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ABSTRACT

Large language models (LLMs) have shown an impressive ability to perform tasks
believed to require "thought processes”. When the model does not document an
explicit thought process, it becomes difficult to understand the processes occur-
ring within its hidden layers and determine if they can be referred to as reasoning.
We introduce a novel and interpretable analysis of internal multi-hop reasoning
processes in LLMs. We demonstrate that the prediction process for compositional
reasoning questions can be modeled using a simple linear transformation between
two semantic category spaces. We show that during inference, the middle lay-
ers of the network generate highly interpretable embeddings that represent a set
of potential intermediate answers for the multi-hop question. We use statistical
analyses to show that a corresponding subset of tokens is activated in the model’s
output, implying the existence of parallel reasoning paths. These observations
hold even when the model lacks the necessary knowledge to solve the task. Our
findings can help uncover the strategies that LLMs use to solve reasoning tasks,
offering insights into the types of thought processes that can emerge from artificial
intelligence. Finally, we discuss the implications of cognitive modeling for these
results.

1 INTRODUCTION

The spread of activation theory in cognitive psychology suggests that ideas and concepts are stored
in a network of interconnected nodes in the brain (Collins and Loftus, 1975). When one node is
activated through perception, memory, or thought, it triggers a cascade that activates related nodes,
facilitating processes like memory retrieval (Anderson, 1983) and association generation (Kenett
et al., 2017). This theory has been instrumental in understanding how people recall information and
connect different concepts, influencing cognitive research and practical applications like semantic
search algorithms (McNamara, 1992; Hahn and Chater, 1998; Hofmann et al., 2011). An alternative
approach In cognitive psychology is the propositional approach (Johnson-Laird, 1983). It contrasts
sharply with the associative approach by focusing on the logical structure and truth values of beliefs
and judgments rather than mere connections between ideas. Propositional reasoning concerns how
individuals assess, validate, and infer relationships between different propositions, considering their
truthfulness and logical consistency. This method involves a more deliberate and conscious level
of thought, requiring the cognitive system to engage in analysis and critical thinking. On the other
hand, the associative approach operates on automatic processes, where thoughts and memories are
triggered by simple connections or links between ideas without evaluating their truth value (Holyoak
and Morrison, 2005; Oaksford and Chater, 2007; Sperber and Noveck, 2004; Elqayam and Evans,
2011; De Neys and Bonnefon, 2013; Pennycook et al., 2015a;b). This results in a more instinctual
and less reflective form of cognition, demonstrating how both approaches play distinct roles in
human thought and understanding.

In the field of artificial intelligence, large language models (LLMs) have demonstrated a remark-
able capability to complete tasks believed to require "thought processes" (Wei et al., 2022; Bubeck
et al., 2023; Achiam et al., 2023). Originating from cognitive psychology, this notion of a thought
process hinges on the ability to manipulate information in an abstract space, commonly referred to
as working memory (Miyake and Shah, 1999; Baddeley, 2003). For example, consider the question:
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"What is the first letter of the name of the color of a common banana?". Did you say to yourself or
imagine the word "yellow" when trying to answer? The average response will be “yes”. The chain-
of-thoughts (CoT) method (Wei et al., 2022) has been the most recent success story for LLMs in
solving tasks that require holding an intermediate state. This method involves LLMs noting subtask
answers, eventually leading to the final answer. This approach resembles the propositional reasoning
approach, and LLMs will likely adopt this strategy to generate human-like text.

However, Unlike the case of CoT, which encourages the model to mimic a human-like thought
process, the training process underlying LLMs imposes no constraints on the internal process that
generates the output. Thus, when not writing down an explicit thought process, the model could
adopt various strategies to solve multi-hop tasks (Figure 1). This raises an important question: what
strategy does the model use when applying the implicit approach? Recent studies have investigated
the mechanisms that enable models to directly answer multi-hop questions (i.e., through a single
token prediction). Yang et al. (2024) showed that during inference, the embeddings at the position
of the bridge entity’s descriptive mention offer a higher probability for the intermediate result than
prompts that do not refer to this entity. Li et al. (2024) investigated the root causes of failures in di-
rectly answering compositional questions. Their findings revealed that successful prompt examples
showed an increased probability of intermediate results in the middle layers. Both studies demon-
strated through interference experiments that modifying the embeddings to increase the probability
of the intermediate answer also affected the final answer.

(a) Chain of attribute extractions

(b) Complex attribute extraction (c) Full associative inference

(d) Distributional reasoning

Figure 1: Illustration of possible strategies to answer the question: What is the first letter of the
name of the color of a common banana?: (a) The extraction of the color attribute creates a bridge
entity from which the second attribute will be extracted; (b) Only a single extraction of the specific
attribute, first letter of the name of the color, is performed; (c) The words banana, color, and letter
are statistically related to the output y; (d) The extraction of the color attribute results in a distribution
of bridge entities. From these entities, the second attribute will be extracted.

This work focuses on compositional two-hop questions. These can be formalized as a sequence of
two attribute extractions (e.g., What is the first letter of the name of the color of a common banana?);
the second extraction relies on information from the first (y from yellow). The main findings of this
work suggest that the middle layers of LLMs not only represent the results of the first attribute
extraction (i.e., yellow) but also this phenomenon is distributed over the range of possibilities (i.e.,
yellow, brown, green). We propose that the first attribute extraction creates a distribution of possible
attributes while the second extraction operates on this distribution simultaneously (Figure 1d). This
concept resembles the spread of activation theory.
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Our proposal, which we refer to as a distributional reasoning, is demonstrated by showing that
activations of potential final answers in the output layer can be approximated using a linear model
which operates on the potential intermediate answers from the middle layers. We also show that,
after the middle layer of the network, the inference process of compositional reasoning questions
is characterized by highly interpretable hidden embeddings, which can be divided into two phases:
(1) Increasing the activation of potential intermediate answers and (2) reducing the activation of
intermediate answers while enhancing potential final answers (example in Figure 2a). The majority
of this phase transition is handled by the feed-forward blocks (see Appendix A). Without testing
direct causality, we demonstrate a strong relation between the distributions of intermediate answers
and their corresponding final answers (example in Figure 2b). Lastly, we conduct two experiments
that show that LLMs use the same reasoning process even when they hallucinate their answers.
By forcing the models to solve reasoning tasks which are based on fictitious items, we can assess
better how generalized their reasoning abilities are. This approach offers a novel method for creating
datasets for evaluating internal processes of LLMs.

(a) Activations by layer (b) Correlation between categories

Figure 2: An example of distributional reasoning in Llama-2-13B using the prompt "What is the
first letter of the name of the color of a common banana? The first letter is ". We projected the
embeddings from the hidden layers into the vocabulary space and analyzed the activation pattern
of the intermediate and final answers. (a) The dashed lines represents activations of intermediate
answers A⃗1 (color names), while the solid lines represent the activations of final answers A⃗2 (letters)
by layer. A phase transition in the activation patterns is observed around layer 30. (b) Activations of
intermediate answers A⃗1(colors) extracted from layer 25 (x-axis), compared to activations of final
answers A⃗2 (letters) extracted from the last layer (y-axis).

The described reasoning process emerges from the end-to-end training approach of LLMs, which
aims to optimize model output without additional constraints beyond its architecture. This char-
acteristic makes LLMs particularly intriguing as models for providing valuable insights into cog-
nitive modeling. This reasoning process consists of associative-like activations, which gradually
and simultaneously activate semantic ideas related to the task but not necessarily essential for solv-
ing it. When observing the complete process, this associative-like pattern constructs a structured,
propositional-like reasoning process, which consists of distinct stages (reasoning hops). By demon-
strating that LLMs utilize both approaches in their operations, the paper not only sheds light on the
internal workings of these models but also provides a computational model that mirrors these two
major cognitive approaches. This helps bridge the understanding between human cognitive pro-
cesses and artificial reasoning mechanisms, contributing valuable insights to the ongoing debate on
how cognition can be modeled and replicated in machines.

Contributions:

• Novel and interpretable analysis of the multi-hop reasoning process that considers parallel and
alternative reasoning paths.
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• Statistical analysis demonstrating that the reasoning outcome of the model can be approximated
by applying a simple linear transformation to a small and interpretable subset of logits from the
middle layers. This method reveals the extent to which the second-hop operation is invariant to
the prompt specifics.

• New dataset of fabricated items, allowing us to trace the reasoning process while decoupling it
from the content stored in LLMs. This approach provides a novel method for creating datasets to
assess internal processes in LLMs.

• Computational framework demonstrating the role of associations in structured reasoning.

Section 2 discusses related work, which includes reasoning in LLMs and approaches for inter-
pretability. Section 3 defines crucial notations, describes our model for distributional reasoning,
and provides details about the dataset we used. Section 4 presents our experiments that demonstrate
the phenomenon of distributional reasoning, along with the detailed results. Section 5 discusses the
implications of our results, including potential future directions, and Section 6 presents the limita-
tions of our work.

2 RELATED WORK

Reasoning in LLMs. An established line of work has attempted to assess and enhance the capa-
bility of LLMs to solve complex tasks (Wei et al., 2022; Press et al., 2023). Most recent successes
were achieved thanks to the methods of Chain-of-Thoughts (Wei et al., 2022), which involves LLMs
noting subtask answers. Others addressed the ability of LLMs to manage the entire reasoning pro-
cess in its hidden layers and answer in a single token prediction (Sakarvadia et al., 2023; Yang et al.,
2024; Li et al., 2024).

Interpretability in LLMs. Many studies have attempted to interpret the internal processes occur-
ring in LLMs during prediction (Vig et al., 2020; Geiger et al., 2021; Wu et al., 2024). This included
identifying the roles of various modules in the model (Elhage et al., 2021; Geva et al., 2023; Gat
et al., 2023; Li et al., 2024) and developing methods for verbally describing how the output pre-
diction is constructed (nostalgebraist, 2020; Geva et al., 2022; Chen et al., 2024). Other studies
suggest that semantic relations in LLMs are represented as linear relations (Gurnee and Tegmark,
2023; Park et al., 2023; 2024), and some of the layers’ operations can be approximated by applying
linear mappings (Din et al., 2023). This paper contributes to the collective effort to understand the
prediction processes in LLMs and simplify them by approximating them as linear operations.

3 BACKGROUND

3.1 NOTATION

In line with the notation used by Press et al. (2023), every two-hop compositional reasoning question
can be formulated using five variables: Subject - the initial topic the question is about; Q1 - the first
hop question that extracts an attribute from the subject; A1 - the answer for Q1; Q2 - the second
hop question that extracts an attribute from A1; A2 - the answer for Q2, which should be the final
answer to the entire question. Table 1 presents a concrete example of this formulation. In addition,
this paper will use several more notations as follows: Category - This refers to a semantic group
of attribute names (e.g., colors, letters, cities, etc.). Representative Token - This is a single token
from the model vocabulary associated with a specific word or expression (e.g., "US" for "The United
States", "P" for "Pound", etc.). At times, the term representative token may be shortened to "token".

To analyze the extent to which a term is represented in a single embedding vector, we can utilize the
LM head in a technique commonly known as the Logit Lens (nostalgebraist, 2020). The LM head is
the matrix that the model uses to project the output of the final layer into a vector in the vocabulary
space. We will use the term activation of a word in a specific layer to refer to the result of activating
the LM head on the output of this layer and selecting the index of the representative token of this
word from the result. Formally:

activationl(word) = (Wxl)t
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Table 1: Compositional reasoning notation. To illustrate the notation, we use our running example.

Notation Example

Question What is the first letter of the name of the color of a common banana?
Subject Banana
Q1 Color of (Banana)
A1 Yellow
Q2 First letter of (Yellow)
A2 Y

Where xl is the normalized output of layer number l, W is the LM head, and t is the index of the
representative token of the word. This technique is widely used to extract semantic interpretations
from hidden embeddings (Geva et al., 2023; Yang et al., 2024; Li et al., 2024). We use the terms
activation or logit interchangeably.

Lastly, we use the term activation vector of category, denoted as A⃗1 or A⃗2, to refer to the activa-
tions of an entire category.

3.2 LINEAR APPROXIMATION OF DISTRIBUTIONAL REASONING

We aim to define the two-hop reasoning process in two stages: (1) from a prompt to an activation
vector of the intermediate answers category (A⃗1), and (2) a transformation from this activation
vector to the final activation vector (A⃗2). Stage (1) is operated by a function that extracts potential
attributes from a given subject. We hypothesize in this work that Stage (2) can be modeled using
a linear transformation between the two category spaces. According to our formulation there is a
matrix Q2 that, given a subject and a function fQ1, can approximate the final vector A⃗2 as follows:

A⃗1 ∈ Rc1 , A⃗2 ∈ Rc2 , Q2 ∈ Rc2×c1

A⃗1 = fQ1 (subject)

A⃗2 = Q2 × A⃗1

The variables c1 and c2 represent the sizes of the semantic categories of the intermediate and final
answers, respectively. Most importantly, the Q2 matrix is invariant to the subject, as it is defined
solely by the second-hop question.

3.3 DATASETS

All experiments conducted in our study are based on the Compositional Celebrities dataset presented
by (Press et al., 2023). We use 6, 547 prompts divided into 14 question types for our models and
analyses. Each question pertains to an attribute of a celebrity’s birthplace. For the semantic category
of A⃗1 we used all of the 117 countries used as intermediate answers in the dataset. For each of the 14
question types, the semantic category of A⃗2 is defined by all the final answers associated with that
type. Regarding the representative tokens, for each word or term, we generally use the first token
capable of completing the input prompt with that term. Additionally, the prompts were modified so
that the next likely token would directly answer the two-hop question (see Appendix B.1). This was
done to ensure that the model will attempt to predict relevant tokens for our experiment (i.e., tokens
from A⃗2). Full details can be found in our codebase, which we include as part of our supplementary
material.

3.3.1 HALLUCINATIONS DATASET

We introduce a unique dataset, based on the Compositional Celebrities dataset. This dataset is
distinctive because it contains two-hop questions that do not have correct answers. It was designed
to encourage the model to "hallucinate" potential answers and perform manipulations on them. It
divided into two sets: The first set contains 1400 questions in the same format of the questions in
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the Compositional Celebrities dataset, but all questions are regarding fictitious persons (see name
list in Appendix B.2). The second set contains 3 question types: “What is the color of the favorite
fruit of <name>? The name of the color is”, "What is the first letter of the name of the favorite fruit
of <name>? The first letter is” and “What is the first letter of the name of the favorite vegetable of
<name>? The first letter is”. Full details can be found in our codebase, which we include as part of
our supplementary material.

4 EXPERIMENTS AND RESULTS

In this section we display our main results. All the experiments mentioned were conducted using
the open-source LLMs Llama-2 (Touvron et al., 2023) with size 7B and 13B, Llama-3 (AI@Meta,
2024) with size 8B, and Mistral (Jiang et al., 2023) with size 7B.

4.1 LINEAR TRANSFORMATION BETWEEN TOKEN CATEGORIES

To test our hypothesis regarding the existence of the Q2 matrix (see Section 3.2), we construct a
linear model for each of the 14 question types, following the same steps. We begin by extracting the
logits of A⃗1 from every layer during the inference process. For each layer, we attempt to predict the
logits of A⃗2 in the final layer by using a linear regression model coupled with the k-fold method (k =

5). We fitted a linear model for each of the 14 categories, predicting all A⃗2 logits simultaneously.
We then calculated R2 between the predictions and true values for each of the A⃗2 logits predictions.
For each category, we calculated the mean R2 by averaging the individual R2 values for each A⃗2
logit. The reported R2 per category is this computed mean. Figure 3a presents an example of one
regression model results, and the mean R2 across all categories is presented in Figure 3b. Detailed
results by LLM and category are presented in Appendix C.1.

(a) Model predictions for calling codes (b) Mean R2 by layer

Figure 3: Tokens of the intermediate answers A⃗1 can approximate the tokens of the final answers
A⃗2 using a linear transformation. We fitted regression models using k-fold (k=5) method to predict
A⃗2 from A⃗1. Results using Llama-2-13B: (a) Our model predictions for question type "calling-
code". This model predicts the the activation of possible first digits (1-9) using the activation of
117 countries from layer 25. x-axis - A⃗2 predicted activations; y-axis - real A⃗2 activations. Each
color represent another digit (mean R2 = 0.86). (b) Mean R2 (with error bars denoting standard
deviations normalized by the squared root of the group size) of our model across 14 question types,
calculated for each layer separately. In blue - mean R2 of the models using the logits of A⃗1 as
predictors. In orange - mean R2 of the models using the logits of A⃗2 as predictors. On average, the
intermediate category A⃗1 was more informative about the final answers.

The results show that once two-thirds of the model depth is reached, the activations of A⃗1 can
linearly predict the activations of A⃗2 in the final layer, with a mean of R2 > 0.5 across various
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models and question types. We interpret this observation as evidence of the strong association that
occurs in LLMs between intermediate and final results in compositional reasoning.

In the next step, we repeat the same modeling method with a minor modification. This time, we
attempt to predict the A⃗2 logits in the final layer using the same A⃗2 logits from each of the other
layers. The results suggest that, on average across all question types, the logits from the mid-layers
of A⃗1 provide more information about A⃗2 than the logits of A⃗2 themselves (Figure 3b). This again,
supports the role of the intermediate answers in the forming of the final answers generated by the
LLMs.

4.2 INTERPRETABLE REPRESENTATION OF THE INTERMEDIATE CATEGORY

We continue by examining the dynamics of the activations of A⃗1 and A⃗2. Our analysis indicates that
after the middle layers of the network, there is an increase in the activation of multiple tokens from
A⃗1 (Figure 4a). On average, the embeddings from the mid-layers assign a high probability to the
most relevant token of A⃗1, sometimes even making it the most probable next token, even though this
token is unsuitable for continuing a coherent sentence. In the subsequent layers, a phase transition
occurs where the tokens of A⃗1 decrease as the tokens of A⃗2 increase, continuing this trend until the
output is generated (Figure 4a).

Interestingly, there seems to be a connection between the activation patterns of the two categories
in terms of the order of the activations (Figure 4b). The activation patterns of all tested LLMs
are displayed in Appendix C.3. To investigate the relationship between the two activation patterns,
we created a new vector, S⃗1, by sorting the logits of A⃗1 in decreasing order of their activation.
We then created the following S⃗2 vector: for every index i in S⃗1, the value of S2i corresponds
to the activation of the A⃗2 logit of the correct final answer that matches the representative token
of S1i. For example, in the banana-color question, if the sorted S⃗1 contains the activations of
[yellow, brown, green], the respective S⃗2 will contain the activations of [y, b, g]. We calculated
the average of S⃗1 and S⃗2 across the entire dataset (6547 prompts) and selected the top 10 logits
from each vector. As a result, we obtained a vector representing the average of the top 10 logits
for A⃗1 and another vector of A⃗2 logits that correspond to these top 10 A1 logits. To study the
correlation between the activation patterns of S⃗1 and S⃗2, we calculated the Spearman correlation
between them. The mean results are presented in Figure 4c, and category-level results are detailed in
Appendix C.3. The results indicate that, on average, once two-thirds of the model depth is reached,
the most activated logits of A⃗1 are arranged in a pattern closely related to the order of the A⃗2 logits
in the output layer.

These observations are important in terms of interpretability. The increase in the activations of A⃗1
provides a lens to examine the process that led the model to its answer. This can assist in verifying
the validity of thought processes and in explaining hallucinations when the response is incorrect. In
addition, it raises questions about the causality of the process. returning to the banana question: if
the model strongly associates the activation of yellow with y, one could argue that the activations are
independent, and only exist because both tokens are attributes of banana. In contrast, if the model
activates yellow, brown, green, and subsequently activates y, b, g in the same order, it becomes more
challenging to argue that the activations are independent.

4.3 HALLUCINATIONS EXPERIMENTS

To further test our formulation and dissociate the operations of the Q2 matrix from the model’s
knowledge about the subject, we created two datasets of compositional questions based on the com-
positional celebrities dataset. We conducted two different experiments designed to make the model
answer questions beyond its knowledge. This method is useful for demonstrating that the model
uses valid reasoning processes, regardless of whether it can provide a correct answer.

4.3.1 FICTITIOUS SUBJECTS

To test the consistency of Q2, we generated a list of 100 fictitious names (see Appendix B.2). We
then expanded each of the 14 question types with 100 prompts related to these fictitious names.
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(a) Top 10 logits

(b) Top 10 logits from layer 25 and last layer (c) Spearman correlations

Figure 4: There is a high correlation between the activation patterns of A⃗1 and A⃗2. Results of Llama-
2-13B on the entire dataset: (a) The embeddings from the middle layers primarily represent A⃗1
(dashed lines). Then, a phase transition occurs, and the embeddings from the final layers primarily
represent the A⃗2 logits (solid lines). The colors indicate pairs of intermediate answers (country
names), and their corresponding correct final answers (e.g., capitals). (b) Both categories are sorted
identically: The x-axis displays A⃗1 activations from layer 25, while the y-axis shows A⃗2 activations
from the final layer. The colors indicate the same pairs from (a). (c) Mean spearman correlations
(with error bars denoting standard deviations normalized by the squared root of the group size)
across 14 question types by model depth.

We used the new prompts to evaluate our models using the following method: Initially, we fitted a
linear model with Ridge regularization on the original prompts from the dataset. Then, we attempted
to predict the A2 activations of the new prompts without additional training. An example of such
generalization result is presented in Figure 5a, and the mean of R2 by layer is presented in Figure 5b.
All other experimental results are detailed in Appendix C.2. Even though the predictions are less
accurate, the statistical connections derived from the dataset remain informative, even for fictitious
subjects (mean R2 > 0.3). The results suggest that the reasoning process is independent of the
model’s training data. Linear models trained on the original dataset were able to generalize to
prompts about fictitious subjects. This indicates that the same reasoning process occurs within the
model, regardless of the subject.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Predictions for calling codes of fictitious names (b) Mean R2 by layer

Figure 5: Fictitious subjects experiment. We show that the reasoning process is dissociated from the
model’s training data. Our linear models generalize to prompts about fictitious subjects, indicating
that the same reasoning process occurs within the model, regardless of the subject. We used the
Ridge regularization method to fit linear models on the original dataset. We then tested these models
on modified questions about fictitious celebrity names. Results using Llama-2-13B: (a) Our model
generalization results (layer 25) on question type “callingcode” (mean R2 = 0.61). (b) Mean R2

(with error bars denoting standard deviations normalized by the squared root of the group size) of
the fictitious subjects experiments across 14 question types, calculated for each layer separately.

4.3.2 FICTITIOUS ATTRIBUTES

We used 1000 person names from the Compositional Celebrities dataset and generated new two-hop
question types related to unusual attributes of the subjects (e.g., their favorite fruit, see Section 3.3.1).
Assuming that information regarding favorite fruits is less likely to appear in the dataset, this allows
us to test whether the reasoning process remains valid under out of distribution question domains.
We repeated the same modeling method described in Section 4.1, and selected results are presented
in Figure 6. All other experimental results are detailed in Appendix C.2. The results suggest that
distributional reasoning process exists in out-of-distribution domains as well.

(a) Fruit color (b) Fruit first letter (c) Vegetable first letter

Figure 6: Fictitious attributes experiment. We observe distributional reasoning in out-of-distribution
domains as well. A linear model was used to predict A⃗2 from A⃗1 on question prompts related to
unusual subject attributes. Results using Llama-2-13B: (a) Predictions for 1000 question prompts
regarding the color of celebrities’ favorite fruits (mean R2 = 0.45); (b) Predictions for 1000 question
prompts regarding the first letter of celebrities’ favorite fruits (mean R2 = 0.28); (c) Predictions for
1000 question prompts regarding the first letter of celebrities’ favorite vegetables (mean R2 = 0.41).
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5 DISCUSSION

This paper presents evidence of distributional reasoning in multi-hop question tasks, providing in-
sights into the types of thought processes that can emerge from artificial intelligence. We demon-
strated that by selecting a subset of tokens representing a semantic category of intermediate results,
the tokens of potential final results can be approximated using a simple linear transformation. Our
findings indicate that, on average, the intermediate results can explain at least 50% of the variance
in the final activation results. Additionally, we demonstrated that during inference, the network’s
middle layers activate a small subset of tokens representing potential intermediate answers. This
subset corresponds to another small subset activated in the output layers, representing potential final
answers. This observation implies the presence of parallel reasoning paths, which are highly inter-
pretable. Finally, through two dedicated experiments, we demonstrated that LLMs can manipulate
information in a valid reasoning process, even when the information is hallucinated. The dynamic
we capture, where the intermediate answers seem to be significant in the forming of the final an-
swers, offers a novel cognitive approach for modeling together association and explicit reasoning.
This bridges a gap that was observed by cognitive sciences decades ago and emphasis the role of AI
research in cognitive modeling.

Our research, focused on observational objectives, investigates the fundamental aspects of intelli-
gence in LLMs. However, we believe our findings can offer some practical implications. The linear
approximation shown in this work is valuable not only for its computational efficiency but also for
illustrating the consistency of the reasoning process, which can be viewed as a linear projection of
the intermediate concepts in the semantic space. Evaluating this consistency can help assess the
ability of LLMs to use valid reasoning processes, which can sometimes be more important than the
output itself. For certain machine learning tasks, achieving accuracy is the primary goal, and the
spurious correlations that contribute to this accuracy are not a concern. However, if our objective
is to develop general human-like intelligence, it is essential to create machines with traceable and
trustworthy thinking processes that can be applied to various reasoning domains.

Additionally, by tracking the activation of relevant intermediate concepts and their relations to the
outcome, one can assess the validity of the answer and distinguish it from hallucination. Our findings
help identify the root causes of the model’s hallucinations when answering compositional questions.
This is possible because the solving process is interpretable, and false associations can be tracked.
Moreover, our findings show that a linear approximation can bypass half of the network depth, which
should be examined in the context of early exit mechanisms (Schuster et al., 2022). We show that
in multi-hop tasks, the middle layers activate tokens that are irrelevant for completing a coherent
sentence (e.g., color name instead of letter), and their high probability may cause naive early exit
methods to fail. However, we also show that it may be sufficient to observe the activation of the
first-hop category and perform a simple manipulation to avoid unnecessary computations.

6 LIMITATIONS

There are a several limitations concerning the presented results. First, despite the variety in the
types of questions we use, they have a similar general structure. Altering this structure could lead
to different results. Second, it is worth noting that different prompt structures, question types, or
subjects could lead the model to employ various solving strategies (see Figure 1). The statistical
nature of the learning process likely encourages the model to utilize a variety of strategies and
combine them when solving two-hop questions. Third, the proposed analysis cannot account for
semantic categories that lack clear representative tokens, such as years. Future work will need to
explore the mechanisms in these cases. Fourth, the results primarily rely on the Logit Lens method
for semantic interpretation of hidden embeddings. While empirical evidence suggests this method
can provide meaningful interpretations, it remains unclear why it works, as these LLMs were not
trained for this purpose. The Logit Lens method may contain undiscovered biases and should be
used with caution. Lastly, although the statistical analyses in this paper are quite convincing, they
do not show direct causality. Future work will need to take this into account.
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APPENDIX

A THE REASONING PROCESS PATH

A previous study by Geva et al. (Geva et al., 2023) investigated the information flow in attribute
extraction prompts. Their findings indicated that a significant part of the process in the initial lay-
ers occurs at the position of the subject prompt. This stage of processing is referred to as "subject
enrichment". Following this stage, as the authors reported, the information from this process prop-
agates to the final index. The remaining process is primarily handled in the final index, leading up
to the model’s output. Moreover, Li et al. (Li et al., 2024) identified critical modules for multi-hop
reasoning tasks. They found that, up to the middle layers, the feed-forward blocks at the subject’s
position were the most significant. In the later stages, the most important modules were the multi-
head attention blocks and the feed-forward at the final index.

In order to verify these observation on our dataset, we conducted an interference experiment for
each prompt in the dataset as follows: At first, we used the model to predict the most probable token
after this prompt, and saved its probability as the baseline probability. Next, for each layer of the
model, we input the same data into the model but interfered the prediction process. We replaced
the embeddings at all positions in that layer with zeros, except for the last index. After the inferred
inference, we saved the updated probability of the token from the first round. For each layer l, we
calculate its intervention_score as follows:

intervention_scorel = 1− prob

baseline

The average intervention_score across the entire dataset is presented in Figure 7 (using Llama-2-
13B model). The results show that on average, the influence of other token positions on the output
probability significantly reduces after the 15th layer, reaching minimal effect from layer 25 onward.
Considering our observations from Section 4.2, it appears that the increase in activation of the A⃗1
logits (as shown in the Figure 4a) corresponds to an information flow from other token positions.
It also appears that the phase transition in the embeddings, where A⃗1 activations decrease as A⃗2
enhances, is managed solely at the last token index.

B DATASETS

B.1 PROMPT MODIFICATIONS

To enhance the probability that the next predicted token will directly answer the two-hop question,
we have added a suffix to each prompt in the compositional celebrities dataset. The specific suffixes
for each category are outlined in Table 2.

B.2 FICTITIOUS NAMES LIST

For the creation of our hallucinations dataset (see Section 3.3.1), we used Gemini (Team et al.,
2024) for auto generating the following list of 100 fictitious names: Scarlett Evans, Oliver Mor-
gan, Eleanor Clark, Finley Cooper, Violet Gray, Carter Edwards, Alice Brooks, Samuel Parker,
Willow Moore, Henry Mitchell, Isla Bennett, Leo Turner, Evelyn Carter, Wyatt Peterson, Harper
Garcia, Lucas Ramirez, Luna Patel, Logan Martin, Scarlett Lopez, Aiden Sanchez, Chloe Lee, Owen
Perez, Riley Daniels, Liam Davis, Nora Robinson, Caleb Wright, Hazel Young, Elijah Thompson,
Aurora Jones, Ryan Lewis, Zoey Walker, Dylan Baker, Penelope Harris, Gabriel Allen, Charlotte
Campbell, Nicholas Taylor, Amelia Jackson, Jackson Moore, Evelyn Garcia, Matthew Ramirez,
Luna Lopez, Benjamin Daniels, Maya Bennett, Alexander Turner, Ava Davis, Ethan Johnson, Ri-
ley Brooks, William Peterson, Aurora Sanchez, Noah Lewis, Zoey Baker, Dylan Harris, Penelope
Allen, Gabriel Campbell, Charlotte Taylor, Nicholas Jackson, Amelia Moore, Jackson Garcia, Eve-
lyn Ramirez, Matthew Lopez, Luna Daniels, Benjamin Bennett, Maya Turner, Alexander Davis, Ava
Johnson, Ethan Brooks, Riley Peterson, William Sanchez, Aurora Lewis, Noah Baker, Zoey Harris,
Dylan Allen, Penelope Campbell, Gabriel Taylor, Charlotte Jackson, Nicholas Moore, Amelia Gar-
cia, Jackson Ramirez, Evelyn Lopez, Matthew Daniels, Luna Bennett, Benjamin Turner, Maya Davis,
Alexander Johnson, Ava Brooks, Ethan Peterson, Riley Sanchez, William Lewis, Aurora Baker, Noah
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Table 2: Prompt modifications

Question type Original prompt Suffix Comments

callingcode What is the calling
code of the birthplace
of <name>?

The calling code is +

tld What is the top-level
domain of the birth-
place of <name>?

The top-level domain
is .

rounded_lng What is the (rounded
down) longitude of
the birthplace of
<name>?

The longitude is ended with space or
"-" depends on the
country

rounded_lat What is the (rounded
down) latitude of
the birthplace of
<name>?

The latitude is ended with space or
"-" depends on the
country

currency_short What is the cur-
rency abbreviation
in the birthplace of
<name>?

The abbreviation is "

currency What is the currency
in the birthplace of
<name>?

The currency name is
"

ccn3 What is the 3166-1
numeric code for
the birthplace of
<name>?

The numeric code is ended with space

capital What is the capital
of the birthplace of
<name>?

The capital is

currency_symbol What is the currency
symbol in the birth-
place of <name>?

The symbol is "

rus_common_name What is the Russian
name of the birth-
place of <name>?

The common name in
Russian is "

jpn_common_name What is the Japanese
name of the birth-
place of <name>?

The common name in
Japanese is "

urd_common_name What is the Urdu
name of the birth-
place of <name>?

The common name in
Urdu is "

spa_common_name What is the Spanish
name of the birth-
place of <name>?

The common name in
Spanish is "

est_common_name What is the Estonian
name of the birth-
place of <name>?

The common name in
Estonian is "
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Figure 7: Intervention score using Llama-2-13B model. The average significance of any token index,
except for the last one, dramatically decreases after the 15th layer.

Harris, Zoey Allen, Dylan Campbell, Penelope Taylor, Gabriel Jackson, Charlotte Moore, Nicholas
Garcia, Amelia Ramirez, Jackson Lopez, Evelyn Daniels, Matthew Bennett.

C SEMANTIC TRANSFORMATIONS EXPERIMENTS

All experiments in this study were conducted using a cluster service with servers that include a
single GPU and 30GB RAM, or through Google Colab services on a T4 server. The experiments
were conducted using the following large language models: Llama-2-13B , Llama-2-7B, Mistral-7B
(with 8-bit quantization method), and Llama-3-8B.

C.1 MAIN RESULTS

We fitted a linear model for each of the 14 categories, predicting all A⃗2 logits simultaneously. We
then calculated R2 between the predictions and true values for each of the A⃗2 logits predictions. For
each category, we calculated the mean R2 by averaging the individual R2 values for each A⃗2 logit.
The reported R2 per category is this computed mean. Results for each category, at two-thirds of the
model’s depth, can be found in Table 3. Average of Mean R2 by layer can be found in Figure 8.

C.2 HALLUCINATIONS EXPERIMENTS RESULTS

The results of the hallucinations experiments (see Section 4.3.1) are detailed by category and LLM
in Table 3. The outcomes for the fictitious subjects experiments are shown under the FN columns,
while the results for the fictitious attributes experiments appear in the bottom rows.
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(a) Llama-2-13B (b) Llama-2-7B

(c) Mistral-7B (d) Llama-3-8B

Figure 8: Mean R2 (with error bars denoting standard deviations normalized by the squared root of
the group size) of our models across 14 question types, calculated for each layer separately. In blue
- mean R2 of the models using the logits of A⃗1 as predictors. In orange - mean R2 of the models
using the logits of A⃗2 as predictors.
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Table 3: R2 of linear regressions models. Columns A1 and A2 represent the categories of the
semantic transformations predicted by the models; The results for the model at two-thirds depth of
the LLM are displayed in the 2

3L columns; The FN columns show the results for the experiments
involving fictitious subjects; The final divided layers correspond to the experiments with fictitious
attributes.

Model

Transformation Llama2-13B Llama2-7B Mistral-7B Llama3-8B

A1 A2 2
3L FN 2

3L FN 2
3L FN 2

3L FN

countries calling codes 0.86 0.61 0.76 0.47 0.84 0.68 0.56 0.4
countries domains 0.72 0.42 0.58 0.45 0.6 0.41 0.59 0.29
countries longitudes 0.54 0.27 0.61 0.36 0.67 0.34 0.54 0.19
countries latitudes 0.78 0.37 0.54 0.18 0.68 0.46 0.57 0.26
countries currency shorts 0.74 0.58 0.67 0.5 0.68 0.45 0.72 0.53
countries currency names 0.75 0.47 0.69 0.45 0.72 0.44 0.69 0.46
countries iso 31661-1 0.52 0.32 0.64 0.1 0.5 0.42 0.58 0.29
countries capitals 0.59 0.48 0.39 0.19 0.6 0.4 0.59 0.26
countries currency symbols 0.78 0.53 0.68 0.4 0.71 0.5 0.78 0.58
countries russian names 0.22 0.22 0.32 0.33 0.46 0.5 0.26 0.26
countries japanese names 0.45 0.42 0.34 0.28 0.53 0.54 0.4 0.31
countries urdu names 0.46 0.14 0.49 0.07 0.62 0.41 0.36 0.06
countries spanish names 0.3 0.17 0.35 0.37 0.42 0.3 0.38 0.22
countries estonian names 0.34 0.33 0.48 0.47 0.55 0.46 0.33 0.26

fruits colors 0.45 0.52 0.33 0.39
fruits letters 0.27 0.44 0.39 0.42
vegetables letters 0.42 0.46 0.38 0.56

Table 4: Spearman correlation for average 10 top answers. The 1
2L and 2

3L columns correspond to
the results at half and two-thirds of the model depth, respectively. Note: ∗∗∗p < 0.001, ∗∗p < 0.01,
∗p < 0.05.

Model

Llama2-13B Llama2-7B Mistral-7B Llama3-8B
Question type 1

2L
2
3L

1
2L

2
3L

1
2L

2
3L

1
2L

2
3L

Calling code 0.98∗∗∗ 1.00∗∗∗ 0.38 0.96∗∗∗ 0.72∗ 0.99∗∗∗ 0.89∗∗∗ 0.99∗∗∗

Domain 1.00∗∗∗ 1.00∗∗∗ -0.85∗∗ 0.99∗∗∗ -0.72∗ 0.99∗∗∗ 0.76∗ 1.00∗∗∗

Longitude 0.92∗∗∗ 0.92∗∗∗ 0.94∗∗∗ 0.95∗∗∗ 0.92∗∗∗ 0.92∗∗∗ 0.49 0.58
latitude 0.44 0.44 0.19 0.24 0.54 0.54 0.77∗∗ 0.77∗∗

Currency short 0.95∗∗∗ 0.95∗∗∗ 0.15 1.00∗∗∗ 0.64∗ 1.00∗∗∗ 0.72∗ 0.94∗∗∗

Currency name 0.99∗∗∗ 0.99∗∗∗ -0.32 0.90∗∗∗ 0.5 0.99∗∗∗ 0.47 0.77∗∗

ISO 3166-1 0.1 0.1 -0.90∗∗∗ -0.96∗∗∗ 0.89∗∗∗ 0.95∗∗∗ -0.45 -0.44
Capital 0.96∗∗∗ 0.99∗∗∗ 0.2 0.92∗∗∗ 0.93∗∗∗ 1.00∗∗∗ -0.09 -0.1
Currency Symbol 0.99∗∗∗ 0.99∗∗∗ -0.77∗∗ -0.18 0.12 0.99∗∗∗ 0.72∗ 0.59
Russian name 0.95∗∗∗ 0.95∗∗∗ 0.3 0.98∗∗∗ 0.79∗∗ 0.95∗∗∗ -0.68∗ -0.68∗
Japanese name 0.94∗∗∗ 0.94∗∗∗ 0.92∗∗∗ 0.96∗∗∗ 0.49 0.70∗ 0.85∗∗ 0.88∗∗∗

Urdu name 0.79∗∗ 0.81∗∗ -0.05 -0.28 0.32 0.35 -0.81∗∗ -0.48
Spanish name 0.93∗∗∗ 0.93∗∗∗ 0.82∗∗ 0.95∗∗∗ 0.42 0.61 0.95∗∗∗ 0.96∗∗∗

Estonian name 0.41 0.44 0.43 0.96∗∗∗ -0.62 0.02 0.33 0.37

C.3 ACTIVATION PATTERNS

Figure 9 presents the activation patterns of the top 10 A⃗1 logits and their corresponding A⃗2 logits
(see Section 4.2) of each LLM. Table 4 presents the Spearman correlations of the top 10 A⃗1 logits
and their corresponding A⃗2 logits sorted by LLM and layer.
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(a) Llama-2-13B (b) Llama-2-7B (c) Llama-3-8B (d) Mistral

(e) Llama-2-13B (f) Llama-2-7B (g) Llama-3-8B (h) Mistral

Figure 9: (a)-(d) The embeddings from the middle layers primarily represent A⃗1 (dashed lines).
Then, a phase transition occurs, and the embeddings from the final layers primarily represent the
A⃗2 logits (solid lines). The colors indicate pairs of intermediate answers (country names), and their
corresponding correct final answers (e.g., capitals). (e)-(h) Both categories are sorted identically:
The x-axis displays A⃗1 activations from the two-thirds layer, while the y-axis shows A⃗2 activations
from the final layer.

Table 5: Extra relations dataset and results. The table present how many samples we used for the
linear regression fit, the subjects in which the question was about, the semantic categories of A1 and
A2, their sizes, and mean R2 in 2

3 depth of the model.

Samples Subject A1 A1 size A2 A2 size Mean R2

524 sport play-
ers

sports 8 letters 8 0.75

198 flowers,
fruits,
vegetables,
birds

colors 10 letters 7 0.55

347 random
words

letters 7 colors 10 0.86

524 sport play-
ers

sports 5 numbers 5 0.62

C.4 ADDITIONAL RESULTS

To expand our empirical results to other domains than those presented in the Compositional Celebri-
ties Dataset, we curated additional 1593 prompts divided into 4 new relation types which do not
relate to countries or celebrities’ birthplaces. The question types are: “What is the first letter of the
sport that <> plays? The first letter is”; “What is the first letter of the color of <>? The first letter
is “; “What is the color that starts with the same letter as "<>"? The color is “ and “How many
players are there in a team of the sport played by <>? The number of players is “. The prompts was
generated using Gemini (Team et al., 2024). Details about the dataset and the results of the semantic
transformation experiment using Llama-2-13B are presented in Table 5.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 10: High correlation between the rate at which the model was able to answer questions
correctly in each category and the evidence for distributional reasoning (mean R2 in our regression
analysis). Analysis using Llama-2-13B.

C.5 CORRELATION TO ANSWERS CORRECTNESS

Implicit reasoning, where the model does not write down its steps, is notably more challenging for
LLMs. While the Compositional Celebrities dataset was beneficial for testing our hypotheses, it
was not designed for implicit reasoning, making some question types too hard for the tested models
to solve in that way. When the models completely fail to reason, there might not be any reasoning
process that could be followed, and therefore our regression analyses will not work.

In order to test the dominance of distributional reasoning in the LLMs’ solving strategy, we con-
ducted the following analysis using Llama-2-13B: For each prompt in the dataset, we tested whether
the correct answer to the question appeared in one of the five most probable tokens predicted by the
model. If it did, the prompt was classified as successful. Figure 10 shows the percentage of success-
ful prompts in each category compared to our analyses’ results (mean R² at two-thirds depth of the
model). We observe a high correlation (0.72) between these values, suggesting that distributional
reasoning is more dominant as a solving strategy when the model can reason effectively. Conversely,
it’s less dominant when the model struggles to reason, and other mechanisms are shaping the model’s
output.

D TRACING REASONING PROCESS

For demonstration purposes, this section presents 4 examples of two-hop questions in which we can
visually trace the reasoning process which led to the output. All four examples were generated using
Llama-2-13B.

Correct Answers Figure 11 presents two examples of prompts where the model predicted the
correct answer to the two-hop question. The visualization shows the activation of each A1 logit
from the 2

3 depth of the model compared to their corresponding activations of the A2 from the
last layer. In both examples, we can see that the model activated the correct intermediate answer,
allowing us to verify that the internal process occurred as expected.
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(a) Correct country to correct domain (b) Correct sport to correct letter

Figure 11: Visualization of distributional reasoning: Two examples of prompts where the model
activated the correct intermediate answers and predicted the correct output. Examples use Llama-
2-13B. (a) Activations for the prompt: "What is top-level domain of the birthplace of Ludwig van
Beethoven? The top-level domain is .". The x-axis shows the activation of different countries in
layer 25, while the y-axis displays the activations of their corresponding domain names in the last
layer. The model correctly activated "Germany" and accurately predicted "de". (b) Activations for
the prompt: "What is the first letter of the name of the sport played by Roger Federer? The first
letter is: ". The x-axis shows the activation of different sport names in layer 25, while the y-axis
displays the activations of their corresponding letters in the last layer. The model correctly activated
"Tennis" and accurately predicted "T".

Incorrect Answers Figure 12 presents two examples of prompts where the model predicted an
incorrect answer to the two-hop question. The visualization shows the activation of each A1 logit
from the 2

3 depth of the model compared to their corresponding activations of the A2 from the
last layer. In both examples, we can see that the model activated the wrong intermediate answer,
subsequently activated its corresponding final answer, and failed to answer the question correctly.
This approach allows us to trace the source of the error in the reasoning process, which in this case
stems from an incorrect answer to the first hop of the question.
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(a) Incorrect country to incorrect domain (b) Incorrect sport to incorrect letter

Figure 12: Visualization of distributional reasoning in hallucinations: Two examples of prompts
where the model activated the wrong intermediate answers and predicted the wrong output. Exam-
ples use Llama-2-13B. (a) Activations for the prompt: "What is top-level domain of the birthplace
of Harry Shum Jr.? The top-level domain is .". The x-axis shows the activation of different countries
in layer 25, while the y-axis displays the activations of their corresponding domain names in the
last layer. The model incorrectly activated "China" instead of "Costa Rica", leading to an incorrect
activation of "cn" rather than "cr". (b) Activations for the prompt: "What is the first letter of the
name of the sport played by Emad Al Malki? The first letter is: ". The x-axis shows the activation
of different sport names in layer 25, while the y-axis displays the activations of their corresponding
letters in the last layer. The model incorrectly activated "Basketball" instead of "Karate", leading to
an incorrect activation of "B" rather than "K".
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