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ABSTRACT

Continual learning (CL) remains a significant challenge for deep neural networks,
as it is prone to forgetting previously acquired knowledge. Several approaches
have been proposed in the literature, such as experience rehearsal, regularization,
and parameter isolation, to address this problem. Although almost zero forgetting
can be achieved in task-incremental learning, class-incremental learning remains
highly challenging due to the problem of inter-task class separation. Limited ac-
cess to previous task data makes it difficult to discriminate between classes of
current and previous tasks. To address this issue, we propose ‘Attention-Guided
Incremental Learning’ (AGILE), a novel rehearsal-based CL approach that incor-
porates compact task-attention to effectively reduce interference between tasks.
AGILE utilizes lightweight, learnable task projection vectors to transform the la-
tent representations of a shared task-attention module toward task distribution.
Through extensive empirical evaluation, we show that AGILE significantly im-
proves generalization performance by mitigating task interference and outper-
forms rehearsal-based approaches in several CL scenarios. Furthermore AGILE
can scale well to a large number of tasks with minimal overhead while remaining
well-calibrated with reduced task-recency bias2.

1 INTRODUCTION

In recent years, deep neural networks (DNNs) have been shown to perform better than humans on
certain specific tasks, such as Atari games (Silver et al., 2018) and classification (He et al., 2015).
Although impressive, these models are trained on static data and are unable to adapt their behavior
to novel tasks while maintaining performance on previous tasks when the data evolves over time
(Fedus et al., 2020). Continual learning (CL) refers to a training paradigm in which DNNs are ex-
posed to a sequence of tasks and are expected to learn potentially in an incremental or online manner
(Parisi et al., 2019). CL has remained one of the most daunting tasks for DNNs, as acquiring new
information significantly deteriorates the performance of previously learned tasks, a phenomenon
termed ”catastrophic forgetting” (French, 1999; McCloskey & Cohen, 1989). Catastrophic forget-
ting arises due to the stability-plasticity dilemma (Mermillod et al., 2013), the degree to which the
system must be stable to retain consolidated knowledge while also being plastic to assimilate new
information. Catastrophic forgetting often results in a significant decrease in performance, and in
some cases, previously learned information is completely erased by new information (Parisi et al.,
2019).

Several approaches have been proposed in the literature to address the problem of catastrophic for-
getting in CL. Rehearsal-based approaches (Ratcliff, 1990) explicitly store a subset of samples from
previous tasks in the memory buffer and replay them alongside current task samples to combat for-
getting. In scenarios where the buffer size is limited due to memory constraints (e.g., edge devices),
these approaches are prone to overfitting on the buffered data (Bhat et al., 2022). On the other hand,
regularization-based approaches (Kirkpatrick et al., 2017) introduce a regularization term in the op-
timization objective and impose a penalty on changes in parameters important for previous tasks. Al-
though regularization greatly improves stability, these approaches cannot discriminate classes from

2Code will be made publicly available upon acceptance.
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Figure 1: Attention-Guided Incremental Learning (AGILE) consists of a shared task-attention mod-
ule and a set of task-specific projection vectors, one for each task. Each sample is passed through
the task-attention module once for each projection vector, and the outputs are fed into task-specific
classifiers. AGILE effectively reduces task interference and facilitates accurate task-id prediction
(TP) and within-task prediction (WP).

different tasks, thus failing miserably in scenarios such as Class-Incremental Learning (Class-IL)
(Lesort et al., 2019). Parameter isolation approaches limit interference between tasks by allocating
a different set of parameters for each task, either within a fixed model capacity (Gurbuz & Dovrolis,
2022) or by expanding the model size (Rusu et al., 2016). However, these approaches suffer from
several shortcomings, including capacity saturation and scalability issues in longer task sequences.
With an increasing number of tasks, selecting the right expert in the absence of task identity is
nontrivial (Aljundi et al., 2017), and therefore limits their application largely to Task-Incremental
Learning (Task-IL).

The problem of inter-task class separation in Class-IL remains a significant challenge due to the dif-
ficulty in establishing clear boundaries between classes of current and previous tasks (Lesort et al.,
2019). When a limited number of samples from previous tasks are available in the buffer in experi-
ence rehearsal, the CL model tends to overfit on the buffered samples and incorrectly approximates
the class boundaries. Kim et al. (2022) decomposes the Class-IL problem into two sub-problems:
task-id prediction (TP) and within-task prediction (WP). TP involves identifying the task of a given
sample, while WP refers to making predictions for a sample within the classes of the task identified
by TP. Therefore, the Class-IL problem can be seen as a combination of the Task-IL problem (WP)
and the task discovery (TP). Regardless of whether the CL algorithm defines it explicitly or implic-
itly, good TP and good WP are necessary and sufficient to ensure good Class-IL performance (Kim
et al., 2022). As task interference adversely affects both WP and TP, we hypothesize that focusing
on the information relevant to the current task can facilitate more accurate TP and WP by filtering
out extraneous or interfering information.

To this end, we propose ‘Attention-Guided Incremental Learning’ (AGILE), a rehearsal-based novel
CL approach that encompasses compact task-attention to effectively mitigate interference between
tasks and facilitate a good WP and TP in Class-IL. To further augment rehearsal-based learning
in Class-IL, AGILE leverages parameter isolation to bring in task specificity with little computa-
tional or memory overhead. Specifically, AGILE entails a shared feature encoder and task-attention
module, and as many task projection vectors as the number of tasks. Each task projection vec-
tor is a light-weight learnable vector associated with a particular task, specialized in transforming
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the latent representations of shared task-attention module towards the task distribution. With dy-
namic expansion of task projection vectors, AGILE scales well to a large number of tasks while
leaving a negligible memory footprint. Across CL scenarios, AGILE greatly reduces task interfer-
ence and outperforms rehearsal-based approaches while being scalable and well-calibrated with less
task-recency bias.

2 RELATED WORKS

Rehearsal-based Approaches: Earlier work sought to combat catastrophic forgetting in CL by
explicitly storing and replaying previous task samples through Experience-Rehearsal (ER) (Ratcliff,
1990). Several works build on top of ER: Since soft targets carry more information and capture com-
plex similarity patterns in the data compared to hard targets (Hinton et al., 2015), DER++ (Buzzega
et al., 2020) enforces consistency in predictions through regularization of the function space. To
further improve knowledge distillation through consistency regularization, CLS-ER (Arani et al.,
2022) employs multiple semantic memories that better handle the stability-plasticity trade-off. More
recent works focus on reducing representation drift right after task switching to mitigate forget-
ting: ER-ACE (Caccia et al., 2022) through asymmetric update rules shields learned representations
from drastic adaptations while accommodating new information. Co2L (Cha et al., 2021) employs
contrastive representation learning to learn robust features that are less susceptible to catastrophic
forgetting. However, under low-buffer regimes, these approaches are prone to overfitting. Under
low-buffer regimes, the quality of the buffered samples plays a significant role in defining the abil-
ity of the CL model to approximate past behavior. GCR (Tiwari et al., 2022) proposed a core set
selection mechanism that approximates the gradients of the data seen so far to select and update the
memory buffer. In contrast, DRI (Wang et al., 2022a) employs a generative replay to augment the
memory buffer under low buffer regimes. Although reasonably successful in many CL scenarios,
rehearsal-based approaches lack task-specific parameters and run the risk of shared parameters being
overwritten by later tasks.

Task Attention: As the weights in DNNs hold knowledge of previous tasks, intelligent segre-
gation of weights per task is an attractive alternative to rehearsal to reduce catastrophic forgetting
in CL. Dynamic sparse parameter isolation approaches (e.g., NISPA (Gurbuz & Dovrolis, 2022),
CLNP (Golkar et al., 2019), PackNet (Mallya & Lazebnik, 2018)) leverage over-parameterization
of DNNs and learn sparse architecture for each task within a fixed model capacity. However, these
approaches suffer from capacity saturation and fail miserably in longer task sequences. By contrast,
some parameter-isolation approaches grow in size, either naively or intelligently, to accommodate
new tasks with the least forgetting. Progressive Neural Networks (PNN; (Rusu et al., 2016)) was one
of the first works to propose a growing architecture with lateral connections to previously learned
features to simultaneously reduce forgetting and enable forward transfer. Since PNN instantiates
a new sub-network for each task, it quickly runs into scalability issues. Approaches such as CPG
(Hung et al., 2019a) and PAE (Hung et al., 2019b) grow drastically slower than PNN, but require
task identity at inference. HAT (Serra et al., 2018) employed a task-based layer-wise hard atten-
tion mechanism in fully connected or convolutional networks to reduce interference between tasks.
However, layer-wise attention is quite cumbersome as many low-level features can be shared across
tasks. Due to the limitations mentioned above, task-specific learning approaches have been largely
limited to the Task-IL setting.

Although almost zero forgetting can be achieved in Task-IL (Serra et al., 2018), the Class-IL scenario
still remains highly challenging due to the problem of inter-task class separation. Therefore, we
propose AGILE, a rehearsal-based CL method that encompasses task attention to facilitate a good
WP and TP by reducing interference between tasks.

3 PROPOSED METHOD

3.1 MOTIVATION

Task interference arises when multiple tasks share a common observation space but have different
learning goals. In the presence of task interference, both WP and TP struggle to find the right class
or task, resulting in reduced performance and higher cross-entropy loss. Continual learning in the
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Algorithm 1 Proposed Method: AGILE
1: Input: Data streams Dt, Model Φθ = {fθ, τθ, δθ, gθ},

Hyperparameters α, β, γ, λ, Memory bufferDm ← {}
2: for all tasks t ∈ {1, 2, .., T} do
3: for all epochs e ∈ {1, 2, .., E} do
4: Sample a minibatch {xj , yj}Nj=1 ∈ Dt

5: ŷj , zsj , ztpj = TASKATTENTION(xj)
6: L = γLtp + λLpd

7: if Dm ̸= ∅ then
8: Sample a minibatch {xk, yk}Nk=1 ∈ Dm

9: ŷk, zsk, ztpk = TASKATTENTION(xk)

10: L += Ler + βLcr

11: Update Φθ and Dm

12: Update θEMA

13: Return: model Φθ

Algorithm 2 Task-Attention
function TASKATTENTION(x):

zf = fθ(x)
for all i ≤ t do

zie = τe(zf )
zis = τs(zie ⊗ δi)
ztp = τ tp(zie ⊗ δi)
ŷi = gi(zis ⊗ zf )

ŷj = concat(ŷij ; ∀i ≤ t)
return ŷ, zs, ztp

brain is governed by the conscious processing of multiple knowledge bases anchored by a rich set of
neurophysiological processes (Goyal & Bengio, 2020). Global Workspace Theory (GWT) (Baars,
1994; 2005; Baars et al., 2021) provides a formal account of cognitive information access and posits
that one such knowledge base is a common representation space of fixed capacity from which infor-
mation is selected, maintained, and shared with the rest of the brain (Juliani et al., 2022). During
information access, the attention mechanism creates a communication bottleneck between the rep-
resentation space and the global workspace, and only behaviorally relevant information is admitted
into the global workspace. Such conscious processing could help the brain achieve systematic gen-
eralization (Bengio, 2017) and deal with problems that could only be solved by multiple specialized
modules (VanRullen & Kanai, 2021).

In functional terms, GWT as a model of cognitive access has several benefits for CL. (i) The common
representation space is largely a shared function, resulting in maximum re-usability across tasks; (ii)
The attention mechanism can be interpreted as a task-specific policy for admitting task-relevant
information, thereby reducing interference between tasks; And (iii) multiple specialized attention
modules enable solving more complex tasks that cannot be solved by a single specialized function.
Combining intuitions from both biological and theoretical findings (Appendix A), we hypothesize
that focusing on the information relevant to the current task can facilitate good TP and WP, and
consequently systemic generalization by filtering out extraneous or interfering information. In the
following section, we describe in detail how we mitigate interference between tasks through task
attention.

3.2 PRELIMINARY

Continual learning typically involves sequential tasks t ∈ {1, 2, .., T} and classes j ∈ {1, 2, ..., J}
per task, with data appearing over time. Each task is associated with a task-specific data distribution
(Xt,j ,Yt,j) ∈ Dt. We consider two popular CL scenarios, Class-IL and Task-IL, defined in Defini-
tions 1 and 2, respectively. Our CL model Φθ = {fθ, τθ, δθ, gθ} consists of a backbone network (e.g.
ResNet-18) fθ, a shared attention module τθ, a single expanding head gθ = {giθ | i ≤ t} representing
all classes for all tasks, and a set of task projection vectors up to the current task δθ = {δi | i ≤ t}.
Training DNNs sequentially has remained a daunting task since acquiring new information sig-
nificantly deteriorates the performance of previously learned tasks. Therefore, to better preserve
the information from previous tasks, we seek to maintain a memory buffer Dm that represents all
previously seen tasks. We employ reservoir sampling (Algorithm 3) (Vitter, 1985) to update Dm

throughout CL training. At each iteration, we sample a mini-batch from both Dt and Dm, and
update the CL model Φθ using experience-rehearsal as follows:

Ler = E
(xi,yi)∼Dt

[Lce(σ(Φθ(xi)), yi)] + α E
(xk,yk)∼Dm

[Lce(σ(Φθ(xk)), yk)] (1)
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where σ(.) is a softmax function and Lce is a cross-entropy loss. The learning objective for ER
in Equation 1 promotes plasticity through the supervisory signal from Dt and improves stability
through Dm. Therefore, the buffer size (|Dm|) is critical to maintaining the right balance between
stability and plasticity in the ER. In scenarios where buffer size is limited (|Dt| ≫ |Dm|) due to
memory constraints and/or privacy reasons, repeatedly learning from the constrained buffer leads
to overfitting on the buffered samples. Following Arani et al. (2022), we employ an EMA of the
weights (θEMA) of the CL model to enforce consistency in the predictions through Lcr to enable
better generalization (Appendix D.4).

3.3 SHARED TASK-ATTENTION MODULE

We seek to facilitate good WP and TP by reducing task interference through task attention. Unlike
multi-head self-attention in vision transformers, we propose using a shared, compact task-attention
module to attend to features important for the current task. The attention module τθ = {τe, τs, τ tp}
consists of a feature encoder τe, a feature selector τs, and a task classifier τ tp. Specifically, τθ is a
bottleneck architecture with τe represented by a linear layer followed by Sigmoid activation, while
τs is represented by another linear layer with Sigmoid activation. To orient attention to the current
task, we employ a linear classifier τ tp that predicts the corresponding task for a given sample.

We denote the output activation of the encoder fθ as zf ∈ Rb×Nf , τe as ze ∈ Rb×Ne , τs as
zs ∈ Rb×Ns and that of τ tp as ztp ∈ Rb×Ntp , where Nf , Ne, Ns, and Ntp are the dimensions of
the output Euclidean spaces, and b is the batch size. To exploit task-specific features and reduce
interference between tasks, we equip the attention module with a learnable task projection vector δi
associated with each task. Each δi ∈ R1×Ne is a lightweight Ne-dimensional randomly initialized
vector, learnable during the corresponding task training and then fixed for the rest of the CL training.
During CL training, for any sample x ∈ Dt ∪ Dm, the incoming features zf and the corresponding
task projection vector δt are processed by the attention module as follows:

ze = τe(zf ); zs = τs(ze ⊗ δt); ztp = τ tp(ze ⊗ δt). (2)

The attention module first projects the features onto a common latent space, which is then trans-
formed using a corresponding task projection vector. As each task is associated with a task-specific
projection vector, we expect these projection vectors to capture task-specific transformation coeffi-
cients. To further encourage task-specificity in task-projection vectors, AGILE entails an auxiliary
task classification:

Ltp = E
(x,y)∼Dt

[
Lce(σ(ztp), y

t)
]

(3)

where yt is the ground truth of the task label.

3.4 NETWORK EXPANSION

As detailed above, the shared attention module has two inputs: the encoder output zf and the corre-
sponding task projection vector δi. As the number of tasks evolves during CL training, we propose
to expand our parameter space by adding new task projection vectors commensurately. These pro-
jection vectors are sampled from a truncated normal distribution with values outside [−2, 2] and
redrawn until they are within the bounds. Thus, in task t there are {δi ∈ 1, 2, .., t} projection vec-
tors. For each sample, AGILE performs as many forward passes through the attention module as the
number of seen tasks and generates as many feature importances (∈ Rb×t×Ns ) (see Figure 1). To
encourage the diversity among these feature importances, we employ a pairwise discrepancy loss as
follows:

Lpd = −
t−1∑
i=1

E
(x,y)∼Dt

∥σ(zts)− stopgrad(σ(zis))∥1 (4)

where zis is a feature importance generated with the help of the task projection vector δi. Since there
are multiple feature importances, selecting the right feature importance is non-trivial for longer task
sequences. Therefore, we propose to expand gθ = {giθ}∀i ≤ t with task-specific classifiers. Each giθ
takes corresponding feature importance zis and the encoder output zf as input and returns predictions
for classes belonging to the corresponding task. We concatenate all the outputs from task-specific
classifiers and compute the final learning objective as follows:

L = Ler + βLcr + γLtp + λLpd (5)
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Table 1: Comparison of SOTA methods across various CL scenarios. We provide the average top-1
(%) accuracy of all tasks after training. † Results of the single EMA model.

BUFFER METHODS
SEQ-CIFAR10 SEQ-CIFAR100 SEQ-TINYIMAGENET

CLASS-IL TASK-IL CLASS-IL TASK-IL CLASS-IL TASK-IL

- SGD 19.62±0.05 61.02±3.33 17.49±0.28 40.46±0.99 07.92±0.26 18.31±0.68
- JOINT 92.20±0.15 98.31±0.12 70.56±0.28 86.19±0.43 59.99±0.19 82.04±0.10

- PNNS - 95.13±0.72 - 74.01±1.11 - 67.84±0.29

200

ER 44.79±1.86 91.19±0.94 21.40±0.22 61.36±0.35 8.57±0.04 38.17±2.00
DER++ 64.88±1.17 91.92±0.60 29.60±1.14 62.49±1.02 10.96±1.17 40.87±1.16

CLS-ER† 61.88±2.43 93.59±0.87 43.38±1.06 72.01±0.97 17.68±1.65 52.60±1.56
ER-ACE 62.08±1.44 92.20±0.57 35.17±1.17 63.09±1.23 11.25± 0.54 44.17±1.02

CO2L 65.57±1.37 93.43±0.78 31.90±0.38 55.02±0.36 13.88±0.40 42.37±0.74
GCR 64.84±1.63 90.8±1.05 33.69±1.40 64.24±0.83 13.05±0.91 42.11±1.01
DRI 65.16±1.13 92.87±0.71 - - 17.58±1.24 44.28±1.37
AGILE 69.37±0.40 94.25±0.42 45.73±0.15 74.37±0.34 20.19±1.65 53.47±1.60

500

ER 57.74±0.27 93.61±0.27 28.02±0.31 68.23±0.17 9.99±0.29 48.64±0.46
DER++ 72.70±1.36 93.88±0.50 41.40±0.96 70.61±0.08 19.38±1.41 51.91±0.68

CLS-ER† 70.40±1.21 94.35±0.38 49.97±0.78 76.37±0.12 24.97±0.80 61.57±0.63
ER-ACE 68.45±1.78 93.47±1.00 40.67±0.06 66.45±0.71 17.73± 0.56 49.99±1.51

CO2L 74.26±0.77 95.90±0.26 39.21±0.39 62.98±0.58 20.12±0.42 53.04±0.69
GCR 74.69±0.85 94.44±0.32 45.91±1.30 71.64±2.10 19.66±0.68 52.99±0.89
DRI 72.78±1.44 93.85±0.46 - - 22.63±0.81 52.89±0.60
AGILE 75.69±0.62 95.51±0.32 52.65±0.93 78.21±0.15 29.30±0.53 64.74±0.56

where β, γ, and λ are all hyperparameters. At the end of each task, we freeze the learned task
projection vector and its corresponding classifier. Figure 1 depicts our proposed approach, which is
detailed in Algorithms 1 and 2.

4 EXPERIMENTAL RESULTS

Table 1 presents a comparison of AGILE with recent rehearsal-based approaches in Class-IL and
Task-IL scenarios. The associated forgetting analysis can be found in Appendix C.1. Several ob-
servations can be made from these results: (1) Across almost all datasets and buffer sizes, AGILE
outperforms the rehearsal-based approaches by a large margin, signaling the importance of task at-
tention in CL. (2) Approaches that employ consistency regularization (e.g., DER++ and CLS-ER)
perform considerably better than other approaches. However, as is evident in AGILE, regularization
alone is not sufficient to discriminate classes from different tasks. (3) Although approaches aimed
at reducing representation drift (e.g., Co2L and ER-ACE) work reasonably well in simpler datasets,
they fail to perform well in challenging datasets. For example, in Seq-TinyImageNet where the
buffer-to-class ratio is small, their performance is far behind that of AGILE. As shared task attention
is largely dependent on task projection vectors to infer task distribution, we contend that fixing task
projection vectors after corresponding task training largely limits the representation drift in AGILE.
(4) Approaches aimed at improving the quality or quantity of buffered samples (e.g., GCR and DRI)
indeed improve over vanilla ER. However, the additional computational overhead in selecting or
generating buffered samples can be a problem on resource-constrained devices. On the other hand,
AGILE entails compact task attention with task projection vectors and outperforms rehearsal-based
approaches by a large margin with little memory and computational overhead.

The task-specific learning approaches, either within a fixed model capacity or by growing, entail
parameter isolation to reduce task interference in CL. Similarly, AGILE encompasses task projection
vectors to reduce interference between tasks. Figure 2 presents a comparison of AGILE with fixed
capacity models (NISPA, CLNP) and growing architectures (PNN, PAE, PackNet, and CPG) trained
on Seq-CIFAR100 with 20 tasks (buffer size 500 for AGILE). Across 20 tasks at the end of CL
training, AGILE achieves an average of 83.94% outperforming the baselines by a large margin. In
terms of parameter growth, PNN grows excessively, while CPG grows by 1.5x, and PAE by 2x. On
the other hand, AGILE grows marginally by 1.01x, that too for 20 tasks without compromising the
performance in longer task sequences (Table 3).
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Figure 2: Comparison of AGILE with task-specific learning approaches in Task-IL setting. We
report the accuracy on all tasks at the end of CL training with an average across all tasks in the
legend. AGILE outperforms other baselines with little memory overhead.
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Figure 3: Latent features and task projection vectors after training on Seq-CIFAR100 with 5 tasks.
(Left) t-SNE visualization of the latent features of the shared task attention module in the absence
of task projection vectors; (Middle) Task projection vectors along leading principle components.
(Right) t-SNE visualization of latent features of the shared task attention module in the presence of
task projection vectors. Task projection vectors specialize in transforming the latent representations
of shared task-attention module towards the task distribution, thereby reducing interference.

4.1 HOW AGILE FACILITATES A GOOD WP AND TP?

Figure 3 (left) shows the visualization of t-distributed stochastic neighbor embedding (t-SNE) of
latent features in the absence of task projection vectors. As can be seen, samples belonging to dif-
ferent tasks are distributed across the representation space. On the other hand, Figure 3 (right) shows
a t-SNE visualization of well-clustered latent features in the presence of task projection vectors. For
each sample, we visualize its latent features in task attention after transforming it with the corre-
sponding task projection vector. We also show how task projection vectors are distributed along
the principal components using PCA in Figure 3 (middle). AGILE entails a shared task-attention
module and as many lightweight, learnable task projection vectors as the number of tasks. As each
task projection vector learns the task-specific transformation, they project samples belonging to the
corresponding task differently, resulting in less interference and improved WP and TP in CL.

4.2 ABLATION STUDY

We aim to determine the impact of each component of AGILE. As previously mentioned, AGILE
utilizes consistency regularization through the use of EMA and a shared task-attention mechanism
with a single expanding head. Each of these components brings unique benefits to AGILE: con-
sistency regularization aids in consolidating previous task information in scenarios with low buffer
sizes, while EMA functions as an ensemble of task-specific models. Furthermore, EMA provides
better stability and acts as an inference model in our method. AGILE employs shared task-attention
using task-specific projection vectors, one for each task. As the number of tasks increases, selecting
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the appropriate task (projection vector) without task identity becomes increasingly difficult (Aljundi
et al., 2017). To address this issue, we implement a single expanding head instead of a single head,
where each projection vector is responsible for classes of the corresponding task. Table 2 presents
the evaluation of different components in Seq-TinyImageNet (buffer size 500). As shown, AGILE
takes advantage of each of these components and improves performance in both Class-IL and Task-
IL settings.

Table 2: Comparison of the contributions of each of the components in AGILE. Consistency regu-
larization in the absence of EMA implies consistency regularization by storing past logits.

CONSISTENCY REGULARIZATION EMA SINGLE-EXPANDING HEAD TASK-ATTENTION CLASS-IL TASK-IL

✓ ✓ ✓ ✓ 29.30±0.53 64.74±0.56
✓ ✓ ✓ ✗ 25.43±1.07 58.89±0.84
✓ ✓ ✗ ✗ 24.97±0.80 61.57±0.63
✓ ✗ ✗ ✗ 19.38±1.41 51.91±0.68
✗ ✗ ✗ ✗ 9.99±0.29 48.64±0.46

4.3 PARAMETER GROWTH

AGILE entails as many task projection vectors as the number of tasks. Therefore, the CL model
grows in size as and when it encounters a new task. To this end, we compare the parameter growth
in AGILE with respect to the fixed capacity model and the PNNs in Table 3. AGILE encompasses
as many lightweight, learnable task projection vectors as the number of tasks, specialized in trans-
forming the latent representations of the shared task-attention module towards the task distribution
with negligible memory and computational overhead. Compared to fixed capacity models, which
suffer from capacity saturation, AGILE grows marginally in size and facilitates a good within-task
and task-id prediction, thereby resulting in superior performance even under longer task sequences.
On the other hand, PNNs grow enormously in size, quickly rendering them unscalable in longer task
sequences.

Table 3: Growth in the number of parameters (millions) for different number of task sequences in
Seq-CIFAR100.

METHOD 5 TASKS 10 TASKS 20 TASKS

FIXED CAPACITY MODEL (WITH EMA) 22.461 22.461 22.461
AGILE 23.074 23.079 23.089
PNNS 297.212 874.015 2645.054

5 MODEL CHARACTERISTICS

A broader overview of the characteristics of the model is a necessary precursor for the deployment
of CL in the real world. To provide a qualitative analysis, we evaluate the recency bias and model
calibration for AGILE and other CL methods trained on Seq-CIFAR100 with a buffer size of 500 in
Class-IL scenario.

Model Calibration. CL systems are said to be well calibrated when the prediction probabilities
reflect the true correctness likelihood. Although DNNs have achieved high accuracy in recent years,
their predictions are largely overconfident (Guo et al., 2017), making them less reliable in safety-
critical applications. Expected Calibration Error (ECE) provides a good estimate of the reliability
of models by gauging the difference in expectation between confidence and accuracy in predic-
tions. Figure 4 (right) shows the comparison of different CL methods using a calibration framework
(Küppers et al., 2020). Compared to other baselines, AGILE achieves the lowest ECE value and
is considerably well-calibrated. By reducing interference between tasks, AGILE enables informed
decision-making, thereby reducing overconfidence in CL.

Task Recency Bias. When a CL model learns a new task sequentially, it encounters a few samples
of previous tasks while aplenty of the current task, thus skewing the learning towards the recent task
(Hou et al., 2019). Ideally, the CL model is expected to have the least recent bias with predictions
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Figure 4: (Left) Confusion matrix of different CL models. ER and DER++ have high recency
biases, while AGILE has evenly distributed predictions. (Right) Reliability diagram along with ECE
representing model calibration. AGILE is well-calibrated with the lowest ECE value. - - represents
the perfect calibration line. All models are trained on Seq-CIFAR100 with 5 tasks.

spread across all tasks evenly. To analyze task-recency bias, we compute the confusion matrix for
different CL models .For any test sample, if the model predicts any of the classes within the sample’s
true task label, it is considered to have predicted the task label accurately. Figure 4 (left) shows that
ER and DER++ tend to predict most samples as classes in the most recent task. On the other hand,
the predictions of AGILE are evenly distributed on the diagonal. Essentially, AGILE captures task-
specific information through separate task projection vectors and reduces interference between tasks,
resulting in the least recency bias.

6 CONCLUSION

We proposed AGILE, a novel rehearsal-based CL learning approach that employs a compact, shared
task-attention module with task-specific projection vectors to effectively reduce task interference in
CL. AGILE encompasses as many lightweight, learnable task projection vectors as the number of
tasks, specialized in transforming the latent representations of shared task-attention module towards
the task distribution with negligible memory and computational overhead. By reducing interference
between tasks, AGILE facilitates good within-task and task-id prediction, resulting in superior per-
formance across CL scenarios. With extensive empirical evaluation, we demonstrate that AGILE
outperforms the rehearsal-based and parameter-isolation approaches by a large margin, signifying
the efficacy of task attention in CL. Extending AGILE to rehearsal-free CL, and exploring different
forms of shared task-attention are some of the useful research directions for this work.

7 LIMITATIONS AND FUTURE WORK

We proposed AGILE to mitigate task interference and, in turn, facilitate good WP and TP through
task attention. AGILE entails shared task attention and as many task projection vectors as the number
of tasks. Task projection vectors capture task-specific information and are frozen after corresponding
task training. Selection of the right projection vector during inference is nontrivial in longer-task
sequences. To address this lacuna, we employ a single expanding head with task-specific classifiers.
However, a better alternative can be developed to fully exploit task specificity in the task projection
vectors. Second, AGILE strongly assumes no-overlap between classes of two tasks in Class-IL /
Task-IL settings. As each task-projection vector captures different information when there is non-
overlap between classes, an overlap might create more confusion among projection vectors, resulting
in higher forgetting. Furthermore, the shared task-attention module is still prone to forgetting due to
the sequential nature of CL training. Therefore, improving task-projection vector selection criterion,
extending AGILE to other more complex Class-IL / Task-IL scenarios, and reducing forgetting in
shared task-attention module through parameter isolation are some of the useful research directions
for this work.
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A THEORETICAL INSIGHT

We consider a widely adopted Class-IL setting within which classes and their domains appear at
most in one task, i.e., there is no overlap of classes between tasks.

Definition 1. (Class-IL): The CL model encounters t ∈ {1, 2...., T} tasks with j ∈ {1, 2...., J}
classes per task sequentially such that the classes belonging to different tasks are disjoint i.e. for
task-specific data (Xt,j ,Yt,j) ∈ Dt, Yt,j ∩Yt′,j′ = ∅, ∀j ̸= j′, ∀t ̸= t′. Given such a setting,
the primary goal of the CL model is to learn P (y ∈ Yt,j | D).

For any ground event D, Kim et al. (2022) partitioned this probability into two sub-problems,
namely within-task prediction (WP) probability: P (y ∈ Yt,j | y ∈ Yt, D) and task-id prediction
(TP) probability: P (y ∈ Yt | D) as follows:

P (y ∈ Yt0,j0 | D) =
∑

t=1,...,n

P (y ∈ Yt,j0 | y ∈ Yt, D)P (y ∈ Yt | D)

= P (y ∈ Yt0,j0 | y ∈ Yt0 , D)P (y ∈ Yt0 | D)

(6)

where t0 and j0 represent a particular task and one of its classes, respectively. TP indicates the task-
id of the sample, and WP means that the prediction for a test instance is only done within the classes
of the task to which the test instance belongs, which is basically the Task-IL problem as follows:

Definition 2. (Task-IL): Given the same setting as in Definition 1, the goal of the CL model is to
learn the mapping function f : X × T → Y i.e. predict the class label yj0 ∈ Yt0 for a sample x
from task t0 ∈ T.

In fact, it is possible to achieve almost zero forgetting in Task-IL (e.g. see (Serra et al., 2018)).
However, Class-IL remains challenging due to the difficulty in establishing class boundaries be-
tween classes of current and previous tasks. We seek to uncover how Class-IL performance can
be further improved. To this end, Let H(p, q) = −

∑
i pi log qi be the cross-entropy of two

probability distributions p and q. We use cross-entropy as a performance measure to assess the
relation between WP, TP, and Class-IL. We define the cross-entropy of WP, TP and Class-IL as
HWP (x) = H

(
ỹ, {P (x ∈ Xt0,j | x ∈ Xt0 , D)}j

)
, HTP (x) = H (ȳ, {P (x ∈ Xt | D)}t) and

HClass−IL(x) =H
(
y, {P (x ∈ Xt,j | D)}t,j

)
respectively, where ỹ, ȳ and y are ground-truth val-

ues ∈ {0, 1}. We now describe how WP, TP, and Class-IL are related to each other, and how
interference affects their performance.

Theorem 3. IfHWP (x) ≤ ϵ andHTP (x) ≤ ξ, thenHClass−IL(x) ≤ ϵ+ ξ (Kim et al., 2022).

For any ϵ > 0 and ξ > 0, Theorem 3 establishes a functional relationship between WP, TP, and
Class-IL. The theorem states that if HWP and HTP are bounded by ϵ and ξ respectively, then the
Class-IL cross-entropy loss HClass−IL is bounded by the sum of them. Therefore, having good TP
and WP, lowers the upper bound of the Class-IL loss.

Task interference arises when multiple tasks share a common observation space but have different
learning goals. In the presence of task interference, both WP and TP struggle to find the right class
or task, resulting in reduced performance and higher cross-entropy loss. Specifically, in the presence
of task interference, the upper bounds of WP and TP increase, indicating the corresponding decrease
in performance, i.e. HWP (x) ≤ ϵ + ϵ̂ and HTP (x) ≤ ξ + ξ̂. According to Theorem 3, the upper
bound of HClass−IL will also increase proportionately. Assuming ϵ̂, ξ̂ ≫ 0, task interference can
have a substantial effect on overall Class-IL performance.

Therefore, it is quintessential to reduce task interference in CL to ensure optimum performance.
Combining intuitions from both biological and theoretical findings, we hypothesize that focusing on
the information relevant to the current task can facilitate good TP and WP, and consequently sys-
temic generalization by filtering out extraneous or interfering information. In the following section,
we describe in detail how we mitigate interference between tasks through task attention.
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B BROADER RELATED WORKS

In section2, we compared and contrasted several methods that are closely related to AGILE. We will
now explore the broader related works whose problem statement overlaps with that of AGILE.

Continually learning on a sequence of tasks blurs the decision boundaries between the classes of
current task and previous tasks (Lesort et al., 2019). Some approaches address inter-task forgetting
indirectly by mitigating the effect of class imbalance in rehearsal-based learning. Attractive and
repulsive training (ART) (Choi & Choi, 2022), aims to reduce the correlation between new and old
classes through a training strategy that attracts samples from the same class while repelling other
similar samples. LUCIR (Hou et al., 2019) proposes a new framework to learn a unified classifier by
a combination of cosine normalization, less-forget constraint, and inter-class separation. Although
these approaches aim to reduce catastrophic forgetting in CL, they address the fine-grained problem
of inter-task class separation without explicitly encouraging a common representation and task-
specific learning. In vision transformers, DyToX (Douillard et al., 2022) modified the final multi-
head self-attention layer to act as a task attention block using task tokens. However, Dytox is an
adhoc approach for transformer architectures and cannot be extended to convolutional architectures.

While rehearsal-based approaches have been highly efficient in CL, repeated learning on a small
subset of previous task data results in overfitting thereby inhibiting generalization (Verwimp et al.,
2021). Several methods employ augmentation techniques either by combining multiple data points
into one (Boschini et al., 2022) or by producing multiple versions of the same buffer sample (Bang
et al., 2021). Gradient-based Memory EDiting (GMED) (Jin et al., 2021) proposes to edit individual
examples stored in the buffer to create more challenging data for alleviating catastrophic forgetting.
Distributionally Robust Optimization (DRO) (Wang et al., 2022b) proposes a principled memory
evolution framework to evolve buffer data distribution focusing on population-level and distribution-
level evolution. Contrary to the methods that modify memory buffer, Lipschitz Driven Rehearsal
(LiDER) (Bonicelli et al., 2022) proposes a regularization objective that induces decision boundary
smoothness by enforcing Lipschitz continuity of the model with respect to replay samples. Since
these approaches focus on the orthogonal problem of mitigating overfitting in buffer data, they can
be integrated into the popular rehearsal-based approaches for further improving generalization in
CL.

C CHARACTERIZATION OF AGILE

C.1 FORGETTING ANALYSIS

Learning continuously on a sequence of novel tasks often results in the new information interfering
with the consolidated knowledge in the model, causing catastrophic forgetting. Chaudhry et al.
(2018) introduced the forgetting measure (FT ) to quantify the extent to which previously learned
information is retained in the CL model.

Let aij be the test accuracy of the model for task j after learning task i. Then, after training a CL
model for T tasks, the forgetting measure FT for the model is defined as,

FT =
1

T − 1

T−1∑
t=0

a∗t − atT (7)

where a∗t denotes the best test accuracy for the task t. After training for T tasks, a∗t is typically
computed at the task boundaries as,

a∗t = max
l∈{t,t+1,..,T−1}

alt,∀t < T (8)

Since the inference model for AGILE is the EMA which is updated stochastically, the maximum
accuracy for a previous task could be at any point in the course of training. Therefore, we evaluate
AGILE on previous tasks after every epoch to find the maximum accuracy achieved for those tasks to
compute the forgetting measure FT . We compare the forgetting measures for different CL methods
across different datasets and buffer sizes in the Class-IL setting in Table 4. Evidently, AGILE suffers
significantly lower forgetting than other baselines. AGILE encompasses a shared task attention
module with task projection vectors that lower the interference between tasks, thereby reducing
forgetting.
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Table 4: Comparison of the forgetting measure for different CL methods for all scenarios reported
in Table 1. Compared to other baselines AGILE suffers the least forgetting.

BUFFER
SIZE

METHODS SEQ-CIFAR10 SEQ-CIFAR100 SEQ-TINYIMAGENET

200
ER 61.24±2.62 75.54±0.45 76.37±0.53
DER++ 32.59±2.32 68.77±1.72 72.74±0.56
AGILE 25.40±0.15 22.74±2.52 36.95±0.51

500
ER 45.35±0.07 67.74±1.29 75.27±0.17
DER++ 22.38±4.41 50.99±2.52 64.58±2.01
AGILE 17.57±1.45 22.71±0.07 23.97±0.73

C.2 TASK-WISE PERFORMANCE

As CL model learns new tasks in succession, it is exposed to a limited number of examples of
earlier tasks, while receiving many more from the task currently being learned. This can cause the
model to place more emphasis on recent tasks and less on earlier ones, leading to a bias towards the
most recent tasks. Ideally, the CL model is expected to have the least recent bias with predictions
spread across all tasks evenly. Figure 5 provides task-wise performance of CL models trained on
Seq-CIFAR100 with buffer size 500. As can be seen, the performances of ER and DER++ emanate
mostly from the final task, while that of AGILE is much more distributed across tasks.
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Figure 5: Task-wise performance of CL models trained on Seq-CIFAR100 with buffer size 500. The
performances of ER and DER++ mainly emanate from the most recent task, while that of AGILE
comes more evenly from all the tasks.

C.3 STABILITY-PLASTICITY DILEMMA

Stability of a CL model refers to its ability to retain previously learned knowledge, whereas plas-
ticity refers to its ability to adapt to novel information. Every CL model is faced with the dilemma
of finding the optimal balance between being stable and being plastic. Consequently, measuring
this stability-plasticity trade-off plays a crucial role in analyzing CL models. Sarfraz et al. (2022)
proposed a Trade-off measure that provides a formal way to estimate the balance between stability
and plasticity of the model. If a CL model is trained for T tasks, then the stability (S) of the model
is defined as the average performance of all previous tasks, that is,

S =

T−1∑
t=0

aTt (9)

The plasticity (P) of the model is calculated as the average performance of learning every task for
the first time, that is,

P =

T∑
t=0

att (10)
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Figure 6: Stability-Plasticity Trade-off for CL models trained on Seq-CIFAR100 with 5 tasks. AG-
ILE maintains a better balance between stability and plasticity and achieves the highest trade-off
compared to other baselines.

The stability-plasticity trade-off is then measured as the harmonic mean of S and P .

Trade-off =
2× S × P
S + P

(11)

Figure 6 compares the stability, plasticity, and trade-off of different CL methods trained on Seq-
CIFAR100 with 5 tasks for a buffer size of 500. While ER and DER++ quickly adapt to novel tasks,
the new information interferes with the previously learned information leading to low stability. On
the other hand, AGILE maintains a better balance between stability and plasticity and achieves a
much higher trade-off compared to other baselines.

D IMPLEMENTATION DETAILS

D.1 CONTINUAL LEARNING SETTINGS

We evaluate the effectiveness of our technique in two distinct CL situations: Class Incremental
Learning (Class-IL) and Task Incremental Learning (Task-IL). In both Task-IL and Class-IL, each
task includes a specific number of new classes that the CL model must learn. A CL model learns
multiple tasks, one after the other, while being able to distinguish all the classes it has encountered
so far. Task-IL is quite similar to Class-IL, with the only difference being that task labels are also
provided during the inference stage, making it the simplest scenario.

D.2 DATASETS AND MODEL

We obtained the popular CL datasets, Seq-CIFAR10, Seq-CIFAR100, and Seq-TinyImageNet, by
dividing the original datasets CIFAR10, CIFAR100, and TinyImageNet into number tasks for the
Class-IL and Task-IL scenarios: CIFAR10 into 5 tasks of 2 classes each, CIFAR100 into 5 tasks
of 20 classes each, and TinyImageNet into 10 tasks of 20 classes each. In Figure 2, we divide
CIFAR100 into 20 tasks of 5 classes each to compare with the parameter isolation methods. To
allow for a comprehensive evaluation of different CL methods, we consider two low-buffer regimes
200 and 500, and report average accuracy on all tasks at the end of CL training.

For all of our experiments, we employ ResNet-18 without pre-training as a backbone. Task pro-
jection vectors in AGILE are implemented as learnable parameters, while the shared task-attention
module is an undercomplete autoencoder-like structure with an additional task-prediction classifier.
We emphasize that we use a single expanding head not to be confused with a multiple-head set-
ting. It is to remedy the problem of selecting the right task projection vector during inference. We
trained all our models on NVIDIA’s GeForce RTX 2080 Ti (11GB). On average, it took around 2
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Table 5: Selected hyperparameters for AGILE for all the scenarios reported in Table 1

DATASET
BUFFER

SIZE
EMA PARAMS LOSS BALANCING PARAMS LEARNING RATE δi DIMENSION
ζ η α β γ λ

SEQ-CIFAR10 200 0.2 0.999 1 0.15 1 0.1 0.07 256
500 0.2 0.999 1 0.10 1 0.1 0.05 256

SEQ-CIFAR100 200 0.05 0.999 1 0.10 1 0.1 0.03 256
500 0.08 0.999 1 0.15 1 0.1 0.07 256

SEQ-TINYIMAGENET
200 0.05 0.999 1 0.10 1 0.1 0.05 256
500 0.05 0.999 1 0.10 1 0.5 0.05 256

hours to train AGILE on Seq-CIFAR10 and Seq-CIFAR100, and approximately 8 hours to train on
Seq-TinyImageNet.

D.3 RESERVOIR SAMPLING

We maintain a fixed size buffer B following the reservoir sampling strategy (Vitter, 1985). Reservoir
sampling samples from a data stream of unknown length by assigning equal probability to each
sample to be represented in the memory buffer. Replacements are performed at random once the
buffer is full. Algorithm 3 provides the steps to maintain the buffer.

Algorithm 3 Reservoir sampling
1: Input: Memory bufferDm, maximum buffer size B, number of seen samples N , current sample

x, current label y
2: if B > N then
3: Dm[N ]← (x, y)
4: else
5: k = randomInteger(min = 0,max = N)
6: if k < B then
7: Dm[k]← (x, y)

8: return Dm

D.4 CONSISTENCY REGULARIZATION USING EMA

The CL model’s predictions (soft-targets) capture the complex patterns and rich similarity structures
in the data. As CL training progresses, soft targets (model predictions) carry more information per
training sample than hard targets (ground truths) (Hinton et al., 2015). Therefore, in addition to
ground truth labels, soft targets can be leveraged to better preserve the knowledge of the previous
tasks. Consistency regularization has traditionally been used to enforce consistency in the predic-
tions either by storing the past predictions in the buffer or by employing an exponential moving
average (EMA) of the weights of the CL model. Following Arani et al. (2022), we employ an EMA
of the weights of the CL model to enforce consistency in the predictions as follows:

Lcr ≜ E
(xk,yk)∼Dm

∥ΦθEMA
(xk)− Φθ(xk)∥2F (12)

where ∥ · ∥F is the Frobenius norm, ΦθEMA
is the EMA of model Φθ. We update the EMA model as

follows:

θEMA =

{
η θEMA + (1− η) θ, if ζ ≥ U(0, 1)
θEMA, otherwise

(13)

where η is a decay parameter, ζ is an update rate, and θ and θEMA are the weights of the CL model
and its EMA. As the knowledge of the previous tasks is encoded in the weights of the CL model, we
employ EMA for inference instead of the CL model as it serves as a proxy for the self-ensemble of
models specialized in different tasks.
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D.5 HYPERPARAMETERS

We report the AGILE hyperparameters to reproduce the results reported in Table 1. These hyperpa-
rameters were found after tuning with multiple random initializations. In addition to these hyperpa-
rameters, we use a standard batch size of 32 and 50 epochs of training for all of our experiments.
We use the SGD optimizer and other tools available in PyTorch to build AGILE.

D.5.1 HYPERPARAMETER TUNING

Table 6: Hyperparamter tuning for AGILE on Seq-CIFAR100 with buffer size 500. As can be seen,
AGILE is fairly robust to choice of hyperparameters.

Varying β, for γ = 1.0, λ = 0.1 Varying γ, for β = 0.15, λ = 0.15 Varying λ, for β = 0.15, γ = 1.0

β Top-1 Acc % γ Top-1 Acc % λ Top-1 Acc %

0.1 52.27 0.1 51.78 0.1 52.65
0.15 52.65 0.5 52.46 0.2 52.33
0.2 51.98 1.0 52.65 0.5 52.31
0.5 49.56
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