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ABSTRACT

Combining gradient sketching methods (e.g., CountSketch (Charikar et al., 2002;
Rothchild et al., 2020), quantization (Tang et al., 2021)) and adaptive optimizers
(e.g., Adam (Kingma & Ba, 2014), AMSGrad (Reddi et al., 2019)) is a desirable
goal in federated learning (FL), with potential benefits on both fewer communi-
cation rounds and smaller per-round communication. In spite of the preliminary
empirical success of sketched adaptive methods, existing convergence analyses
show the communication cost to have a linear dependence on the ambient dimen-
sion (Spring et al., 2019; Tang et al., 2021), i.e., number of parameters, which is
prohibitively high for modern deep learning models.
In this work, we introduce specific sketched adaptive federated learning (SAFL)
algorithms and, as our main contribution, provide theoretical convergence analyses
in different FL settings with guarantees on communication cost depending only
logarithmically (instead of linearly) on the ambient dimension. Unlike existing
analyses, we show that the entry-wise sketching noise existent in the precondi-
tioners and the first moments of SAFL can be implicitly addressed by leveraging
the recently-popularized anisotropic curvatures in deep learning losses, e.g., fast
decaying loss Hessian eigen-values. In the i.i.d. client setting of FL, we show that
SAFL achieves O(1/

√
T ) convergence, and O(1/T ) convergence near initializa-

tion. In the non-i.i.d. client setting, where non-adaptive methods lack convergence
guarantees, we show that SACFL (SAFL with clipping) algorithms can provably
converge in spite of the additional heavy-tailed noise. Our theoretical claims are
supported by empirical studies on vision and language tasks, and in both fine-
tuning and training-from-scratch regimes. Surprisingly, as a by-product of our
analysis, the proposed SAFL methods are competitive with the state-of-the-art
communication-efficient federated learning algorithms based on error feedback.

1 INTRODUCTION

Despite the recent success of federated learning (FL), the cost of communication arguably remains
the main challenge. (Wang et al., 2023) showed that a 20 Gbps network bandwidth is necessary to
bring the communication overhead to a suitable scale for finetuning GPT-J-6B, which is unrealistic in
distributed settings. Even with good network conditions, reduction on the communication complexity
means one can train much larger models given the same communication budget.

The communication cost of FL can be represented as O(dT ), where d is the ambient dimension of the
parameter space and T is the number of rounds for convergence. Various methods have been proposed
to minimize T , e.g., local training (Stich, 2018), large batch training (Xu et al., 2023). Folklores in
centralized training regimes suggest that T heavily relies on the choice of optimizers, where adaptive
methods usually demonstrate faster convergence and better generalization performance, especially in
transformer-based machine learning models (Reddi et al., 2019). In decentralized settings, adaptive
methods are also favorable due to their robustness to data heterogeneity, e.g., adaptive methods are
guaranteed to converge under heavy-tailed noise while SGD does not (Zhang et al., 2020). These
favorable merits, in principle, should be preserved in communication-efficient FL algorithms.

The alternative approach of reducing communication costs is to be more thrifty on the communication
bits at a single round, i.e., to reduce the O(d) factor, which is dominant in the communication
complexity for modern neural networks where d ≫ T . Considerable efforts have been devoted
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to design efficient gradient compression methods. Popular gradient compression methods include
quantization (Alistarh et al., 2017; Chen et al., 2023; Reisizadeh et al., 2020; Liu et al., 2023a),
sparsification (Alistarh et al., 2018; Wu et al., 2018; Rothchild et al., 2020) and sketching (Spring
et al., 2019; Jiang et al., 2024; Song et al., 2023). However, most of these developments do not use
adaptive methods, which involve anisotropic and nonlinear updates, and there are no easy ways to do
error feedback in case of discrepancies. Indeed, the design and analysis of communication-efficient
adaptive FL algorithms poses non-trivial challenges.

In this work, we first introduce a family of Sketched Adaptive FL (SAFL) algorithms, with flexi-
bility on the choice of sketching methods and adaptive optimizers, that simultaneously accelerates
convergence and reduces per round bits towards improved communication efficiency. At a high
level, SAFL algorithms are in principle analogous to previous attempts (Tang et al., 2021; Chen
et al., 2022; Wang et al., 2022), which showed preliminary empirical success of applying gradient
compression with adaptive optimizers in homogeneous data scenarios. [ab: with those two previous
papers?]Our SAFL algorithm adopts unbiased gradient estimators and hence eliminates the needs for
error feedbacks. The choice of gradient estimators, which is a linear operator, in SAFL also avoids
the extra round of compression on the server side required by sparsification (Stich et al., 2018) and
quantization (Reisizadeh et al., 2020).

Despite the preliminary empirical success of combining gradient sketching and adaptive optimizers
for federated deep learning, theoretical understanding on the promise of such algorithms is limited.
Existing works on the theory has arguably alarming results, which do not match practice. For example,
some results show that the iterations T needed for convergence can be inversely proportional to
the compression rate (Chen et al., 2022; Song et al., 2023). For constant per-round communication
bits, the bounds indicate the iteration complexity to scale as O(d), i.e., linearly with the ambient
dimensionality, which is prohibitively large for modern deep learning models. The mismatch between
potential issues in theory vs. preliminary empirical promise and possibly also not having precise forms
of such algorithms for different FL scenarios may be preventing wide adoption of such algorithms.

As a major contribution of our current work, we provide theoretical guarantees of the proposed SAFL
algorithms on the convergence rate in common FL scenarios (almost i.i.d. as well as heavy tailed),
which depends only on a logarithmically (instead of linearly) on the ambient dimension d. The central
technical challenge in addressing the dimensional dependence is to handle the entry-wise sketching
noise in both the preconditioners and the first moments of the adaptive optimizers, which has been
acknowledged non-trivial (Tang et al., 2021; Wang et al., 2022). Our sharper analysis leverages
recent observations regarding the eigenspectrum structure of the loss Hessian in deep learning, which
show the eigenvalues to be sharply decaying, with most eigenvalues being close to zero (Ghorbani
et al., 2019; Zhang et al., 2020; Li et al., 2020; Liao & Mahoney, 2021; Liu et al., 2023b), and even
conforming with a power-law decay (Xie et al., 2022; Zhang et al., 2024), while the conventional
smoothness conditions assume uniform curvature in all directions which can be overly pessimistic in
the context of deep learning. This specific eigenspectrum structure provides significant advantages
in the sharp analysis of sketching noise in adaptive methods. Our work leverages such geometric
structure, leading to the following main contributions:

(1) For the benign almost i.i.d. FL setting, we introduce the sketched adaptive FL (SAFL) framework
which incorporates random sketching techniques into adaptive methods. While the preconditoner
in adaptive methods morphs the shape of sketching noise, which poses challenges in leveraging the
anisotropic Hessian structure, we prove that the proposed sketching method effectively balances
iteration complexity and sketching dimension b. We derive a high probability bound showing that
a sketch size of b = O(log d) suffices to achieve an asymptotic O(1/

√
T ) dimension-independent

convergence rate in non-convex deep learning settings.

(2) For the heavy-tailed noise common in data-heterogeneous FL, where non-adaptive methods are
not guaranteed to converge, we propose the Sketched Adaptive Clipped Federated Learning (SACFL)
which guarantees the boundedness of the second moments. We theoretically show that SACFL can
achieve optimal convergence rate under α-moment noise with α ∈ (1, 2], regardless of the extra noise
introduced by random sketching.

(3) We validate our theoretical claims with empirical evidence on deep learning models from vi-
sion (ResNet, Vision Transformer) and language (BERT) tasks. We cover both fine-tuning and
training-from-scratch regimes. The proposed SAFL algorithm achieves comparable performance with
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Algorithm 1 Sketched Adaptive Federated Learning ( SAFL , SACFL )

Input: Learning rate η, initial parameters x0, optimizer ADA OPT( AMSGrad, Adam , AdaClip )
Output: Updated parameters xT
Initialize server moments: m0 = 0, v0 = 0, v̂0 = 0, client moments: mc

0 = 0, vc0 = 0, v̂c0 = 0,
client initial parameters: xc0,0 = x0, ∀c ∈ [C];
for t = 1, 2, . . . , T do

Client Updates:
for c = 1, 2, . . . , C do

Client model synchronization:
xct,0, m

c
t , v

c
t , v̂

c
t = ADA OPT(xct−1,0, m

c
t−1, v

c
t−1, v̂

c
t−1, m̄t, v̄t);

for k = 1, 2, . . . ,K do
Compute stochastic gradient gct,k−1 with respect to the parameters xct,k−1;

Perform a single gradient step: xct,k = xct,k−1 − ηtg
c
t,k−1;

end
Sketch (compress) the parameter updates:

m̄c
t = sk(xct,0 − xct,K); v̄ct = ∥xct,K − xct,0∥;

end
Server Updates:
Elementwise square as second moments: v̄ct = (m̄c

t)
2, ∀c ∈ [C];

Average sketched client updates, second moments and send back to clients

m̄t =
1

C

C∑
c=1

m̄c
t ; v̄t =

1

C

C∑
c=1

v̄ct ;

Update paramters and moments: xt, mt, vt, v̂t = ADA OPT(xt−1, mt−1, vt−1, v̂t−1, m̄t, v̄t).
end

the full-dimensional unsketched adaptive optimizers, and are competitive with the state-of-the-art
communication-efficient federated learning algorithms based on error feedback. We also validate the
SACFL algorithms can achieve similar performance as the unsketched clipping algorithm when the
local client gradient norms are α-stable heavy-tailed. [ab: what is the take-away for the heterogenous
case? performs same as unsketched?]

2 SKETCHED ADAPTIVE FL UNDER MILD NOISE

In this section, we consider federated learning on nearly-i.i.d client data distribution. The objective is
to develop communication-efficient adaptive learning algorithms. We will first propose the general
framework for applying gradient compression to FedOPT (Reddi et al., 2020), and proceed with the
mild-noise assumptions and convergence analysis of the algorithm.

2.1 SKETCHED ADAPTIVE FL (SAFL)

A canonical federated learning setting involvesC clients, each associated with a local data distribution
Dc. The goal is to minimize the averaged empirical risks: L(x) = 1

C

∑C
c=1 Eξ∼Dc

l(x, ξ), where
l is the loss function, x ∈ Rd is the parameter vector, and ξ is the data sample. We denote
Lc(x) = Eξ∼Dc

l(x, ξ), c ∈ [C] as the client loss function computed over the local data distribution.
We denote gct,k as the mini-batch gradient over Lc(x) at global step t and local step k.

Algorithm 1 presents a generic framework of communication-efficient adaptive methods, which calls
adaptive optimizers as subroutines. We focus on SAFL (calling Algorithm 2) in this section, and will
move to SACFL (calling Algorithm 3) in Section 3. The two algorithms are highlighted for their
unique procedures separately. SAFL ignores the highlighted sections of SACFL, and vice versa. In
case of ambiguity, we also provide separate versions of the two algorithms in the appendix.
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Algorithm 2 ADA OPT (AMSGrad)
Input: iterate xt−1, moments mt−1, vt−1, v̂t−1 , sketched updates m̄t, v̄t
Parameter: Learning rate κ, β1, β2, Small constant ϵ
Output: Updated parameters xt, and moments mt, vt, v̂t
Update first moment estimate: mt = β1 ·mt−1 + (1− β1) · desk(m̄t);
Update second moment estimate: vt = β2 · vt−1 + (1− β2) · desk(v̄t);
Update maximum of past second moment estimates: v̂t = max(v̂t−1, vt).

Update parameters: xt+1 = xt − κ√
v̂t+ϵ

·mt := xt − κV̂
−1/2
t mt.

We denote T as the total training rounds. At each round, after K local training steps, client c sends
to the server the sketched local model updates with a sketching operator sk: Rd → Rb. If b ≪ d
without deteriorating the performance too much, the communication cost per round can be reduced
from O(d) to O(b). The server retrieves lossy replicates of the updates and the second moments using
a desketching operator desk: Rb → Rd. The gradient compression steps differentiate Algorithm 1
from the subspace training methods (Gressmann et al., 2020; Wortsman et al., 2021) since we are
utilizing the global gradient vector in each round rather than solely optimizing over the manifold
predefined by a limited pool of parameters. The choice of server-side optimizers determines how the
lossy replicates in Rd are used to update the running moments (i.e. the momentum and the second
moments). The server sends the moments in Rb back to the clients so that each client can perform an
identical update on its local model, which ensures synchronization as each training round starts.
Remark 2.1. (Sketching Randomness). At each single round, the sketching operators sk’s are shared
among clients, via the same random seed, which is essential for projecting the local model updates to
a shared low dimensional subspace and making direct averaging reasonable. On the other hand, we
use different sk’s at different rounds so that the model updates lie in distinct subspaces.[ab: i did not
understand the last part.]

2.2 RANDOM SKETCHING

We will first introduce the desired characteristics of compression and then list a family of sketching
algorithms which possess those properties.
Property 1. (Linearity). The compression operators are linear w.r.t the input vectors, i.e.
sk(

∑n
i=1 vi) =

∑n
i=1 sk(vi) and desk(

∑n
i=1 v̄i) =

∑n
i=1 desk(v̄i), ∀{vi, v̄i ∈ Rd}ni=1.

Property 2. (Unbiased Estimation). For any vector v ∈ Rd, E[desk(sk(v))] = v.
Property 3. (Bounded Vector Products). For any fixed vector v, h ∈ Rd, P(|⟨desk(sk(v)), h⟩ −
⟨v, h⟩| ≥ ( log

1.5(d/δ)√
b

)∥v∥∥h∥) ≤ Θ(δ).

Property 1 and 2 guarantee the average of first moments in Algorithm 1 over clients are, in expectation,
the same as those in FedOPT. Property 3 quantifies the bound on the deviation of vector products
when applying compression. sk(v) = Rv and desk(v̄) = R⊤v̄, where R ∈ Rb×d is a random
sketching operator, satisfy all the properties above (Song et al., 2023). We denote Rt as the sketching
operator used in round t. Different instantiations of R constitute a rich family of sketching operators,
including i.i.d. isotropic Gaussian, Subsampled Randomized Hadamard Transform (SRHT) (Lu et al.,
2013), and Count-Sketch (Charikar et al., 2002), among others. The specific error bounds for these
special cases can be found in Appendices B.1, B.2, and B.3 respectively.

2.3 CONVERGENCE ANALYSIS

We first state a set of standard assumptions commonly used in the literature of first-order stochastic
methods. We focus on the mild noise assumptions, which are typically observed when the training
data are nearly i.i.d. over clients. We will use ∥ · ∥ to denote L2-norm throughout the work.
Assumption 1. (Bounded Global Gradients). Square norm of the gradient is uniformly bounded, i.e.,
∥∇L(x)∥2 ≤ G2

g .
Assumption 2. (Bounded Client Gradients). For every client, there exists a constant Gc ≥ 0, such
that ∥∇Lc(x)∥2 ≤ G2

c , c ∈ [C].
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For simplicity, we define G := max{max{Gc}Cc=1, Gg} to denote the upper bound for client and
global gradient norms. We also assume the stochastic noise from minibatches is sub-Gaussian, which
is widely adopted in first-order optimization (Harvey et al., 2019; Mou et al., 2020).

Assumption 3. (Sub-Gaussian Noise). The stochastic noise ∥∇Lc(x)− gc(x)∥ at each client is a
σ-sub-Gaussian random variable, i.e. P(∥∇Lc(x)− gc(x)∥ ≥ t) ≤ 2 exp(−t2/σ2), for all t ≥ 0.

Besides, we have assumptions on the Hessian eigenspectrum {λi, vi}di=1 of the loss function L.

Assumption 4. (Hessian Matrix Eigenspectrum) The smoothness of the loss function L, i.e. the
largest eigenvalue of the loss Hessian HL is bounded by L, maxi λi ≤ L. The sum of absolute values
of HL eigenspectrum is bounded by L̂, i.e.

∑d
i=1 |λi| ≤ L̂. [ab: update to L̂?]

The assumption of bounded sum of eigenspectrum has been validated by several recent literatures, in
the context of deep learning, where the eigenspectrum is observed to sharply decay (Ghorbani et al.,
2019; Li et al., 2020; Liu et al., 2023b), have bulk parts concentrate at zero (Sagun et al., 2016; Liao
& Mahoney, 2021) or conform with a power-law distribution (Xie et al., 2022; Zhang et al., 2024).
We quote their plots in Appendix E for completeness. Our empirical verification under the setting of
FL can also be found in Fig. 6 in Appendix E.

Remark 2.2. (Three types of noises in Algorithm 1). One of the key technical contributions of this
work is to theoretically balance the noises of different sources and derive a reasonable convergence
rate which is independent of the ambient dimension. The noise in the training process stems from
the mini-batch training, the client data distribution, and the compression error due to sketching. The
stochastic error of mini-batch training is sub-Gaussian by Assumption 3. We adopt δg to control the
scale of the sub-Gaussian noise[ab: Assumption 3 uses σ, how is σ related to δg?]. The i.i.d. data
distribution leads to the bounded gradient assumption (Assumption 2). The sketching error depends
on the specific choice of sketching methods, but is always controlled by the bounded property on
vector products (Property 3) with a universal notation δ. All three kinds of noises are unbiased
and additive to the gradient, though may have sequential dependencies. Therefore, for the analysis
(Appendix C), we will introduce a martingale defined over the aggregated noise, using which we can
derive a high-probability concentration bound for the variance. We denote ν as the tunable scale [ab:
the ψ2-norm of the subG martingale?][lu: let’s discuss during meeting.]for the ψ2-norm (Vershynin,
2018) in the martingale.

Now we can derive the convergence analysis of Algorithm 1 as in Theorem 2.1. All technical proofs
for this section are in Appendix C and we provide an outline of the proof techniques in Section 2.4.

Theorem 2.1. Suppose the sequence of iterates {xt}Tt=1 is generated by Algorithm 1 (SAFL) with
a constant learning rate ηt ≡ η. Under Assumptions 1-4, for any T and ϵ > 0, with probability
1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,√1 +

log1.5(CKd2T 2/δ)√
b

ηKG+ ϵ

−1

κηK

T∑
t=1

∥∇L(xt)∥2 ≤ L(z1) +
1

ϵ
κη2LK2G2T

+ νκηK
√
T (

log1.5(CKTd/δ)√
b

G2

ϵ
+

σ

ϵ
log

1
2 (

2T

δg
)) + η2κ2T (1 +

log1.5(CKdT 2/δ)√
b

)2
8

(1− β1)2
L̂K2G2

ϵ2
,

where δ, δg , and ν are the randomness of sketching, sub-Gaussian noise, and martingales respectively.

A non-asymptotic convergence bound of training with practical decaying learning rates can be found
in Theorem C.2 in appendix. Given that we only introduce logarithmic factors on d in the iteration
complexity and the per-round communication b is a constant, the total communication bits of training
a deep model till convergence is also logarithmic w.r.t d. To better understand Theorem 2.1, we can
investigate different regimes based on the training stages. For the asymptotic regime, where T is
sufficiently large, we can achieve an O(1/

√
T ) convergence rate in Corollary 1.
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Corollary 1. With the same condition as in Thereom 2.1, for sufficiently large T ≥ G2

ϵ2 , with
probability 1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,

1

T

T∑
t=1

∥∇L(xt)∥2 ≤ 2L(z1)ϵ
κ
√
T

+
2

ϵ

LG2

√
T

+ ν
2√
T
(
log1.5(CKTd/δ)√

b
G2 + σ log

1
2 (

2T

δg
))

+ κ
1√
T
(1 +

log1.5(CKdT 2/δ)√
b

)2
16

(1− β1)2
L̂G2

ϵ
,

where δ, δg and ν, are the randomness of sketching, sub-Gaussian noise and martingales respectively.

[ab: add text to connect the two – AB will do] More interestingly, for the near-initialization regime,
where T is relatively small, we can observe that the coefficient of ∥∇L(xt)∥2 on the left hand side
in Theorem 2.1 and C.2 is approximately a constant, given that ϵ is tiny. Therefore, SAFL can
achieve an O(1/T ) convergence near initialization, which accounts for the empirical advantages over
non-adaptive methods.

Corollary 2. With the same condition as in Thereom 2.1, set b ≥ log3(CKd2T 2/δ) and constant
J1 >

√
2G, then for any T ≤ J1−

√
2G

ϵ2 , with probability 1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,

1

J1T

T∑
t=1

∥∇L(xt)∥2 ≤ L(z1)ϵ
κT

+
1

ϵ

LG2

T
+

ν

T
(G2 + σ log

1
2 (

2T

δg
)) +

κ

T

32

(1− β1)2
L̂G2

ϵ
,

where δ, δg and ν, are the randomness of sketching, sub-Gaussian noise and martingales respectively.

2.4 TECHNICAL RESULTS AND PROOF SKETCH

In this section, we provide a sketch of the proof techniques behind the main results. We focus on
the proof of Theorem 2.1, and the proof of Theorem C.2 shares the main structure. The proof of
Theorem 2.1 contains several critical components, which are unique to adaptive methods. We follow
the common proof framework of adaptive optimization, and carefully deal with the noise introduced
by random sketching in the momentum. We adopt AMSGrad (Alg. 2) as the server optimizer and it
would be straightforward to extend the analysis to other adaptive methods.

We first introduce the descent lemma for AMSGrad. For conciseness, we denote the precondtioner
matrix diag((

√
v̂t + ϵ)2) as V̂t. Define an auxiliary variable zt = xt +

β1

1−β1
(xt − xt−1). The

trajectory of L over {zt}Tt=1 can be tracked by the following lemma.
Lemma 2.2. For any round t ∈ [T ], there exists function Φt ≥ 0 ,and Φ0 ≤ G such that

L(zt+1) ≤ L(zt) + Φt − Φt+1 −
κη

C

C∑
c=1

K∑
k=1

∇L(xt)
⊤V̂

−1/2
t−1 R⊤

t Rtg
c
t,k + (zt − xt)

⊤HL(ẑt)(zt+1 − zt),

where HL(ẑt) is the loss Hessian at some ẑt within the element-wise interval of [xt, zt].

Our objective henceforth is to bound the first-order descent term and the second-order quadratic term
on the right hand side respectively.

Second-Order Quadratic Term. Denote {λj , vj}dj=1 as the eigen-pairs of HL(ẑt). The quadratic
term can be written as (zt − xt)

⊤HL(ẑt)(zt+1 − zt) =
∑d

j=1 λj⟨zt+1 − zt, vj⟩⟨zt − xt, vj⟩. The
inner product terms can be viewed as a projection of the updates onto anisotropic bases. Since
zt+1− zt and zt−xt can both be expressed by xt+1−xt and xt−xt−1, we can bound the quadratic
term using the following lemma.

Lemma 2.3. For any t ∈ [T ], |⟨xt−xt−1, vj⟩| ≤ κη(1+ log1.5(CKtd/δ)√
b

)KG
ϵ , with probability 1− δ.

Bounding the inner-product term is non-trivial since zt contains momentum information which
depends on the randomness of previous iterations. A proof of a generalized version of this statement
is deferred to the appendix, where induction methods are used to address the dependence. Combining
Lemma 2.3 with Assumption 4 yields a dimension-free bound on the second-order quadratic term.
Remark 2.3. A straightforward application of smoothness to the second-order term yields a quadratic
term ∥R⊤Rg∥2, which is linearly proportional to d in scale (Rothchild et al., 2020; Song et al., 2023).
We avoid this dimension dependence by combining Property 3 of sketching and Assumption 4.
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First-Order Descent Term. The first-order term in the descent lemma can be decomposed into three
components, which we will handle separately:

∇L(xt)
⊤V̂

−1/2
t−1 R⊤

t Rtg
c
t,k =∇L(xt)

⊤V̂
−1/2
t−1 ∇Lc(xt)︸ ︷︷ ︸
D1

+∇L(xt)
⊤V̂

−1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xc

t,k))︸ ︷︷ ︸
D2

+∇L(xt)
⊤V̂

−1/2
t−1 (∇Lc(xc

t,k)−∇Lc(xt))︸ ︷︷ ︸
D3

.

First, D3 can be reduced to a second-order term by smoothness over L, ∇L(xt)⊤V̂ −1/2
t−1 (∇Lc(xct,k)−

∇Lc(xt)) = −η
∑k

τ=1 ∇L(xt)⊤V̂ −1/2
t−1 Ĥc

Lg
c
t,τ . Note that this term does not involve any stochas-

ticity from random sketching, hence we can directly derive the upper bound by Cauchy-Schwartz.
Next, since 1

C

∑C
c=1 ∇Lc(xt) = ∇L(xt), D1 composes a scaled squared gradient norm. Applying

element-wise high probability bound on random sketching yields the lower bound for the scale.

Lemma 2.4. For V̂ −1/2
t−1 generated by Algorithm 1 (SAFL), with probability 1− δ,

∇L(xt)⊤V̂ −1/2
t−1 ∇L(xt) ≥

√1 +
log1.5(CKtd2/δ)√

b
ηKG+ ϵ

−1

∥∇L(xt)∥2.

Martingale for zero-centered noise. D2 contains a zero-centered noise termR⊤
t Rtg

c
t,k−∇Lc(xct,k),

where the randomness is over Rt and the mini-batch noise at round t. Although xct,k has temporal
dependence, the fresh noise due to mini-batching and sketching-desketching at round t is independent
of the randomness in the previous iterations. Therefore, the random process defined by the aggregation
of the zero-centered noise terms over time forms a martingale. The martingale difference can be
bounded with high probability under our proposed sketching method. Then by adapting Azuma’s
inequality on a sub-Gaussian martingale, we have

Lemma 2.5. With probability 1−O(exp(−Ω(ν2)))− δ − δg ,
T∑

t=1

∣∣∣∣∣ 1C
C∑

c=1

K∑
k=1

∇L(xt)
⊤V̂

−1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xc

t,k))

∣∣∣∣∣ ≤ ν
√
T (

log1.5(CKTd/δ)√
b

KG2

ϵ
+

σ

ϵ
log

1
2 (

2T

δg
)).

Finally, applying union bounds to these parts and telescoping the descent lemma leads to Theorem 2.1.

3 SKETCHED ADAPTIVE CLIPPED FL FOR HEAVY-TAILED NOISE

In this section, we study the performance of Sketched Adaptive Clipped FL (SACFL) defined in
Algorithm 1 calling Algorithm 3 in the context of heavy-tailed noise over gradient norms. This is
arguably the more challenging setting and requires carefully addressing the noises with clipping.

3.1 HEAVY-TAILED NOISE AND SKETCHED CLIPPING-BASED ADAPTIVE METHODS

We start with the key bounded α-moment assumption for the heavy-tailed stochastic first-order oracle.

Assumption 5. (Bounded α-Moment). There exists a real number α ∈ (1, 2] and a constant G ≥ 0,
such that E[∥∇Lc(x, ξ)∥α] ≤ Gα, ∀c ∈ [C], x ∈ Rd, where ξ is the noise from the minibatch.

Assumption 5 implies that the noise can have unbounded second moments when α < 2, which is
much weaker compared to Assumption 2. This assumption can be satisfied by a family of noises
including the Pareto distribution (Arnold, 2014) and α-stable Levy distribution (Nolan, 2012), both of
which have unbounded variances[ab: cite]. Heavy-tailed noises have detrimental effects on most of
existing optimization theories, while, at the same time, being prevalent in FL due to data heterogeneity,
i.e., non-i.i.d. client data distributions. This phenomenon has been shown in (Charles et al., 2021), and
Assumption 5 has been adopted in existing theoretical analysis (Zhang et al., 2020; Yang et al., 2022).
Clipping-based methods (Koloskova et al., 2023), a mainstream approach to handle exceedingly
large gradient norms, use adaptive learning rates to normalize the gradient. These methods have
empirically demonstrated the capability under heavy-tailed scenarios and are also proven to have
optimal convergence rates (Zhang et al., 2020; Liu et al., 2022). [ab: in non-FL settings?][lu: In both
FL and non-FL settings]
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Our goal is to apply the sketching techniques to the clipping-based adaptive methods. This is indeed
a challenging task. As we have already shown in Section 2, random sketching introduces a significant
amount of noise to the client updates. It is unknown whether these noises additionally introduced
by sketching will affect the behavior of clipping methods, given that the intrinsic noises are already
heavy-tailed due to data heterogeneity.

To address this open question, we propose the Sketched Adaptive Clipped Federated Learning
(SACFL) in Algorithm 1 which calls Algorithm 3. In each round, besides sketching the local updates,
the client directly sends the L2-norm of the update to the server. The L2-norm can be viewed as a
global second moment specific to clipping methods. Notably, the L2-norm is a scalar value and does
not require any compression. Upon receiving the running moments m̄c

t , v̄
c
t from clients, the server

averages the sketched local updates and the L2-norms respectively, and then updates the global model
by xt = xt−1 − κmin{ τ

v̄t
, 1}desk(m̄t), where κ is the learning rate and τ is a horizon-dependent

clipping threshold. When the averaged gradient norm exceeds τ , i.e., when the gradient is in the
heavy-tailed regime, clipping is enabled to downscale the gradient. Otherwise, the recovered gradients
are directly used to update the global model.

3.2 CONVERGENCE ANALYSIS

Next, we state the convergence guarantees of SACFL under Assumption 5. All technical proofs for
this section are in Appendix D. We start with the descent lemma for clipping methods.

Lemma 3.1. If the sketching dimension b satisfies b ≥ 4 log3(d/δ), taking expectation over the
stochasticity of gradients yields, with probability 1−Θ(δ),

E[L(xt+1)]− L(xt) +
κηK

4
∥∇L(xt)∥2

≤ κηK

2
∥∇L(xt)−

1

K

1

C

C∑
c=1

E[∆̃c
t ]∥2 +

κ2η2

2
E[(

1

C
R⊤R

C∑
c=1

∆̃c
t)

⊤HL(x̂t)(
1

C
R⊤R

C∑
c=1

∆̃c
t)],

where ∆̃c
t = min{1, τ

1
C

∑C
c=1 ∥∆c

t∥
}∆c

t , and ∆c
t =

∑K
k=1 g

c
t,k, HL(x̂t) is the loss Hessian at some

x̂t within the element-wise interval of [xt, xt+1].

Intuitively, the first-order terms are barely affected by the heavy-tailed noise since we assume α > 1
and these terms do not involve the potentially-unbounded second moments, although special attention
for the first-order terms is necessary to achieve the optimal convergence rate, which are deferred to
the appendix. Next, we show how to deal with the second-order term. With probability 1−Θ(δ),

E[( 1
C
R⊤R

C∑
i=1

∆̃c
t)

⊤ĤL(
1

C
R⊤R

C∑
i=1

∆̃c
t)] = E[

d∑
j=1

λj⟨
1

C
R⊤R

C∑
i=1

∆̃c
t , vj⟩2]

≤ E

 d∑
j=1

λj1λj≥0

(
τM

1
C

∑C
c=1 ∥∆c

t∥
1

C

C∑
c=1

∥∆c
t∥

)2−α(
M

C

C∑
i=1

∥∆c
t∥

)α
 ≤ M

d∑
j=1

λj1λj≥0K
2τ2−αGα,

where M := (1 + log1.5(d/δ)√
b

). The first equality follows by using the same eigen-decomposition as
in the previous section where {λj , vj} are the eigenpairs of HL(x̂t) and the second order term can
be reduced to a squared inner product term. The primary trick thereafter (in the first inequality) is to
split the inner product terms into two parts, which can be handled by the two-sided adaptive learning
rates respectively. By applying the bounded second moment of random sketching, we find the first
part with order 2− α is contained in a (1 + log1.5(d/δ)√

b
)τ−ball with high probability, and the second

part with order α is bounded by applying Assumption 5.

Remark 3.1. The bound is high-probability w.r.t the randomness of sketching functions, while the
expectation is over other randomness, including local stochastic noises and the heavy-tailed noises.

Finally, we can derive the convergence rate for SACFL by combining the analysis.
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Figure 1: Test Error on CIFAR-10 with ResNet of 42M parameters. The plot starts from the
10th epoch for better demonstration. Optimizers: ADA OPT ∈ {SGD, SGDm, Adam}, FetchSGD
and 1bit-Adam with sketch size b ∈ {4e5, 1e6, 4e6}; Rightmost: ADA OPT is Adam. The legend
4e7 represents training in the ambient dimension without sketching. Adam optimizer consistently
outperforms other optimizers. Larger sketch sizes improves the convergence rate and test errors.
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Figure 2: Test Error on CIFAR-10. We finetune a ViT-base model (with 86M parameters) from the
pretrained backbone checkpoint (Dosovitskiy et al., 2020). SGDm, Adam, FetchSGD are compared
under sketch size b ∈ {8e4, 8e5, 8e6}. 1Bit-Adam has comparable compression rates with b = 8e5.
Sketched Adam optimizer consistently outperforms other communication-efficient algorithms.

Theorem 3.2. If the sketch size b satisfies b ≥ 4 log3(dT/δ), then under Assumption 4 and 5, the
sequence {xt} generated by Algorithm 1 (SACFL) satisfies:

1

T

T∑
t=1

E[∥∇L(xt)]∥2 ≤ 4(L(x1)− L(xT ))
κηKT

+ 3K2(L2η2G2 +G2ατ−2(α−1) + LηG1+ατ1−α)

+ 3L̂κη(KGατ2−α), w.p. 1−Θ(δ)

With a proper choice of hyper-parameters with κ = K
3α−6
3α−2T− 1

3α−2 , η = T
1−α
3α−2K

4−4α
3α−2 and τ =

(K4T )
1

3α−2 , we achieve 1
T

∑T
t=1 E[∥∇L(xt)∥2] ≤ O(T

2−2α
3α−2K

4−2α
3α−2 ), w.p. 1−Θ(δ).

Remark 3.2. The convergence rate depends on the noise level α. When α = 2, i.e. the bounded
variance case, the convergence rate is O(1/

√
T ), which matches the rate in Theorem 2.1. We also

claim that the iteration complexity matches the optimal bound in the heavy-tailed case (Yang et al.,
2022; Zhang et al., 2020).

4 EMPIRICAL STUDIES

In this section, we instantiate the algorithmic framework of SAFL in Section 2 and SACFL in
Section 3 to demonstrate the effect of sketching in different settings.

Experimental Configurations. We adopt three distinct experimental settings, from vision to lan-
guage tasks, and in finetuning and training-from-scratch regimes. For the vision task, we train
a ResNet101 (Wu & He, 2018) with a total of 42M parameters from scratch and finetune a ViT-
Base (Dosovitskiy et al., 2020) with 86M parameters on the CIFAR-10 dataset (Krizhevsky et al.,
2009). For the language task, we adopt SST2, a text classification task, from the GLUE bench-
mark (Wang et al., 2018). We train a BERT model (Devlin, 2018) which has 100M parameters. The
client optimizer is mini-batch SGD. At each round, the client trains one single epoch (iterate over the
client dataset). For other hyperparameters used in the training process, please refer to the appendix.

Sharp-Decaying Hessian Eigenspectrum. As a key technical cornerstone of the theory, Assump-
tion 4 states that the Hessian matrix has a sharp-decaying eigenspectrum. While this assumption has
been repeatedly validated in the previous works, it’s unknown if the property holds in the context of
federated deep learning. We show an affirmative verification in Fig. 6 in the Appendix.
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Figure 3: Test Error on SST2 (GLUE) with BERT of 100M parameters. Left: sketch size b =
2e5; Middle: b = 2e6; Right: ADA OPT is Adam, with sketch size b ∈ {2e4, 2e5, 2e6}. The
legend 1e8 represents training in the ambient dimension without sketching. Adam achieves faster
convergence and lower test errors across different sketch sizes. Larger sketch sizes mainly improves
the convergence rate and achieve comparable test errors at the end of training.
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(b) Test error under sketched clipping.

Figure 4: Sketched Clipping Methods on CIFAR10 training ResNet (40M params). (a) histogram of
local gradient norms, which satisfies an α-Levy distribution with α ≈ 1.5 (the orange curve). (b)
trajectory of test errors under sketch sizes b ∈ {4e4, 4e5}. 4e7 means training without sketching.
Left: τ = 0.2; Right:τ = 0.4. With the same τ , trajectories of distinct sketch sizes overlap.
Sketched Adaptive FL. We adopt Adam as the base adaptive optimizer at the server side, and make
comparison with the sketched non-adaptive optimizers SGD, SGDm (SGD with momentum). We also
involve the state-of-the-art communication-efficient algorithms FetchSGD (Rothchild et al., 2020) and
1bit-Adam (Tang et al., 2021), which are based on biased sparsification and quantization respectively.
In the i.i.d client setting, the data are uniformly distributed over 5 clients. Fig. 1 depicts the test errors
on CIFAR-10 when training ResNet(40M) with sketch sizes b ∈ {4e5, 1e6, 4e6}. We can see for all
sketch sizes, our sketched Adam consistently outperforms other optimizers in the convergence rate
and the test error. The compression rate of 1bit-Adam is fixed at 97%, which is comparable with
the compression rate 99% achieved at b = 4e5. 1bit-Adam is plotted separately because it takes
remarkably longer to converge. More interestingly, even with distinct sketch sizes, the iterations
needed for convergence in Adam are almost the same. The test performance degrades slightly with
smaller sketch sizes. This is anticipated and totally acceptable considering that the communication
cost has been drastically reduced. With the same budget of communication bits, using a lower
compression rate facilitates larger model training, which has the potential in better generalization
performance. For results on extremely large compression rates, please refer to Appendix E.

We also present results on finetuning a ViT-Base model (80M) in Fig. 2. The sketch size b ∈
{8e4, 8e5, 8e6}. We see, in the finetuning regime, the sketched Adam optimizer also achieves
competitive performance with the baseline methods. Similar phenomenon is observed in the language
task. Fig. 3 shows the test errors of training SST2 with BERT (100M). The sketch sizes are selected
from {2e4, 2e5, 2e6, 1e8}. We observe sketched Adam converges faster and achieves a slightly better
test performance than other optimizers. Note that the sketch size of 2e4 is tiny, given that the ambient
dimension is 100M. It is quite thrilling that using an extremely high compression rate (99.98%), the
model can still achieve comparable performance as trained in the ambient dimension.

Sketched Clipping Method. Next, we study the performance of the sketched clipping methods. In
Section 3, we claim that SACFL excels in the heavy-tailed regime even when interfered with the
noise from random sketching. To show empirical evidence, we first build an (extremely pessimistic)
environment of heavy-tailed noise on the CIFAR-10 dataset. Specifically, the data categories are
extremely imbalanced among 80 clients. Each client has 4 distinct majority classes which occupy
80% of its entire client dataset, while the remaining data samples are the minority categories. In this
data heterogeneous setting, the features are hardly learned. We run sketched clipping methods in
this environment and fit the local gradient norms with an α-stable Levy distribution in Fig. 4(a). We
select the clipping threshold τ in {0.2, 0.4} such that the clipping operator is in effect in most rounds.
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Fig. 4(b) depicts the test errors in the first 200 epochs under distinct sketch sizes, where we observe
the trajectories significantly overlap. Hence, we can verify that the sketching operator has minor
effects on the clipping method, while providing the benefits of lower communication costs.[ab: Need
a sentence on why the test errors are large] For completeness, we present results on the BERT model
trained with SST2 dataset in Fig. 8 in Appendix, where we can also observe the sketched clipping
method preserves the original convergence guarantees.

5 CONCLUSION

In this paper, we investigated sketched adaptive methods for FL. While the motivation behind
combining sketching and adaptive methods for FL is clear, there is limited understanding on its
empirical success due to the inherent technical challenges. We consider both mild-noise and heavy-
tailed noise settings, propose corresponding adaptive algorithms for each, and show highly promising
theoretical and empirical results. Inspired by the recently observations on heterogeneity in weights
across neural network layers (Zhang et al., 2024), an important future direction is to independently
sketch layer-wise gradients, rather than sketching the concatenated gradient vectors. We believe our
novel work can form the basis for future advances on the theme.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in neural information processing
systems, 30, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. Advances in Neural Information
Processing Systems, 31, 2018.

Barry C Arnold. Pareto distribution. Wiley StatsRef: Statistics Reference Online, pp. 1–10, 2014.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
International Colloquium on Automata, Languages, and Programming, pp. 693–703. Springer,
2002.

Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On
large-cohort training for federated learning. Advances in neural information processing systems,
34:20461–20475, 2021.

Congliang Chen, Li Shen, Wei Liu, and Zhi-Quan Luo. Efficient-adam: Communication-efficient
distributed adam with complexity analysis. arXiv preprint arXiv:2205.14473, 2022.

Guojun Chen, Kaixuan Xie, Yuheng Tu, Tiecheng Song, Yinfei Xu, Jing Hu, and Lun Xin. Nqfl:
Nonuniform quantization for communication efficient federated learning. IEEE Communications
Letters, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. Advances in Neural Information Process-
ing Systems, 36, 2024.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232–2241.
PMLR, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Frithjof Gressmann, Zach Eaton-Rosen, and Carlo Luschi. Improving neural network training in low
dimensional random bases. Advances in Neural Information Processing Systems, 33:12140–12150,
2020.

Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for
non-smooth stochastic gradient descent. In Conference on Learning Theory, pp. 1579–1613.
PMLR, 2019.

Shuli Jiang, Pranay Sharma, and Gauri Joshi. Correlation aware sparsified mean estimation using
random projection. Advances in Neural Information Processing Systems, 36, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine
Learning, pp. 17343–17363. PMLR, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
Advances in Neural Information Processing Systems, 36, 2024.

Xinyan Li, Qilong Gu, Yingxue Zhou, Tiancong Chen, and Arindam Banerjee. Hessian based analysis
of sgd for deep nets: Dynamics and generalization. In Proceedings of the 2020 SIAM International
Conference on Data Mining, pp. 190–198. SIAM, 2020.

Zhenyu Liao and Michael W Mahoney. Hessian eigenspectra of more realistic nonlinear models.
Advances in Neural Information Processing Systems, 34:20104–20117, 2021.

Heting Liu, Fang He, and Guohong Cao. Communication-efficient federated learning for hetero-
geneous edge devices based on adaptive gradient quantization. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications, pp. 1–10. IEEE, 2023a.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023b.

Mingrui Liu, Zhenxun Zhuang, Yunwen Lei, and Chunyang Liao. A communication-efficient
distributed gradient clipping algorithm for training deep neural networks. Advances in Neural
Information Processing Systems, 35:26204–26217, 2022.

Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via the
subsampled randomized hadamard transform. Advances in neural information processing systems,
26, 2013.

Wenlong Mou, Chris Junchi Li, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. On
linear stochastic approximation: Fine-grained polyak-ruppert and non-asymptotic concentration.
In Conference on learning theory, pp. 2947–2997. PMLR, 2020.

John P Nolan. Stable distributions. 2012.

Mert Pilanci and Martin J Wainwright. Newton sketch: A near linear-time optimization algorithm
with linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245, 2017.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. arXiv preprint arXiv:1109.5647, 2011.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konevcnỳ,
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Algorithm 3 ADA OPT (AdaClip)
Input: iterate xt−1, sketched updates m̄t, v̄t
Parameter: Learning rate κ, clipping threshold τ
Output: Updated parameters xt
Update parameters: xt = xt−1 − κmin{ τ

v̄t
, 1}desk(m̄t).

Algorithm 4 ADA OPT (Adam)
Input: iterate xt−1, moments mt−1, vt−1, v̂t−1 , sketched updates m̄t, v̄t
Parameter: Learning rate κ, β1, β2, Small constant ϵ
Output: Updated parameters xt, and moments mt, vt, v̂t
Update first moment estimate: mt = β1 ·mt−1 + (1− β1) · desk(m̄t);
Update second moment estimate: vt = β2 · vt−1 + (1− β2) · desk(v̄t);
Bias Correction: m̂t = mt/(1− βt

1); v̂t = vt/(1− βt
2);

Update parameters: xt = xt−1 − κ√
v̂t+ϵ

· m̂t.

A RELATED WORKS

Adaptive Learning Rates. Adaptive learning rates have long been studied. Adagrad is first proposed
in (Duchi et al., 2011) in aim of utilizing sparsity in stochastic gradients. Subsequent works, e.g.
Adam (Kingma & Ba, 2014) and AMSGrad (Reddi et al., 2019) have become the mainstream
optimizers used in machine learning because of their superior empirical performance. These methods
use implicit learning rates adaptive to the current iterate in the training process. In many cases,
adaptive methods have been shown to converge faster than SGD, and with better generalization as
well (Reddi et al., 2019).

Gradient Compression. To alleviate communcation overhead in federated learning, a promising
direction is to compress the message between clients and the server. The mainstream gradient
compression techniques include quantization (Alistarh et al., 2017; Chen et al., 2023; Reisizadeh
et al., 2020; Liu et al., 2023a), sparsification (Alistarh et al., 2018; Wu et al., 2018; Rothchild
et al., 2020) and sketching. Quantization methods reduce the overhead in storing every element
of the parameters, and hence still takes O(d) bits per round. Sparsification methods, e.g. Tok-K,
random sparsification, increases sparsity in the gradient so that the cost is proportional to the number
of non-zero elements in the sparsified gradient. Sketching techniques adopts a random sketching
function to project a high-dimension vector to a low-dim subspace. The technique is promising and
has been widely used in least-square regression (Tang et al., 2017), second-order optimization (Pilanci
& Wainwright, 2017), and memory-efficient learning (Feinberg et al., 2024).

Noise in Learning. There has been literatures discussing the noise in neural network training. In our
work, we are also dealing with the noise from various sources. High-probability bounds are indeed
quite limited, as the mainstream of analysis of the optimization methods are over expectation. The
lighted-tailed noise assumption is proposed by (Rakhlin et al., 2011) in the strongly-convex settings,
which is subsequently improved by (Harvey et al., 2019). More recently, the communities find the
heavy-tailed phenomenon are prevalent in general machine learning tasks (Simsekli et al., 2019;
Reddi et al., 2020). It is also observed in federated learning settings when the data is heterogeneous
across clients (Yang et al., 2022).

B LEMMA FOR RANDOM SKETCHING

For completeness, we provide the following lemmas that give high probability bounds on the inner
products.

Lemma B.1. (SRHT)[Same as Lemma D.23 (Song et al., 2023)] Let R ∈ Rb×d denote a subsample
randomized Hadamard transform or AMS sketching matrix. Then for any fixed vector h ∈ R and any
fixed vector g ∈ R the following properties hold:

P
[
|⟨g⊤R⊤Rh− g⊤h| ≥ log1.5(d/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).
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Algorithm 5 Sketched Adaptive Federated Learning (SAFL)
Input: Learning rate η, initial parameters x0, adaptive optimizer ADA OPT
Output: Updated parameters xT
Initialize server moments: m0 = 0, v0 = 0, v̂0 = 0, client initial parameters: xc0,0 = x0, client

moments: mc
0 = 0, vc0 = 0, v̂c0 = 0,∀c ∈ [C];

for t = 1, 2, . . . , T do
Client Updates:
for c = 1, 2, . . . , C do

Client model synchronization:
xct,0,m

c
t , v

c
t , v̂

c
t = ADA OPT(xct−1,0,m

c
t−1, v

c
t−1, v̂

c
t−1, m̄t, v̄t)

for k = 1, 2, . . . ,K do
Compute stochastic gradient gct,k−1 with respect to the parameters xct,k−1;

Perform a single gradient step: xct,k = xct,k−1 − ηtg
c
t,k−1;

end
Sketch (compress) the parameter updates:

m̄c
t = sk(xct,0 − xct,K);

end
Server Updates:
Average sketched client updates, second moment as average of elementwise square and send back
to clients

m̄t =
1

C

C∑
c=1

m̄c
t ; v̄t =

1

C

C∑
c=1

(m̄c
t)

2
;

Update paramters and moments: xt,mt, vt, v̂t = ADA OPT(xt−1,mt−1, vt−1, v̂t−1, m̄t, v̄t).

end

Lemma B.2. (Gaussian)[Same as Lemma D.24 (Song et al., 2023)] Let R ∈ Rb×d denote a random
Gaussian matrix. Then for any fixed vector h ∈ R and any fixed vector g ∈ R the following properties
hold:

P
[
|⟨g⊤R⊤Rh− g⊤h| ≥ log1.5(d/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).

Lemma B.3. (Count-Sketch)[Same as Lemma D.25 (Song et al., 2023)] Let R ∈ Rb×d denote a
count-sketch matrix. Then for any fixed vector h ∈ R and any fixed vector g ∈ R the following
properties hold:

P
[
|⟨g⊤R⊤Rh− g⊤h| ≥ log(1/δ)∥g∥2∥h∥2

]
≤ Θ(δ).

C PROOF OF THEOREM 2.1

C.1 PROOF OF LEMMA 2.2

Let

zt = xt +
β1

1− β1
(xt − xt−1) =

1

1− β1
xt −

β1
1− β1

xt−1.
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Algorithm 6 Sketched Adaptive Clipped Federated Learning (SACFL)
Input: Learning rate κ, η, initial parameters x0, clipping threshold τ .
Output: Updated parameters xT
Initialize client initial parameters: xc0,0 = x0, ∀c ∈ [C];

for t = 1, 2, . . . , T do
for c = 1, 2, . . . , C do

De-sketch the updates: xct,0 = xt−1 − κmin{ τ
v̄t
, 1}desk(m̄t);

for k = 1, 2, . . . ,K do
Compute stochastic gradient gct,k−1 with respect to the parameters xct,k−1;

Perform a single gradient step: xct,k = xct,k−1 − ηgct,k;
end
Sketch the parameter updates:

m̄c
t = sk(xct,0 − xct,K); v̄ct = ∥xct,K − xct,0∥;

end
Average client updates and send back the averages:

m̄t =
1

C

C∑
c=1

m̄c
t ; v̄t =

1

C

C∑
c=1

v̄ct ;

Update paramters and statistics: xt = xt−1 − κmin{ τ
v̄t
, 1}desk(m̄t).

end

Then, the update on zt can be expressed as

zt+1 − zt =
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)

= − 1

1− β1
κV̂t

−1/2
·mt +

β1
1− β1

κ ˆVt−1
−1/2

·mt−1

= − 1

1− β1
κV̂t

−1/2
· (β1mt−1 + (1− β1) ·R⊤

t m̄t) +
β1

1− β1
κV̂

−1/2
t−1 ·mt−1

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κ

C
V̂t

−1/2
R⊤

t

C∑
c=1

m̄c
t

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κ

C
V̂t

−1/2
R⊤

t

C∑
c=1

Rt(x
c
t,0 − xct,K)

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κη

C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

By Taylor expansion, we have

L(zt+1) = L(zt) +∇L(zt)⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt)

= L(zt) +∇L(xt)⊤(zt+1 − zt) + (∇L(zt)−∇L(xt))⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt).
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Bounding the first-order term

∇L(xt)⊤(zt+1 − zt)

=∇L(xt)⊤
(

β1
1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κη

C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

)

≤ β1
1− β1

∥∇L(xt)∥∞(∥κV̂ −1/2
t−1 ∥1,1 − ∥κV̂t

−1/2
∥1,1)∥mt−1∥∞

− η

C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1 )

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k − κη

C
∇L(xt)⊤V̂ −1/2

t−1

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

≤

(
β1

1− β1
∥mt−1∥∞ +

η

C
∥

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k∥∞

)
∥∇L(xt)∥∞(∥κV̂ −1/2

t−1 ∥1,1 − ∥κV̂t
−1/2

∥1,1)

− κη

C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 R⊤

t Rtg
c
t,k.

The quadratic terms can be written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt) = (zt − xt)
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)),

where ĤL is a second-order Taylor remainder. So the quadratic term can be further seen as a quadratic
form over zt+1 − zt and zt − xt, denote as Q(zt+1 − zt, zt − xt). For the same reason, the term
1
2 (zt+1 − zt)

⊤ĤL(zt+1 − zt) can also be written into a quadratic form Q(zt+1 − zt, zt+1 − zt).
Putting the two terms together yields a quadratic form of Q(zt+1 − zt, zt − xt).

C.2 PROOF OF LEMMA C.1 (GENERALIZED VERSION OF LEMMA 2.3)

Proof. We can prove by induction. For t = 0, since m0 = 0, the inequality holds. Suppose we have
for h ∈ Rd, s.t. ∥h∥ ≤ H , with probability 1−Θ((t− 1)δ),

|m⊤
t−1h| ≤ (1 +

log1.5(CKd/δ)√
b

)G

Then by the update rule,

|m⊤
t h| = |(β1 ·mt−1 + (1− β1) ·

η

C

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k)

⊤h|

≤ β1|m⊤
t−1h|+

(1− β1)η

C

C∑
c=1

K∑
k=1

|⟨R⊤
t Rtg

c
t,k, h⟩|

≤ β1|m⊤
t−1h|+ (1− β1)(1 +

log1.5(CKd/δ)√
b

)η

K∑
k=1

∥gct,k∥2∥h∥2

≤ (1 +
log1.5(CKd/δ)√

b
)ηKGH, w.p. 1−Θ(tδ).

Let h = V̂
−1/2
t vi. Then ∥h∥2 ≤ 1/ϵ. We have

|(V̂ −1/2
t mt)

⊤vi| ≤ (1 +
log1.5(CKd/δ)√

b
)ηKG/ϵ
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C.3 PROOF OF LEMMA 2.4

We first prove the element-wise lower bound of the diagonal matrix V̂ −1/2
t−1 . Denote (V̂

−1/2
t−1 )i as the

i-th element on the diagonal of V̂ −1/2
t−1 . By the update rule,

(V̂
−1/2
t−1 )i ≥ (max

t−1
(
√
vt,i) + ϵ)−1 ≥ (

√
1 +

log1.5(CKtd/δ)√
b

ηKG+ ϵ)−1, w.p. 1−Θ(δ)

where the last inequality follows by letting h as a one-hot vector hi in Lemma B.1, observing that the
elements can be transformed to an inner product form vt,i = v⊤t hi. Then the scaled gradient norm
can be lower bounded as

∇L(xt)⊤V̂ −1/2
t−1 ∇L(xt) ≥ min

i
(V̂

−1/2
t−1 )i

d∑
i=1

[∇L(xt)]2i

≥ (

√
1 +

log1.5(CKtd/δ)√
b

ηKG+ ϵ)−1∥∇L(xt)∥2, w.p. 1−Θ(dδ)

which completes the proof by applying union bounded on the dimension d.

C.4 PROOF OF LEMMA 2.5

Since the noise is zero-centered, we view the random process of

{Yt =
t∑

τ=1

1

C

C∑
c=1

K∑
k=1

∇L(xτ )⊤V̂ −1/2
τ−1 (R⊤

τ Rτg
c
τ,k − gcτ,k)}Tt=1

as a martingale. The difference of |Yt+1 − Yt| is bounded with high probability

|Yt+1 − Yt| = |∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k − gct,k)| ≤

log1.5(d/δ)√
b

G∥V̂ −1/2
t ∇L(xt)∥2, w.p. 1−Θ(δ)

Then by Azuma’s inequality,

P(|YT | ≥ ν

√√√√ T∑
t=1

(
log1.5(d/δ)√

b
G∥V̂ −1/2

t ∇L(xt)∥2
)2

) = O(exp(−Ω(ν2))) + Tδ (1)

Note that the original Azuma’s is conditioned on a uniform bound of the difference term, while our
bound here is of high probability. Hence, we need another union bound. A similar bound can be
achieved for the sub-Gaussian noise in stochastic gradient. Let

Zt =

t∑
τ=1

1

C

C∑
c=1

K∑
k=1

∇L(xτ )⊤V̂ −1/2
τ−1 (gcτ,k −∇Lc(xct,k)).

Then

P(|ZT | ≥ ν

√√√√ T∑
t=1

σ2

ϵ2
log(

2T

δg
)) = O(exp(−Ω(ν2))) + δg

Combining the two bounds by union bound completes the proof.
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C.5 PROOF OF THEOREM 2.1

After applying Lemma 2.2. The second order quadratic forms in the descent lemma can be written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt)

=(zt − xt)
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1))

=− κ
β1

1− β1
(V̂

−1/2
t−1 mt−1)

⊤ĤL(
1

1− β1
(−κV̂ −1/2

t mt)−
β1

1− β1
(−κV̂ −1/2

t−1 mt−1))

=κ2
β1

(1− β1)2
(V̂

−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t mt)− κ2

β2
1

(1− β1)2
(V̂

−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t−1 mt−1),

and
(zt+1 − zt)

⊤ĤL(zt+1 − zt)

=(
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1))
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1))

=
1

(1− β1)2
(xt+1 − xt)

⊤ĤL(xt+1 − xt)−
2β1

(1− β1)2
(xt+1 − xt)

⊤ĤL(xt − xt−1)

+
β2
1

(1− β1)2
(xt − xt−1)

⊤ĤL(xt − xt−1),

which is essentially a quadratic form defined on V̂ −1/2
t mt and V̂ −1/2

t−1 mt−1. Hence, we provide a
generalized version of Lemma 2.3, as follows.

Lemma C.1. With probability 1−Θ(tδ), for eigenvector vi of the Hessian matrix, |(V̂ −1/2
t mt)

⊤vi| ≤
(1 + log1.5(CKd/δ)√

b
)ηKG/ϵ.

Note that vi can be any basis and is constant throughout the training process. Then the sum of
quadratic forms is written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt)

≤κ2 β1
(1− β1)2

(V̂
−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t mt)− κ2

β2
1

(1− β1)2
(V̂

−1/2
t−1 mt−1)

⊤ĤL(V̂
−1/2
t−1 mt−1),

=κ2
β1

(1− β1)2

d∑
i=1

λi(V̂
−1/2
t−1 mt−1)

⊤(viv
⊤
i )V̂

−1/2
t mt − κ2

β2
1

(1− β1)2

d∑
i=1

λi(V̂
−1/2
t−1 mt−1)

⊤(viv
⊤
i )V̂

−1/2
t−1 mt−1

≤κ2 β1
(1− β1)2

d∑
i=1

|λi||(V̂ −1/2
t−1 mt−1)

⊤vi||(V̂ −1/2
t mt)

⊤vi|+ κ2
β2
1

(1− β1)2

d∑
i=1

|λi||(V̂ −1/2
t−1 mt−1)

⊤vi|2

≤κ2 2

(1− β1)2
L̂(1 +

log1.5(CKd/δ)√
b

)2η2K2G2/ϵ2,

where the last inequality is by β1 ≤ 1 and Lemma. C.1.

First-Order Descent Term. The first-order term in the descent lemma can be decomposed into three
components, which we will handle separately.

∇L(xt)⊤V̂ −1/2
t−1 R⊤

t Rtg
c
t,k =∇L(xt)⊤V̂ −1/2

t−1 ∇Lc(xt)︸ ︷︷ ︸
D1

+∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k −∇Lc(xct,k))︸ ︷︷ ︸

D2

+∇L(xt)⊤V̂ −1/2
t−1 (∇Lc(xct,k)−∇Lc(xt))︸ ︷︷ ︸

D3

.
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First, D3 can be reduced to a second-order term by smoothness over L,

∇L(xt)⊤V̂ −1/2
t−1 (∇Lc(xct,k)−∇Lc(xt)) = ∇L(xt)⊤V̂ −1/2

t−1 Ĥc
L(x

c
t,k − xt)

=− η

k∑
τ=1

∇L(xt)⊤V̂ −1/2
t−1 Ĥc

Lg
c
t,τ

≤1

ϵ
L∥∇L∥

k∑
τ=1

∥gct,τ∥ ≤ 1

ϵ
ηLKG2.

Note that this term does not involve any stochasticity with regard to random sketching, which means
we can directly derive the upper bound by Cauchy-Schwartz in the last inequality.

Next observing that 1
C

∑C
c=1 ∇Lc(xt) = ∇L(xt), D1 composes a scaled squared gradient norm.

Applying element-wise high probability bound on random sketching yields the lower bound for the
scale. By Lemma 2.4, we can derive the lower bound for D1. Note that applying union bound to D1

does not introduce another T dependence, since v̂t,i is monotonically non-decreasing.

Martingale for zero-centered noise. D2 contains a zero-centered noise termR⊤
t Rtg

c
t,k−∇Lc(xct,k),

where the randomness is over Rt and the mini-batch noise at round t. Despite xct,k has temporal
dependence, the fresh noise at round t is independent of the randomness in the previous iterations.
Hence, the random process defined by the aggregation of these norm terms over time forms a
martingale. By Lemma 2.5, we can bound this term D2.

Finally, putting these parts together by union bound over [T ] and telescoping the descent lemma leads
to Theorem 2.1.

C.6 PROOF OF COROLLARY 1

In the aysmptotic regime, with sufficiently large T , the term
√
1 + log1.5(CKd2T 2/δ)√

b
ηKG approaches

ϵ, so the denominator on the LHS can be replaced with 2ϵ. Then the derivation is straightforward by
just substituting η = 1√

TK
into Theorem 2.1.

C.7 PROOF OF COROLLARY 2

We first develop the convergence bound in Theorem 2.1 under the condition b ≥ log3(CKd2T 2/δ),(√
2ηKG+ ϵ

)−1

κηK

T∑
t=1

∥∇L(xt)∥2 ≤ L(z1) +
1

ϵ
κη2LK2G2T

+ νκηK
√
T (
G2

ϵ
+
σ

ϵ
log

1
2 (

2T

δg
)) + η2κ2T

32

(1− β1)2
L̂K2G2

ϵ2
,

The condition on T ≤ J1−
√
2G

ϵ2 is equivalent to
√
2ηKG+ ϵ

ηK
≤ J1,

since η = 1√
TK

. Then scaling the coefficient on the left hand side and substituting 1√
TK

for η, we
derive

1

J1T

T∑
t=1

∥∇L(xt)∥2 ≤ L(z1)ϵ
κT

+
1

ϵ

LG2

T
+
ν

T
(G2 + σ log

1
2 (

2T

δg
)) +

κ

T

32

(1− β1)2
L̂G2

ϵ
,

C.8 A NON-ASYMPTOTIC BOUND ON PRACTICAL LEARNING RATES

We first state a convergence bound on using practical learning rates, which decays as the optimization
procedure.

Theorem C.2. Suppose the sequence of iterates {xt}Tt=1 is generated by Algorithm 1 with a decaying
learning rate ηt = 1√

t+T0K
, where T0 = ⌈ 1

1−β2
1
⌉. Under Assumptions 1-4, for any T and ϵ > 0,
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with probability 1−Θ(δ)−O(exp(−Ω(ν2)))− δg ,

T∑
t=1

√1 +
log1.5(CKd2T 2/δ)√

b
ηtJKG+ ϵ

−1

κηt∥∇L(xt)∥2 ≤ L(z1) +
1

ϵ
κLG2 log T

+ νκ log T (
log1.5(CKTd/δ)√

b

G2

ϵ
+

σ

ϵ
log

1
2 (

2T

δg
)) + κ2 log T (1 +

log1.5(CKdT 2/δ)√
b

)2
8

(1− β1)2
L̂G2

ϵ2
,

where δ, δg , and ν are the randomness from sketching, sub-Gaussian stochastic noise and martingales
respectively, and J is a constant defined in Lemma. C.3.

Alike the analysis in the constant learning rate case, we first define auxiliary variables zt

zt = xt +
β1

1− β1
(xt − xt−1) =

1

1− β1
xt −

β1
1− β1

xt−1.

Then, the update on zt can be expressed as

zt+1 − zt =
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)

=
β1

1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κηt
C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

By Taylor expansion, we have

L(zt+1) = L(zt) +∇L(zt)⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt)

= L(zt) +∇L(xt)⊤(zt+1 − zt) + (∇L(zt)−∇L(xt))⊤(zt+1 − zt) +
1

2
(zt+1 − zt)

⊤ĤL(zt+1 − zt).

Bounding the first-order term

∇L(xt)⊤(zt+1 − zt)

=∇L(xt)⊤
(

β1
1− β1

(
κV̂

−1/2
t−1 − κV̂t

−1/2
)
mt−1 −

κηt
C
V̂t

−1/2
C∑

c=1

K∑
k=1

R⊤
t Rtg

c
t,k

)

≤ β1
1− β1

∥∇L(xt)∥∞(∥κV̂ −1/2
t−1 ∥1,1 − ∥κV̂t

−1/2
∥1,1)∥mt−1∥∞

− ηt
C
∇L(xt)⊤(κV̂t

−1/2
− κV̂

−1/2
t−1 )

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k − κηt

C
∇L(xt)⊤V̂ −1/2

t−1

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k

≤

(
β1

1− β1
∥mt−1∥∞ +

ηt
C
∥

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k∥∞

)
∥∇L(xt)∥∞(∥κV̂ −1/2

t−1 ∥1,1 − ∥κV̂t
−1/2

∥1,1)

− κηt
C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 R⊤

t Rtg
c
t,k.

The quadratic terms can be written as

(∇L(zt)−∇L(xt))⊤(zt+1 − zt) = (zt − xt)
⊤ĤL(

1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)),

where ĤL is a second-order Taylor remainder.

To bound the quadratic term, the counterpart of Lemma C.1 can be stated as

Lemma C.3. With learning rate ηt = O( 1√
t+T0

), where T0 = ⌈ 1
1−β2

1
⌉. Denote J =

1−β1√
T0+1

/( 1√
T0+1

− β1√
T0
). Then with probability 1−Θ(tδ),

|m⊤
t−1h| ≤ (1 +

log1.5(CKd/δ)√
b

)JKGH
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Proof. For t = 0, since m0 = 0, the inequality holds. Suppose we have for h ∈ Rd, s.t. ∥h∥ ≤ H ,
with probability 1−Θ((t− 1)δ),

|m⊤
t−1h| ≤ (1 +

log1.5(CKd/δ)√
b

)JKGH

By the update rule,

|m⊤
t h| = |(β1 ·mt−1 + (1− β1) ·

η

C

C∑
c=1

K∑
k=1

R⊤
t Rtg

c
t,k)

⊤h|

≤ β1|m⊤
t−1h|+

(1− β1)η

C

C∑
c=1

K∑
k=1

|⟨R⊤
t Rtg

c
t,k, h⟩|

≤ β1|m⊤
t−1h|+ (1− β1)(1 +

log1.5(CKd/δ)√
b

)ηt

K∑
k=1

∥gct,k∥2∥h∥2

≤ (1 +
log1.5(CKd/δ)√

b
)ηtJKGH, w.p. 1−Θ(tδ).

By exactly the same as in Sec. C.3, we can lower bound the scaled gradient term by

∇L(xt)⊤V̂ −1/2
t−1 ∇L(xt) ≥ min

i
(V̂

−1/2
t−1 )i

d∑
i=1

[∇L(xt)]2i

≥ (

√
1 +

log1.5(CKtd/δ)√
b

ηtKG+ ϵ)−1∥∇L(xt)∥2, w.p. 1−Θ(dδ).

On the martingale of zero-centered noises, we can simply incorporate the learning rate ηt into the
martingale. Define the random process of sketching noise as

{Yt =
t∑

τ=1

ητ
C

K∑
k=1

∇L(xτ )⊤V̂ −1/2
τ−1 (R⊤

τ Rτg
c
τ,k − gcτ,k)}Tt=1

as a martingale. The difference of |Yt − Yt−1| is bounded with high probability

|Yt − Yt−1| = |ηt
C

C∑
c=1

K∑
k=1

∇L(xt)⊤V̂ −1/2
t−1 (R⊤

t Rtg
c
t,k − gct,k)|

≤ log1.5(d/δ)√
b

ηtKG∥V̂ −1/2
t ∇L(xt)∥2, w.p. 1−Θ(CKδ).

Then by Azuma’s inequality,

P(|YT | ≥ ν

√√√√ T∑
t=1

(
log1.5(d/δ)√

b
ηtKG∥V̂ −1/2

t ∇L(xt)∥2
)2

) = O(exp(−Ω(ν2))) + Tδ (2)

A similar bound can be achieved for the sub-Gaussian noise in stochastic gradient. Let

Zt =

t∑
τ=1

ητ
C

K∑
k=1

∇L(xτ )⊤V̂ −1/2
τ−1 (gcτ,k −∇Lc(xct,k)).

Then

P(|ZT | ≥ ν

√√√√ T∑
t=1

(
ηtσ

ϵ
)2 log(

2T

δg
)) = O(exp(−Ω(ν2))) + δg

Combining the two bounds by union bound completes the proof.
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D PROOF OF THEOREM 3.2

D.1 PROOF OF LEMMA 3.1

Denote ∆c
t =

∑K
k=1 g

c
t,k, ∆̃c

t = min{1, τ
1
C

∑C
c=1 ∥∆c

t∥
}∆c

t . Then xt+1 − xt =

−κηR⊤R 1
C

∑C
c=1 ∆̃

c
t .

Proof. Taking the expectation of randomness in stochastic gradient yields

E[L(xt+1)]− L(xt) = −κη⟨∇L(xt),
1

C
R⊤R

C∑
c=1

E[∆̃c
t ]⟩+

κ2η2

2
E[(

1

C
R⊤R

C∑
c=1

∆̃c
t)

⊤ĤL(
1

C
R⊤R

C∑
c=1

∆̃c
t)]

= −κη⟨∇L(xt),
1

C

C∑
c=1

R⊤RE[∆̃c
t ]− E[∆̃c

t ]⟩ − κη⟨∇L(xt),
1

C

C∑
c=1

E[∆̃c
t ]⟩

+
κ2η2

2
E[(

1

C
R⊤R

C∑
c=1

∆̃c
t)

⊤ĤL(
1

C
R⊤R

C∑
c=1

∆̃c
t)]

≤ κηK

2

log1.5(d/δ)√
b

∥∇L∥2 + κη

2K

log1.5(d/δ)√
b

∥ 1

C

C∑
c=1

E[∆̃c
t ]∥2 −

κηK

2
∥∇L∥2 − κη

2K
∥ 1

C

C∑
c=1

E[∆̃c
t ]∥2

+
κηK

2
∥∇L − 1

K

1

C

C∑
c=1

E[∆̃c
t ]∥2 +

κ2η2

2
E[(

1

C
R⊤R

C∑
c=1

∆̃c
t)

⊤ĤL(
1

C
R⊤R

C∑
c=1

∆̃c
t)]

≤ −(1− log1.5(d/δ)√
b

)
κηK

2
∥∇L∥2 + κηK

2
∥∇L − 1

K

1

C

C∑
c=1

E[∆̃c
t ]∥2

+
κ2η2

2
E[(

1

C
R⊤R

C∑
c=1

∆̃c
t)

⊤ĤL(
1

C
R⊤R

C∑
c=1

∆̃c
t)]

≤ −κηK
4

∥∇L∥2 + κηK

2
∥∇L − 1

K

1

C

C∑
c=1

E[∆̃c
t ]∥2

+
κ2η2

2
E[(

1

C
R⊤R

C∑
i=1

∆̃c
t,i)

⊤ĤL(
1

C
R⊤R

C∑
i=1

∆̃c
t,i)], w.p. 1−Θ(δ)

where the first inequality is directly from Lemma B.1. The second and last inequalities are from the
condition of b ≥ 4 log3(d/δ).

D.2 PROOF OF THEOREM 3.2

The first order term in Lemma 3.1 can be handled by

∥∇L − 1

K

1

C

C∑
c=1

E[∆̃c
t ]∥ ≤ ∥∇L − 1

K

1

C

C∑
c=1

E[∆c
t ]∥+

1

K
∥ 1

C

C∑
c=1

E[∆c
t ]−

1

C

C∑
c=1

E[∆̃c
t ]∥

≤ ηL

KC

C∑
c=1

K∑
i=1

E[∥∇Lc
t,k∥] +

1

KC

C∑
c=1

E[∥∆c
t∥1{ 1

C

∑C
c=1 ∥∆c

t∥≥τ}]

≤ ηKLG+Kα−1Gατ1−α,

where the last inequality follows by

1

C

C∑
c=1

E[∥∆c
t∥1{ 1

C

∑C
c=1 ∥∆c

t∥≥τ}] = E[
1

C

C∑
c=1

∥∆c
t∥1{ 1

C

∑C
c=1 ∥∆c

t∥≥τ}]

= E[(
1

C

C∑
c=1

∥∆c
t∥)α(

1

C

C∑
c=1

∥∆c
t∥)1−α1{ 1

C

∑C
c=1 ∥∆c

t∥≥τ}] ≤ (KG)ατ1−α.
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Figure 5: The power-law structure of the Hessian spectrum on LeNet. Quoted from Fig.1 (Xie et al.,
2022).
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Figure 6: Eigenspectrum density every 5 epochs. The model is ViT-Small and trained on CIFAR10.
The majority of eigenvalues concentrates near 0 and the density enjoys a super fast decay with the
absolute values of eigenvalues, indicating a summable eigenspectra.

The second order term can be handled as follows. With probability 1−Θ(δ),

E[(
1

C
R⊤R

C∑
i=1

∆̃c
t,i)

⊤ĤL(
1

C
R⊤R

C∑
i=1

∆̃c
t,i)] = E[

d∑
j=1

λj⟨
1

C
R⊤R

C∑
i=1

∆̃c
t,i, vj⟩2]

≤ E[
d∑

j=1

λj1λj≥0⟨
1

C
R⊤R

C∑
i=1

∆̃c
t,i, vj⟩2−α⟨ 1

C
R⊤R

C∑
i=1

∆̃c
t,i, vj⟩α]

≤ E

 d∑
j=1

λj1λj≥0

(
(1 +

log1.5(d/δ)√
b

)
τ

1
C

∑C
c=1 ∥∆c

t∥
1

C

C∑
c=1

∥∆c
t∥

)2−α(
1

C
(1 +

log1.5(d/δ)√
b

)

C∑
i=1

∥∆c
t∥

)α


≤ (1 +
log1.5(d/δ)√

b
)L̂K2τ2−αGα,

where the first equation follows by using the eigen-decomposition of ĤL and the second order term
can be reduced to a squared inner product term. The primary trick thereafter (in the first inequality)
is to split the inner product terms into two parts, which can be handled by the two-sided adaptive
learning rates respectively. By applying the bounded second moment of random sketching, we find
the first part with order 2 − α is contained in a (1 + log1.5(d/δ)√

b
)τ−ball with high probability, and

the second part with order α is bounded by applying Assumption 5. Then Theorem 3.2 follows by
combining the first order term and the second-order term by union bounds, as well as applying the
condition of b ≥ 4 log3(d/δ).

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Aside from the experimental configurations described in the main paper, we provide additional details.

For the sketched adaptive FL methods. The server optimizer. We use Cross Entropy with label
smoothing as the loss function. The parameter for label smoothing is 0.1. We use a cosine learning
rate scheduler on the server optimizer, with the minimal learning rate is 1e− 5. Client batch size is
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Figure 7: Comparing the performance of tiny sketch sizes on ResNet and BERT. The experiment
settings are the same as in Fig. 1 and Fig. 3
.

0 5 10 15 20 25 30
Epoch

50%

60%

70%

80%

90%

Training Accuracy

sgd
clip_sgd
sketched clip_sgd

(a) Heavy tailed gradient norms.
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(b) Test error under sketched clipping.

Figure 8: Sketched Clipping Methods on BERT: (a) Training Accuracy; (b) Testing Error. Under
the same hyperparameters, plain SGD does not converge, while clip SGD and its sketched variant
converge and generalize. Sketched Clip SGD achieves comparable performance as the unsketched
Clip SGD.
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128, and weight decay is 1e− 4. For SGD and SGDm methods, the learning rate is 1.0. For SGDm,
the momentum is 0.9. For Adam optimizer, the learning rate is 0.01, and the momentum is 0.9. The
learning rates are tuned to achieve the best performance. We adopt SRHT as the sketching operator.
The SRHT matrix R can expressed as R =

√
n/bSHD, where S ∈ Rb×n is a random matrix whose

rows are b uniform samples (without replacement) from the standard basis of Rn. H ∈ Rn×n is a
normalized Walsh-Hadamard matrix, and D ∈ Rn×n is a diagonal matrix whose diagonal elements
are i.i.d. Rademacher random variables.

Our experiments were conducted on a computing cluster with AMD EPYC 7713 64-Core Processor
and NVIDIA A100 Tensor Core GPU.

To verify Assumption 4, we plot the full Hessian eigenspectrum throughout the training process in
Fig. 6. We used stochastic lanczos algorithm implemented by the pyHessian library (Yao et al., 2020)
to approximate the distribution of the full eigenspectrum. Our main claim in Assumption 4 is that the
Hessian eigenspectrum at an iterate is summable and the sum is independent of the ambient dimension,
which can be satisfied by common distributions, like power-laws. We run testing experiments on
ViT-small and train on CIFAR-10 dataset, with sketched Adam optimizer. In Fig. 6, we see the
majority of eigenvalues concentrates near 0. The density enjoys a super fast decay with the absolute
values of eigenvalues. The decay also holds throughout the training process. This empirical evidence
shows the validity of our assumption.

In the main body of the paper, we have achieved 99.9% compression rate and 99.98% compression
rate for ResNet and BERT respectively. We further include the results on smaller b in Fig. 7. In
principle, an extremely tiny sketch size (with 400 in vision tasks and 2000 in language tasks) still
converges but generates an unfavorable local minima that hardly generalizes.

In the following, we present another empirical result on the clipping method. The goal here is to show
the superiority of (sketched) clipping methods over the plain SGD optimizer. We run BERT model on
SST2 dataset. The dataset is split among 5 distinct clients in an i.i.d way. The normalization factor in
the clipping method is set as 0.03. In Figure. 8, we show that (sketched) clip SGD method has better
performance in convergence and generalization, while the plain SGD method fails to converge. It is
also observed that sketching does not cause drop in testing error.

F ADDITIONAL DISCUSSION ON EXPERIMENTS

We added two recent approaches, CD-Adam (Wang et al., 2022) and CocktailSGD (Wang et al., 2023),
which are representative of state-of-the-art adaptive methods and SGD-based methods representatively.
In Table 1 we compare the performance of baseline methods and sketched Adam, and derive two
takeaways:

• On the vision task (CIFAR-10), sketched Adam significantly outperforms both CD-Adam
and CocktailSGD.

• On the language task (SST2), sketched Adam are close with CocktailSGD, which is origi-
nally designed for training LLMs. Other algorithms fall short.

We select the learning rate under strict hyperparameter tuning protocols. We split the dataset into
train/val/test sets with 10:1:1 on CIFAR-10 and 40:1:2 on SST2 (the default split). We tune the
hyperparameters based on the performance over the validation set. For CocktailSGD, we adopt
the default compression setting, i.e. 20% random sparsification, 10% top-k compression and 4-bit
quantization, which amounts to approximately 99% compression rate. We make sure the optimal
learning rate is strictly within the test interval, i.e. not on the boundary. The error rate curves on the
validation set are shown in Fig. 9 and Fig. 10.

We also conduct new experiments to assist the exposition of heavy-tailed noise. In Figure 11, we
plot the stochastic gradient. More specifically, we fix the client model (at the end of each local
training step) and iterate over the local minibatches to collect the stochastic gradient norm. We fit
the distribution with a Levy distribution in each subplot. The plot indicates it’s not rare to encounter
heavy-tailed noise in client model and hence consolidates Assumption 5.
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Adam FetchSGD CocktailSGD CD-Adam 1Bit-Adam
CIFAR-10 22.6% 28.4% 25.9% 25.7% 25.5%

SST2 7.80% 10.6% 8.03% 8.83% 9.06%

Table 1: Error Rate on Test Set.
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Figure 9: Validation Error on CIFAR-10. The setting is same as Fig. 2. Sketch Size b = 4e5.
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Figure 10: Validation Error on SST2. The setting is same as Fig. 3. Sketch Size b = 2e6.
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Figure 11: Histogram of stochastic gradient norm evaluated on identical local model parameter. The
orange curve is the pdf of Levy distribution whose α is in the title. Each subplot represents one local
model.
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G CONVERGENCE WITHOUT BOUNDED GRADIENT NORM ASSUMPTION

In this section, we prove the convergence of SAFL (Algorithm. 5) under a simplified scheme. To
better focus on the gradient norm, we adopt gradient descent (deterministic) updates on each client.
We also restrict the local step K to be 1. The proof follows the general idea recently proposed in (Li
et al., 2024).

First, we derive the gradient norm bound affine to the loss function based on smoothness in
Lemma G.1.

Lemma G.1. For any L-smooth function L(x), ∥∇L(x)∥2 ≤ 2L(L(x)− L∗).

Proof. Let y = x− 1
L∇L(x). Then we have

L∗ − L(x) ≤ L(y)− L(x) ≤ ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 = − 1

2L
∥∇L(x)∥2.

Rearranging the terms yields the lemma.

We rewrite the descent lemma under the specific condition, which is a direct derivation from
Lemma 2.2.

Lemma G.2. For any round t ∈ [T ], there exists function Φt ≥ 0 such that

L(zt+1) ≤ L(zt) + Φt − Φt+1 −
κη

C

C∑
c=1

∇L(xt)
⊤V̂

−1/2
t−1 R⊤

t Rt∇Lc(xt) + (zt − xt)
⊤HL(ẑt)(zt+1 − zt),

where HL(ẑt) is the loss Hessian at some ẑt within the element-wise interval of [xt, zt].

Let G be a constant which will be specified later. Let F = 1
2LG

2. Denote the optimization horizon
(server steps) by T . Denote t̂ = min{t|L(zt) − L∗ > F} ∧ (T + 1). We consider the case when
t̂ ≤ T . For t < t̂, we have L(xt)− L∗ ≤ F and thus ∥∇L(xt)∥ ≤ G, which guarantees an upper
bound on the gradient in the restricted region. We follow the technique in the bounded gradient
setting. For any t ≤ t̂, with probability 1− 2δ, the first order term can be lower bounded by

∇L(xt)⊤V̂ −1/2
t−1 R⊤

t Rt∇L(xt)

≥(1− log1.5(Cd/δ)√
b

)∥∇L(xt)∥∥V̂ −1/2
t−1 ∇L(xt)∥

≥(1− log1.5(Cd/δ)√
b

)

√1 +
log1.5(Ctd2/δ)√

b
ηG+ ϵ

−1

∥∇L(xt)∥2,

where the second inequality follows by Lemma. 2.4.
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The second order term can be bounded by

(zt − xt)
⊤HL(ẑt)(zt+1 − zt)

=(
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1))
⊤ĤL

β1
1− β1

(xt − xt−1)

≤(1 +
log1.5(Cd/δ)√

b
)2η2/ε2

β1 + β2
1

(1− β1)2

d∑
i=1

|λi|(
t∑

τ=0

(1− β1)β
t−τ
1 ∥gτ∥)(

t−1∑
τ=0

(1− β1)β
t−1−τ
1 ∥gτ∥)

=(1 +
log1.5(Cd/δ)√

b
)2η2/ε2β1(β1 + 1)L̂

t∑
τ1=0

t−1∑
τ2=0

β2t−1−τ1−τ2
1 ∥gτ1∥∥gτ2∥

≤(1 +
log1.5(Cd/δ)√

b
)2η2/ε2

β1(β1 + 1)

2
L̂

t∑
τ1=0

t−1∑
τ2=0

β2t−1−τ1−τ2
1 (∥gτ1∥2 + ∥gτ2∥2)

=(1 +
log1.5(Cd/δ)√

b
)2η2/ε2

β1(β1 + 1)

2
L̂(

t∑
τ1=0

βt−τ1
1 ∥gτ1∥2(

t−1∑
τ2=0

βt−1−τ2
1 ) +

t−1∑
τ2=0

βt−1−τ2
1 ∥gτ2∥2(

t∑
τ1=0

βt−τ1
1 ))

≤(1 +
log1.5(Cd/δ)√

b
)2η2/ε2

β1(β1 + 1)

2(1− β1)
L̂(

t∑
τ1=0

βt−τ1
1

1

1− β1
∥gτ1∥2 +

t−1∑
τ2=0

βt−1−τ2
1

1

1− β1
∥gτ2∥2)

Plugging the first-order term and second-order term back to the descent lemma, and apply b =
1
b20

log3(CTd2/δ), where b0 is arbitrary constant smaller than 1. We have

L(zt+1) + Φt+1 ≤L(zt) + Φt − κη(1− b0)(
√

1 + b0ηG+ ϵ)−1∥∇L(xt)∥2

+ κ2η2(1 + b0)
2 β1(β1 + 1)L̂

2(1− β1)ϵ2
(

t∑
τ1=0

βt−τ1
1 ∥gτ1∥2 +

t−1∑
τ2=0

βt−1−τ2
1 ∥gτ2∥2)

Summing the descent inequalities up across different iterations yields
L(zt+1) + Φt+1

≤L(z0) + Φ0 −
t∑

τ=0

ηκ(1− b0)(
√
1 + b0ηG+ ϵ)−1∥∇L(xτ )∥2

+ κ2η2(1 + b0)
2 β1L̂

2(1− β1)ϵ2

t∑
τ=0

(

t−τ∑
τ1=0

βt−τ−τ1
1 )∥∇L(xτ )∥2

≤L(z0) + Φ0 −
t∑

τ=0

ηκ(1− b0)(
√

1 + b0ηG+ ϵ)−1∥∇L(xτ )∥2 + κ2η2(1 + b0)
2 β1(1 + β1)L̂

2(1− β1)2ϵ2

t∑
τ=0

∥∇L(xτ )∥2

(3)

Let t+1 = t̂. We have L(zt+1)−L∗ > F := 1
2LG

2 by definition. On the other hand, by the descent
lemma, with sufficiently small κ, we can guarantee

L(zt+1)− L∗ +Φt+1 ≤ L(z0)− L∗ +Φ0 := ∆0

where ∆0 is bounded given the initialization is benign. We specify G as any constant larger than
2L∆0 which will yield contradiction. Hence we conclude that along the optimization trajectory, the
norm of gradient is upper bounded by G. By Eq. 3, we can also derive the convergence result on the
relaxed assumption.

Theorem G.3. Suppose the sequence of iterates {xt}Tt=1 is generated by Algorithm 1 (SAFL)
with a constant learning rate η and κ subject to κ < (1 − β1)

2ϵ2η(1 − b0)((1 + b0)
2β1(1 +

β1)L̂(
√
1 + b0ηG+ ϵ))−1. Set G = 2L∆0 + 1. Set b = 1

b20
log3(CTd2/δ), where b0 ∈ (0, 1) is an

arbitrary constant. Under Assumptions 4, for any T and ϵ > 0, with probability 1−Θ(δ),

1− b0

2(
√
1 + b0ηG+ ϵ)

T∑
t=0

∥∇L(xt)∥2 ≤ L(z0) + Φ0.
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Algorithms Communication Bits learning rate Convergence Rate

FetchSGD Õ(1) O(1/
√
T ) O(1/

√
T ) (A)

CocktailSGD O(1) O(1/(
√
T + T 1/3d2 + d3)) O(1/

√
T + d2/(T )2/3)

CD-Adam O(1) O(1/
√
d) O(

√
d/

√
T )

Onebit-Adam O(d) O(1/
√
T ) O(1/

√
T )

Efficient-Adam O(1) O(1/
√
T ) O(

√
d/

√
T ) (B)

Ours Õ(1) O(1/
√
T ) O(1/

√
T ) (C)

Table 2: Comparison on Theoretical Guarantees. We only include the dependence on d and T . (A)
Needs a heavy-hitter assumption, otherwise deteriorated to O(T 1/3). (B) There is no asymptotic
convergence for the algorithm. (C) requires the assumption on the fast-decay Hessian eigenspectrum.
Otherwise, the convergence rate can deteriorate to O(d/

√
T ) under dimension-independent learning

rate.

The two simplifications applied to the analysis does not harm the generalizability of the theorem.
First, if the client performs multi-step gradient descent in the local training phase, we additionally
need a guarantee on the norm of all subsequent local gradients. Notice that the analysis in (Li et al.,
2024) are not specific to any architectures or data distribution, we can use the same technique to
show boundedness of the gradient norm along the optimization trajectory over each client. Second,
the case involving stochastic noise has been considered in (Li et al., 2024). Instead of showing the
deterministic decrease in L(zt) +Φt, it is advocated to alternatively show a high probability decrease
given the stochastic noise is bounded with high probability, which is exactly what we managed to
show in the main paper. Therefore, this improved technique can be seamlessly applied to our analysis.

H DISCUSSION ON ASSUMPTIOM 4 AND RELATED WORKS

Assumption 4 is one of the key assumptions in our theoretical improvement. However, the anisotropic
structure in Hessian mainly helps in dealing with the second order term. Solely applying Assumption
4 is not sufficient. First, the usage of assumption is highly specific to the compression operator in this
paper, i.e. random sketching. Previous works fail to utilize the anisotropic Hessian structure in deep
learning. For example, in (Wang et al., 2023), Lemma A.1 indicates the discrepancy between the local
and the global model unavoidably picks up a dimension dependence because of the accumulation
of the error introduced by their specific compression algorithm. This accumulative effect cannot
be handled by simply applying the Hessian assumption. In (Wang et al., 2022), the dimensional
dependence arises in their first-order descent term (B.14) and (B.15), and hence the assumption on
Hessian does not apply either.

Additionally, we summarize the theoretical guarantees of the existing approaches in Table 2. From
the table, we can see all the comparisons made in the main paper are fair.
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