017. URL https://openreview.net/forum?id=
rkpACe1lx.

Irina Higgins et al. beta-VAE: Learning basic visual concepts with a constrained variational frame-
work. In International Conference on Learning Representations (ICLR), 2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in Neural Information Processing Systems, 2017.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan Rosenbaum,
Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on
Learning Representations (ICLR), 2019. URL https://openreview.net/forum?id=
SkE6PjC9KX.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv preprint arXiv:1710.04759, 2017.

12

https://openreview.net/forum?id=rydeCEhs-
https://proceedings.mlr.press/v70/finn17a.html
https://arxiv.org/abs/1807.01622
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=SkE6PjC9KX
https://openreview.net/forum?id=SkE6PjC9KX

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Com-
putation, 4(3):448–472, 1992.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson. A
simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, 2019.

Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statis-
tics. Springer, 1996.

David A. Nix and Andreas S. Weigend. Estimating the mean and variance of the target probability
distribution. In IEEE International Conference on Neural Networks, 1994.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence (eds.).
Dataset Shift in Machine Learning. MIT Press, 2009.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A UNIFIED VIEW VIA qϕ(θ | x)

All methods we consider can be written as

p(y | x) =

∫
p(y | x, θ) qϕ(θ | x) dθ ≈

1

K

K∑
k=1

p
(
y | x, θ(k)

)
, θ(k) ∼ qϕ(θ | x).

In this paper, architectural layers are specified by the choice of qϕ(θ | x). Framing models through
qϕ(θ | x) enables apples-to-apples comparisons: (i) how they set the spread of plausible weights,
(ii) whether that spread adapts to the input, and (iii) how much compute they expend to form the
predictive mixture. FDN’s module-level approach directly targets this knob: it provides local, input-
aware uncertainty where it is inserted (e.g., the head or later blocks), broadens off-support as inputs
drift from the training domain, and leaves the surrounding backbone and training loop unchanged.

FDN (IC/LP) FDN makes qϕ input-conditional and stochastic. A common choice is diagonal-
Gaussian, factorized by layer:

qϕ(θ | x) =
∏
ℓ

N
(
µℓ(x), diag σ

2
ℓ (x)

)
.

This input-conditional variant is IC-FDN. For layer-propagated conditioning (LP-FDN), the ℓ-th
layer’s weight distribution depends only on the previous activation:

qϕ(θℓ | x) = N
(
µℓ(aℓ−1), diag σ

2
ℓ (aℓ−1)

)
, a0 := x,

and sampling proceeds sequentially across layers along the same Monte Carlo sample path. This
induces a first-order Markov structure in depth, allowing uncertainty to expand as signals propa-
gate—later layers can broaden even when early layers remain sharp. We regularize with a per-layer
KL:

β

L∑
ℓ=1

DKL(qϕ(θℓ | x)∥p0(θℓ)).

More generally, one could condition longer histories a0:ℓ−1; in this paper, we restrict to first-order
(one-step) conditioning. Note, in the limit σℓ → 0 for all ℓ, the model collapses to a deterministic
layer-conditioned Hypernetwork.

Deterministic Hypernetwork. A deterministic Hypernetwork Gϕ maps the input to weights,
yielding a degenerate q:

qϕ(θ | x) = δ
(
θ −Gϕ(x)

)
, p(y | x) = p

(
y | x,Gϕ(x)

)
.

Training typically uses NLL or MSE; weight decay on ϕ can be interpreted as a MAP prior on the
Hypernetwork parameters. Because qϕ is a Dirac-Delta, there is no weight-space uncertainty: any
predictive uncertainty must come from the observation model (e.g., a heteroscedastic head) or post-
hoc calibration. Compared to stochastic variants, this adds no KL term and no MC averaging, but
can increase per-example compute due to generating weights via Gϕ.

Gaussian HyperNetwork A Stochastic Hypernetwork outputs a global posterior (or context-
only):

qϕ(θ | x) ≡ qϕ(θ | h) =
∏
ℓ

N (µℓ(h), diag σ
2
ℓ (h)),

i.e., independent of the query x (but dependent on a learnable latent task vector h). This is variational
BNN with parameters produced by a Hypernetwork.

Bayesian Neural Network (Bayes-by-Backprop). A standard variational BNN uses an x-
independent approximate posterior:

qϕ(θ | x) ≡ qϕ(θ) =
∏
ℓ

N
(
µℓ, diag σ

2
ℓ

)
,

and the same β-ELBO objective with closed-form diagonal-Gaussian KL. Because qϕ(θ|x) is global,
predictive uncertainty does not adapt to x except via the likelihood term, which can under-react off-
support compared to input-conditional alternatives. On the other hand, the objective is simple and
sampling cost is amortized across inputs, though matching ensemble-like diversity typically requires
larger posterior variances or multiple posterior samples at test time.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

MLP with Dropout. MLP with dropout induces a distribution over effective weights via random
masks m:

qϕ(θ | x) ≡ qϕ(θ) (implicit via dropout masks, independent of x),
and inference averages predictions over sampled masks (Gal & Ghahramani, 2016).

Deep Ensembles. An M -member ensemble of MLPs corresponds to a finite mixture of deltas:

q(θ | x) ≡ 1

M

M∑
m=1

δ
(
θ − θm

)
, p(y | x) =

1

M

M∑
m=1

p
(
y | x, θm

)
,

where each θm is trained independently from a different initialization (and typically a different data
order/augmentation). There is no explicit KL regularizer; diversity arises implicitly from indepen-
dent training trajectories. Inference cost scales linearly with M (one forward pass per member), and
for fair comparisons we match total update or compute budgets by reducing epochs.

B TRAINING OBJECTIVE

FDN is amortized variational inference with the latent weights θ and input-conditional posterior
qϕ(θ | x) realized by small hypernetworks via the reparameterization θ(k) = gϕ(x, ε

(k)) with ε(k)∼
N (0, I). For a single (x, y) the ELBO is

log p(y | x) ≥ Eqϕ(θ|x)
[
log p(y | x, θ)

]︸ ︷︷ ︸
data term

− DKL

(
qϕ(θ | x) ∥ p0(θ)

)︸ ︷︷ ︸
regularizer

, (2)

with a simple prior p0(θ) =
∏

ℓN (0, σ2
0I).

(A) β–ELBO (mean of logs). We minimize the negative β–ELBO with K Monte Carlo draws:

Lβ-ELBO = − 1

K

K∑
k=1

log p
(
y | x, θ(k)

)
+ β DKL

(
qϕ(θ | x) ∥ p0(θ)

)
, θ(k)∼ qϕ(θ | x). (3)

Here β=1 recovers standard VI; β ̸= 1 implements capacity control / tempered VI (Higgins et al.,
2017; Alemi et al., 2017; Dziugaite & Roy, 2017). We use simple warm-ups for β early in training.

(B) IWAE variant (log of means; tighter bound). As a reference, the importance-weighted
bound is

LIWAE = − log

(
1

K

K∑
k=1

p0(θ
(k)) p(y | x, θ(k))
qϕ(θ(k) | x)

)
, θ(k)∼ qϕ(θ | x), (4)

which implicitly accounts for the KL via the weights and typically needs no extra β (Burda et al.,
2016). We report main results with (A) for simplicity and stability.

KL decomposition (IC vs. LP). For IC-FDN, layer posteriors condition directly on x, so the KL
sums over layers and averages over the minibatch. For LP-FDN, layer ℓ conditions on a sampled
hidden state a

(k)
ℓ−1(x); the KL is therefore averaged over this upstream randomness:

DKL

(
qϕ,ℓ(θℓ | a(k)ℓ−1(x)) ∥ p0

)
with Ek[·] across samples k.

With diagonal Gaussians, each layer’s closed-form term is

DKL

(
N (µ, diag σ2) ∥N (0, σ2

0I)
)
= 1

2

∑
j

(
σ2
j + µ2

j

σ2
0

− 1− log
σ2
j

σ2
0

)
,

and we implement the variance floor via σ = ε+ softplus(ρ) (no hard clamp).

Remark. Future work should investigate layer-specific β schedules to control where uncertainty is
expressed across depth (e.g., larger β in early layers for stability, smaller β near the output to permit
output-scale variance), with the aim of tightening scale calibration (b→ 1, a→ 0) and improving
AURC/CRPS under oscillatory OOD.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C HETEROSCEDASTIC LIKELIHOOD AND VARIANCE DECOMPOSITION

Variance decomposition (scalar case). Let θ∼qϕ(θ | x) and, given (x, θ), let

Y | x, θ ∼ N
(
µθ(x), σ

2
θ(x)

)
.

Then the predictive (marginal) variance decomposes as

Var[Y | x] = Eθ∼qϕ

[
σ2
θ(x)

]︸ ︷︷ ︸
aleatoric

+ Varθ∼qϕ

[
µθ(x)

]︸ ︷︷ ︸
epistemic

.

Proof. By the law of total expectation, E[Y | x] = Eθ[E[Y | x, θ]] = Eθ[µθ(x)]. By the law of total
variance,

Var[Y | x] = Eθ

[
Var(Y | x, θ)

]
+Varθ

(
E[Y | x, θ]

)
= Eθ

[
σ2
θ(x)

]
+Varθ

[
µθ(x)

]
. □

Vector-output version. For Y ∈ Rdy with Y | x, θ ∼ N (µθ(x),Σθ(x)),

Cov[Y | x] = Eθ

[
Σθ(x)

]︸ ︷︷ ︸
aleatoric

+ Covθ
[
µθ(x)

]︸ ︷︷ ︸
epistemic

.

The proof is identical, replacing variance by covariance and using the matrix form of the law of total
variance.

Special cases. (i) Homoscedastic, isotropic noise (σ2
θ(x) ≡ σ2): Var[Y | x] = σ2 +Varθ[µθ(x)].

(ii) Heteroscedastic noise (σ2
θ(x) depends on x, θ): the first term becomes an average Eθ[σ

2
θ(x)].

Monte Carlo estimators. With samples θ(k)∼ qϕ(θ | x),

µ̂(x) =
1

K

K∑
k=1

µθ(k)(x), V̂arepi(x) =
1

K

K∑
k=1

(
µθ(k)(x)− µ̂(x)

)2
,

V̂ar[Y | x] = 1

K

K∑
k=1

σ2
θ(k)(x) + V̂arepi(x).

For dy > 1, replace squares by outer products to estimate covariances.

Derivation of the β-ELBO for dy=1 and homoscedastic noise. Consider the latent-weight
model

θ ∼ p0(θ), y | x, θ ∼ N
(
fθ(x), σ

2
)
,

with a variational family qϕ(θ | x) (IC-/LP-FDN). For one datum (xi, yi) the β-ELBO is

log p(yi | xi) ≥ Eqϕ

[
log p(yi | xi, θ)

]︸ ︷︷ ︸
data term

− DKL

(
qϕ(θ | xi) ∥ p0(θ)

)︸ ︷︷ ︸
regularizer

.

Using the Gaussian likelihood,

log p(yi | xi, θ) = −
1

2σ2

(
yi − fθ(xi)

)2 − 1
2 log(2πσ

2).

Plugging into the bound and negating yields the per-example loss

L(i)
β-ELBO =

1

2σ2
Eqϕ(θ|xi)

[
(yi − fθ(xi))

2
]
+ DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
+ 1

2 log(2πσ
2).

Using K re-parameterized samples θ(k)∼ qϕ(θ | xi) gives the unbiased MC estimator

L(i)
β-ELBO ≈

1

2Kσ2

K∑
k=1

(
yi − fθ(k)(xi)

)2
+ DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
+ 1

2 log(2πσ
2) .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since 1
2 log(2πσ

2) does not depend on ϕ or θ, it can be dropped during optimization. If σ2 is fixed,
the data term is just a rescaled MSE. Equivalently,

(2σ2)L(i)
β-ELBO

.
=

1

K

K∑
k=1

(
yi − fθ(k)(xi)

)2
+ (2σ2)︸ ︷︷ ︸

β

DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
,

showing that choosing constant σ2 is equivalent to training with β-ELBO, hence, it simply rescales
the effective KL weight (capacity control). In this paper we will utilize β-ELBO for training, the
heteroscedastic case is discussed below.

Heteroscedastic observation model (general form). If we allow the observation variance to de-
pend on x and the sampled weights θ,

Y | x, θ ∼ N
(
fθ(x), σ

2
θ(x)

)
(dy = 1),

the per-example β-ELBO becomes

L(i)
het =

1

2K

K∑
k=1

[(
yi − fθ(k)(xi)

)2
σ2
θ(k)(xi)

+ log
(
2π σ2

θ(k)(xi)
)]

+ DKL

(
qϕ(θ | xi) ∥ p0(θ)

)
.

Thus, the data term is weighted least squares (WLS) plus a variance penalty, with weights
w(k)(xi) = 1/σ2

θ(k)(xi) learned jointly.

Parameterization and stability. We parameterize

σθ(x) = ε+ softplus
(
ρθ(x)

)
, ε = 10−3,

which guarantees positivity and avoids numerical collapse. To mitigate variance blow-up in early
training, one can (i) apply gentle weight decay on ρθ, (ii) clip sθ(x) = log σ2

θ(x) to a reasonable
range, or (iii) use a short β warm up so the likelihood term dominates initially.

Predictive variance. With heteroscedastic noise, the predictive variance decomposes as

Var[Y | x] = Eθ

[
σ2
θ(x)

]︸ ︷︷ ︸
aleatoric

+Varθ
[
fθ(x)

]︸ ︷︷ ︸
epistemic

,

so both terms adapt with x; the first is averaged over the sampled weights.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 1: Monte Carlo and training Hyperparameters (defaults unless noted).

Component Symbol Setting

MC samples (train) Ktrain 1

MC samples (validate) Kval 100

MC samples (test) Ktest 100

Epochs ϵ 400

Optimizer — ADAM

Learning rate η 1× 10−3

Batch size B 64

Weight prior std σ0 1.0

Variance floor ε 10−3 in σ = ε+ softplus(ρ)

KL schedule βt cosine

Maximum β βmax 0.01

Warm up updates — 200

Seeds — [7, 8, 9]

Stochastic Checkpoint — minimum MSE in interpolation

Deterministic Checkpoint — minimum MSE in interpolation

Table 2: Model configurations and compute. Columns: base hidden width dhid; hypernetwork hidden
width dhyper; latent dim dh (for Gaussian Hypernetwork); ensemble size M ; parameter count P (per
model). Use “—” where not applicable.

Model dhid dhyper dh M P

MLPDropoutNet 333 — — 1 1000

Deep Ensemble 64 — — 10 1000

BayesNet 166 — — 1 998

Gaussian HyperNet 24 5 9 1 994

IC-FDNet 23 6 — 1 1004

LP-FDNet 24 5 — 1 1011

Notes. We can see that the parameter count is roughly equal. In order to keep a fair comparison we scale the
number of epochs by the ensemble size so the number of updates is roughly the same.

D TABLES

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: Step function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.904 0.995 0.041 0.223 0.561 0.516 0.033
LP-FDNet 0.955 1.250 0.032 0.320 1.200 1.440 0.147
IC-FDNet 0.848 1.180 0.303 0.484 0.643 0.990 0.252
DeepEnsembleNet 0.911 19.600 0.412 0.632 0.093 2.150 0.883
BayesNet 0.940 201.000 −2.750 0.704 0.014 2.760 1.170
GaussHyperNet 0.942 3.690 −0.356 1.010 1.060 3.700 0.780

Table 4: Sine function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

DeepEnsembleNet 0.283 2.120 1.160 1.090 0.131 0.381 −0.022
GaussHyperNet 0.508 1.200 1.120 1.460 0.689 0.840 −0.068
BayesNet 0.875 14.100−4.760 3.690 1.500 18.000 2.440
LP-FDNet 0.933 29.400−17.200 6.970 3.600 87.100 5.320
MLPDropoutNet 0.974 32.200−4.850 16.900 3.190 99.000 7.700
IC-FDNet 0.996 99.400−36.800 40.100 3.420 310.000 13.700

Table 5: Quadratic function: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (∆=OOD–ID); ideal MSE–Var fit has a≈0, b≈1.

Model ρ b a AURC ↓ ∆Var
(OOD–ID) ↑

∆MSE
(OOD–ID) ↓

∆CRPS
(OOD–ID) ↓

MLPDropoutNet 0.994 70.700−0.003 0.002 0.000 0.014 0.083
DeepEnsembleNet 0.994 18.200−0.003 0.005 0.002 0.040 0.133
BayesNet 0.928 23.500−0.125 0.012 0.003 0.047 0.114
IC-FDNet 1.000 1.040−0.007 0.201 0.619 0.637 0.111
GaussHyperNet 1.000 1.060−0.013 0.229 0.828 0.865 0.134
LP-FDNet 1.000 1.110−0.012 0.242 0.715 0.790 0.133

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

LLM DISCLOSURE

ChatGPT assisted with minor copy-editing, LaTeX phrasing, and bibliography chores (suggesting
candidate references and drafting BibTeX). The authors independently reviewed the literature and
verified all citation metadata (titles, authors, venues, DOIs/arXiv).

20

	Introduction
	Related Work
	Method
	Preliminaries
	FDN: Input-Conditioned Weight Distributions

	Experiments
	Complexity, Capacity, and Fairness
	Results

	Limitations
	Conclusion
	Unified view via q(x)
	Training objective
	Heteroscedastic likelihood and variance decomposition
	Tables

