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Abstract
To process novel sentences, language mod-001
els (LMs) must generalize compositionally—002
combine familiar elements in new ways. What003
aspects of a model’s structure promote com-004
positional generalization? Focusing on trans-005
formers, we test the hypothesis, motivated by006
theoretical and empirical work, that deeper007
transformers generalize more compositionally.008
Simply adding layers increases the total num-009
ber of parameters; to address this confound010
between depth and size, we construct three011
classes of models which trade off depth for012
width such that the total number of parame-013
ters is kept constant (41M, 134M and 374M014
parameters). We pretrain all models as LMs015
and fine-tune them on tasks that test for compo-016
sitional generalization. We report three main017
conclusions: (1) after fine-tuning, deeper mod-018
els generalize more compositionally than shal-019
lower models do, but the benefit of additional020
layers diminishes rapidly; (2) within each fam-021
ily, deeper models show better language mod-022
eling performance, but returns are similarly di-023
minishing; (3) the benefits of depth for com-024
positional generalization cannot be attributed025
solely to better performance on language mod-026
eling or on in-distribution data.027

1 Introduction028

The number of possible sentences in natural lan-029

guage is enormous; regardless of the size of its030

training set, a language model (LM) will regu-031

larly encounter sentences it has never seen before.032

The ability to interpret such sentences relies on033

compositional generalization: the capacity to com-034

bine familiar words and syntactic structures in new035

ways (Montague, 1970; Fodor and Pylyshyn, 1988).036

Transformer LMs (Vaswani et al., 2017), while037

highly successful in many settings, often struggle038

when tested on benchmarks that require compo-039

sitional generalization (Kim and Linzen, 2020).040

What architectural factors affect a transformer’s041

ability to generalize compositionally?042

In this paper, we test the hypothesis that increas- 043

ing a transformer’s depth—the number of layers 044

it has—improves its performance on tasks that re- 045

quire compositional generalization. This hypoth- 046

esis is motivated both by theoretical work, which 047

has shown that adding layers increases the expres- 048

sive capacity of neural networks in general (Raghu 049

et al., 2017) and in transformers in particular (Mer- 050

rill et al., 2021), and by experimental work suggest- 051

ing that deeper models generalize more composi- 052

tionally than shallower ones (Mueller et al., 2022; 053

Murty et al., 2022). 054

While existing empirical work lends some credi- 055

bility to this hypothesis, to directly confirm it we 056

must address the confound between depth and size 057

(number of parameters). As each additional layer 058

introduces a new set of parameters, deeper models 059

are also larger, all else being equal. LMs’ perfor- 060

mance on a wide variety of tasks is correlated with 061

their size (Kaplan et al., 2020; Hoffmann et al., 062

2022; Muennighoff et al., 2023). To disentangle 063

these two factors, we construct classes of mod- 064

els with equal total number of parameters but dif- 065

fering depths; we do so by reducing the model’s 066

feed-forward dimension to compensate for added 067

depth. We pretrain all models on language model- 068

ing and fine-tune them on four compositional gen- 069

eralization tasks. COGS (Kim and Linzen, 2020), 070

COGS-vf (Qiu et al., 2022a), GeoQuery (Zelle 071

and Mooney, 1996), and the English passivization 072

portion of Multilingual Transformations (Mueller 073

et al., 2022). 074

In addition to any possible direct effect on com- 075

positional generalization, depth may also be corre- 076

lated with other factors which may themselves pre- 077

dict compositional generalization, such as language 078

modeling loss during pretraining or in-domain fine- 079

tuning performance. This complicates the interpre- 080

tation of any relationship we might find between 081

depth and generalization performance. To address 082

this concern, we also investigate and correct for the 083
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effect of depth on language modeling performance084

and in-distribution loss.085

We report the following findings, across three086

model size classes (41M, 134M, and 374M param-087

eters): (1) In general, deeper models have lower088

perplexity (Section 3.1). The marginal increase089

in performance gained from additional layers di-090

minishes rapidly as models get deeper, and perfor-091

mance begins to degrade when the feed-forward092

dimension approaches the dimensionality of the093

model’s contextualized embeddings. (2) In general,094

deeper models display better compositional gener-095

alization (Section 3.2). Again, most of the bene-096

fit of depth accrues from the first few layers; for097

several of the compositional generalization bench-098

marks we use, performance saturates very quickly099

as models get deeper. (3) Deeper models general-100

ize more compositionally even after correcting for101

the fact that their language modeling perplexity is102

lower and their in-distribution performance on the103

fine-tuning task is higher (Section 3.3).104

2 Methodology105

2.1 Constructing Families of Models with106

Equal Numbers of Parameters107

To make a transformer LM deeper without increas-108

ing the total number of parameters, we need to also109

make it narrower. There are several ways to do so:110

we can reduce the size of the feed-forward dimen-111

sion 3ff, reduce the size of the residual stream (the112

embedding size) 3model, or reduce the size of the at-113

tention outputs 3attn (see Appendix B for a diagram114

of a transformer layer annotated with dimension-115

ality labels). Vaswani et al. (2017) coupled these116

variables at 3model = 3attn = 3ff/4. Most trans-117

former LMs have adopted this ratio (Devlin et al.,118

2019; Kaplan et al., 2020; Hoffmann et al., 2022,119

inter alia), though Raffel et al. (2019) increased the120

size of 3ff relative to 3model and 3attn for their two121

largest models. By contrast, we vary 3ff with depth122

(while holding 3model = 3attn constant). By keeping123

the attention mechanism identical across models124

of varying depths, we rule out the possibility that125

depth will be confounded with the capacity of the126

self-attention mechanism. We refer to 3model/3ff,127

conventionally set to 1/4, as the feed-forward ratio.128

Deriving hyperparameter relations As a start-129

ing point for our size classes of models, we use130

hyperparameters taken from the T5-base and T5-131

large size classes (Raffel et al., 2019) as well as a132

smaller model from Kim and Linzen (2020) which 133

has identical layer-internal hyperparameters to T5- 134

small but fewer layers. We implement models using 135

t5x (Roberts et al., 2022). We then calculate how 136

much the size of the feed-forward dimension must 137

change to accommodate adding or removing layers. 138

Starting from the parameter formula in Kaplan et al. 139

(2020), the number of parameters " in a layer is 140

" (3ff) = 23model3ff + 43model3attn = V · 3ff + �, 141

where the constant V represents the contribution 142

of the parameters of the feed-forward block which 143

project vectors from R3model into R3ff and back into 144

R3model ; and the constant � represents the param- 145

eters of everything aside from the feed-forward 146

block, including the attention mechanism. The to- 147

tal parameter count of a full model # in terms of 148

3ff and =layers is then 149

# (=layers, 3ff) = =layers · " (3ff) + 23model=vocab 150

= =layers · " (3ff) + �, 151

where � represents the parameters of the vocabu- 152

lary embedding and unembedding transformations. 153

Given initial values (=0
layers, 3

0
ff) which character- 154

ize the baseline model in each size class (e.g., T5- 155

large), our goal is to find pairs :, F(:) such that 156

# (=0
layers + :, 3

0
ff − F(:)) = # (=

0
layers, 3

0
ff). 157

Solving for F as a function of : tells us how much 158

to increase (or decrease) 30
ff if we remove (or add) 159

: layers from an existing model: 160

F(:) =
⌊(

1 −
=0

layers

=0
layers + :

) (
30

ff +
�

V

)⌉
. (1) 161

Since adding or removing : layers might require 162

changing 30
ff by a fractional amount, we round 163

F(:) to the nearest integer; while this means that 164

our models may not be exactly equal in total param- 165

eter count, the differences are very small relative to 166

# . Table 1 reports the exact hyperparameter values 167

we use for each of our three size classes, derived 168

from Equation 1 above, and Figure 1 shows each 169

size class plotted as (=layers, 3ff) pairs. 170

2.2 Datasets and Training 171

2.2.1 Language Modeling 172

We use the Colossal Clean Crawled Corpus (C4; 173

Raffel et al. 2019) as our pretraining corpus. C4 174

was created by filtering data from the Common 175
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41M 134M 374M

=layers 1 2 3 4 5 6 7 1 2 4 6 8 12 16 21 26 32 1 2 4 6 8 12 16 24 32
3ff 4779 2048 1138 682 409 227 97 36k 17k 8193 5121 3584 2048 1280 731 393 128 99k 49k 24k 15k 11k 6998 4907 2816 1770

3model = 3attn = 512, =heads = 8 3model = 3attn = 768, =heads = 8 3model = 3attn = 1024, =heads = 64

Table 1: Models of varying depths across three size classes. Bolded variants are the baseline models whose
hyperparameters were taken from Kim and Linzen (2020) and Raffel et al. (2019).

Figure 1: Models for the 41M-, 134M-,
and 374M-parameter size classes. Points
indicate models trained in this paper, and
black diamonds represent the baseline
models for each class whose hyperparam-
eters were taken from Kim and Linzen
(2020) and Raffel et al. (2019).

Crawl dataset of scraped English-language web176

files to serve as a language modeling corpus. We177

use a context size =ctx of 1024 tokens and a batch178

size of 128 sequences ≈ 131k tokens. We pretrain179

each model for 1M steps, resulting in a total train-180

ing dataset of roughly 131B tokens.181

2.2.2 Compositional Generalization182

In compositional generalization datasets, models183

are tested on a distribution that contains novel com-184

binations of pieces, each of which has been pre-185

viously seen independently during training. We186

fine-tune our pretrained models on the training187

portion of the dataset for 10,000 steps, measuring188

in-distribution generalization accuracy (validation189

accuracy) every 250 steps. Validation loss contin-190

ued to decrease throughout training runs on each191

dataset, so we report values from the end of each192

fine-tuning run without early stopping. We use193

four compositional generalization datasets which194

are intended to be used as benchmarks for compo-195

sitionality (for examples of instances of these tasks,196

see Table 2):197

1. COGS (Kim and Linzen, 2020) is a semantic198

parsing dataset introduced to serve as a test199

for compositional generalization. It consists200

of natural-language sentences paired with for-201

mal semantic representations, and is constructed202

such that the out-of-domain generalization dis-203

tribution contains two generalization types: new204

combinations of familiar words (lexical gener-205

alization, such as using the word ‘hedgehog’ as206

the object of a sentence when this word has only207

been seen during training as a subject); or using208

known words in new syntactic structures (struc-209

tural generalization, such as relative clauses that 210

are more deeply nested than seen in training). 211

2. Variable-free COGS (COGS-vf; Qiu et al. 212

2022a) is a simplified variant of COGS where 213

the semantic representations are converted into 214

a form which does not use numbered variables 215

(see Table 2 for a comparison between COGS 216

and COGS-vf). Removing variables from the 217

representation has the benefit of lowering the as- 218

sociated computational cost of training by mak- 219

ing sequences meaningfully shorter. This con- 220

version has been previously shown to improve 221

the performance of models by reducing the com- 222

plexity of the output space (Qiu et al., 2022b), 223

but comes at the cost of limiting the capacity of 224

the formal language to represent many phenom- 225

ena in natural language which require coordi- 226

nation of variable identity, such as control and 227

anaphor binding. 228

3. GeoQuery (Zelle and Mooney, 1996) contains 229

natural-language questions about US geography 230

paired with SQL-style database queries repre- 231

senting those questions. We report results on 232

the GeoQuery Standard split. 233

4. English passivization (Mueller et al., 2022) is a 234

dataset of English active-voice sentences paired 235

with their passive-voice counterparts (adapted 236

from Mulligan et al. 2021). This benchmark is 237

designed to test whether models use shallow, po- 238

sitional heuristics or syntactically-sensible ones. 239

While Mueller et al. (2022) implemented a num- 240

ber of transformations in different languages, 241

we focus on the English Passivization task. 242
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COGS G : A hedgehog ate the cake .
H : ∗cake(G4); hedgehog(G1) AND eat.agent(G2, G1) AND eat.theme(G2, G4)

COGS-vf G : A hedgehog ate the cake on the bed .
H : eat(agent = hedgehog, theme = ∗cake(nmod.on = ∗bed))

GeoQuery G : which states have cities named m0
H : answer(intersection(state, loc_1(intersection(city,m0))))

English Passivization G : our vultures admired her walrus above some zebra .
H : her walrus above some zebra was admired by our vultures .

Table 2: Examples of inputs (G) & targets (H) from each compositional generalization dataset.

3 Results243

3.1 Language Modeling244

Deeper models have lower perplexity. We find245

that depth has a significant impact on model per-246

formance. At the shallow end of the spectrum,247

increasing model depth results in a dramatic im-248

provement in perplexity (Figure 2). In Figure 3a249

we compare the perplexity of each model in a size250

class relative to that of the best-performing model251

of that size. In the extreme case, the perplexity of a252

single-layer model can be nearly twice that of the253

optimal model in the class. Moreover, as parameter254

count increases the disparity between the worse,255

shallower models and the better, deeper models in-256

creases as well: For 41M-parameter models the ra-257

tio between the perplexity of the single-layer model258

and that of the optimal (5-layer) model is 1.59; for259

the 134 M-parameter models, the ratio is 1.86; and260

for the 374M-parameter models, the ratio is 1.99.261

Performance increases most rapidly within the262

first few layers. While deeper models do, in gen-263

eral, perform better than shallower ones, the in-264

crease in performance that comes from adding lay-265

ers diminishes rapidly as models become deeper266

(Figure 3a). The performance difference between267

1-layer and 2-layer models is dramatic across all268

size classes; moving from 2 to 4 layers results in269

a much more modest performance improvement.270

We also note that as models get larger in our setup,271

they are able to make productive use of increasingly272

more layers: the optimal 41M-parameter model in273

our setup has 5 layers, while the optimal 134M-274

parameter model has 12; among 374M-parameter275

models, the 24-layer model had the best perfor-276

mance. At the same time, the pattern of the dimin-277

ishing utility of depth holds even for the largest278

models we study.279

Performance starts degrading when models be-280

come too narrow. At the deeper end of our scale,281

adding layers is not only unhelpful for performance, 282

but begins to harm it (see the right-hand sides of 283

each size-class curve in Figure 3a). As previously 284

noted, the point at which trading width for depth 285

becomes harmful is not an absolute function of 286

depth, since the optimal models from each size 287

class have differing depths. However, comparing 288

the relative performance of models within a size 289

class to the feed-forward ratio 3model/3ff shows that 290

model performance begins to worsen once 3ff be- 291

comes smaller than 3model (to the right of the red 292

dashed line in Figure 3b); when this happens, the 293

affine projection of the vectors from R3model into 294

R3ff becomes a non-injective map. In Appendix D 295

we analyze the weight matrices of the affine trans- 296

forms in the feed-forward network of each layer 297

and demonstrate that as 3model/3ff increases the 298

transforms become increasingly rank-deficient. 299

Larger models are more robust to changes in 300

the feed-forward ratio. Varying 3ff while keep- 301

ing 3model constant results in feed-forward ratios 302

3model/3ff which deviate significantly from the stan- 303

dard ratio of 1/4 (black vertical rule in Figure 3b). 304

We find that smaller models are more sensitive to 305

the particular value of the feed-forward ratio, and 306

that for small models the standard ratio may not 307

be optimal. Within the 41M-parameter size class 308

there is a narrow range of feed-forward ratios in 309

which model performance is within a few percent- 310

age points of the best-in-class model. As models 311

get larger, this range expands leftward to include 312

models which have increasingly wide feed-forward 313

networks relative to the size of their contextual em- 314

beddings. This shows that larger models have more 315

leeway to trade depth for width, becoming wider in 316

proportion to their model dimension 3model without 317

incurring large penalties for their perplexity. It also 318

shows that when 3model/3ff < 1 the feed-forward 319

ratio no longer serves as a predictor of relative per- 320

plexity independent of size. 321

4



Figure 2: Deeper models achieve lower perplexities than shallower ones after equal amounts of training data
regardless of size, but the benefits of adding layers diminish quickly with depth. Mean over 5 runs shown with
error bars.

(a) (b)

Figure 3: Relative perplexity compared to the best model in each size class. (left) Perplexity goes down rapidly as
models get deeper; only a few layers are needed to obtain most of the value of depth. (right) When 3model/3ff > 1
(red dashed rule), perplexity slowly increases. As models get larger, the range of 3model/3ff ratios where perfor-
mance is close-to-optimal expands leftward to include smaller and smaller values.

3.2 Compositional Generalization322

To test the impact of depth on compositional gen-323

eralization, we fine-tune the models pretrained in324

the previous section on the training portions of325

each of the compositional generalization bench-326

mark datasets. We measure the full-sequence (ex-327

act match) accuracy of the models on the out-of-328

distribution generalization set and note several find-329

ings:330

Deeper models generalize better. As with331

language-modeling performance, depth has a sig-332

nificant impact on how well models generalize (Fig-333

ure 4). On each of the datasets, deeper models334

tend to attain higher generalization accuracies than335

shallower models in the same size class. The ef-336

fect of depth on compositional generalization is337

more variable than it is for language modeling: for338

COGS, COGS-vf, and GeoQuery we note some339

small non-monotonicity in the generalization accu-340

racy across different depths. On English Passiviza-341

tion, the 41M- and 134M-parameter model classes342

show largely-consistent trends where deeper mod-343

els perform better than shallower ones; the 374M-344

parameter models do show more significant non- 345

monotonicity, though the deepest models do still 346

outperform the shallowest ones. 347

The benefit of depth saturates quickly for some 348

tasks. As with language modeling, most of the 349

benefit of depth is gained by having only a few lay- 350

ers. For three of the tasks—COGS, COGS-vf, and 351

GeoQuery—we see threshold depths after which 352

generalization accuracy stays relatively constant 353

as depth increases. These threshold depths are 354

low and constant across model sizes, but vary by 355

dataset: 4–6 layers for COGS, and 2–4 layers for 356

COGS-vf and GeoQuery. Performance on COGS- 357

vf appears to saturate with fewer layers than on 358

COGS despite the fact that the two datasets are 359

equivalent in expressive capacity;1 this suggests 360

that the saturation we observe on some datasets is 361

closely linked to the complexity of the output rep- 362

resentation independent from the complexity of the 363

compositional generalization expressed in the data. 364

On English Passivization, the impact of depth is 365

1As previously noted, COGS can represent phenomena
that COGS-vf cannot, but both output representations are
sufficiently rich to represent the examples studied here.
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Figure 4: Deeper models generalize better than shallower models on compositional tasks across datasets and
size classes. Error bars (easily visible only on the English Passivization data) report 95% confidence intervals in
estimation of the mean, taken over 5 runs.

more variable, which makes it difficult to ascertain366

if a size-independent threshold exists.367

The threshold effects suggest that some subsets368

of the datasets can be addressed with relatively369

simple models. We investigate this hypothesis us-370

ing the fact that COGS and COGS-vf include two371

types of generalization cases: lexical generaliza-372

tion, where a familiar word needs to be interpreted373

in a familiar syntactic context in which it has not374

been observed; and structural generalization, where375

the syntactic structure is novel and needs to be con-376

structed from familiar syntactic pieces. Breaking377

performance down by the type of generalization re-378

quired, we find that even deep models at the largest379

model size systematically fail to generalize struc-380

turally (Figure 5); the benefit of depth is largely381

limited to the easier lexical generalization. This382

supports the hypothesis that the saturated effect of383

depth is due to the existence of easier subsets of384

the datasets, and shows that increasing depth alone385

does substantially improve the models’ ability to386

learn the correct inductive bias for these structural387

tasks.388

3.3 The Effect of Depth on Generalization is389

not Solely Attributable to Better390

Pretraining Loss or In-distribution391

Performance392

Although deeper models generalize better than shal-393

lower models do, our pretraining analysis in Sec-394

tion 3.1 shows that deeper models also attain lower395

validation perplexities on their pretraining corpus396

than shallower models. Additionally, we observe397

that deeper models achieve lower in-distribution398

loss on the fine-tuning tasks than shallower models399

(Figure 7a). Both of these observations are poten-400

tial confounds for the interpretation of the previous401

section: perhaps depth does not directly improve402

generalization accuracy, but only does so indirectly403

by allowing models to either become better LMs 404

or else to better learn the in-distribution fine-tuning 405

data. To determine whether that this is the case, or 406

whether depth does in fact directly improve gen- 407

eralization, we correct for both of these potential 408

confounds. 409

First, to correct for the fact that deeper mod- 410

els attain lower pretraining losses, we repeat our 411

fine-tuning experiments using checkpoints of mod- 412

els that have equal validation perplexities within 413

a size class. We pick the least-performant (i.e., 414

shallowest) model within a size class as the “ref- 415

erence model” and note its validation perplexity 416

at the end of pretraining. We then pick the check- 417

points of all deeper2 models at the point when they 418

achieved this reference perplexity (Figure 6a). Fi- 419

nally, we fine-tune each of these checkpoints on the 420

compositional generalization tasks. We repeat this 421

process for successively deeper reference models. 422

We find that even when fine-tuning from check- 423

points of equal validation perplexity, deeper mod- 424

els still generalize better than shallower models 425

(Figure 6b). For compositional datasets where we 426

observe thresholding behavior, the benefits of depth 427

continue to hold up through that threshold depth. 428

Next, we correct for the potentially confound- 429

ing fact that deeper models learn the in-distribution 430

split of the compositional generalization tasks bet- 431

ter than the shallower models do. To do this, we 432

compare the generalization accuracies of models 433

at points during fine-tuning when they have equal 434

in-distribution loss. Figure 7b shows that even after 435

2We only consider models deeper than the reference model
since, in general, shallower models will never attain the per-
plexity of the reference model at the end of its pretraining.
This assumption breaks down when considering the deepest
models in each size class, but these are far deeper than the
points at which depth seems to saturate performance on our
compositional datasets so we do not extensively explore this
regime.
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Figure 5: Increasing depth improves lexical generalization (solid lines) in both COGS and COGS-vf, but does not
meaningfully improve structural generalization performance (dashed lines). Data shown is from a single run per
condition.

(a) (b)

Figure 6: (left) To correct for the potential effect of deeper models’ lower pretraining loss on their generalization
accuracy, we pick a reference model depth (red) and use checkpoints (black) from deeper models (blue) which
have equal validation perplexity as the reference model does at the end of its pretraining. We then fine-tune these
‘pretraining-corrected’ checkpoints on the compositional tasks. (right) Even when fine-tuning checkpoints with
equal validation perplexity, deeper models still generalize better than shallower models do up through six layers.
The figure shows generalization accuracies from 134M-parameter models on COGS (single run per condition).

adjusting for in-distribution performance, deeper436

models still achieve higher accuracies on the out-437

of-distribution generalization set than shallower438

models do.439

4 Related Work440

Compositionality Previous work has explored441

the degree to which neural models exhibit compo-442

sitional behavior by training or fine-tuning mod-443

els on compositional tasks such as simple com-444

mand sequences (Lake and Baroni, 2018) or se-445

mantic parsing (Kim and Linzen, 2020; Keysers446

et al., 2020). Other work has explored methods447

to improve the compositional behavior of models,448

including through data augmentation (Qiu et al.,449

2022a), larger models (Qiu et al., 2022b), and450

architectural changes (Gordon et al., 2019; Csor-451

dás et al., 2021; Ontanon et al., 2022). Our work452

complements these approaches by exploring a spe-453

cific architecture change: increasing depth without454

changing total model size.455

Comparison to standard architectures We pri- 456

marily focus on models that are shallower and 457

wider than standard convention. Since 3model is 458

fixed within each class this means that most of our 459

models have increasingly small feed-forward ratios 460

3model/3ff; moreover, since =layers, 3model, and 3ff 461

tend to increase in standard architectures as param- 462

eter count grows, this means that the disparities 463

between our shallowest models and the conven- 464

tional ones grows as the size class gets bigger. Ex- 465

act parameter counts differ from the corresponding 466

models in Raffel et al. (2019) and Kim and Linzen 467

(2020) owing to differences in the size of the vo- 468

cabulary/embedding layers and the fact that we use 469

decoder-only models rather than encoder-decoder 470

models, though the layer-internal hyperparameters 471

of our base models are consistent with theirs. Qiu 472

et al. (2022b) found that decoder-only models per- 473

formed similarly to encoder-decoder models of 474

comparable size; following Wang et al. (2022) we 475

consider decoder-only models with half as many 476

total layers as their encoder-decoder variants. 477
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(a) (b)

Figure 7: (left) Deeper models attain lower (better) in-domain loss values on compositional tasks. (right) Deeper
models generalize better than shallower ones on COGS, even at points during fine-tuning when models have equal
loss (0.0002) on the in-distribution portion of the dataset. Data shown is from a single run per condition.

Impacts of Depth Theoretical work has shown478

that the expressive capacity of neural networks in479

general (Raghu et al., 2017) and transformer mod-480

els in particular (Merrill et al., 2021) grows expo-481

nentially in depth. Empirical work also points to482

the role of depth in model performance. In a more483

general setting, Tay et al. (2021) found that scal-484

ing by depth is generally more helpful than scaling485

by width on downstream tasks. For compositional486

generalization in particular, Mueller et al. (2022)487

found that reducing depth was more harmful than488

reducing with for pretrained encoder-decoder mod-489

els. Murty et al. (2022) observed that deeper trans-490

former encoders often have more tree-like represen-491

tations and parsing accuracies on some composi-492

tional tasks. Tempering these positive results, Veit493

et al. (2016) noted that in models with residual con-494

nections, even very deep networks leveraged only495

shallow subnetworks of roughly constant depth.496

Brown et al. (2022) also concluded that wide, shal-497

low transformer models can attain roughly-equal498

performance to deeper ones. Both sets of results,499

however, are confounded by a lack of control for500

total parameter count.501

Controlling for model size There are various502

choices to be made when studying the impact of503

hyperparameter choices without affecting the net504

model size, i.e constructing size classes of models.505

Kaplan et al. (2020) covaried the number of layers506

=layers with the contextual embedding dimension507

3model, which they coupled to the attention-internal508

3attn and feed-forward dimension at the standard509

ratio of 3model = 3attn = 3ff/4. Among models of510

an equal size, they concluded that performance in-511

creases are largely driven by increasing the total512

parameter count of models, and that within “rea-513

sonable limits” language modeling perplexity is514

only weakly dependent on shape (though Tay et al. 515

2021 concluded that the same was not true for per- 516

formance on downstream tasks, but did so without 517

controlling for the impact of size). 518

5 Conclusion 519

Compositional generalization is essential for inter- 520

preting novel sentences. What aspects of the trans- 521

former LM architecture contribute to an inductive 522

bias favoring compositional generalization? In a 523

controlled experiment that teases apart depth from 524

total number of parameters, we find that deeper 525

transformers show better compositional generaliza- 526

tion (and better language modeling performance) 527

independent of their total number of parameters, 528

though in most cases the usefulness of adding lay- 529

ers decreases rapidly as models get deeper. Most 530

of the benefits of depth come from having just a 531

few layers, allowing comparatively shallow mod- 532

els to achieve levels of generalization accuracy on 533

compositional tasks comparable to much deeper 534

models, and to reach language modeling perplex- 535

ity within a few percentage points of the best-in- 536

class model. We also show the benefits of depth 537

for compositional generalization are not merely a 538

consequence of the fact that deeper models learn 539

the in-distribution data or pretraining corpus better; 540

rather, depth affects generalization over and above 541

these other factors. Our results are robust across 542

nearly an order of magnitude in model size (41M, 543

134M and 374M parameters). 544

6 Limitations & Future Work 545

Alternative approaches to controlling for total 546

size Our approach to controlling for total param- 547

eter count necessitates making depth-width trade- 548

offs. An alternative approach would be to construct 549
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Universal Transformers (Dehghani et al., 2018),550

where each model in a size class has a transformer551

layer with the same parameters repeated =layers552

times. Such a weight-sharing approach would al-553

low for deeper models to have arbitrarily-wide feed-554

forward networks, mitigating the impact of making555

models too narrow. While such weight sharing556

prevents models from performing different compu-557

tation in different layers, such restriction may in558

fact be beneficial for compositional generalization559

where similar computations (e.g., combining two560

syntactic phrases to a larger phrase) may need to561

apply recursively at different scales.562

Pretraining corpus effects We consider models563

pretrained on natural-language data. For our par-564

ticular choice of compositional generalization ex-565

periments, the presence of lexical items in both the566

pretraining corpus and the generalization datasets567

represents a potential confounder of generalization568

performance which could be mitigated by modi-569

fying compositional datasets (Kim et al., 2022).570

More generally, the distribution of pretraining data571

affects the inductive biases conferred to LMs (Pa-572

padimitriou and Jurafsky, 2023). As a particular573

area of interest for future work, we point out the574

hypothesis that including source code in the pre-575

training corpus (OpenAI, 2023; Google et al., 2023)576

will improve compositional generalization.577

Fine-tuning vs. in-context learning We use578

fine-tuning to adapt our pretrained models to the579

compositional tasks. Due to its computational cost580

and task-specificity, fine-tuning is less useful in581

practice than in-context learning as model size582

grows (Brown et al., 2020). Because in-context583

learning only becomes reliable at scales far larger584

than we are able to train, we did not explore the585

effect of depth on compositional generalization ac-586

curacy in in-context learning (Si et al., 2022); we587

point this out as an avenue for future research.588

7 Ethics Statement589

Throughout our experimental process, we sought to590

comply with best practices to mitigate any risks as-591

sociated with LLM research. We use open-source592

datasets which are inspectable by third-parties for593

issues such as bias, and toxicity. We do not release594

any public checkpoints for the models we train, so595

there is no risk to misuse of any created artifacts,596

though we note that we derive our implemented597

models from existing publicly-available T5 models.598

We train models on English-only natural-language 599

data, and fuller exploration should be done to ex- 600

plore how language impacts the results found here. 601
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A Full table of results 832

Table 3 displays pretraining and compositional gen- 833

eralization accuracy on all model sizes and tasks. 834

B Annotated transformer layer 835

Figure 8 shows the schematic for a single trans- 836

former layer. The layers input enters on the left 837

and passes through the various model components 838

(grey boxes), being combined with the residual con- 839

nections before exiting right to subsequent layers. 840

Blue boxes show the dimensionality of the vectors 841

after transformation; we are primarily concerned 842

with the size of the embedding vectors 3model and 843

the internal dimension of the feed-forward block 844

3ff. The size of the vectors internal to the atten- 845

tion mechanism, 3attn, is not shown here but is 846

usually set to be equal with 3model; we follow this 847

convention here. Non-learned operations like ad- 848

dition, layer normalization, and the feed-forward 849

network’s nonlinearity are shown in grey circles. 850

C Compute Analysis 851

To better understand the implications of the dimin- 852

ishing marginal utility of depth on perplexity and 853

generalization performance, we additionally ana- 854

lyze how depth impacts the compute performance 855

of models by measuring the latency of models 856

(measured in seconds per step) during pretraining. 857

Figure 9 shows that depth strongly influences la- 858

tency when controlling for model size: 32-layer 859

374M-parameter models are twice as slow as the 860

4-layer 374M-parameter models when running on 861

the same hardware. 862

We note two implications of this finding relevant 863

to the practical use of deep models in the context 864

of our main results on perplexity and accuracy: 865

1. Since models with relatively few layers can at- 866

tain withing 1% of the performance (i.e., loss 867

for language modeling or generalization accu- 868

racy for compositional generalization tasks) 869

of the better, deeper models when trained 870

on equal volumes of data, shallow models 871
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size =layers C4 val. PPL (↓) COGS (↑) COGS-vf (↑) GeoQuery Standard (↑) English Passivization (↑)

41M

1 45.7 12.4 25.7 68.2 0.00
2 31.1 58.2 78.3 76.4 9.88
3 29.3 63.1 80.8 79.6 26.2
4 28.8 68.5 82.5 78.6 28.0
5 28.8 63.4 82.5 76.8 89.9
6 29.1 68.4 82.6 77.5 74.1
7 29.6 72.3 83.0 77.1 78.3

134M

1 33.6 19.4 26.3 72.5 0.00
2 22.3 65.5 83.0 81.4 29.9
4 19.4 71.1 83.6 78.2 59.3
6 18.7 74.3 83.2 80.0 49.4
8 18.3 72.9 83.7 73.6 91.9
12 18.1 73.0 84.7 82.9 87.1
16 18.2 75.0 83.8 81.1 93.2
21 18.3 75.1 84.8 80.0 88.1
26 18.6 75.4 84.1 82.1 98.4
32 19.2 75.7 84.0 78.9 94.8

374M

1 28.4 21.5 36.8 72.9 0.00
2 18.6 66.2 82.2 80.7 13.6
4 15.9 72.4 71.9 80.0 89.8
6 15.2 75.1 83.1 78.2 18.8
8 14.9 75.2 82.6 80.7 84.3
12 14.6 76.3 84.3 80.0 81.0
16 14.5 76.3 85.1 81.1 87.2
24 14.4 78.0 83.1 83.2 89.6
32 14.7 78.8 79.7 84.6 90.2

Table 3: Validation perplexity (↓, lower is better) on C4 after pretraining & generalization accuracy (%; ↑, higher
is better) on compositional datasets after 10 k steps of fine-tuning. Bold values indicate best-in-size-class perfor-
mance. Data is from a single run per condition.
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Figure 8: Diagram of a single transformer layer, annotated with the dimensions (blue) of each vector. Information
is passed from left to right, through each component (grey box), and added back to the residual embeddings before
normalization.

Figure 9: Deeper models are slower than shallower
models when controlling for total parameter count. We
report relative latency [seconds per step] for 374M-
parameter models, showing a strongly-linear relation-
ship between depth and latency. Similar relative trends
are observed for other model sizes classes.

can be used at inference time at substantially872

lower compute costs without sacrificing per-873

formance. 874

2. Since shallow models have lower latency dur- 875

ing training as well as during inference, one 876

can either (a) train a shallower model in much 877

less time than a deeper model on equal vol- 878

umes of data, or (b) train a shallower model 879

on much more data than a deeper model can 880

be trained on given a fixed compute budget 881

(e.g., access to a particular GPU platform 882

for a given amount of time). Depending on 883

the depths, sizes, volumes of data, and train- 884

ing times involved, this can result in shal- 885

lower models attaining better performance 886

than deeper models can. 887

D Feed-forward rank analysis 888

To investigate the role that the feed-forward block 889

plays in the poor performance of models with 890

extreme 3model/3ff ratios, we conduct rank anal- 891
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ysis on the two transformations R3model → R3ff892

and R3ff → R3model which make up the feed-893

forward block. Our first approach is to conduct894

singular-value decomposition on each transform.895

For a given affine transform ) , we compute the896

ordered singular values {f1, f2, . . . , f: } where897

: = min(3model, 3ff) is the rank of ) and f8 ≥ f8+1.898

We then normalize each singular value by divid-899

ing by the ℓ1 norm of {f1, f2, . . . , f: } to calculate900

how much of the )’s image is accounted for by901

the best 8-rank approximation of ) for 8 ≤ : . We902

note that as models get deeper (and consequently,903

3ff and gets smaller and the feed-forward ratio904

3model/3ff gets larger), the two transforms in the905

feed-forward block become increasingly skewed906

away from making full use of their available ranks907

(Figure 10).908

We also measure the effective rank of each trans-909

form, defined by Roy and Vetterli (2007) a real-910

valued extension of rank to measure the effective911

dimensionality of transforms which are close to912

being rank-deficient:913

erank()) = exp
(
−

∑ f8

‖f‖1
log

(
f8

‖f‖1

))
.914

We similarly note that the effective rank of the915

feed-forward transforms decreases as models get916

deeper and 3ff gets smaller relative to fixed 3model,917

suggesting that our deeper models are increasingly918

rank-deficient (Figure 11).919
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Figure 10: As models get deeper and 3ff gets smaller, the input (left) and output (right) projections in the feed-
forward block become increasingly close to rank-deficient transforms. A graph of H = G here would indicate that
models spread their rank equally across all singular values.

Figure 11: The effective rank of each feed-
forward projection, averaged over all lay-
ers, decreases as models get deeper and
3ff gets smaller in proportion to 3model. A
small amount of vertical jitter has been
added to help distinguish lines.
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