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Abstract

To process novel sentences, language mod-
els (LMs) must generalize compositionally—
combine familiar elements in new ways. What
aspects of a model’s structure promote com-
positional generalization? Focusing on trans-
formers, we test the hypothesis, motivated by
theoretical and empirical work, that deeper
transformers generalize more compositionally.
Simply adding layers increases the total num-
ber of parameters; to address this confound
between depth and size, we construct three
classes of models which trade off depth for
width such that the total number of parame-
ters is kept constant (41M, 134M and 374M
parameters). We pretrain all models as LMs
and fine-tune them on tasks that test for compo-
sitional generalization. We report three main
conclusions: (1) after fine-tuning, deeper mod-
els generalize more compositionally than shal-
lower models do, but the benefit of additional
layers diminishes rapidly; (2) within each fam-
ily, deeper models show better language mod-
eling performance, but returns are similarly di-
minishing; (3) the benefits of depth for com-
positional generalization cannot be attributed
solely to better performance on language mod-
eling or on in-distribution data.

1 Introduction

The number of possible sentences in natural lan-
guage is enormous; regardless of the size of its
training set, a language model (LM) will regu-
larly encounter sentences it has never seen before.
The ability to interpret such sentences relies on
compositional generalization: the capacity to com-
bine familiar words and syntactic structures in new
ways (Montague, 1970; Fodor and Pylyshyn, 1988).
Transformer LMs (Vaswani et al., 2017), while
highly successful in many settings, often struggle
when tested on benchmarks that require compo-
sitional generalization (Kim and Linzen, 2020).
What architectural factors affect a transformer’s
ability to generalize compositionally?

In this paper, we test the hypothesis that increas-
ing a transformer’s depth—the number of layers
it has—improves its performance on tasks that re-
quire compositional generalization. This hypoth-
esis is motivated both by theoretical work, which
has shown that adding layers increases the expres-
sive capacity of neural networks in general (Raghu
et al., 2017) and in transformers in particular (Mer-
rill et al., 2021), and by experimental work suggest-
ing that deeper models generalize more composi-
tionally than shallower ones (Mueller et al., 2022;
Murty et al., 2022).

While existing empirical work lends some credi-
bility to this hypothesis, to directly confirm it we
must address the confound between depth and size
(number of parameters). As each additional layer
introduces a new set of parameters, deeper models
are also larger, all else being equal. LMs’ perfor-
mance on a wide variety of tasks is correlated with
their size (Kaplan et al., 2020; Hoffmann et al.,
2022; Muennighoff et al., 2023). To disentangle
these two factors, we construct classes of mod-
els with equal total number of parameters but dif-
fering depths; we do so by reducing the model’s
feed-forward dimension to compensate for added
depth. We pretrain all models on language model-
ing and fine-tune them on four compositional gen-
eralization tasks. COGS (Kim and Linzen, 2020),
COGS-vf (Qiu et al., 2022a), GeoQuery (Zelle
and Mooney, 1996), and the English passivization
portion of Multilingual Transformations (Mueller
et al., 2022).

In addition to any possible direct effect on com-
positional generalization, depth may also be corre-
lated with other factors which may themselves pre-
dict compositional generalization, such as language
modeling loss during pretraining or in-domain fine-
tuning performance. This complicates the interpre-
tation of any relationship we might find between
depth and generalization performance. To address
this concern, we also investigate and correct for the



effect of depth on language modeling performance
and in-distribution loss.

We report the following findings, across three
model size classes (41M, 134M, and 374M param-
eters): (1) In general, deeper models have lower
perplexity (Section 3.1). The marginal increase
in performance gained from additional layers di-
minishes rapidly as models get deeper, and perfor-
mance begins to degrade when the feed-forward
dimension approaches the dimensionality of the
model’s contextualized embeddings. (2) In general,
deeper models display better compositional gener-
alization (Section 3.2). Again, most of the bene-
fit of depth accrues from the first few layers; for
several of the compositional generalization bench-
marks we use, performance saturates very quickly
as models get deeper. (3) Deeper models general-
ize more compositionally even after correcting for
the fact that their language modeling perplexity is
lower and their in-distribution performance on the
fine-tuning task is higher (Section 3.3).

2 Methodology

2.1 Constructing Families of Models with
Equal Numbers of Parameters

To make a transformer LM deeper without increas-
ing the total number of parameters, we need to also
make it narrower. There are several ways to do so:
we can reduce the size of the feed-forward dimen-
sion dff, reduce the size of the residual stream (the
embedding size) dmodel, OF reduce the size of the at-
tention outputs dy, (see Appendix B for a diagram
of a transformer layer annotated with dimension-
ality labels). Vaswani et al. (2017) coupled these
variables at dpodel = daun = dge/4. Most trans-
former LMs have adopted this ratio (Devlin et al.,
2019; Kaplan et al., 2020; Hoffmann et al., 2022,
inter alia), though Raffel et al. (2019) increased the
size of dj relative to dmodel and dyy, for their two
largest models. By contrast, we vary dg with depth
(while holding dodel = dattn constant). By keeping
the attention mechanism identical across models
of varying depths, we rule out the possibility that
depth will be confounded with the capacity of the
self-attention mechanism. We refer to diogel/dit,
conventionally set to 1/4, as the feed-forward ratio.

Deriving hyperparameter relations As a start-
ing point for our size classes of models, we use
hyperparameters taken from the T5-base and T5-
large size classes (Raffel et al., 2019) as well as a

smaller model from Kim and Linzen (2020) which
has identical layer-internal hyperparameters to T5-
small but fewer layers. We implement models using
t5x (Roberts et al., 2022). We then calculate how
much the size of the feed-forward dimension must
change to accommodate adding or removing layers.
Starting from the parameter formula in Kaplan et al.
(2020), the number of parameters M in a layer is

M (ds) = 2dmodeldsi + 4dmodeldain = B - dis + A,

where the constant S represents the contribution
of the parameters of the feed-forward block which
project vectors from R%model into R and back into
R¢model; and the constant A represents the param-
eters of everything aside from the feed-forward
block, including the attention mechanism. The to-
tal parameter count of a full model N in terms of
dr and njayers 1S then

N(nlayers’ dir) = Mayers * M (dst) + 2dmodelPvocab
= Nayers * M (dg) + E,

where E represents the parameters of the vocabu-
lary embedding and unembedding transformations.
Given initial values (n? ,d%) which character-
) . layers” “ff”
ize the baseline model in each size class (e.g., T5-

large), our goal is to find pairs k, w(k) such that
N(n?ayers +k, d?f —w(k)) = N(n?ayers’ dgf :

Solving for w as a function of k tells us how much
to increase (or decrease) d?f if we remove (or add)
k layers from an existing model:

0
_ _ nlayers 0 é
w(k) = l(l — +k) (dff+ﬁ) .

layers

ey

Since adding or removing k layers might require
changing d?f by a fractional amount, we round
w(k) to the nearest integer; while this means that
our models may not be exactly equal in total param-
eter count, the differences are very small relative to
N. Table 1 reports the exact hyperparameter values
we use for each of our three size classes, derived
from Equation 1 above, and Figure 1 shows each
size class plotted as (niayers, dfr) pairs.

2.2 Datasets and Training
2.2.1 Language Modeling

We use the Colossal Clean Crawled Corpus (C4;
Raffel et al. 2019) as our pretraining corpus. C4
was created by filtering data from the Common
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Table 1: Models of varying depths across three size classes. Bolded variants are the baseline models whose
hyperparameters were taken from Kim and Linzen (2020) and Raffel et al. (2019).
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Crawl dataset of scraped English-language web
files to serve as a language modeling corpus. We
use a context size nqx of 1024 tokens and a batch
size of 128 sequences ~ 131k tokens. We pretrain
each model for 1M steps, resulting in a total train-
ing dataset of roughly 131B tokens.

2.2.2 Compositional Generalization

In compositional generalization datasets, models
are tested on a distribution that contains novel com-
binations of pieces, each of which has been pre-
viously seen independently during training. We
fine-tune our pretrained models on the training
portion of the dataset for 10,000 steps, measuring
in-distribution generalization accuracy (validation
accuracy) every 250 steps. Validation loss contin-
ued to decrease throughout training runs on each
dataset, so we report values from the end of each
fine-tuning run without early stopping. We use
four compositional generalization datasets which
are intended to be used as benchmarks for compo-
sitionality (for examples of instances of these tasks,
see Table 2):

1. COGS (Kim and Linzen, 2020) is a semantic
parsing dataset introduced to serve as a test
for compositional generalization. It consists
of natural-language sentences paired with for-
mal semantic representations, and is constructed
such that the out-of-domain generalization dis-
tribution contains two generalization types: new
combinations of familiar words (lexical gener-
alization, such as using the word ‘hedgehog’ as
the object of a sentence when this word has only
been seen during training as a subject); or using
known words in new syntactic structures (struc-

Figure 1: Models for the 41M-, 134M-,
and 374M-parameter size classes. Points
indicate models trained in this paper, and
black diamonds represent the baseline
models for each class whose hyperparam-
eters were taken from Kim and Linzen
(2020) and Raffel et al. (2019).

tural generalization, such as relative clauses that
are more deeply nested than seen in training).

2. Variable-free COGS (COGS-vf; Qiu et al.

2022a) is a simplified variant of COGS where
the semantic representations are converted into
a form which does not use numbered variables
(see Table 2 for a comparison between COGS
and COGS-vf). Removing variables from the
representation has the benefit of lowering the as-
sociated computational cost of training by mak-
ing sequences meaningfully shorter. This con-
version has been previously shown to improve
the performance of models by reducing the com-
plexity of the output space (Qiu et al., 2022b),
but comes at the cost of limiting the capacity of
the formal language to represent many phenom-
ena in natural language which require coordi-
nation of variable identity, such as control and
anaphor binding.

3. GeoQuery (Zelle and Mooney, 1996) contains

natural-language questions about US geography
paired with SQL-style database queries repre-
senting those questions. We report results on
the GeoQuery Standard split.

4. English passivization (Mueller et al., 2022) is a

dataset of English active-voice sentences paired
with their passive-voice counterparts (adapted
from Mulligan et al. 2021). This benchmark is
designed to test whether models use shallow, po-
sitional heuristics or syntactically-sensible ones.
While Mueller et al. (2022) implemented a num-
ber of transformations in different languages,
we focus on the English Passivization task.



COGS x: A hedgehog ate the cake .
y: *cake(x4); hedgehog(x) AND eat.agent(xp, x1) AND eat.theme(x, x4)
COGS-vf x: A hedgehog ate the cake on the bed .
y: eat(agent = hedgehog, theme = *cake(nmod.on = *bed))
GeoQuery x: which states have cities named mO
y: answer(intersection(state, loc_1 (intersection(city, m0))))
English Passivization  x: our vultures admired her walrus above some zebra .
y: her walrus above some zebra was admired by our vultures .

Table 2: Examples of inputs (x) & targets (y) from each compositional generalization dataset.

3 Results
3.1 Language Modeling

Deeper models have lower perplexity. We find
that depth has a significant impact on model per-
formance. At the shallow end of the spectrum,
increasing model depth results in a dramatic im-
provement in perplexity (Figure 2). In Figure 3a
we compare the perplexity of each model in a size
class relative to that of the best-performing model
of that size. In the extreme case, the perplexity of a
single-layer model can be nearly twice that of the
optimal model in the class. Moreover, as parameter
count increases the disparity between the worse,
shallower models and the better, deeper models in-
creases as well: For 41 M-parameter models the ra-
tio between the perplexity of the single-layer model
and that of the optimal (5-layer) model is 1.59; for
the 134 M-parameter models, the ratio is 1.86; and
for the 374M-parameter models, the ratio is 1.99.

Performance increases most rapidly within the
first few layers. While deeper models do, in gen-
eral, perform better than shallower ones, the in-
crease in performance that comes from adding lay-
ers diminishes rapidly as models become deeper
(Figure 3a). The performance difference between
1-layer and 2-layer models is dramatic across all
size classes; moving from 2 to 4 layers results in
a much more modest performance improvement.
We also note that as models get larger in our setup,
they are able to make productive use of increasingly
more layers: the optimal 41M-parameter model in
our setup has 5 layers, while the optimal 134M-
parameter model has 12; among 374M-parameter
models, the 24-layer model had the best perfor-
mance. At the same time, the pattern of the dimin-
ishing utility of depth holds even for the largest
models we study.

Performance starts degrading when models be-
come too narrow. At the deeper end of our scale,

adding layers is not only unhelpful for performance,
but begins to harm it (see the right-hand sides of
each size-class curve in Figure 3a). As previously
noted, the point at which trading width for depth
becomes harmful is not an absolute function of
depth, since the optimal models from each size
class have differing depths. However, comparing
the relative performance of models within a size
class to the feed-forward ratio diode1/ dgr sShows that
model performance begins to worsen once dyr be-
comes smaller than dpeger (to the right of the red
dashed line in Figure 3b); when this happens, the
affine projection of the vectors from Rl into
R% becomes a non-injective map. In Appendix D
we analyze the weight matrices of the affine trans-
forms in the feed-forward network of each layer
and demonstrate that as dodel/dr increases the
transforms become increasingly rank-deficient.

Larger models are more robust to changes in
the feed-forward ratio. Varying dg while keep-
ing dmodel constant results in feed-forward ratios
dmode1 / dir which deviate significantly from the stan-
dard ratio of 1/4 (black vertical rule in Figure 3b).
We find that smaller models are more sensitive to
the particular value of the feed-forward ratio, and
that for small models the standard ratio may not
be optimal. Within the 41M-parameter size class
there is a narrow range of feed-forward ratios in
which model performance is within a few percent-
age points of the best-in-class model. As models
get larger, this range expands leftward to include
models which have increasingly wide feed-forward
networks relative to the size of their contextual em-
beddings. This shows that larger models have more
leeway to trade depth for width, becoming wider in
proportion to their model dimension dpede; Without
incurring large penalties for their perplexity. It also
shows that when dogel/dsr < 1 the feed-forward
ratio no longer serves as a predictor of relative per-
plexity independent of size.
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Figure 2: Deeper models achieve lower perplexities than shallower ones after equal amounts of training data
regardless of size, but the benefits of adding layers diminish quickly with depth. Mean over 5 runs shown with

error bars.
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Figure 3: Relative perplexity compared to the best model in each size class. (left) Perplexity goes down rapidly as
models get deeper; only a few layers are needed to obtain most of the value of depth. (right) When dyyoge1/dgr > 1
(red dashed rule), perplexity slowly increases. As models get larger, the range of dpodel/ds ratios where perfor-
mance is close-to-optimal expands leftward to include smaller and smaller values.

3.2 Compositional Generalization

To test the impact of depth on compositional gen-
eralization, we fine-tune the models pretrained in
the previous section on the training portions of
each of the compositional generalization bench-
mark datasets. We measure the full-sequence (ex-
act match) accuracy of the models on the out-of-
distribution generalization set and note several find-
ings:

Deeper models generalize better. As with
language-modeling performance, depth has a sig-
nificant impact on how well models generalize (Fig-
ure 4). On each of the datasets, deeper models
tend to attain higher generalization accuracies than
shallower models in the same size class. The ef-
fect of depth on compositional generalization is
more variable than it is for language modeling: for
COGS, COGS-vf, and GeoQuery we note some
small non-monotonicity in the generalization accu-
racy across different depths. On English Passiviza-
tion, the 41M- and 134M-parameter model classes
show largely-consistent trends where deeper mod-
els perform better than shallower ones; the 374M-

parameter models do show more significant non-
monotonicity, though the deepest models do still
outperform the shallowest ones.

The benefit of depth saturates quickly for some
tasks. As with language modeling, most of the
benefit of depth is gained by having only a few lay-
ers. For three of the tasks—COGS, COGS-vf, and
GeoQuery—we see threshold depths after which
generalization accuracy stays relatively constant
as depth increases. These threshold depths are
low and constant across model sizes, but vary by
dataset: 4-6 layers for COGS, and 2—4 layers for
COGS-vf and GeoQuery. Performance on COGS-
vf appears to saturate with fewer layers than on
COGS despite the fact that the two datasets are
equivalent in expressive capacity;' this suggests
that the saturation we observe on some datasets is
closely linked to the complexity of the output rep-
resentation independent from the complexity of the
compositional generalization expressed in the data.
On English Passivization, the impact of depth is

' As previously noted, COGS can represent phenomena
that COGS-vf cannot, but both output representations are
sufficiently rich to represent the examples studied here.
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Figure 4: Deeper models generalize better than shallower models on compositional tasks across datasets and
size classes. Error bars (easily visible only on the English Passivization data) report 95% confidence intervals in

estimation of the mean, taken over 5 runs.

more variable, which makes it difficult to ascertain
if a size-independent threshold exists.

The threshold effects suggest that some subsets
of the datasets can be addressed with relatively
simple models. We investigate this hypothesis us-
ing the fact that COGS and COGS-vf include two
types of generalization cases: lexical generaliza-
tion, where a familiar word needs to be interpreted
in a familiar syntactic context in which it has not
been observed; and structural generalization, where
the syntactic structure is novel and needs to be con-
structed from familiar syntactic pieces. Breaking
performance down by the type of generalization re-
quired, we find that even deep models at the largest
model size systematically fail to generalize struc-
turally (Figure 5); the benefit of depth is largely
limited to the easier lexical generalization. This
supports the hypothesis that the saturated effect of
depth is due to the existence of easier subsets of
the datasets, and shows that increasing depth alone
does substantially improve the models’ ability to
learn the correct inductive bias for these structural
tasks.

3.3 The Effect of Depth on Generalization is
not Solely Attributable to Better
Pretraining Loss or In-distribution
Performance

Although deeper models generalize better than shal-
lower models do, our pretraining analysis in Sec-
tion 3.1 shows that deeper models also attain lower
validation perplexities on their pretraining corpus
than shallower models. Additionally, we observe
that deeper models achieve lower in-distribution
loss on the fine-tuning tasks than shallower models
(Figure 7a). Both of these observations are poten-
tial confounds for the interpretation of the previous
section: perhaps depth does not directly improve
generalization accuracy, but only does so indirectly

by allowing models to either become better LMs
or else to better learn the in-distribution fine-tuning
data. To determine whether that this is the case, or
whether depth does in fact directly improve gen-
eralization, we correct for both of these potential
confounds.

First, to correct for the fact that deeper mod-
els attain lower pretraining losses, we repeat our
fine-tuning experiments using checkpoints of mod-
els that have equal validation perplexities within
a size class. We pick the least-performant (i.e.,
shallowest) model within a size class as the “ref-
erence model” and note its validation perplexity
at the end of pretraining. We then pick the check-
points of all deeper” models at the point when they
achieved this reference perplexity (Figure 6a). Fi-
nally, we fine-tune each of these checkpoints on the
compositional generalization tasks. We repeat this
process for successively deeper reference models.
We find that even when fine-tuning from check-
points of equal validation perplexity, deeper mod-
els still generalize better than shallower models
(Figure 6b). For compositional datasets where we
observe thresholding behavior, the benefits of depth
continue to hold up through that threshold depth.

Next, we correct for the potentially confound-
ing fact that deeper models learn the in-distribution
split of the compositional generalization tasks bet-
ter than the shallower models do. To do this, we
compare the generalization accuracies of models
at points during fine-tuning when they have equal
in-distribution loss. Figure 7b shows that even after

ZWe only consider models deeper than the reference model
since, in general, shallower models will never attain the per-
plexity of the reference model at the end of its pretraining.
This assumption breaks down when considering the deepest
models in each size class, but these are far deeper than the
points at which depth seems to saturate performance on our
compositional datasets so we do not extensively explore this
regime.
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3

pretraining-corrected’ checkpoints on the compositional tasks. (right) Even when fine-tuning checkpoints with

equal validation perplexity, deeper models still generalize better than shallower models do up through six layers.
The figure shows generalization accuracies from 134M-parameter models on COGS (single run per condition).

adjusting for in-distribution performance, deeper
models still achieve higher accuracies on the out-
of-distribution generalization set than shallower
models do.

4 Related Work

Compositionality Previous work has explored
the degree to which neural models exhibit compo-
sitional behavior by training or fine-tuning mod-
els on compositional tasks such as simple com-
mand sequences (Lake and Baroni, 2018) or se-
mantic parsing (Kim and Linzen, 2020; Keysers
et al., 2020). Other work has explored methods
to improve the compositional behavior of models,
including through data augmentation (Qiu et al.,
2022a), larger models (Qiu et al., 2022b), and
architectural changes (Gordon et al., 2019; Csor-
das et al., 2021; Ontanon et al., 2022). Our work
complements these approaches by exploring a spe-
cific architecture change: increasing depth without
changing total model size.

Comparison to standard architectures We pri-
marily focus on models that are shallower and
wider than standard convention. Since diodel 18
fixed within each class this means that most of our
models have increasingly small feed-forward ratios
dmodel/ dgr; moreover, since Mayers. dmodel, and dgt
tend to increase in standard architectures as param-
eter count grows, this means that the disparities
between our shallowest models and the conven-
tional ones grows as the size class gets bigger. Ex-
act parameter counts differ from the corresponding
models in Raffel et al. (2019) and Kim and Linzen
(2020) owing to differences in the size of the vo-
cabulary/embedding layers and the fact that we use
decoder-only models rather than encoder-decoder
models, though the layer-internal hyperparameters
of our base models are consistent with theirs. Qiu
et al. (2022b) found that decoder-only models per-
formed similarly to encoder-decoder models of
comparable size; following Wang et al. (2022) we
consider decoder-only models with half as many
total layers as their encoder-decoder variants.
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Impacts of Depth Theoretical work has shown
that the expressive capacity of neural networks in
general (Raghu et al., 2017) and transformer mod-
els in particular (Merrill et al., 2021) grows expo-
nentially in depth. Empirical work also points to
the role of depth in model performance. In a more
general setting, Tay et al. (2021) found that scal-
ing by depth is generally more helpful than scaling
by width on downstream tasks. For compositional
generalization in particular, Mueller et al. (2022)
found that reducing depth was more harmful than
reducing with for pretrained encoder-decoder mod-
els. Murty et al. (2022) observed that deeper trans-
former encoders often have more tree-like represen-
tations and parsing accuracies on some composi-
tional tasks. Tempering these positive results, Veit
et al. (2016) noted that in models with residual con-
nections, even very deep networks leveraged only
shallow subnetworks of roughly constant depth.
Brown et al. (2022) also concluded that wide, shal-
low transformer models can attain roughly-equal
performance to deeper ones. Both sets of results,
however, are confounded by a lack of control for
total parameter count.

Controlling for model size There are various
choices to be made when studying the impact of
hyperparameter choices without affecting the net
model size, i.e constructing size classes of models.
Kaplan et al. (2020) covaried the number of layers
Nayers With the contextual embedding dimension
dmodel, Which they coupled to the attention-internal
dayn and feed-forward dimension at the standard
ratio of dmodel = datn = dr/4. Among models of
an equal size, they concluded that performance in-
creases are largely driven by increasing the total
parameter count of models, and that within “rea-
sonable limits” language modeling perplexity is

only weakly dependent on shape (though Tay et al.
2021 concluded that the same was not true for per-
formance on downstream tasks, but did so without
controlling for the impact of size).

5 Conclusion

Compositional generalization is essential for inter-
preting novel sentences. What aspects of the trans-
former LM architecture contribute to an inductive
bias favoring compositional generalization? In a
controlled experiment that teases apart depth from
total number of parameters, we find that deeper
transformers show better compositional generaliza-
tion (and better language modeling performance)
independent of their total number of parameters,
though in most cases the usefulness of adding lay-
ers decreases rapidly as models get deeper. Most
of the benefits of depth come from having just a
few layers, allowing comparatively shallow mod-
els to achieve levels of generalization accuracy on
compositional tasks comparable to much deeper
models, and to reach language modeling perplex-
ity within a few percentage points of the best-in-
class model. We also show the benefits of depth
for compositional generalization are not merely a
consequence of the fact that deeper models learn
the in-distribution data or pretraining corpus better;
rather, depth affects generalization over and above
these other factors. Our results are robust across
nearly an order of magnitude in model size (41M,
134M and 374M parameters).

6 Limitations & Future Work

Alternative approaches to controlling for total
size Our approach to controlling for total param-
eter count necessitates making depth-width trade-
offs. An alternative approach would be to construct



Universal Transformers (Dehghani et al., 2018),
where each model in a size class has a transformer
layer with the same parameters repeated njayers
times. Such a weight-sharing approach would al-
low for deeper models to have arbitrarily-wide feed-
forward networks, mitigating the impact of making
models too narrow. While such weight sharing
prevents models from performing different compu-
tation in different layers, such restriction may in
fact be beneficial for compositional generalization
where similar computations (e.g., combining two
syntactic phrases to a larger phrase) may need to
apply recursively at different scales.

Pretraining corpus effects We consider models
pretrained on natural-language data. For our par-
ticular choice of compositional generalization ex-
periments, the presence of lexical items in both the
pretraining corpus and the generalization datasets
represents a potential confounder of generalization
performance which could be mitigated by modi-
fying compositional datasets (Kim et al., 2022).
More generally, the distribution of pretraining data
affects the inductive biases conferred to LMs (Pa-
padimitriou and Jurafsky, 2023). As a particular
area of interest for future work, we point out the
hypothesis that including source code in the pre-
training corpus (OpenAl, 2023; Google et al., 2023)
will improve compositional generalization.

Fine-tuning vs. in-context learning We use
fine-tuning to adapt our pretrained models to the
compositional tasks. Due to its computational cost
and task-specificity, fine-tuning is less useful in
practice than in-context learning as model size
grows (Brown et al., 2020). Because in-context
learning only becomes reliable at scales far larger
than we are able to train, we did not explore the
effect of depth on compositional generalization ac-
curacy in in-context learning (Si et al., 2022); we
point this out as an avenue for future research.

7 Ethics Statement

Throughout our experimental process, we sought to
comply with best practices to mitigate any risks as-
sociated with LLM research. We use open-source
datasets which are inspectable by third-parties for
issues such as bias, and toxicity. We do not release
any public checkpoints for the models we train, so
there is no risk to misuse of any created artifacts,
though we note that we derive our implemented
models from existing publicly-available T5 models.

We train models on English-only natural-language
data, and fuller exploration should be done to ex-
plore how language impacts the results found here.
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A Full table of results

Table 3 displays pretraining and compositional gen-
eralization accuracy on all model sizes and tasks.

B Annotated transformer layer

Figure 8 shows the schematic for a single trans-
former layer. The layers input enters on the left
and passes through the various model components
(grey boxes), being combined with the residual con-
nections before exiting right to subsequent layers.
Blue boxes show the dimensionality of the vectors
after transformation; we are primarily concerned
with the size of the embedding vectors dpodel and
the internal dimension of the feed-forward block
dg. The size of the vectors internal to the atten-
tion mechanism, duy,, 1S not shown here but is
usually set to be equal with dyge1; We follow this
convention here. Non-learned operations like ad-
dition, layer normalization, and the feed-forward
network’s nonlinearity are shown in grey circles.

C Compute Analysis

To better understand the implications of the dimin-
ishing marginal utility of depth on perplexity and
generalization performance, we additionally ana-
lyze how depth impacts the compute performance
of models by measuring the latency of models
(measured in seconds per step) during pretraining.
Figure 9 shows that depth strongly influences la-
tency when controlling for model size: 32-layer
374M-parameter models are twice as slow as the
4-layer 374M-parameter models when running on
the same hardware.

We note two implications of this finding relevant
to the practical use of deep models in the context
of our main results on perplexity and accuracy:

1. Since models with relatively few layers can at-
tain withing 1% of the performance (i.e., loss
for language modeling or generalization accu-
racy for compositional generalization tasks)
of the better, deeper models when trained
on equal volumes of data, shallow models
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size Mlayers C4 val. PPL () COGS (1) COGS-vE (1) GeoQuery Standard (T) English Passivization (T)

1 45.7 12.4 25.7 68.2 0.00
2 31.1 58.2 78.3 76.4 9.88
3 29.3 63.1 80.8 79.6 26.2
4M 4 28.8 68.5 82.5 78.6 28.0
5 28.8 63.4 82.5 76.8 89.9
6 29.1 68.4 82.6 715 74.1
7 29.6 72.3 83.0 77.1 78.3
1 33.6 19.4 26.3 72.5 0.00
2 2.3 65.5 83.0 81.4 29.9
4 19.4 71.1 83.6 78.2 59.3
6 18.7 743 83.2 80.0 49.4
a8 18.3 72.9 83.7 73.6 91.9
12 18.1 73.0 84.7 82.9 87.1
16 18.2 75.0 83.8 81.1 93.2
21 18.3 75.1 84.8 80.0 88.1
26 18.6 75.4 84.1 82.1 98.4
2 19.2 75.7 84.0 78.9 94.8
1 28.4 21.5 36.8 72.9 0.00
2 18.6 66.2 82.2 80.7 13.6
4 15.9 72.4 71.9 80.0 89.8
6 15.2 75.1 83.1 78.2 18.8
374M 8 14.9 75.2 82.6 80.7 84.3
12 14.6 76.3 84.3 80.0 81.0
16 14.5 76.3 85.1 81.1 87.2
2 14.4 78.0 83.1 83.2 89.6
32 14.7 78.8 79.7 84.6 90.2

Table 3: Validation perplexity (|, lower is better) on C4 after pretraining & generalization accuracy (%; T, higher
is better) on compositional datasets after 10k steps of fine-tuning. Bold values indicate best-in-size-class perfor-

mance. Data is from a single run per condition.
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Figure 8: Diagram of a single transformer layer, annotated with the dimensions (blue) of each vector. Information
is passed from left to right, through each component (grey box), and added back to the residual embeddings before
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Figure 9: Deeper models are slower than shallower
models when controlling for total parameter count. We
report relative latency [seconds per step] for 374M-
parameter models, showing a strongly-linear relation-
ship between depth and latency. Similar relative trends
are observed for other model sizes classes.

can be used at inference time at substantially
lower compute costs without sacrificing per-
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formance.

2. Since shallow models have lower latency dur-
ing training as well as during inference, one
can either (a) train a shallower model in much
less time than a deeper model on equal vol-
umes of data, or (b) train a shallower model
on much more data than a deeper model can
be trained on given a fixed compute budget
(e.g., access to a particular GPU platform
for a given amount of time). Depending on
the depths, sizes, volumes of data, and train-
ing times involved, this can result in shal-
lower models attaining better performance
than deeper models can.

D Feed-forward rank analysis

To investigate the role that the feed-forward block
plays in the poor performance of models with
extreme dpodel/dgr ratios, we conduct rank anal-



ysis on the two transformations Rémosel — R4
and R4 — R9medel which make up the feed-
forward block. Our first approach is to conduct
singular-value decomposition on each transform.
For a given affine transform 7, we compute the
ordered singular values {o,0%,...,0r} where
k = min(dmodel, dsr) 1s the rank of T and oy > 07y,;.
We then normalize each singular value by divid-
ing by the £ norm of {07, 07, . .., 0% } to calculate
how much of the 7’s image is accounted for by
the best i-rank approximation of 7 fori < k. We
note that as models get deeper (and consequently,
dgs and gets smaller and the feed-forward ratio
dmodel /dgr gets larger), the two transforms in the
feed-forward block become increasingly skewed
away from making full use of their available ranks
(Figure 10).

We also measure the effective rank of each trans-
form, defined by Roy and Vetterli (2007) a real-
valued extension of rank to measure the effective
dimensionality of transforms which are close to
being rank-deficient:

erank(7) = eXP(_Z ||:-l|-|1 10g(||(07-1|.|1)).

We similarly note that the effective rank of the
feed-forward transforms decreases as models get
deeper and dygr gets smaller relative to fixed dmodels
suggesting that our deeper models are increasingly
rank-deficient (Figure 11).
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Figure 10: As models get deeper and dgr gets smaller, the input (left) and output (right) projections in the feed-
forward block become increasingly close to rank-deficient transforms. A graph of y = x here would indicate that
models spread their rank equally across all singular values.
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