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ABSTRACT

Modern probabilistic regressors often remain overconfident under distribution
shift. Functional Distribution Networks (FDN) place input-conditioned distri-
butions over network weights, producing predictive mixtures whose dispersion
adapts to the input; we train them with a Monte Carlo S—ELBO objective. We
pair FDN with an evaluation protocol that separates interpolation from extrapo-
lation and emphasizes simple OOD sanity checks. On controlled 1D tasks and
small/medium UClI-style regression benchmarks, FDN remains competitive in ac-
curacy with strong Bayesian, ensemble, dropout, and hypernetwork baselines,
while providing strongly input-dependent, shift-aware uncertainty and competi-
tive calibration under matched parameter and update budgets.

1 INTRODUCTION

Modern neural predictors are routinely deployed under dataset shift, where test inputs depart from
the training distribution. In these regimes, point predictions from deterministic networks and naive
uncertainty surrogates from traditional stochastic heuristics often become overconfident—assigning
high probability to wrong outcomes, particularly off-support/extrapolation—undermining reliable
decision making. Bayesian Neural Networks (BNNs), MLP with dropout, Deep Ensembles, and
Hypernetworks are strong practical baselines, yet they can still under-react outside the training sup-
port or require substantial ensembling/sampling to behave robustly (Quifionero-Candela et al.| |2009;
Ovadia et al.,2019;|Guo et al.,|2017; [MacKay,|1992; Neal, |1996; |Graves, [201 1; Blundell et al., 2015j
Gal & Ghahramani, |2016;|Lakshminarayanan et al.,|2017}; |Ha et al., | 2017).

This motivates architectures that are uncertainty-aware and calibrated—sharp in-distribution (ID)
and widening appropriately OOD (higher CRPS, wider intervals). We pursue this with Functional
Distribution Networks (FDN), which place input-conditional distributions over weights to modulate
uncertainty locally in . Concretely, FDN amortizes an input-conditional posterior ¢4(6 | x) via
small Hypernetworks and trains it with a Monte Carlo likelihood and a 5-ELBO. Under matched
budgets, FDN is ID-competitive and well-calibrated by scale on controlled 1D shifts: on low-
frequency or piecewise-smooth tasks (step, quadratic) it achieves near-unity MSE—Var slopes with
high Spearman correlation and favorable AURC/CRPS, indicating that predictive variance tracks er-
ror growth both in- and out-of-distribution. On more oscillatory shifts (sine) FDN preserves strong
rank calibration and increases variance OOD, but its variance still under-scales relative to the error—
an explicit target for future improvement. Beyond 1D toy functions, we evaluate We further evaluate
FDN on standard small/medium UCl-style regression benchmarks—Airfoil Self-Noise, Combined
Cycle Power Plant, and Energy Efficiency (Brooks et al., |1989; [Tiifekci & Kaya, 2014} [Tsanas
& Xifara, 2012)—under feature-based ID/OOD splits. On these real datasets FDN remains ID-
competitive and typically exhibits large positive AVar with moderate AMSE and ACRPS, i.e., it
widens uncertainty under shift while maintaining sensible accuracy and calibration relative to strong
Bayesian, ensemble, and hypernetwork baselines.

Overview. Rather than treating weights as fixed (or globally random), FDN places an input-
conditioned distribution over weights:

0|z ~p@|x), ylz,0~ply|z,0).

For tractability we fix an input-agnostic prior p(f | z) = po(f) = N(0,02I), so all input de-
pendence is carried by an amortized posterior g4(f | x) implemented via small Hypernetworks.
Many standard uncertainty-aware architectures can be cast in this template via different choices of
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q¢(0 | 2); we detail these instantiations in Appendix [Al Sampling 6 ~ q4(0 | x) yields locally adap-
tive functions, and as x moves off the training support the induced weight distribution can broaden,
producing wider and more appropriately uncertain predictive densities.

Training and evaluation. We train with a Monte Carlo S—ELBO over ¢4 (6 | x) and also report an
IWAE variant; explicit expressions for the layer-wise KL and its LP-FDN factorization are given in
the Appendix [B] Our evaluation protocol splits test points into interpolation (ID) and extrapolation
(OOD) regions and summarizes shift via deltas A(-) = Eoop[-] —Eip[-], focusing on AMSE, AVar,
and ACRPS together with MSE-variance fits and risk—coverage curves.

Contributions. (i) Model. We introduce Functional Distribution Networks (FDN), a simple mod-
ule that amortizes input-conditioned weight distributions via small Hypernetworks, in two variants:
IC-FDNet (conditioning on x) and LP-FDNet (conditioning layer-wise on previous activations).
(ii) Protocol. We propose a small-suite extrapolation protocol that targets AVar > 0 under shift
and complements it with calibration diagnostics (MSE—variance slope, rank correlation, and risk—
coverage). (iii) Empirical study. Under matched parameter, update, and predictive-sample budgets,
we benchmark FDN against strong Bayesian, ensemble, dropout, and hypernetwork baselines on
controlled 1D function families and UCI-style regression tasks, showing that FDN remains ID-
competitive while providing practically useful, shift-aware uncertainty.

Scope. We focus on low-dimensional regression with homoscedastic scalar Gaussian heads and
relatively shallow backbones in order to isolate ID vs. OOD behavior under tightly matched budgets.
All code, configurations, and scripts to reproduce the experiments will be released upon acceptance.

2 RELATED WORK

Uncertainty in neural regression. BNN place distributions over weights and infer posteriors via
variational approximations or MCMC (MacKayl [1992; Neall |1996; |Graves, 2011}, Blundell et al.,
2015). Deep Ensembles average predictions from independently trained networks and are a strong
practical baseline (Lakshminarayanan et al.| 2017; Maddox et al.,2019). MLP (with dropout) inter-
prets dropout at test time as approximate Bayesian inference (Gal & Ghahramanil [2016). Het-
eroscedastic regression learns input-dependent output variance but retains deterministic weights
(Nix & Weigend, |1994; Kendall & Gal, [2017)).

Hypernetworks and conditional weight generation. Hypernetworks generate the weights of a
primary network using an auxiliary network (Ha et al.|[2017); related work explores dynamic, input-
conditioned filters and conditional computation (De Brabandere et al., [2016; Brock et al.| [2018).
Bayesian/uncertainty-aware Hypernetworks place distributions over generated weights and train
them variationally (Krueger et al.l 2017). Our FDN differs by explicitly conditioning the weight
distributions on the current input (or intermediate activations) in order to modulate epistemic uncer-
tainty itself, not only deterministic weights. This input-aware weight stochasticity is what enables
FDN to widen uncertainty under distributional shift while maintaining competitive ID accuracy un-
der matched budgets.

Meta-learning and context-conditioned predictors. Neural Processes (NP) learn a distribution
over functions conditioned on a context set C via a global latent, yielding p(y | z,C) (Garnelo et al.,
2018 |[Kim et al.|[2019); gradient-based meta-learning (e.g., MAML) instead adapts an initialization
per task via inner-loop gradients (Finn et al., [2017). FDN is complementary: it amortizes local
weight uncertainty directly on « (and optionally a compact context) through g4(0 | z, ¢), requires
no inner-loop adaptation, and injects uncertainty at the layer level rather than via a single global
latent.

Calibration and OOD behavior. Proper scoring rules such as the continuous ranked probability
score (CRPS) are strictly proper and reward calibrated predictive distributions (Gneiting & Raftery,
2007). Empirical studies highlight overconfidence under dataset shift and introduce OOD bench-
marks (Ovadia et al.l[2019). Our evaluation therefore separates interpolation from extrapolation and
uses the monotonic relationship between per-sample squared error (MSE) and predicted variance as
a simple diagnostic calibration check.
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Figure 1: Single-layer view of FDNet. For layer ¢, the previous activation a,_; (with ag = z for
the first layer) is fed to both the hypernetwork and the main layer. For IC-FDNet s, = = while for
LP-FDNet sy = ay—;. The hypernetwork takes s, and a random draw ¢ to generate weights/ biases
(Gaussian Head with reparametrization technique) 6, = (W, by), which are then used by the main

layer ay = fo(ae—1;0;).

Positioning. Compared to BNNs, FDN sidesteps global posteriors by amortizing local weight
distributions g, (6 | «). Compared to Deep Ensembles, FDN uses shared parameters and stochastic
generation instead of replicating full models. Compared to Hypernetworks, FDN explicitly models
uncertainty over generated weights and regularizes it with a KL prior, enabling principled OOD
expansion.

3 METHOD

For convenience, a summary of the main symbols and dimensions used throughout the paper is
provided in Table[I]in Appendix [C]

3.1 PRELIMINARIES

We model y € R% with a neural network fy : R% — RPv (Dy = 2d, for a diagonal covariance
and D, = d,(d, + 1)/2 for full covariance) whose final layer parameterizes a Gaussian predictive

head,
fol@) = (no(2), Xo(@)),  ply|2,0) = Ny; no(z), So(x)),

In the main experiments we restrict to scalar outputs and use a homoscedastic Gaussian likelihood
p(y | ©,0) = N(y; po(x),0?) with fixed variance o2, shared across all models. For such a head
the per-example contribution to the S—ELBO reduces to a rescaled squared-error term plus the KL
penalty between the input-conditioned weight posterior and the prior; constants can be absorbed
into the trade-off parameter 5. We therefore optimize a weighted M SE + SK L objective and use
the same Gaussian head for all baselines to ensure a fair comparison. More general multivariate,
heteroscedastic, and structured-covariance likelihoods are discussed in Appendix [D]

3.2 FDN: INPUT-CONDITIONED WEIGHT DISTRIBUTIONS

We drop explicit context and condition only on signals from the network itself. For each layer
£, FDN places a diagonal-Gaussian over its weights whose parameters are produced by a small
Hypernetwork Ay(-). We choose the conditioning signal

() o [r.  ICFDN
S
¢ al¥), LP-FDN (with o} = ),

and set
(lw,es Pwies Hbyes Pbe) = Aé(Sék)), ow,e = e+softplus(pwye), ope = e+softplus(pp,),
with a small floor ¢ = 10~ for numerical stability. Sampling then proceeds as

W = pwe+ owe © 2y, B = e+ o0 © 27, ng})l ~N(0, 1),

with the conditioning signal chosen as s, = x for IC-FDNet and s, = az(zli)1 for LP-FDNet, where
in both cases the layer output is aék) = fg(ag’i)lg We(k)7 bﬁk)) (sequential across layers). Figure
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illustrates a single FDN layer: a small hypernetwork maps s, to the parameters of a Gaussian dis-
tribution over weights and biases; a sample 6, = (W, by) from this distribution is then used to
compute ay = fo(ap—1;06).

Variational family (compact). FDN uses a layer-wise diagonal-Gaussian over weights, condi-

tioned on sy € {x, aéli)l :

L
q5(0 | 2) = [ [ M(vec(We); pwe(se), diag oy 4 (s0)) N(bes e (se), diag o o(se)),
=1

In compact form (concatenating all layers),
g0 | ) :./\/(9; He (), diagai(x)), o) — po(z) + 04(z) ® e® k) N(0, 1),

and the predictive density is the Monte Carlo mixture
| XK
plylz) ~ 2> oy l2,0®), 00 ~ g0 ).
k=1

Prior and regularization. We regularize ¢,(0|xz) toward a simple reference po(f) =
[T, N(o, o2I) via a 3-weighted KL term (we use g = 1 in all experiments). For diagonal Gaus-
sians,

0'2- + 2 0'2.
Dic (N (1 ding o) | N (0,081)) = ;Z(ﬁ,ﬂ -1 1ogaé> ,
J 0 0

and we sum this over all layers (for both W, and b,). The variance floor is implemented by the ¢ in
o = € + softplus(p) rather than a hard bound.

Algorithm [I] (Appendix [E) summarizes training (3-ELBO with re-parameterized gradients) and in-
ference (Monte-Carlo mixtures over weight draws) for both IC-FDN and LP-FDN.

IC-FDNet vs. LP-FDNet. We study two conditioning schemes. IC-FDNet (Input-Conditioned)
uses the raw input = at every layer, s;(x) = =z, so all layers see the same features when sam-
pling weights. LP-FDNet (Layer-Progressive) instead uses hidden activations, with so(z) = =
and sy(z) = ay_1(z) for £ > 1, yielding a depth-aware conditioning scheme. Empirically, the
two variants achieve similar in-distribution accuracy across our benchmarks, while LP-FDNet often
produces somewhat larger increases in predictive variance under distribution shift (larger AVar) at
comparable MSE.

4 EXPERIMENTS

Tasks and splits. We evaluate FDN on (i) controlled 1D regression tasks where the ground-truth
function is known and interpolation vs. extrapolation is precisely defined in input space, and (ii)
standard small/medium UCI-style regression benchmarks with feature-based ID/OOD splits. In
both settings we report metrics separately on the interpolation (ID) region, the extrapolation (OOD)
region, and the aggregated test set, and we summarize distribution shift by deltas A(-) = Eoop[-] —
Eip[].

4.1 ToOY FUNCTION FAMILIES AND ID/OOD PROTOCOL

We first benchmark on 1D toy regression tasks, where the ground-truth function f : R — R is
known. For each run we select one of three families:

o Step: f(z) = H(z) = 1{x > x¢}, with a discontinuity at zy = 0.

* Sine: f(z) = Asin(wx), with amplitude A and frequency w.

e Quadratic: f(x) = ax? + b, with (a, b) fixed across runs.
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Figure 2: MSE vs. predicted variance on three 1D regression tasks (rows: step, sine, quadratic).
Left/right panels in each row show interpolation (ID) and extrapolation (OOD) test points with
shared axes; the dashed line marks the ideal MSE = Var. Legends report per-model Spearman’s p
in each region.

Unless otherwise stated we use the specific instantiations shown in Figure 2| (step H(x), sine
1.54sin(2.39z), and quadratic 0.432% — 0.41) to match all reported plots. We define a symmetric
interpolation region Riyterp = [—¢, ¢] and an extrapolation region Rextrap = R \ Rinterp. Training
and validation inputs are sampled uniformly from Rjpterp; test inputs cover both Ripierp and Rexerap
on a dense grid. We report all metrics separately on the ID split (test points in Ringerp), the OOD
split (test points outside Riyterp), and on the full test set. This protocol ensures that “OOD” strictly
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Figure 3: MSE vs. predicted variance on three real regression datasets: Airfoil Self-Noise, CCPP
Power Plant, and Energy Efficiency (heating). For each dataset, left/right panels show ID and OOD
test points with shared axes, and the dashed line marks MSE = Var. Legends report per-model
Spearman’s p.

4.2 REAL REGRESSION DATASETS AND ID/OOD SPLITS

To test FDNs beyond 1D toy functions we use three standard UCI regression datasets: Airfoil Self-
Noise, Combined Cycle Power Plant (CCPP), and Energy Efficiency (heating load as the primary tar-
get). For each dataset we follow a consistent preprocessing and ID/OOD protocol: we choose a sin-
gle “ID feature” z with a natural interpretation (e.g., frequency for Airfoil, ambient temperature for
CCPP, relative compactness for Energy), define the interpolation band as the 20th—80th percentiles
of this feature and treat the extremes as extrapolation, split train/validation/test by quantiles of z, and
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Figure 4: ID—-OOD deltas on the real regression datasets. Bars show AMSE, AVar, and ACRPS
for Airfoil, CCPP, and Energy. Well-behaved models exhibit large positive AVar together with
moderate AMSE and ACRPS, indicating that uncertainty widens under shift while accuracy and
calibration degrade gracefully.

standardize all inputs and targets using training statistics. We fix a single train/validation/test split
shared across all methods and seeds. Exact dataset sizes are summarized in Table 3| (Appendix [F).

4.3 COMPLEXITY, CAPACITY, AND FAIRNESS

Baselines. We evaluate four stochastic baselines: MLP with dropout (MLPDropoutNet), Deep
Ensemble of MLP (DeepEnsemblesNet), Variational BNN (BayesNet), and Gaussian Hyper-
network (GaussianHyperNet). Because our study centers on calibrated predictive distributions
(CRPS, MSE-Var slope/intercept, AURC), we omit the Deterministic MLP and the (input-
conditioned) Hypernetwork from the main uncertainty analysis; their ID/OOD MSE is comparable
to Ensembles/Dropout. Training details (optimizer, batch size, learning rate, prior scale oy, variance
floor omin) appear in Table 2] (Appendix [F).

Link-budget. We consider networks with a single hidden layer and fix the parameter budget to
P =~ 1000 (£5%) for all models, counting all trainable parameters, including any Hypernetwork
components; counts appear in Table @] (Appendix[F). To equalize the update budget, ensembles with
M members use epoch-split training (epochs divided by M). For non-ensemble networks we use
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one Monte Carlo draw per update (K = 1), keeping per-step cost comparable and the total number
of parameter updates matched across models.

Note: To hit the P target, MLPDropoutNet uses widened hidden layers, increasing capac-
ity/expressive power and potentially improving ID MSE independent of uncertainty quality; hence
our emphasis on calibration-centric metrics.

Computational complexity and scalability. For all models, the per-epoch training cost scales
linearly in the number of examples N and quadratically in the layer widths, O(N ), d¢—1d;). Both
IC-FDN and LP-FDN inherit this scaling from the base MLP: the per-layer Hypernetworks add only
a small constant-factor overhead because their hidden width hy,yp, and the Monte Carlo count K are
fixed (parameter count remains O(dy—_1dy) per layer), matching the baselines. A full discussion of
parameter-count and architectural trade-offs for larger models are given in Appendix

4.4 METRICS AND CALIBRATION DIAGNOSTICS

We assess models with standard metrics for accuracy, uncertainty, and calibration: mean squared
error (MSE), predictive variance, continuous ranked probability score (CRPS), risk—coverage curves
(area under the risk—coverage curve, AURC), and ID—OOD deltas (AMSE, AVar, ACRPS). For
calibration we use both rank- and scale-based diagnostics: (i) Spearman correlation p(Var, MSE)
between per-point variance and squared error, and (ii) a linear fit MSE ~ a + b Var, with the ideal
calibration corresponding to a ~ 0 and b ~ 1. We visualize these diagnostics via MSE—Var scatter
plots in the ID and OOD regions for toy tasks (Figure[2) and real datasets (Figure 3, together with
grouped bar charts of ID-OOD deltas on the real tasks (Figure ). Precise definitions and Monte
Carlo estimators for all metrics are collected in Appendix [H]

Representative seed selection. To avoid cherry-picking individual runs, all qualitative plots are
based on a representative seed chosen by a fixed aggregation procedure. For each dataset and config-
uration we run all models over multiple random seeds (20 seeds per toy task, 100 for Airfoil, and 3
for the remaining UCI datasets) and collect summary metrics per seed (e.g., MSEip, MSEqop, Varp,
Vargop, ACRPS, AURC). For IC-FDNet (or LP-FDNet) we compute the coordinate-wise median
of these metrics over seeds and then select the seed whose metric vector is closest (in Euclidean
distance) to this median. All per-seed plots in the main text are generated from this representa-
tive seed, using the same rule for every dataset, so that the shown behavior is typical rather than
hand-picked. On the Airfoil Self-Noise dataset, Figure 5| (Appendix [F) visualizes the resulting seed-
aggregated MSE—variance scatter, confirming that the selected representative seed lies close to the
overall across-seed trend.

4.5 RESULTS

Toy tasks. Across the three toy tasks (Tables Figure [2), FDN’s core strength is scale cal-
ibration under smooth shifts. On the step and quadratic tasks, IC-/LP-FDNet achieve MSE—Var
slopes closer to the ideal b ~ 1 with strong rank agreement (Spearman p close to 1) and large pos-
itive AVar, so predictive variance increases in lock-step with difficulty. This comes at the cost of
higher AURC and ACRPS than the sharpest baselines on the step task, while on the quadratic task
their AURC and ACRPS are broadly comparable. In contrast, several classical baselines that fit ID
sharply (e.g., Deep Ensembles, BayesNet) exhibit much steeper MSE—Var fits (b > 1) and smaller
increases in variance (AVar), indicating sharper but less conservative uncertainty even when they
rank hard points reasonably well.

On the highly oscillatory sine shift, all methods degrade, but the trade-offs differ. FDN preserves
excellent ranking (Spearman p near 1) and raises variance substantially OOD (large AVar), yet its
error grows faster than its variance (large b, large AMSE), yielding worse AURC. Deep ensembles
show smaller AMSE and hence better AURC, but their ranking can be weaker. Overall, under
matched capacity and update budgets, FDN’s main advantages are (i) calibrated scaling on smooth
or piecewise-smooth shifts, where many baselines remain overconfident, and (ii) consistently high
rank correlation across tasks, which makes FDN a strong triage signal even when absolute scale
lags on rapidly oscillatory OOD. This highlights a clear avenue for improvement: stronger variance
scaling on such shifts (e.g., temperature/flooring on o, richer priors, or layer-wise 3 schedules).
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Real regression benchmarks. On the real regression tasks (Airfoil, CCPP, Energy), the same
patterns largely persist (Figures [3] and fi} Tables [BHIO). FDN achieves reasonable in-distribution
MSE and typically exhibits large positive AVar, indicating that uncertainty widens under feature-
based shift. This comes with somewhat larger AMSE and ACRPS than the sharpest baselines on
Airfoil, but more moderate values on CCPP and Energy, so calibration degrades gradually rather than
catastrophically. On Airfoil, for example, FDN’s ID scatter lies close to the ideal MSE=Var line and
spreads out smoothly OOD, with strong Spearman correlation; on CCPP and Energy the predictive
variances remain shift-aware and provide useful selective-risk behavior, even when the absolute
scale is not always better than the strongest baselines. Taken together, the toy and UCI results
suggest that input-conditioned weight stochasticity is a viable and modular route to OOD-aware
regression: FDN behaves like a drop-in “uncertainty layer” that can be tuned via 5 and hypernetwork
capacity to trade off in-distribution sharpness against OOD conservatism.

Additional qualitative diagnostics, including predictive means (Figure [6 [7), aggregated MSE—
variance scatters (Figure[8] [9), and risk—coverage curves for all datasets (Figure[I0} [T T), are provided
in (Appendix [F).

5 LIMITATIONS

FDN’s input-conditioned weight stochasticity, like similar stochastic layers, can overfit spurious cues
if 3 is too small or the prior is too loose; careful KL scheduling and priors are important. LP-FDN
samples weights layer-by-layer, adding latency versus a deterministic pass; sampling at test time also
incurs a compute/latency trade-off with K, although in our experiments we keep K small. Our study
focuses on low-dimensional regression with small/medium tabular datasets and relatively shallow
architectures; scaling to high-dimensional inputs (e.g., images), deeper backbones, and structured
outputs will require additional engineering, such as low-rank or adapter-style Hypernetworks and
more aggressive capacity control.

On the calibration side, FDN still under-scales variance on highly oscillatory OOD regimes (the sine
task), and nothing in the current design explicitly enforces frequency-aware or spectral robustness.
We also restrict attention to homoscedastic scalar Gaussian likelihoods; heteroscedastic and full-
covariance heads, as well as structured priors that tie together different layers or groups of weights,
are left to future work. Finally, we only consider regression; applying FDN to classification would
require discrete predictive mixtures and calibration metrics beyond CRPS (e.g., ECE/Brier), and
may interact non-trivially with common tricks such as label smoothing or temperature scaling.

6 CONCLUSION

We introduced Functional Distribution Networks (FDN), which amortize input-conditioned distri-
butions over weights to produce predictive densities that remain sharp in-distribution yet expand
appropriately under shift. Trained with a Monte Carlo objective and a 3-weighted KL to a simple
prior, FDN delivers strong rank calibration across tasks and near-ideal scale calibration on smooth
and piecewise-smooth shifts (step, quadratic), as evidenced by Spearman correlation, MSE—Var
slope/intercept, AVar, ACRPS, and AURC. Under a fair protocol that matches parameters, up-
dates, and predictive-sample budgets, FDN remains competitive with standard Bayesian, ensemble,
dropout, and hypernetwork baselines on both 1D toy functions and real UCI-style regression bench-
marks, and provides uncertainty that is practically useful for abstention and risk-aware inference.

Looking forward, we see several promising directions. On the modeling side, stronger variance
scaling mechanisms (temperature/floors, layer-wise 3 scheduling, structured priors) and frequency-
aware conditioning may close the remaining gap on highly oscillatory OOD tasks. On the systems
side, adapter-style deployments that apply FDN only to a small subset of middle or head layers could
allow one to inject uncertainty awareness in new or existing large-scale architectures with modest
overhead. Finally, extending FDN to classification, sequence models, and structured prediction—as
well as integrating it with other uncertainty-aware modules (e.g., Neural Processes or diffusion-
style generative priors over weights)—could yield a general toolkit for calibrated, shift-aware deep
learning in practical applications.
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A UNIFIED VIEW VIA ¢,(0 | )

All methods we consider can be written as
K
1
pula) = [ply|2.0)as®]2)d0 ~ £> plyl26%). 0¥~ gu(6 ] 2)
k=1

In this paper, architectural layers are specified by the choice of g4(# | ). Framing models through
q4(0 | ) enables apples-to-apples comparisons: (i) how they set the spread of plausible weights,
(ii) whether that spread adapts to the input, and (iii) how much compute they expend to form the
predictive mixture. FDN’s module-level approach directly targets this knob: it provides local, input-
aware uncertainty where it is inserted (e.g., the head or later blocks), broadens off-support as inputs
drift from the training domain, and leaves the surrounding backbone and training loop unchanged.

FDN (IC/LP) FDN makes g, input-conditional and stochastic. A common choice is diagonal-
Gaussian, factorized by layer:

460 | 2) = [ [Mpue(2), diag o7 ().
J4

This input-conditional variant is /C-FDN. For layer-propagated conditioning (LP-FDN), the {-th
layer’s weight distribution depends only on the previous activation:

qs(0¢ | ) = ./\/(,ug(ag_ﬁ, diag ag(ag_l)), ap == x,
and sampling proceeds sequentially across layers along the same Monte Carlo sample path. This
induces a first-order Markov structure in depth, allowing uncertainty to expand as signals propa-

gate—later layers can broaden even when early layers remain sharp. We regularize with a per-layer

KL:
L

B Dkr(gs(0r | )llpo(6r))-
=1
More generally, one could condition longer histories ag.¢—1; in this paper, we restrict to first-order
(one-step) conditioning. Note, in the limit o, — 0O for all ¢, the model collapses to a deterministic
layer-conditioned Hypernetwork.

Deterministic Hypernetwork. A deterministic Hypernetwork G maps the input to weights,
yielding a degenerate g:

050 ) =80 — Gy(x)),  plylz)=py|z,Gs(x)).
Training typically uses NLL or MSE; weight decay on ¢ can be interpreted as a MAP prior on the
Hypernetwork parameters. Because g4 is a Dirac-Delta, there is no weight-space uncertainty: any
predictive uncertainty must come from the observation model (e.g., a heteroscedastic head) or post-
hoc calibration. Compared to stochastic variants, this adds no KL term and no MC averaging, but
can increase per-example compute due to generating weights via G .

Gaussian HyperNetwork A Stochastic Hypernetwork outputs a global posterior (or context-
only):

46(0 | 2) = qs(0 | h) = [ [NV (pe(h), diag o7 (1)),
4

i.e., independent of the query « (but dependent on alearnable latent task vector h). This is variational
BNN with parameters produced by a Hypernetwork.

Bayesian Neural Network (Bayes-by-Backprop). A standard variational BNN uses an z-
independent approximate posterior:

46(0 | 2) = 45(0) = [[ Mue. ding o).
L

and the same S-ELBO objective with closed-form diagonal-Gaussian KL. Because ¢, (6|z) is global,
predictive uncertainty does not adapt to = except via the likelihood term, which can under-react off-
support compared to input-conditional alternatives. On the other hand, the objective is simple and
sampling cost is amortized across inputs, though matching ensemble-like diversity typically requires
larger posterior variances or multiple posterior samples at test time.

12
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MLP with Dropout. MLP with dropout induces a distribution over effective weights via random
masks m:

gs(0 | ) = q4(0) (implicit via dropout masks, independent of z),
and inference averages predictions over sampled masks (Gal & Ghahramani, [2016).

Deep Ensembles. An M -member ensemble of MLPs corresponds to a finite mixture of deltas:

1 U 1 <
¢02) = 7 d0-0m).  pllz) = 5> p(y]z,0m),

where each 6,,, is trained independently from a different initialization (and typically a different data
order/augmentation). There is no explicit KL regularizer; diversity arises implicitly from indepen-
dent training trajectories. Inference cost scales linearly with M (one forward pass per member), and
for fair comparisons we match total update or compute budgets by reducing epochs.

B TRAINING OBJECTIVE

FDN is amortized variational inference with the latent weights 6 and input-conditional posterior

qs(0 | x) realized by small hypernetworks via the reparameterization %) = g, (z,e(*)) with e(*) ~
N(0,I). For a single (x,y) the ELBO is

logp(y | z) > Eq, o0 [logp(y | 2,0)] — Dki(qs(6 | z) || po(6)), ¢))
data term regularizer

with a simple prior po () = [, N (0, 021).

(A) S-ELBO (mean of logs). We minimize the negative f/—~ELBO with K Monte Carlo draws:

K
1 .
LsELBO = e Zlogp(y | 2,0%) + B Dxi(qs(0 | 2) || po(9)). 0W ~ qs(0 | ). (2)
k=1
Here S=1 recovers standard VI; 5 # 1 implements capacity control / tempered VI (Higgins et al.|
2017} |Alemi et al.,[2017; Dziugaite & Roy}, |2017). We use simple warm-ups for 3 early in training.

(B) IWAE variant (log of means; tighter bound). As a reference, the importance-weighted
bound is

po(8™) p(y | ,0%)) (k)
Liwag = — log ) 0\ ~ qy(0 | x), 3
( Zzl 40 ( 9(’“ | @) ’

which implicitly accounts for the KL via the weights and typically needs no extra 5 (Burda et al.,
2016). We report main results with (A) for simplicity and stability.

KL decomposition (IC vs. LP). For IC-FDN, layer posteriors condition directly on z, so the KL
sums over layers and averages over the minibatch. For LP-FDN, layer ¢ conditions on a sampled

hidden state ayi)l (z); the KL is therefore averaged over this upstream randomness:
Dk (qg,e(0: | al®) () | po) with Ej[] across samples k.
With diagonal Gaussians, each layer’s closed-form term is

. o+ u o7
Dy, (N (p, diag o®) | N(0, 051)) 22( Jlloggé)
o5 0

and we implement the variance floor via o = € + softplus(p) (no hard clamp).

Remark. Future work should investigate layer-specific 5 schedules to control where uncertainty is
expressed across depth (e.g., larger S in early layers for stability, smaller 5 near the output to permit
output-scale variance), with the aim of tightening scale calibration (b — 1, a — 0) and improving
AURC/CRPS under oscillatory OOD.

C NOTATION AND SYMBOLS

13
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Table 1: Key symbols, parameters, and dimensions used throughout the paper.

Symbol Description Dimension / Type
x Input / covariate R
Y Target / response R
D Training dataset {(zs,y:)}
N Number of training examples N
T Number of test examples N
dg Input dimension scalar
dy Output dimension scalar
. . dy (dy+3)
D, Gaussian head output dim. N
fo Base network (predictive head) fo : R - RPv
0 All base-network weights (all layers) RP
o} FDN / variational / hypernetwork params parameter vector
p(y | z,0)  Likelihood (Gaussian head) N (y; po(z), Bo(z))
po () Weight prior N(0,081)
qe(0 | ) Input-conditioned weight posterior N (pg(z), diag o3 ()
1] KL weight in S—ELBO scalar > 0
Ls-ELBO Training loss (per-example) scalar
L Number of layers in base net scalar
de Width of layer ¢ scalar
Se Conditioning signal for layer ¢ R%s.¢
ds,e Dimension of sy d; (IC) or d¢e—1 (LP)
Ay Per-layer hypernetwork Ap i Rdst R
Py # Gaussian params for layer ¢ 2(de—1de + de)
P Total # trainable parameters >~ ¢ Pe (plus head)
Rhyp Hypernetwork hidden width scalar
K MC samples per input (train/test) N
M Ensemble size (DeepEnsembleNet) N
oo Prior std. for weights scalar > 0
o? Observation noise variance (homoscedastic)  scalar > 0
€ Variance floor in o = ¢ + softplus(p) scalar > 0
(x) Predictive mean R
\//a\r[Y | x]  Predictive variance estimator scalar (for dy=1)
MSE Mean squared error scalar
CRPS Continuous ranked prob. score scalar
NLL Neg. log predictive density scalar
p Spearman rank correlation scalar € [—1,1]
AURC Area under risk—coverage curve scalar
A(Y) ID—OO0D metric delta Eoop[] — En|[]

D HETEROSCEDASTIC LIKELIHOOD AND VARIANCE DECOMPOSITION

We briefly collect the forms of the Gaussian S~ELBO used in this work and the associated decom-
position of predictive variance into epistemic and aleatoric components.

General Gaussian head. For a Gaussian predictive head with possibly heteroscedastic, full-

covariance noise, the per-example S—ELBO for datum (x;, y;) is

K
O 1 2
LGauss = 3K 2 Myz — oy, (%‘)H(Zek ()~ + logdet(% Yo, (xi))} + 5DKL(Q¢(9 | ;) ||p0(9))7
4)
where |[v]|% := v Av. In the homoscedastic case the covariance is constant across inputs, so a

full ¥ encodes a single, global correlation structure among output dimensions; if 3 is diagonal,
the data term reduces to a (constant-)weighted least-squares plus a constant log-determinant. In

14
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contrast, heteroscedastic models use an input-dependent ¥y (), so the weights (and, for full ¥y (x),
correlations) vary with = and with the sampled weights 6.

For d, = 1 the covariance reduces to a scalar o2 (x). We say the noise is homoscedastic in x if
o3(x) = o3 (constant across inputs for a fixed 0), and heteroscedastic in x if o(x) varies with
x. Orthogonally, because we draw stochastic weights #(*), one can distinguish dependence on the

sampled weights: homoscedastic in 0 means o2 () is effectively deterministic (identical across (k)
for a given x), while heteroscedastic in 6 means crg(k) () changes with the sampled weights (as in

FDN/BNN where the variance head depends on (%)),

In the isotropic heteroscedastic case, Xy () = 0j,, ()1, the Gaussian negative log-likelihood
(NLL) contribution is

2
QKZ[(M> + log(2m o5, (24)) | ®

Tg(k) 1’2)

i.e., a per-input, per-sample weighted MSE plus a variance penalty. If one instead assumes isotropic
homoscedastic noise (02 constant), the data term is proportional to the MSE up to an additive
constant; in practice the fit-regularization trade-off can be tuned either by setting o2 or, equivalently,
by adjusting ( to re-balance the data term against the KL.

Since our main focus is on uncertainty-aware metrics rather than cross-output correlations, in the
experiments we restrict attention to d, = 1 and use the isotropic homoscedastic case, with a single
constant variance o2 that we absorb into 3.

Scalar homoscedastic S~ELBO. Consider the latent-weight model
0~po(0), yla,0~N(fo(z),o?),
with a variational family ¢, (6 | ) (IC-/LP-FDN). For one datum (z;, y;) the standard ELBO is

logp(yi | @) > Eq,[logp(yi | zi,0)] — Dxi(as(0 | z;) [ po(8)) .

data term regularizer

Using the Gaussian likelihood,

logp(y; | ©4,0) = — 212( fe(:m)) L log(2m0?).

Plugging into the bound and negating yields the per-example loss

i 1
Litso = 53 Bastolen[Wi = fo@))’] + Drifas(® | 2:) 1 po(6)) + §log(2r0?).

Using K reparameterized samples 6(%) ~ g, (6 | z;) gives the unbiased Monte Carlo estimator

i 1 2
Litso = g5 2 (05— fowo (@)” + Dicifas(0 | @) [|po(6)) + §log(2w0?) |
k=1

Since % log(27c?) does not depend on ¢ or 6, it can be dropped during optimization. If o2 is fixed,
the data term is just a rescaled MSE, so

K
(20%) L9 = Z — fouor ()" + @ Dxr(gs(9 | z:) | po(0)),
- B

showing that choosing constant o2 is equivalent to training with a 3~ELBO, with /3 simply rescaling
the effective KL weight (capacity control). In this paper we directly use a S—ELBO for training.
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Heteroscedastic observation model (scalar case). If we allow the observation variance to depend
on x and the sampled weights 6,

Y | 2,0 ~N(fo(z), o5 (z)) (dy =1),
the per-example S—ELBO becomes

2
L = QKZ W + log(2m o3 (@) | + B Dxaao(0 | 1) [ p0(0)).
Oy i

i.e., a weighted least-squares (WLS) term plus a variance penalty, with weights w(*) (z;) =
1/07 ., (2;) learned jointly with the mean.

Parameterization and stability. We parameterize
og(x) = e+ softplus (pg(z)), e=1073,

which guarantees positivity and avoids numerical collapse. To mitigate variance blow-up in early
training, one can (i) apply gentle weight decay on py, (ii) clip sp(z) = logoZ(z) to a reasonable
range, or (iii) use a short 3 warm-up so the likelihood term dominates initially.

Predictive variance decomposition. Let 6~ q4(6 | z) and, given (z, §),
Y |2,0 ~ NMug(z), op(z)).
Scalar case. The predictive (marginal) variance decomposes as

Var[Y | z] = Egug,[05(2)] + Varg.g,[pe(z)] . (6)

aleatoric epistemic

Proof. By the law of total expectation, E[Y" | z] = Eg[E[Y | z, 0]] = Eg[uo(z)]. By the law of total
variance,

Var[Y | z] = Eg[Var(Y | z,6)] + Varg(E[Y | z,6]) = Eg[oj(z)] + Varg[pe(z)]. O

Vector-output version. For Y € R% with Y | 2,0 ~ N (ug(x), Sg(z)) the predictive covariance is

Cov]Y | 2] = Eg[So(z)] + Covg|pe(z)], (7)
e —
aleatoric epls emic

obtained by the matrix form of the law of total variance.

Monte Carlo estimators. With samples §(*) ~ ¢s(0 | =) we estimate the predictive mean and
epistemic variance as

K K
1 o . 2
=% > g (@), Vare(w Z foo () — fu())"
k=1 k:
and obtain the total predictive variance via the decomposition equation [6]
Var Y | z] Z%Uv) + Varepi ().
For d, > 1, replace squared deviations by outer products to estimate covariances, in accordance

with equation

In our experiments we use the homoscedastic scalar case (02(z) = o), so the aleatoric variance
reduces to a constant and all input-dependent variability in Var[Y" | z] comes from the epistemic
component Varg[ug(x)]; the heteroscedastic extension above is included for completeness.

E FDN TRAINING AND PREDICTION ALGORITHM
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Algorithm 1 FDN (Unified for IC-/LP-FDN): Training and Prediction

1: Inputs: dataset D = {(z;,v;)}},; base net fy with layers 1:L; per-layer samplers qé(@l | er)

(diag. Gaussians); prior po(#) = [], ph(6;); MC K'; KL schedule {8, }; variant v €
2: forstept =1,2,... do

3:  Sample minibatch B; set Xnpp, < 0, Xk, < 0
4:  foreach (z,y) € Bdo
5: fork=1,...,Kdo
6: hgk) “—x
7: fori=1,...,Ldo
o - x ifv=1IC

: c

AR, ife=Lp

9: e~ N(0,1), 7 ¢ pil(er) + ol (c) @ e
10: hl(k) — layerl(hl(k)l, H(k))
11: YKL += DKL(Q¢(91 |c1) leo(el))
12: end for
13: (pR), 2Ry head(h(Lk)) {2(*) may be fixed (homoscedastic)}
14: ;< log N(y; ™), £0))
15: end for
16: YNLL += —% Zle £, {ELBO (mean-of-logs)}
17:  end for
18: L« % <ENLL + By ZKL); update ¢ by backprop on £
19: end for

20: Predict at x,: repeat the per-layer sampling with ¢;={x, or hl(ﬁ)l} per v to obtain (

and return p(y |z,) ~ %>, My; pl ,Egk))-

{IC,LP}.

k
o),
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Table 2: Monte Carlo and training Hyperparameters (defaults unless noted).

Component Symbol Setting
MC samples (train) Kivain 1
MC samples (validate) Kya 100
MC samples (test) Kiest 100
Epochs € 400
Optimizer — ADAM
Learning rate n 1x1073
Batch size B 64
Weight prior std 0o 1.0
Variance floor € 1073 in 0 = € + softplus(p)
KL schedule B linear
Maximum /3 Bmax 1.0
Warm up updates — 200
Toy Grid Seed — 0
Step Seed — 13
Sine Seed — 19
Quadratic Seed — 6
Airfoil Self-Noise Seed — 64
CCPP Power Plant Seed — 2
Energy Efficiency Heating Seed — 2

Stochastic Checkpoint
Deterministic Checkpoint

minimum CRPS in interpolation
minimum MSE in interpolation

Table 3: Number of training, validation, and test examples used for the toy 1D regression tasks and

the three UCI real datasets.

Dataset N, train N, val ]Vtest N, total
Toy 1D functions 1024 512 2001 3537
Airfoil Self-Noise 597 199 707 1503
CCPP Power Plant 3444 1148 4976 9568
Energy Efficiency (heating load) 307 102 359 768

F SUPPLEMENTARY FIGURES AND TABLES

In this appendix we provide additional qualitative diagnostics. Figure[6]and Figure[7] plot predictive
means versus input for the toy and real tasks, respectively. Figure[§]and Figure 0] show aggregated
MSE-variance scatter plots complementing Figure [2]and Figure [3]in the main text, while Figure [I0]
and Figure[TT|report full risk—coverage curves (AURC) for toy and real datasets, complementing the
summary statistics in Table[5] Table[6] Table[7] Table[S] Table[0] and Table[I0}
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Table 4: Model configurations and compute. Columns: base hidden width dy;q; hypernetwork hidden
width dpyper; latent dim dy, (for Gaussian Hypernetwork); ensemble size M ; parameter count P (per
model). Use “— where not applicable.

Model dhid dhyper dh M P
MLPDropoutNet 333 — — 1 1000
Deep Ensemble 64 — — 10 1000
BayesNet 166 — — 1 998
Gaussian HyperNet 24 5 9 1 994
IC-FDNet 23 6 — 1 1004
LP-FDNet 24 5 — 1 1011

Notes. We can see that the parameter count is roughly equal. In order to keep a fair comparison we scale the
number of epochs by the ensemble size so the number of updates is roughly the same.

Table 5: Step function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (A=00D-ID); ideal MSE—Var fit has a~0, b~ 1.

AVar AMSE  ACRPS
Model p b a  AURCL (0pID)+ (0OD-ID)| (OOD-ID) |
MLPDropoutNet  0.990 1.340 —0.020  1.100 2.700 3.600  0.433
DeepEnsembleNet 0.986 4.390 —0.080  3.100 2,600  11.300  1.579
BayesNet 0.987 71.820 —3.500  8.200 0400  29.600  4.081
GaussHyperNet 1,000 1.020  0.590 54.000 167.300  169.800  2.386
IC-FDNet 0.992 2.520—475.800 373.100 1725.400 3820.500 16.230
LP-FDNet 1.000 1.040 —17.930 468.500 6306.700 6529.400  8.774

Table 6: Sine function: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (A=00D-ID); ideal MSE—Var fit has a~0, b~ 1.

AVar AMSE ACRPS
Model p b @ AURCL (0oD.ID) 1 (0OD-ID) | (OOD-ID) |
MLPDropoutNet  0.966 32.680 476.110 1178.400 112.600 4209.700  50.061
DeepEnsembleNet 0.632 1.160  1.160  1.500  1.000 1100 —0.179
BayesNet 0.999 1.000 1.200 19.700 55700  55.700  1.066
GaussHyperNet ~ 1.000 1.020  0.850 59.000 183.800  187.000  2.265
IC-FDNet 0.973 1.7301098.340 623.400 1436.300 3705.100  20.842
LP-FDNet 0.999 1.050 38.140 382.900 3170.000 3362.400  6.527

Table 7: Quadratic function: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (A=00D-ID); ideal MSE—Var fit has a~0, b~ 1.

AVar AMSE ACRPS
Model P b a  AURCL 0DID)1 (OOD-ID)| (OOD-ID) |

MLPDropoutNet  0.990 3459.120 —67.320 38.700 0.100 231.700 11.176
DeepEnsembleNet 0.979  811.630 —68.320 56.400 0.500 306.200 13.003

BayesNet 0.953 3855.460 —89.490 81.300 0.100 389.100 15.136
GaussHyperNet 0.993 2.810—-112.410 142.500 253.900 603.600 9.137
IC-FDNet 0.988 1.420 225.670 377.800 1743.900 2721.700 14.073
LP-FDNet 0.997 1.420 —107.080 308.600 2547.300 3510.600 10.325

Table 8: Airfoil Self-Noise: unified calibration/uncertainty summary. Lower is better for AURC and
deltas (A=00D-ID); ideal MSE—Var fit has a0, b~ 1.

AVar AMSE ACRPS
Model P b @ AURC ) (00D-ID) 1 (0OD-ID) | (OOD-ID) .
MLPDropoutNet  0.601 10.140  0.210  0.400 0.100 1.100  0.535
DeepEnsembleNet 0.177 9.740  0.570  0.600 0.000 0.800  0.353
BayesNet 0.330 4.490  0.400  0.700 0.200 1.100  0.335
GaussHyperNet 0.987 1.010 0.900 10.000 18.900 19.100 0.340
IC-FDNet 0.976 1.400 —3.400 7.600  19.400 25.300  0.493
LP-FDNet 0.983 1.000  1.010 9.300  28.500 28.800  0.363
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Table 9: CCPP Power Plant: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (A=00D-ID); ideal MSE—Var fit has a~0, b~ 1.

AVar AMSE ACRPS

Model P b @ AURCL (5p D)+ (OOD-ID) | (OOD-ID)
MLPDropoutNet  0.417  6.070 0.083 0.142 0.023 0.156 0.095
DeepEnsembleNet 0.126 20.050 0.127 0.139 0.002 0.071 0.065
BayesNet 0.470 1.750 0.099 0.201 0.065 0.132 0.045
GaussHyperNet ~ 0.998 1.020 0.108 4.884 7.134 7.159 0.283
IC-FDNet 0.970 1.200—0.303 2.731 2.916 3.401 0.211
LP-FDNet 0.902 0.990 0.903 2.844 2.129 2.820 0.260

Table 10: Energy Efficiency: unified calibration/uncertainty summary. Lower is better for AURC
and deltas (A=00D-ID); ideal MSE—Var fit has a~0, b 1.

AVar AMSE ACRPS

Model p b a  AURCL (0p.ID)+ (0OD-ID)| (OOD-ID) |
MLPDropoutNet  0.696  4.420 0.000 0.100 0.000 0.300 0.258
DeepEnsembleNet 0.426  7.580 0.010 0.100 0.000 0.000 0.051
BayesNet 0.549 4.130 —0.100  0.200 0.000 0.100 0.106
GaussHyperNet 0.996 1.040 0.420 32.400 30.300 30.900 0.454
IC-FDNet 0.993 1.020 0.260 14.100 6.600 6.800 0.114
LP-FDNet 0.989 0.970 1.450 14.100 6.800 6.200 0.005
200 - @ BayesNet
| o DeepEnsembleNet
s ®  GaussHyperNet
150 @ IC-FDNet
] LP-FDNet
g = MLPDropoutNet
< 00
5=}
2
7
e ® ° ® Gé bo® °© @
s0 b i -, @
%‘%v"
g EReE
op_ 9 . . . . . .
i bl 0 o0 80 100 120
Var(OOD)

Figure 5: Seed-aggregated MSE—variance scatter on the Airfoil Self-Noise dataset over 100 random
initializations. Each point summarizes one seed by its OOD MSE and OOD predictive variance, and
the representative seed used in the main-text plots lies close to the overall across-seed trend.
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Figure 6: Predictive mean vs. input x for the three synthetic 1D toy tasks (step, sine, quadratic), with
the ground-truth function overlaid. Shaded region corresponds to the interpolation/ ID points.
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Figure 7: Predictive mean vs. standardized split feature = for the three real regression datasets
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polation/ ID points.
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Figure 8: MSE vs. predicted variance scatter plots for the three toy tasks. Each panel aggregates ID
and OOD test points; the dashed line shows the ideal calibration MSE = Var. Legends in the PDFs
report Spearman’s p and linear-fit slope/intercept.
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Figure 9: MSE vs. predicted variance scatter plots for the three real datasets. The dashed line marks
MSE = Var; legends report Spearman’s p and linear-fit parameters.
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Figure 10: Risk—coverage curves (AURC) for the three toy tasks. Curves plot average squared error
as a function of coverage as high-variance predictions are rejected. Lower AURC indicates better
selective regression.
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Figure 11: Risk—coverage curves (AURC) for the three real datasets. Lower area under the curve
indicates better ability to abstain on high-error points as coverage decreases.
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G COMPUTATIONAL COMPLEXITY AND SCALABILITY

Deterministic MLP. Let IV denote the number of training examples, d,, the input dimension, d,
the output dimension, and consider a base network with widths {d(}g‘zo with dg = d, dr, = dy. A
deterministic MLP has per-epoch cost

L
o} (N > d51d5> ,
(=1
i.e., linear in N and quadratic in the layer widths.

FDN and Hypernetworks. FDN replaces each fixed weight matrix by an input-conditioned diago-
nal Gaussian ¢4 (W, b | s¢(x)) whose parameters are generated by a small per-layer Hypernetwork.
For layer ¢, the Hypernetwork takes a conditioning vector

() = {® IC-FDN,
A% 7 \ag_1(z), LP-FDN,

with dimension d, s € {d,,d;_1}, and outputs (uw,,log ofy, , s, logop,) € RP:, where P, =
2(d¢—1dy + dg). In our implementation, each Hypernetwork A, is a two-layer MLP with hidden
width hpyp. For a mini-batch of size B and K Monte Carlo samples per example, the per-epoch
complexity is

L
0] (NKZ(ds,éhhyp + hhprg + dg_ldg)> .
=1

The three bracketed terms correspond to (i) the Hypernetwork input transform, (ii) projection to the
P, Gaussian parameters, and (iii) the base-layer matrix—vector product. In all experiments we use
K = 1 and small Hypernetwork widths (chosen to satisfy a global ~ 10® parameter budget), making
hyp Pe comparable to dg_1d,. As aresult: (i) the training cost of IC-/LP-FDN remains linear in N;
(i1) the runtime overhead relative to a deterministic MLP is a small constant factor (typically 2—4 %),
set by hAnyp and K.

Parameter-count clarification. A concern raised in the reviews was that LP-FDN parameter
count might scale cubically in model size (e.g., as O(d3}) in the width of a layer). This would
occur only for a specific design where the Hypernetwork directly maps a dy-dimensional activation
to all d% entries of a dense weight matrix via a fully connected layer, which would require a d% X dy
matrix.

In our implementation, however, the Hypernetwork hidden width Ay, is a small constant, indepen-
dent of d:

PP = d hingp + hiyp - 2(de_1dg + dg) ~ O(hnypde—1dg) ~ O(dg—1dy).

Thus IC-FDN and LP-FDN both have the same O(dy_1dy) scaling as the corresponding base MLP
layer; in particular, there is no cubic dependence on layer width.

Architectural trade-offs for larger scales. FDN is compatible with standard complexity-
reduction techniques without changing the formulation: (i) low-rank factorizations W, = U,V,"
with the Hypernetwork generating only (U, V7); (i) row- or column-wise generation instead of full
matrices; and (iii) a shared Hypernetwork with layer-specific output heads. In the main experiments
we keep the architecture minimal to match parameter and update budgets across baselines, but these
options make FDN readily extendable to higher-dimensional and large- N settings.

Middle-layer usage and adapter-style deployment. In practice, Hypernetworks need not be ap-
plied to every layer of a deep backbone. FDN is layer-local, so one can restrict stochastic, input-
conditioned weights to a small subset of higher layers (or even just the predictive head), keeping
earlier blocks deterministic and frozen. This is analogous in spirit to LoRA and adapter modules (Hu
et al., [2022; Houlsby et al.l 2019): a narrow, trainable “uncertainty adapter” is inserted on top of a
largely fixed backbone, so the additional parameters and compute scale with the adapter width rather
than with the full network depth or width. In such configurations the overall parameter and FLOP
overhead of FDN remains a small fraction of the backbone, even for large architectures, while still
enabling input-dependent uncertainty where it is most needed.

27



Under review as a conference paper at ICLR 2026

H EVALUATION METRICS AND CALIBRATION DIAGNOSTICS

For a test set {(x;,y;)}2_, and a stochastic predictor that yields K samples {yl(k)}szl from the
predictive distribution p(y | x;, D), we use the following metrics.

Point prediction error. The predictive mean at x; is

1}: (k)
. k
i_ikalyi .

We define the per-point Monte Carlo MSE and bias as

1 & > 1 &
MSE; = It Z(?/z(k) - i) Bias; = f1; —y; = Ve Z(yfk) — ).
k=1 k=1

For any subset of test inputs S C {1,...,T} (e.g., all, ID, or OOD), we aggregate by averaging
overi € S: ) )
MSEg = = > MSE;, Biass = o > Bias;.
151 i 151 fes
Unless otherwise noted, reported MSE and Bias refer to these region-averaged quantities.

Predictive variance and epistemic uncertainty. The Monte Carlo estimator of predictive vari-
ance at x; is

K
— 1 k . 2
VarlY | x;] = e Z(yf ) _ fii)"
k=1
which we aggregate over ID or OOD test splits by averaging across ¢. In the homoscedastic Gaussian
setting this decomposes into aleatoric and epistemic components via the law of total variance; we
focus on the epistemic part induced by the weight distribution.

Continuous ranked probability score (CRPS). For a univariate predictive CDF F;(y) and real-
ization y;, the CRPS is

CRPS(F, 1) = /Oo(Fi(z) S 1 > g)) e

— 00

(k)

Using samples y, "~ ~ F;, we apply the standard Monte Carlo estimator

1 (k) 1 *) _ O
__ Ko KE
RPS; = — B | — —— k) _ O,
CRPS F’,;l"% yil 2K2k§u§1|yz v

We report the average CRPS over ID and OOD test splits. Lower CRPS within a region (ID or OOD)
indicates a sharper and better calibrated predictive distribution: mass is concentrated near y; without
being spuriously overconfident. Under shift we typically expect CRPSpop > CRPS)p because the
task is harder; for a fixed OOD difficulty, smaller CRPSgop (or smaller ACRPS, see below) is
better.

Calibration: MSE—-variance relation. To assess calibration we compare the predicted variance
Var[Y | z;] with the empirical per-point MSE

K
1 k 2
e; = MSE; = Z(yz( )~ yi) -
k=1
We first compute Spearman rank correlation p = corrgpeanmn({\//a\ri}, {ei}) and fit the linear

relation e; ~ a + b\//z;*i by least squares; the ideal fit has a ~ 0 and b ~ 1. High p means that larger
predicted variance reliably flags larger squared error (good ranking), while (a, b) measure the scale
of the variances relative to the errors.
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In addition, we form variance—MSE calibration curves by binning test points into B quantiles of
predicted variance. In each bin b (with index set .S;) we compute the mean predicted variance Var, =
|Silb‘ Zz‘esb Var; and empirical MSE MSE;, = ‘Silbl Ziesb MSE;, and plot the pairs (Vary,, MSE;)
together with the ideal y=z line. Points lying close to this diagonal indicate that the typical error
magnitude in each confidence bin matches the predicted variance scale.

Risk—-coverage (AURC). Using variance as an inverse-confidence score, we sort test points by

increasing \7a\r[Y | ;]. For a coverage level ¢ € (0, 1] (fraction of most-confident points retained)
we compute the cumulative risk R(c) as the average per-point MSE over the retained subset:

1
R(c) = Eel > MSE;,

i€S(c)

where S(c) contains the most-confident fraction ¢ of test points. The area under the risk—coverage

curve, AURC = fol R(c) dc, is estimated numerically. Lower AURC is better: for a fixed difficulty,
it means that as we keep only high-confidence predictions, the resulting risk drops more quickly.

ID vs. OOD deltas. For each model and dataset we compute MSE, variance, and CRPS separately
on ID (interpolation) and OOD (extrapolation) regions, using the region averages defined above, and
report

AMSE = MSEOOD — N[SEID7 AVar = VarOOD — Varm, ACRPS = CRPSOOD — CRPS[D.

For a fixed notion of shift, good uncertainty estimates should exhibit small AMSE (robust accu-
racy), large and positive AVar (higher uncertainty OOD than ID), and small ACRPS (predictive
distributions that degrade gracefully rather than collapsing or becoming wildly miscalibrated).

On NLL/NLPD. Negative log predictive density (NLL / NLPD) is another strictly proper scoring
rule for probabilistic regression and is closely related to CRPS. We computed NLL in preliminary
experiments, but found that in our setting it was (i) strongly correlated with CRPS and MSE, and
(i1) much more sensitive to occasional extreme errors due to the logarithm, which can dominate the
average and obscure more typical behavior. CRPS, by contrast, remains finite, can be estimated
directly from samples without specifying a parametric density or bandwidth, and provides a more
interpretable summary of the overall predictive distribution (both sharpness and calibration) under
dataset shift. For these reasons, and to avoid redundant plots/tables, we report CRPS (together with
MSE, variance, and AURC) as our primary proper scoring rule and omit NLL/NLPD from the main
results.
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