Published in Transactions on Machine Learning Research (02/2023)

Workflow Discovery from Dialogues in the Low Data Regime

Amine El Hattami amine. elhattami@servicenow.com
ServiceNow Research
Polytechnique Montréal, Montréal, Canada

Issam Laradji
ServiceNow Research

Stefania Raimondo
ServiceNow Research

David Vazquez
ServiceNow Research

Pau Rodriguez

ServiceNow Research

Christopher Pal
ServiceNow Research
Polytechnique Montréal, Montréal, Canada

Reviewed on OpenReview: https://openreview.net/forum?id=L9othQvPks

Abstract

Text-based dialogues are now widely used to solve real-world problems. In cases where
solution strategies are already known, they can sometimes be codified into workflows and
used to guide humans or artificial agents through the task of helping clients. We introduce a
new problem formulation that we call Workflow Discovery (WD) in which we are interested
in the situation where a formal workflow may not yet exist. Still, we wish to discover
the set of actions that have been taken to resolve a particular problem. We also examine a
sequence-to-sequence (Seq2Seq) approach for this novel task. We present experiments where
we extract workflows from dialogues in the Action-Based Conversations Dataset (ABCD).
Since the ABCD dialogues follow known workflows to guide agents, we can evaluate our
ability to extract such workflows using ground truth sequences of actions. We propose and
evaluate an approach that conditions models on the set of possible actions, and we show
that using this strategy, we can improve WD performance. Our conditioning approach
also improves zero-shot and few-shot WD performance when transferring learned models to
unseen domains within and across datasets. Further, on ABCD a modified variant of our
Seq2Seq method achieves state-of-the-art performance on related but different problems of
Action State Tracking (AST) and Cascading Dialogue Success (CDS) across many evaluation
metrics. [

ICode available at https://github.com/ServiceNow /workflow-discovery

https://openreview.net/forum?id=L9othQvPks

Published in Transactions on Machine Learning Research (02/2023)

1 Introduction

Task-oriented dialogues are ubiquitous in everyday life and customer service in particular.

Customer

support agents use dialogue to help customers shop online, make travel plans, and receive assis-

tance for complex problems.

Behind these dialogues, there could be either implicit or explicit work-

flows — actions that the agent has followed to ensure the customer request is adequately addressed.

For example, booking an airline ticket
might comply with the following work-
flow: pull up an account, register a seat,
and request payment. Services with no
formal workflows struggle to handle vari-
ations in how a particular issue is re-
solved, especially for cases where cus-
tomer support agents tend to follow “un-
written rules” that differ from one agent
to another, significantly affecting cus-
tomer satisfaction and making training
new agents more difficult. However, cor-
rectly identifying each action constitut-
ing a workflow can require significant do-
main expertise, especially when the set
of possible actions and procedures may
change over time. For instance, newly
added items or an update to the returns
policy in an online shopping service may
require modifying the established work-
flows.

In this work, we focus on “workflow dis-
covery” (WD) — the extraction of work-
flows that have either implicitly or explic-
itly guided task-oriented dialogues be-
tween two people. Workflows extracted
from a conversation consist of a sum-
mary of the key actions taken during
the dialogue. These workflows consist
of pre-defined terms for actions and slots
when possible, but our approach also al-
lows for actions that are not known to
be invented by the model online and
used as new steps in the generated work-
flow. Our approach is targeted toward
the task of analyzing chat transcripts be-
tween real people, extracting workflows
from transcripts, and using the extracted
workflows to help design automated dia-
logue systems or to guide systems that
are already operational. Alternatively,
extracted workflows might also be used
for human agent training. One might
imagine many scenarios where an analyst
might use WD to understand if an un-
resolved problem is due to a divergence

Task-Oriented Dialogue

| need to check on the status of my
subscription.

Can you give me your username,
please?

It is Janne55
Your subscription is valid until next
month.

Offer refund, Pull up account, Send link,
Verify identity, Get subscription status, ...

Possible Actions

Predicted
Workflow |

Pull up account
[Janne55]

N2

Verify identity

N2

Get subscription
status

Figure 1: Our method for extracting workflows from dialogues.
The input consists of the dialogue utterances and the list of pos-
sible actions if available. The output is the workflow‘ followed
to resolve a specific task, consisting of the actions (e.g., Verify

identity) and their slot values (e.g., Janne55).

~Task-Oriented Dialogue

Can you help me book a table at a
Chinese restaurant that's in the center
of town?

your table for 2 at the 11:45 time. They
will hold the table for 15 minutes.

Great News! | was able to reserve
Reference number is : GFILBUGS

I am looking for some type of
entertainment in the same area as the
restaurant, please.

What about a museum? The Cambridge
contemporary art is a nice one.

)

~Possible Actions -

Book hotel, Find hotel, Book restaurant,
Find atfraction, Find train, ...

~ Predicted
Workflow

Book Chinese
restaurant
[2 people, 11:45]

Return reference
numbers
[GFIL3UGS]

Modified Action
New Action
. Known Action

Figure 2: Our conditioning approach allows for better zero-shot
and few-shot performance. Entirely new workflow actions (i.e,
not in the list of possible actions) can be proposed, as well as
those based on minor modifications to known actions.

Published in Transactions on Machine Learning Research (02/2023)

from a formal workflow or to understand if workflows have organically emerged, even in cases where no
formal workflow documentation exists. WD is related to the well-established field of process mining, but
process mining typically extracts workflow information from event logs as opposed to unstructured dialogues
encoded as natural language. Our work shows that traditional process mining can be dramatically expanded
using modern NLP and sequence modeling techniques, as we propose and explore here. Our approach
correspondingly allows traditional event logging information to be combined with NLP allowing systems
constructed using our approach to benefit from recent advances in large language models (LLMs), including
enhanced zero-shot and few-shot learning performance.

Our WD problem formulation here is related to dialogue act modeling in the sense that different steps along
our workflows may be composed of dialogue acts in the sense of |Stolcke et al. (2000), such as: posing yes
or no questions, acknowledging responses, thanking, etc. Since WD is performed offline and focuses on
workflow extraction, more fine-grained dialogue acts can help guide a WD model to extract more abstract
workflow steps. WD is also different from standard (closed world) intent detection and slot filling Liu &
Lane| (2016)), dialogue state tracking (DST) Williams et al.| (2014]) and open world intent and slot induction
Perkins & Yang| (2019) in part because WD focuses on extracting actions taken by an agent as opposed to
intents of the user. We explore WD model variants that extract both agent actions and arguments or slots
obtained from the user. WD could be seen as a generalization of the recently proposed notion of Action
State Tracking (AST) (Chen et all 2021), but WD differs from AST in that: 1) WD is performed offline
summarizing dialogues in terms of workflows; 2) unlike AST, WD does not require actions to be annotated
at the turn level; 3) unlike AST, WD doesn’t require known pre-defined actions and slots. One of the uses
of WD is to create new names for new actions on the fly along with new slot types and extracted values;
and, 4) these features of WD allow it to extract workflows containing new action and slot types which differ
significantly from action and slot sequences seen during training. We summarize these differences between
AST and WD in Table [I and we discuss all the relationships of WD to prior work in more detail in our
Related Work section below.

Table 1: A summary of the differences between AST and WD.

AST WD
Performed offline No Yes
Requires annotated action turns Yes No
Requires known actions and slots types Yes No
Significant deviation from known actions and slots possible No Yes

To address the challenges of WD introduced by dynamically changing actions, distributional shifts, and the
challenges of transferring to completely new domains with limited labeled data, we propose a text-to-text
approach that can output the workflow consisting of the full set of actions and slot values from a task-oriented
dialogue. Further, to better adapt to unseen domains, we condition our method on the full or partial set of
possible actions as shown in Figure [2] enabling us to perform zero-shot and few-shot learning. Figure [2]also
illustrates the type of generalization possible with our approach in these regimes where we can propose new
actions never seen during training. We investigate four scenarios for extracting workflows from dialogues
under differing degrees of distributional shift: (1) In-Domain workflows, where all workflow actions have been
seen during training. (2) Cross-domain zero-shot, where actions from selected domains have been omitted
during training but are present in the valid and test sets, (3) Cross-dataset zero-shot, where a model trained
on all the domains of one dataset is applied to another domain in a zero-shot setting, and (4) Cross-dataset
few-shot, where a model is trained on all the domains of one dataset, then trained on another domain in a
few-shot setting.

QOur contributions can be summarized as follows:

e We propose a new formulation to the problem of workflow extraction from dialogues, which, to
our knowledge, has not been examined or framed as we present here. We cast the problem as
summarizing dialogues with workflows and call the task Workflow Discovery (WD).

Published in Transactions on Machine Learning Research (02/2023)

o We propose a text-to-text approach to solve the WD task that takes entire dialogues as input and
outputs workflows consisting of sequences of actions and slot values that can be used to guide future
dialogues. We test our approach using various state-of-the-art text-to-text models and show its
efficacy on the Action Based Conversations Dataset (ABCD) (Chen et all 2021).

e We propose a conditioning mechanism for our text-to-text approach, providing the model with a
set of possible actions to use as potential candidates. We show that this mechanism allows our
method to be used in dramatically different domains from the MultiWOZ dataset (Budzianowski
et al |2018)), yielding good cross-dataset zero-shot workflow extraction performance. Moreover, it
allows an important performance increase in the cross-dataset few-shot setting.

e Using a variant of our approach, we achieve state-of-the-art results on related but different and
more standard tasks of Action State Tracking (AST) and Cascading Dialogue Success (CDS) on the
ABCD evaluation.

2 Related Work

Our work intersects with three major groups of topics: Task-Oriented Dialogues, Sequence-to-Sequence
Text Generation, Intent/Slot induction, Action State Tracking (AST) and Process Mining & Discovery.

Task-Oriented Dialogues In task-oriented dialogues, the system must grasp the users’ intentions behind
their utterances since this is the basis for selecting an appropriate system action, it should be able to
understand and respond to a wide range of user inputs, as well as handle complex tasks and maintain
coherence in the dialogue |Stolcke et al. (2000); Henderson et al.| (2014)). The two key tasks are intent
detection and named entity identification, both of which have comparable components in task-oriented
dialogues. Intent detection may be viewed as a classification task (action classification), with user utterances
allocated to one or more intent categories. The goal of named entity recognition is to categorize entities in
a given utterance, such as hotel names, room characteristics, and attribute values [Zang et al.| (2020]).

Although most systems perform intent detection and named entity identification for generic conversation
systems |[Rafailidis & Manolopoulos| (2018]); |[Yan et al.| (2017)), the main goal of our method is to output a set
of actions that resolve the task specified in the dialogue that abide by the system’s guidelines.

Intent and Slot Induction. In human-human dialogues, the purpose of intent/slot induction is to de-
termine user intents from user query utterances. In more recent years, there have been several efforts on
intent/slot detection in conversation systems based on methods like capsule networks and relation networks
Min et al.| (2020); [Qin et al| (2020); [Zhang et al. (2018)); |Qin et al.| (2019); [Niu et al.| (2019)). However, they
all make the assumption that the intents are within a closed world in that the intents in the test set also
appear in the training set. In contrast, while our work is about identifying the set of actions that address
the task in a dialogue we consider the possibility that the actions in the test set are novel.

Prior work has also sought to identify novel intents and slots. For example, |[Brychcin & Krél| (2016) proposed
an unsupervised method for identifying intents without utilizing prior knowledge of known intents. |[Ryu
et al| (2018) and [Yu et al.| (2017) proposed methods based on adversarial learning, whereas Kim & Kim
(2018) proposed methods based on an in-domain classifier and an out-of-domain detector to detect unknown
intents. [Perkins & Yang] (2019)) used clustering with multi-view representation learning for intent induction,
whereas Zeng et al.| (2021]) proposed a method based on role-labeling, concept-mining, and pattern-mining
for discovering intents on open-domain dialogues. Closer to our work is [Yu et al.| (2022) which leveraged
large language models for discovering slot schemas for task-oriented dialog in an unsupervised manner. They
use unsupervised parsing to extract candidate slots followed by coarse-to-fine clustering to induce slot types.
In contrast, in our work, we use large language models and a prompting technique to detect and even label
out-of-distribution actions. Rather than clustering embeddings or other structures, we leverage knowledge
obtained during transformer pre-training, and a special prompting scheme to let the LLM simply generate
new workflow steps as text. Our approach allows our models to propose new, plausible, and typically quite

Published in Transactions on Machine Learning Research (02/2023)

appropriate names for workflow steps that have not been seen in the workflow extraction training data. We
present our analysis of these types of experiments in Section [6.3.3

Sequence-to-Sequence models Text generation has emerged as one of the most significant but difficult
problems in natural language processing (NLP). RNNs; CNNs, GNNs; and pretrained language models
(PLMs) have enabled end-to-end learning of semantic mappings from input to output (Raffel et al., 2020b;
Lewis et al. 2019). The architectures of PLMs are divided into Encoder-Decoder (like BERT Devlin et al.
(2018) and T5) and Decoder-only (like GPT [Brown et al.|(2020)) architectures. We employ Encoder-Decoder-
based sequence-to-sequence models in this study since we want to accept an entire dialogue as input and
produce a set of actions as workflow. Many Encoder-Decoder methods exist in the literature and some of
their main differences are how they were pretrained. For instance, PEGASUS |Zhang et al.| (2020) trains by
masking/removing important sentences from an input document, T5 [Raffel et al.| (2020b) uses a multi-task
approach for pretraining, BART |Lewis et al.| (2019) uses static masking of sentences across epochs, and
RoBERTa |Liu et al.| (2019)) uses dynamic masking, different parts of the sentences are masked across epochs.
These types of architectures form the basis of our evaluation.

Our work is connected to models developed for translation (Sutskever et al.,|2014) and summarization (Gliwa
et al., 2019; |Zhang et al., 2020)), structured text generation such as Text-to-Code Wang et al. (2021) and
Text-to-SQL [Scholak et al.| (2021)). However, here we focus on a new task, where dialogues are transformed
into sequences of steps that an agent has used to solve a task.

Structured Text Generation. Structured text generation such as text-to-SQL and text-to-code have
received a lot of recent attention |[Warren & Pereiral (1982); [Zettlemoyer & Colling| (2012)); |[Finegan-Dollak
et al.| (2018)); Feng et al.| (2020)); |Scholak et al.| (2021)); Wang et al.[(2021)); Yu et al.[(2019)). The majority of the
past text-to-SQL effort has been devoted to transforming a single, complicated question into its accompanying
SQL query. Only a few datasets have been created to link context-dependent inquiries to structured queries,
but the recent conversational text-to-SQL (CoSQL) work of [Yu et al.[(2019) has examined the generation of
SQL queries from multiple turns of a dialogue. Their work also involved creating a dataset under a WOZ
setting involving interactions between two parties. This dataset consists of diverse semantics and discourse
that encompass most sorts of conversational DB querying interactions; for example, the system will ask for
clarification of unclear inquiries or advise the user of irrelevant questions. While this dataset is a great
benchmark for SQL generation, here we are specifically interested in transforming dialogues into workflows
consisting of much more diverse types of interactions. Correspondingly, we focus on the recently introduced
ABCD dataset (Chen et al.| (2021)), which consists of dialogues where an agent’s actions must accommodate
both the desires expressed by a customer and the constraints set by company policies and computer systems.
Our goal is to predict sequences of agent actions and the arguments for those actions, which are often
obtained from user-provided information.

AST and CDS for Task-Oriented Dialogues. Action State Tracking (AST) is a task proposed by |Chen
et al.| (2021)) which tries to predict relevant intents from customer utterances while taking Agent Guidelines
into consideration, which goes steps beyond traditional dialog state tracking (DST) [Lee et al.| (2021). For
instance, a customer’s utterance might suggest that the action is to update an order. However, following the
agent’s guidelines, the agent might need to perform other actions prior to addressing the customer’s intent
(e.g., validating the customer’s identity). While AST shares some similarities with traditional DST tasks,
its main advantage is that it parses both customer intents and agent guidelines to predict agent actions.
However, AST relies on annotated action turns making it difficult to use on existing dialogue datasets
without substantial annotation effort. Further, AST relies on agent guidelines which require prior knowledge
of all possible actions. |Chen et al.|(2021) also proposed the Cascading Dialogue Success (CDS) task that
alms to access the model’s ability to predict actions in context. CDS differs from AST since it does not
assume that an action should occur in the current turn, but adds the possibility to take an action, respond
with an utterance (e.g., requesting information from the customer), or terminate the conversation when the
agent completed the task. Further, CDS is measured using a modified version of the cascading evaluation

Published in Transactions on Machine Learning Research (02/2023)

metric that accesses success over successive turns as opposed to AST which measures success in isolation on
a single turn.

3 Workflow Discovery (WD)

3.1 WD Task Definition

We propose a novel task we call Workflow Discovery (WD) to extract the actual workflow followed by an
agent from a task-oriented dialogue. A workflow is a sequence of actions with their respective slot values in
the same order in which they appeared during the conversation. Formally, we define the WD task as follows:

Given a dialogue D = {uy,us, ..., u, }, where n is the total number of utterances in the dialogue, and an op-
tional list of possible actions § = {a1, ..., a. }, where z is the number of known actions, and a is a unique work-
flow action. A model should predict the target workflow W = {(a1,{v]|0 <= j <= ni}),..., (ax, {vi]|0 <=
j <=ny})}, where a; €0, vf is the j*" slot value and n; is the number of available slot values for action a;,
and k is the number of workflow actions. Further, the model should also be able to formulate new compound
keywords to characterize new actions as well as extract their slot values for actions that are not a part of the
known action domain.

3.2 WD Compared to Existing Tasks

Workflow Discovery differs from dialogue state tracking (DST) where in WD, we are interested in extracting
the sequence of actions that have been followed to resolve an issue. We are particularly interested in the
situation where the actions that are needed to resolve a problem associated with a given intent or task
are not known a priori and must be invented by the WD model. This is in sharp contrast to DST which
generally requires dialogue states to be known and pre-defined. DST also generally focuses on tracking the
state of one party in the conversation, e.g., the user. In contrast, WD extracts actions executed by the agent
and slot values collected from user utterances. Furthermore, WD differs from Action State Tracking (AST),
since WD aims to extract all actions and their matching slot values, using all dialogue utterances without
any extra metadata like the annotated action turns at once (no online tracking). In contrast, AST predicts
the next action at a given turn, given the previous turns only. Models trained for AST help agents select
the next action following the agent guidelines. In contrast, models trained for WD extract all actions from
chat logs between real people, including those that might deviate from the agent guidelines. WD is aimed
at agent training or workflow mining with the goal of formalizing the discovered processes for subsequent
automation. WD can be applied to completely new, organic tasks where possible actions are unknown. Some
aspects of AST could be seen as a subset of WD when actions and slots are known. However, we believe
that WD is more closely related to the concept of summarization using a specialized vocabulary for actions
and slots, when possible, but inventing new terms when needed.

We compare and contrast WD, AST, and DST in Figure[9] We note that Figure [9a] shows a situation where
our WD approach has succeeded in inventing a new term (i.e., "Generate new code") which describes the
exact action the agent performed. This result matches the agent guidelines (Chen et al.l [2021)), where there
is a clear distinction between offering a promo code when a customer is unhappy in which our approach
uses the known "promo code" action, and generating a new code since the old one is no longer working. A
good WD method should exhibit compositional generalization when creating new terms for actions and their
arguments. For example, if a system has been trained to summarize dialogues that involve granting a refund
for ordering a pair of pants, the WD summary of a new dialogue involving the refund of a shirt should use
a vocabulary consistent with the manner in which the refund of a pair of pants has been expressed.

Finally, in contrast to policy learning, WD aims to extract a workflow from dialogue logs describing the
sequence of agent actions that depend on slot values extracted from user utterances. The extracted sequence
may differ significantly from the actions of an optimal or estimated policy. WD focuses on extracting
potentially out-of-distribution workflows, where new action names and slot values derived from new domains
must be invented. This makes WD very different from policy learning and more similar to dialogue policy

Published in Transactions on Machine Learning Research (02/2023)

act extraction, but where new acts and slot values must be invented on the fly to summarize new concepts
at test time.

4 Baselines and Methodology

In this section, we describe our methodology for the WD task. Moreover, since there is no existing baseline
for our novel WD task, we included our text-to-text variants for both the AST and CDS tasks that we used
to test our text-to-text task casting scheme against existing benchmarks.

4.1 Text-to-Text Workflow Discovery

We cast the WD task as a text-to-text task where the input of the model Py p consists of all utterances and
the list of possible actions, if available or partially available, formatted as

Py p = Dialogue: uq, ..., u, Actions: ay, ..., a,

where u,, is a dialogue utterance, n is the total number of utterances in the dialogue, a, is a workflow action,
and z is the total number of available actions. "Dialogue:" and "Actions:" are delimiters that separate the
dialogue utterances from the list of actions. Further, we omit the "Actions:" delimiter when possible actions
are not provided. Adding the possible actions to the input can be seen as a way to condition the model
to use the provided actions rather than invent new ones. During training, the possible actions added after
"Actions:" in the input is a shuffled set comprised of the current sample target actions and a randomly
chosen number r,;, <= r <= z of actions, where r,,;, is a hyper-parameter. This technique aims to make
the model invariant to the position and the number of workflow actions, especially when adapting to a new
domain in the zero-shot and few-shot settings. For all other settings (i.e., during validation, testing, or the
zero-shot setting), the list of possible actions contains all known actions without any modification. Finally,
We use the source prefix "Extract work flow:" The target workflow Ty p is formatted as

Twp = a1[v], ..., 7']; .. ag[v, U]
where aj, is a workflow action, k is the number of actions, v;* is a slot value, and ny, is the number of slot
values for action k. "[" and "]" encapsulate the slot values. "," and ";" are the separators for the slot values

and actions. Moreover, if an action has no slot values, the target slot value list is set explicitly to [none].
An example of this casting scheme is shown in Figure

Our text-to-text framework differs from other work since our prompts don’t include slot descriptions or value
examples compared to |Zhao et al.|(2022a). Moreover, Adding lists of possible actions to the prompt makes
our method more flexible in the zero-shot setup (allowing new actions to be added on-the-fly) and improves
performance in the few-shot setup. Finally, we don’t prefix utterances with speaker prefixes (e.g., "User:
") compared to |Zhao et al.| (2022al); Lin et al.| (2021al), making our technique usable when this information
is unavailable or inaccurate; for example, in cases where the chat transcript originated from an upstream
text-to-speech model.

4.2 Text-to-Text Action State Tracking

The goal of the AST task is to predict a single action and its slot values given only the previous turns.
This task is similar to the traditional DST with the difference that agent guidelines constrain the target
actions. For example, an utterance might suggest that the target action is "validate-purchase", but the
agent’s proposed gold truth is "verify-identity" per the agent guideline because an agent needs to verify a
customer’s identity before validating any purchase.

We cast the AST task as a text-to-text task where the input of the model P4g7 consists of all the utterances
formatted as

Pyst = Context: uy, ..., us
where u; is a dialogue turn, including action turns, and ¢ is the index of the current turn. "Context:" is a
delimiter. We use the source prefix "Predict AST:". The target Tagr is formatted as

Tast = aifvy, ..., v}"]

Published in Transactions on Machine Learning Research (02/2023)

where a; is an action, v™ is a slot value, and m is the number of slot values. "[" and "|" encapsulate the slot

values. "' is the separator for the slot values. Moreover, if an action has no slot values, the target slot value
list is set explicitly to [none]. An example of this casting scheme is shown in Figure

4.3 Text-to-Text Cascading Dialogue Success

The CDS task aims to evaluate a model’s ability to predict the dialogue intent and the next step given
the previous utterances. The next step can be to take action, respond with a text utterance, or end the
conversation. Moreover, the CDS task is evaluated over successive turns. In contrast, AST assumes that the
current turn is an action turn and is evaluated over individual turns.

We cast the CDS task as a text-to-text task where the model input P is formatted as
Pcps = Context: uy, ..., u; Candidates:cy, ..., ¢,

where u; is a dialogue turn, including action turns, and t¢ is the index of the current turn. ¢, € C; is
a text utterance from the current agent response candidate list Cy, and v is the size of C;. "Context:"
and "Candidates:" are delimiters. Finally, We use the source prefix "Predict CDS:". The target Tcpg is
formatted differently depending on the target next step. When the next step is to take an action, the target

is formatted as follows
Taction

aotion — g: action; ag[vy, ..., v}"]
where i is the dialogue intent, and values a;[v}, ...,v"] is the step name and slots similar to the AST task
formulation above. When the next step is to respond, the target is formatted as follows

respond __ .. .
Topg — =1 respond; cip1

where c¢;11 € C} is the expected response utterance. When the next step is to terminate the dialogue, the
target is formatted as follows

TEWs = i; end
An example of this casting scheme is shown in Figure

5 Experimental Setup

5.1 Implementation Details

In our experimentation, we used the T5 (Raffel et al. 2020b), BART (Lewis et al.l 2019), and PEGA-
SUS (Zhang et al., [2020) models for the WD task, which we call WD-T5, WD-BART, and WD-PEGASUS,
respectively. Furthermore, we use a T5 model for the text-to-text AST and CDS tasks, which we call,
AST-T5, and CDS-T5, respectively. We use the Huggingface Transformers Pytorch implementatioxﬂ for all
model variants and use the associated summarization checkpointsﬂ fine-tuned on CNN/DailyMail (Hermann
et all 2015)) for all models. For T5, we use the small (60M parameters), base (220M parameters), and
large (770M parameters) variants, and the large variant for both BART (400M parameters) and PEGASUS
(569M parameters). We fine-tuned all models on the WD tasks for 100 epochs for all experiments with a
learning rate of be-5 with linear decay and a batch size of 16. We set the maximum source length to 1024
and the maximum target length to 256. For the BART model, we set the label smoothing factor to 0.1. We
fine-tuned AST-T5, and CDS-T5 for 14 and 21 epochs, respectively, matching the original work of |[Chen
et al.| (2021)), and used similar hyper-parameters used for the WD task. In all experiments, we use 7,5, = 10
as described in Section Finally, We ran all experiments on 4 NVIDIA A100 GPUs with 80G memory,
and the training time of the longest experiment was under six hours.

2https://huggingface.co/transformers
Shttps://huggingface.co/models

Published in Transactions on Machine Learning Research (02/2023)

5.2 Datasets

ABCD (Chen et al., |2021)) contains over 10k human-to-human dialogues split over 8k training samples
and 1k for each of the eval and test sets. The dialogues are divided across 30 domains, 231 associated slots,
and 55 unique user intents from online shopping scenarios. Each intent requires a distinct flow of actions
constrained by agent guidelines. To adapt ABCD to WD, we choose agent actions to represent the workflow
actions. From each dialogue, we create the target workflow by extracting the actions and slot values from
each action turn in the same order they appear in the dataset. Then, we remove all action turns from the
dialogue keeping only agent and customer utterances. We use the same data splits as in ABCD. Furthermore,
we use natural language action names (i.e., using "pull up customer account" instead of "pull-up-account"),
and we report the results of an ablation study in Section showing the benefits of using natural language
action names. Table [2] shows a subset of the names we used, and the full list can be found in Appendix
1A.4.2)

Table 2: Subset of ABCD workflow actions

Action Name Natural Language Action Name
pull-up-account pull up customer account
enter-details enter details

verify-identity verify customer identity

MultiWOZ (Budzianowski et al.l |2018]) contains over 10k dialogues with dataset splits similar to ABCD
across eight domains: Restaurent, Attraction, Hotel, Taxi, Train, Bus, Hospital, Police. We use MultiWOZ
2.2 (Zang et al., 2020) as it contains annotated per turn user intents and applies additional annotations
correction similar to [Ye et al| (2022). In the MultiWOZ dataset, customer intents represent the workflow
actions. We assume that the system will always perform a customer intent. To MultiWoz to the WD task,
we create the target workflow by extracting the set of intents and slot values in the same order they appear
in the dialogue. We don’t make any modifications to the dialogue utterance since MutliWoz does not include
action turns or any extra metadata. Similar to ABCD, we use natural language action names. Table [3]shows
a subset of the natural language action names. See Appendix [A:4.1] for the full list.

Table 3: Subset of MultiWOZ workflow actions

Action Name Natural Language Action Name
find_ hotel search for hotel
find_ train search for train

book restaurant book table at restaurant

Our public code repositoryﬂ contains all the source code necessary to create the WD dataset from ABCD and
MultiWoz. The repository also contains the annotated ABCD test subset for human evaluation. Further,
we report dataset statistics in Appendix [A74.3]

5.3 Metrics

We evaluate the WD task using the Exact Match (EM) and a variation of the Cascading Evaluation (CE)
(Suhr et al., [2019) metrics similar to |Chen et al.| (2021). The EM metric only gives credit if the predicted
workflow (i.e., actions and slot values) matches the ground truth. However, it is not a good proxy of model
performance on the WD task due to the sequential nature of workflows. For example, a model that predicts
all workflow actions correctly but one will have an EM score of 0, similar to another model that predicted
all actions wrong. In contrast, the CE metric gives partial credit for each successive correctly predicted
action and its slot values. Nonetheless, we kept the EM metric for applications where predicting the exact
workflow is critical. Furthermore, we report an action-only Exact Match (Action-only EM) and Cascading

4https://github.com/ServiceNow /workflow-discovery

Published in Transactions on Machine Learning Research (02/2023)

Evaluation (Action-only CE) for some experiments to help isolate the task complexity added by predicting
the slot values. Finally, due to the text-to-text nature of our approach, we use stemming, and we ignore any
failure that occurs due to a stop word miss-match (e.g., we assume that the lensfield hotel is equivalent to
lensfield hotel). Moreover, we use BERTScore (Zhang™ et all |2020]) to evaluate the action in all zero-shot
experiments. We assume that a predicted action is valid if it has an F1-score above 95% (e.g., check customer
identity is equivalent to verify customer identity).

We evaluate the AST task similar to |Chen et al|(2021) where B-Slot and Value are accuracy measures for
predicting action names and values, respectively. Action is a joint accuracy for both B-Slot and Value metrics.
Furthermore, We evaluate the CDS task similar to |Chen et al.| (2021)) using the Cascading Evaluation (CE)
metric that relies on the Intent, NextStep, B-Slot, Value, and Recall@1 metrics that are accuracy measures
for the dialogue intent, next step, action, value, and next utterance predictions. We omit the Recall@5, and
Recall@10 metrics results since our model only predict a single next utterance instead of ranking the top 5
or 10 utterances. However, the cascading evaluation calculation result remains valid since it only uses the
Recall@1 scores.

6 Experimental Results

To validate the efficacy of our approach against existing baselines, we first compare our results to the current
state-of-the-art on the AST and CDS tasks and show that our method achieves state-of-the-art results on
both tasks. Then, we describe the experiments we used to evaluate our approach on the WD task, report
the results, and discuss their conclusions.

6.1 Action State Tracking

Following the same evaluation method used in |Chen et al.| (2021}, we compared our AST-T5 model against
ABCD-RoBERTa (Chen et al., [2021)), the current state-of-the-art on the AST task. We report the results
in Table Moreover, we only report the results of AST-T5-Small (60M parameters) variant for a fair
comparison since the ABCD-RoBERTa model is around 125M parameters while our AST-T5-Base is 220M

parameters.

Table 4: Our AST-T5-Small results on the AST task using the ABCD test set.

Params Models B-Slot Value Action
124M ABCD-RoBERTa 93.6% 67.2% 65.8%
60M AST-T5-Small (Ours) 89.1% 89.2% 87.9%

Our AST-T5-Small variant achieves state-of-the-art results on the AST task while using 50% less trainable
parameters. Furthermore, our text-to-text approach is easily adaptable to any new domain without any
model change. In contrast, an encoder-only approach like the one used by ABCD-RoBERTa requires an
update to the classification head to add a new action or slot value.

6.2 Cascading Dialogue Success (CDS)

Following the same evaluation method used in (Chen et al.| (2021)), we compared our CDS-T5 models against
the current state-of-the-art on the CDS task. In Table [5] we report the best results (ABCD Ensemble) for
each metric from |Chen et al.| (2021]).

Our CDS-T5-Small (60M parameters) outperforms the current state-of-the-art (with up to 345M parameters)
while using 80% less trainable parameters. Furthermore, Our CDS-T5-Base achieves a new state-of-the-art
on the CDS task while using 36% fewer trainable parameters, showing the advantage of our text-to-text
approach. Specifically, our CDS-T5-Base outperformed the ABCD Ensemble on the next utterance prediction
(recall@l) by 27.4 points. Furthermore, both our models scored exceptionally on predicting the next step.

10

Published in Transactions on Machine Learning Research (02/2023)

Table 5: CDS-T5 results on the CDS task using the ABCD test set. Intent, NextStep, B-Slot, Value, Re-
call@1 are accuracy measures for the dialogue intent, next step, action, value, and next utterance predictions,
respectively. CE is the cascading evaluation that uses all other metrics. ABCD Ensemble is the ensemble
with the best scores from ABCD.

Params Models Intent Nextstep B-Slot Value Recall@l CE
345M ABCD Ensemble 90.5% 87.8% 88.5% 73.3% 22.1 32.9%
60M CDS-T5-Small (Ours) 85.7% 99.5% 85.9% 75.1% 40.7 38.3%
220M CDS-T5-Base (Ours) 86.0% 99.6% 87.2% 77.3% 49.5 41.0%

Finally, CDS-T5-Base outperforms the human performance (Chen et all 2021) on value accuracy by 1.8
points.

6.3 Workflow Discovery (WD)

This section shows the experiments we performed to explore the WD task using several baseline models.
First, we report the results in the following learning setups: in-domain, cross-domain zero-shot, cross-dataset
zero-shot, and few-shot. Then, report the results of the experiments showing the performance improvement
when using natural language action names and using models fine-tuned on summarization. It is worth noting
that the idea behind using multiple model architectures and sizes is to show that our task formulation is
model-independent and to understand the performance improvement as the model size scales in different
learning setups.

6.3.1 In-Domain Workflow Actions

Table [6lshows the results of our methods trained on all ABCD domains and tested on the ABCD test set. We
report each model variant’s Cascading Evaluation (CE) and Exact Match (EM). Further, to understand the
added complexity of predicting the slot values, we report the Action-only CE and Action-only EM results,
where we are only interested in the models’ ability to predict the actions correctly regardless of the predicted
slot values.

Table 6: WD in-domain test results on ABCD. With and Without Possible Actions represents the results
with and without the possible actions added to the input. EM and CE are the Exact Match and Cascading
Evaluation, respectively. Action-only EM and CE are the EM and CE scores for Action-only prediction,
excluding slot values.

EM/CE Action-only EM/CE
Without With Without With
Params Models . . . i . i . i
Possible Actions Possible Actions Possible Actions Possible Actions
60M T5-Small 44.1/67.9 14.8/68.6 55.4/78.6 56.7/79.1
220M T5-Base 47.7/69.9 49.5/72.3 56.2/79.4 57.5/79.2
406M BART-Large 42.0/60.3 44.9/64.3 61.9/63.8 64.3/70.1
568M PEGASUS-Large 49.9/71.2 52.1/72.6 59.6/81.2 62.9/82.8
770M T5-Large 50.6/73.1 55.7/75.8 59.9/81.4 63.3/83.1

With and without adding the possible actions, the EM and CE scores show an expected improvement as we
scale the model size except for the BART-Large variant. Our analysis showed that the performance gains as
we scale the model size are due to a better ability to extract slot values. The difficulty of predicting the slot
values is because ABCD contains 30 unique actions with 231 associated slots, with each action having either
0, 1, or 3 slots. Further, some actions use different slots depending on the customer’s answer. For example,
"pull up customer account" can use either the account ID or the customer’s full name. Our qualitative
analysis showed that 37% of the slot values failures arise when both the "pull up customer account" and
"verify-identity" occur in the same dialogue. In such a situation, a customer provides the account ID and the
full name (present in 32.5% of test dialogues), and "pull up customer account" can use either slot and "verify

11

Published in Transactions on Machine Learning Research (02/2023)

customer identity" uses both. Using the account ID or the full name for "pull up customer account" is valid
from the ABCD’s agent guidelines perspective. However, it might not match the gold truth. Further, larger
models perform better on dialogues with turn counts larger than 20, which represents 38.2% of test dialogues.
This improvement is related to large models’ ability to handle longer context (Tay et al., 2021} |Ainslie et al.
2020). As for BART-Large variant, our qualitative analysis showed that it exhibits an interesting behavior
where it performs poorly on extracting some slot values that represent either names, usernames, order IDs,
or emails. For example, it predicts "crystm561" instead of "crystalmb61", knowing that the former does
not exist in the dataset. The fact that 70% of the test workflows contain slots of this type explains the
drop in performance. This observation is also confirmed by the high Action-only EM score, where slot value
predictions are ignored. Our analysis showed that BART-Large performs better on target workflow with at
most two actions. However, we did not find a clear explanation for this behavior. Further, while T5-Large
shows an improvement over the smallest model (i.e., T5-Small), the EM score is only slightly above 50%,
which shows the difficulty of the WD task. Moreover, the significant difference between the EM and CE
scores across all configurations shows that it is much harder to predict the actions and their slot values in
the exact order, which shows the utility of CE as a good metric for understanding the performance on the
WD task.

Adding the possible actions improves the performance of all model variants, especially larger ones. For
example, T5-Large improved by 5.1 on the EM score suggesting that the results should improve with even
larger models (i.e., more than 770M parameters). However, the T5-Small variant improved by only 0.7 on
the EM score. We believe that it is related to the fact that smaller models have difficulty utilizing larger
inputs, a known limitation of Transformer models (Tay et al., [2021} |Ainslie et al. [2020). Our qualitative
analysis showed that most of the improvements gained by adding the possible actions are due to better slot
value prediction, which can be counterintuitive. However, we believe that the models use more capacity
to extract the slot values since providing the actions makes the action prediction an easier task. Further,
adding the possible actions improved the action prediction performance on dialogues with turn counts larger
than 25 (16.2% of test dialogues), which is shown by the higher Action-only EM and CE scores.

To better understand the performance of our proposed baselines, we compared our results to human per-
formance on 100 randomly selected test samples representing 10% of the ABCD test set. We hired two
annotators to label the samples and provided them with the complete list of actions with descriptions ex-
tracted from the ABCD agent’s guidelines. Moreover, we provided three fully annotated dialogues for each
action from the ABCD training set. However, the Cohen kappa coefficient was 0.63, indicating a low agree-
ment between the annotators. All the disagreed items were labeled by a third annotatorﬂ Table |7| shows
the EM and CE scores on the annotated subset.

Table 7: Human evaluation results on ABCD test subset. EM and CE are the Exact Match and Cascading
Evaluation, respectively.

Methods EM/CE
Human Performance 11.0 / 38.12
T5-Small Without Possible Actions 42.3/66.0

The results show that even our smallest model outperforms human performance by a large margin. Our
analysis showed that our method outperforms human annotators in cases where the agent performs multiple
actions at the same turn. Further, our approach outperformed human performance in dialogues with more
than 13 turns. However, since ABCD has 30 domains with 231 associated slots, further annotator training
could be beneficial since the annotators reported difficulties when annotating the dialogues shown by the
low Cohen kappa coefficient.

We also ran an ablation study to investigate the positive effect of shuffling and randomly selecting the actions
added to the input described in Section [£.1] The result of this study is shown in Appendix [AI.1] but in
summary, this technique improves the performance of all model variants and avoids a performance drop for
our small model (i.e., T5-Small).

5The annotated human subset is available in our public code repository.

12

Published in Transactions on Machine Learning Research (02/2023)

6.3.2 ABCD Cross-Domain Zero-Shot

We performed a "leave-one-out" cross-domain zero-shot experiment similar to |Lin et al.|(2021b); Hu et al.
(2022); Zhao et al. (2022b) on ABCD. In this setup, we train a model on samples from all the domains
except one. Then, we evaluate the performance on the test set that includes the omitted domain. In this
experiment, we excluded the "Shirt FAQ" and "Promo Code" domains by removing all training samples that
contain actions unique to each domain. The "Shirt FAQ" domain consists of 34 dialogues representing 3.4%
of the ABCD test set. It overlaps other domains, such as "Boots FAQ" and "Jacket FAQ" on two actions (i.e.,
"search faq" and "select topic in faq"). However, while other domains use the "select topic in faq" action, the
"Shirt FAQ" domain has eight unique slot values for this action since they represent existing FAQ questions
that agents have to choose from (described in ABCD’s agent guidelines). The "Promo Code" domain consists
of 53 dialogues representing 5.3% of the ABCD test set. It overlaps other domains on three actions (i.e.,
"pull up customer account", "ask oracle", and "check membership level"). However, the overlapped actions
appear in an order unique to this domain, making it more difficult since the order is important in the WD
task. Table[§] shows the results of both experiments.

Table 8: WD leave-one-out cross-domain zero-shot results on ABCD with "Shirt FAQ" and "Promo Code"
as target domains. With and Without Possible Actions represents the results with and without the possible
actions added to the input. EM and CE are the Exact Match and Cascading Evaluation, respectively.

Promo Code Shirt FAQ
EM/CE EM/CE
Without With Without With
Params Models) . . .) . . .
Possible Actions Possible Actions Possible Actions Possible Actions
60M T5-Small 42.3/65.1 42.5/66.5 41.0/64.8 41.0/65.0
920M T5-Base 46.0/67.6 47.8/69.7 45.1/68.8 45.7/69.0
406M BART-Large 41.5/58.3 43.6/62.2 40.0/59.1 42.3/61.7
568M PEGASUS-Large 47.4/68.8 49.6/69.2 46.2/68.9 47.4/69.3
7T7T0M T5-Large 48.1/70.7 51.8/72.3 49.9/72.4 50.2/72.4

The results show that our approach achieves good zero-shot transfer performance in both domains. Overall,
the behavior of the different variants on both domains with and without the possible actions follows the same
trends as the in-domain results in Table [} Similarly, BART-Large performs poorly on both domains, and
our analysis showed that it suffers from the same issues described in Section [6.3:2] However, BART-Large
has the least amount of performance drop compared to the in-domain results since the target domains do
not contain the slots in which this model performs poorly, as described in Section On average, the
performance on the "Shirt FAQ" is higher than the "Promo Code" domain, where the latter has an EM score
3.5 points lower than the in-domain results, showing that the "Promo Code" domain presents a more difficult
cross-domain zero-shot setup.

Our results analysis showed that on the "Promo Code" domain, all the failures relate to the "offer promo
code" action. When the possible actions are not used, most of the failures when using T5- were caused by the
model copying parts of the input. However, for larger models, 67% of the failures are caused by the models
predicting "offer refund" instead of "offer promo code". However, it is worth noting that dialogues from
the "Offer Refund" domain unfold similarly to the "Promo Code" domain. In such situations, a customer is
unhappy with a purchase, and the agent offers a refund, similar to offering a promo code. Further, the slot
value (i.e., the promo code) is correctly predicted in 80% of these cases (i.e., when predicting "offer refund").
We believe that this is caused by the fact that the slot value of "offer refund" (.i.e., the refund amount) is close
to the one of "offer promo code". However, this does not show in the results since both metrics require both
the action and slot values to be correct. In the remaining, 33% of the failures, the larger models generated
plausible action names such as "generate new code", "create new code", and "create code" (See Appendix
for more details plausible action names). These predictions were not deemed valid since their BERTscore
was lower than the threshold. On the other hand, larger models predicted actions that are considered valid
such as "offer code", "offer the code", and "provide code". When the possible actions are used, the failures
due to the "offer refund" confusion are reduced to 33%, showing the efficacy of adding the possible actions

13

Published in Transactions on Machine Learning Research (02/2023)

to the input. The remaining errors were due to either invalid slot value prediction or invalid generated
action. In this setup, 70% of valid predictions used the exact action name provided in the input, and the
remaining were generated actions that are considered acceptable. On the "Shirt FAQ" domain, When the
possible actions are not used, 71% of the failures are due to confusion with similar actions such as "search
for jackets", or "search for jeans". The remaining errors were due to bad slot value prediction. Further,
larger models generated plausible actions (e.g., "search t-shirt" or "information on shirts" and slot values
(e.g., "does this t-shirt shrink" instead of "does this shirt shrink"). See Appendix for more examples.
When the possible actions are added to the input, only 15% of the failures were due to confusion with similar
domains (mostly "Jacket FAQ"), and the remaining failures were due to invalid slot value predictions. In
this setup, 83% of valid predictions used the exact action name provided in the input, and the remaining
were generated actions that are considered acceptable.

We also performed an ablation study on the randomization technique and showed that it has a similar effect
to the one seen in the in-domain setting. See Appendix for more details.

6.3.3 MultiwOZ Cross-Dataset Zero-Shot

In this experiment, we evaluate if a model trained on one dataset can be used on another from a different
domain in a zero-shot setup similar to [Zhao et al.| (2022b|). Therefore, we test our models trained on ABCD
described in Section [6.3.2] on all MultiWOZ test set domains. In this setting, there is no inter-dataset
overlap. All the eight MultiWOZ domains are different from the ones in ABCD. We report the results of
this experiment in Table [0}

Table 9: WD cross-dataset zero-shot test results on MultiWwOZ. With and Without Possible Actions repre-
sents the results with and without the possible actions added to the input. EM and CE are the Exact Match
and Cascading Evaluation, respectively.

EM/CE
Params Models Without Possible Actions With Possible Actions
60M T5-Small 0.0/0.0 5.3/8.4
220M T5-Base 3.6/10.0 23.0/38.3
406M BART-Large 5.1/12.2 24.1/39.9
568M PEGASUS-Large 9.8/15.2 27.4/41.2
770M T5-Large 9.0/13.1 26.9/40.0

As the results show, all model variants performed poorly when the list of actions was not included in the
input. For example, T5-Small was not able to predict any valid workflow and our largest model achieved
only a 9.0 EM score. For the T5-Small model, Our analysis showed that 91% of the failures are cases where
the model uses ABCD’s actions, and the remaining are caused by copying the input. For all other models,
87% of the failures are due to the models using ABCD’s actions on average. The remaining failures are cases
where the models copy part of the input or invalid action or slot value predictions. In this setting, all valid
predictions were for cases with a single slot value, and the generated action names were considered valid
using our evaluation method. For example, the models generated "searching for hotels", " Looking for hotel",
and "get a taxi". However, when adding the possible actions, the performance improved for all variants with
an average EM score increase of 18.3 points, showing the utility of this technique in the zero-shot setting.
In this setting, 65% of the valid predictions are exact matches to the one provided in the input, and the
remaining are generated action names that are deemed valid. Our analysis showed that 80% of the failures
are due to invalid slot value predictions, especially for actions with more than three slot values. We believe
this is related to the fact that the source domains (i.e., ABCD) have at most three slot values per action.
The remainder of the failures are due to using ABCD’s action names. Further, PEGASUS-Large performs
better than WD-T5-Large even if it has 200M fewer parameters. Our qualitative results analysis shows that
WD-T5-Large uses actions from the source domains (i.e., ABCD) more often than WD-PEGASUS-Large. For
example, it uses "search-timing" for cases where a customer asks about the train departure time. Moreover,
BART-Large performs better in this setting since MultiWOZ does not contain usernames or email slot values.
Furthermore, we noticed that some predicted slot values are more refined than the gold ones (e.g., museum

14

Published in Transactions on Machine Learning Research (02/2023)

of science instead of museum). However, our evaluation method does not mark such predictions as valid.
Further, while adding the possible actions improves the performance, it presents a limitation for cases where
this list is unknown and prompts future work to find an unsupervised method to extract it. The same
limitation applies to the slot values, where one can solve the performance drop similar to Zhao et al.| (2022b)
by providing the slot descriptions in the input. However, in some cases, this list is unknown or frequently
updated.

In both with and without possible actions, models larger than T5-Small were able to generate plausible action
names. For example, the models generated the following: "search for a swimming pool", "update booking
information", "search for a table", "make a reservation', "search for a museum', "search for guesthouse",
and "search for a room'. While some of these predictions can be ambiguous (e.g., "make a reservation"),
others are very plausible. For example, "search for a room" or "search for guesthouse" are valid predictions
for "search for hotel", and "search for a museum' is a valid prediction for "search for attractions" since
the museum is an attraction. While such predictions are not exact matches, they provide valuable domain
knowledge, especially in a zero-shot setting. However, our evaluation scheme cannot mark these predictions
as valid since they yield a BERTscore lower than the threshold. While lowering the threshold could solve this
issue, it will increase the false positives since the action names are short sentences. For example, "search for
hote" and "buy hotel" has BERTScore of 89%, which shows one of the limitations of our proposed evaluation
method.

Finally, it is worth noting that in the zero-shot setting, when the list of actions is not provided, the models
trained on WD perform a form of intent (or action) and slot induction. Here the models generate the action
names and extract the matching slot values rather than just clustering utterances (Hu et all |2022) and
performing span extraction for slot values (Yu et al., [2022). However, one limitation of using WD as a way
to perform intent and slot induction is that using WD on multiple dialogues could yield action names that
are semantically similar but use a different syntax (e.g., "searching for hotels" and "Looking for hotel"). One
way of solving such an issue is to use a similarity measure to group the generated actions (or intent) and
choosing one of them as the cluster label in a post-processing step. One could also feed the chosen action
names to the model when performing the WD task, increasing performance as shown previously. However,
we leave this exploration for future work.

6.3.4 MultiwOZ Cross-Dataset Few-Shot

We consider the case where only a few samples are available for each workflow action. To this end, we
conducted a cross-dataset few-shot experiment, where we trained a model on all ABCD domains, then fine-
tuned it with randomly selected k& samples per action from all MultiWOZ domains. We picked k =1, k = 5,
and k = 10 that yielded a training set of 11, 55, and 106 samples, respectively. Due to the nature of workflows
containing multiple actions, some of these actions might have more than k£ samples.

Table 10: WD cross-dataset few-shot test results on MultiWOZ. With and Without Possible Actions
represents the results with and without the possible actions added to the input. EM and CE are the Exact
Match and Cascading Evaluation, respectively.

EM/CE
k # Samples Without Possible Actions With Possible Actions
1 11 5.9/54.8 8.2/58.7
5 55 24.4/65.4 61.7/84.4
10 106 43.2/73.0 72.2/89.1

We report the few-shot results of our WD-T5-Base in Table[I0] Our approach shows a significant adaptation
performance that keeps increasing as the number of training samples increases, reaching an EM score of 72.2.
Moreover, adding the possible actions to the input shows an important performance gain in all the settings,
where it improved the EM score by an average of 32.8 points. Our analysis showed that the results follow
the same behavior on the cross-dataset zero-shot experiment with & = 1. Then, all other values of k follow
similar behaviors as in the ABCD in-domain experiment. Similar to the cross-dataset zero-shot experiment,
the failures are mainly due to invalid slot values prediction. However, when k& = 10 the slot values issues

15

Published in Transactions on Machine Learning Research (02/2023)

reduce considerably. Furthermore, the model generated 23 invalid actions as opposed to 5 when the list of
actions is provided in the input. This behavior shows the utility of this conditioning mechanism and proves
that it can restrict the model to the provided actions.

6.3.5 Using Natural Language Action Names

In ABCD, the action names are given in a label-like format (e.g., "pull-up-account"). However, this format
could have a negative effect on the WD performance when using pre-trained models that might not have
seen such a format during training since they are usually trained on well-written, well-structured text (Raffel
et al 2020a; Karpukhin et all [2020). To validate this claim, we manually generated natural language (NL)
action names for each action. For example, we choose "pull up customer account" as the NL action name
for "pull-up-account" (See Appendix for the full list). Then, we run an experiment similar to to
compare the performance of all the model variants using either the original label-like names (e.g., "pull-up-
account") or the NL action names (e.g., "pull up customer account"). For this experiment, we only compare
the Action-only EM and Action-only CE since we are interested in the performance of correctly generating
the action names and not the slot values. Table [I[I] shows the results of this experiment.

Table 11: Results of using original label-like names compared to natural language action names. Action-only
EM/CE are the EM and CE scores for action-only prediction, excluding slot values.

Action-only EM/CE

Params Models With Original Labels With NL Names
60M T5-Small 53.2/74.1 55.4/78.6
220M T5-Base 52.8/74.1 56.2/79.4
406M BART-Large 59.2/66.3 61.9/68.8
568M PEGASUS-Large 56.7/76.5 59.6/81.2
770M T5-Large 56.6/85.9 59.9/81.4

We observe that using NL names yields better performance on both metrics on all model variants, where
it increased the Action-only EM by an average of 2.9. Our qualitative analysis showed that when using
the original labels, most of the failures compared to using NL names are related to incorrectly generating
the hyphen in the label. For example, the models generate "pullup-account”, or "pull-up account" instead
of the target "pull-up-account'. Further, this behavior is more prominent for labels that consist of a single
word (i.e, "instructions" and "membership") since they represent only 7% of the labels, where the models
generate invalid labels like "instructions - " or "-membership"'. Moreover, 60% of the errors made on these
single-word labels are for the "membership" label. We believe this is due to the existence of a similarly
named label (i.e., "search-membership"). Some invalid predictions include stop words (e.g., "pull-up-the-
account"). While extending training could resolve these issues, it will negatively affect domain adaptation
due to overfitting. Also, while some of these invalid predictions can be handled in a post-processing step,
it will require additional effort to evaluate all the possible failures which can be a lengthy task, especially
when adapting to a new domain. When using NL action names, the models still predict names that are not
an exact match to the target. For example, the models predict "pull up the customer account" instead of
"pull up customer account", or "ask customer try again' instead of "ask customer to try again'. However,
using NL names enables us to use techniques like stemming and ignoring stop words, avoiding the need
to create elaborate post-processing procedures. However, stemming and ignoring stop words were used at
most on 23% of the predictions (for T5-Small). The remaining improvements compared to using the original
labels resulted from cases where the NL names brought semantic richness. For example, using NL action
names, the models performed better on differentiating "check membership level" from "get memberships
information" as opposed to using the original labels where the models confuse "search-membership' and
"membership". However, manually generating the action names can be a laborious task when dealing with a
large or frequently updated domain, and we leave exploring more automated ways to generate these names
for future work.

16

Published in Transactions on Machine Learning Research (02/2023)

6.3.6 Using Models Fine-tuned on Summarization

To understand the effect of using models fine-tuned on summarization, we performed an experiment following
the same setup as in Section [6.3.1] without adding the possible action names to the input, and we compare
the performance using the same model with and without summarization fine-tuning. We report the results
of this experiment in Table [12] on all model variants except PEGASUS-Large since it does not have a pre-
trained model that has not been trained on summarization tasks. Further, all models have been fine-tuned
on CNN/DailyMail (Hermann et al.| [2015) dataset.

Table 12: Results of using original label-like names compared to natural language action names. With and
Without Summarization Fine-tuning represents the results with and without the use of models fine-tuned
on summarization task. EM and CE are the Exact Match and Cascading Evaluation, respectively.

EM/CE
Params Models . Wl,thouf . . Wlth . .
Summarization Fine-tuning Summarization Fine-tuning
60M T5-Small 40.4/63.1 44.1/67.9
220M T'5-Base 44.2/65.9 47.7/69.9
406M BART-Large 42.0/60.2 42.0/60.3
770M T5-Large 50.5/73.1 50.6/73.1

The results show that using models previously fine-tuned on summarization tasks improves the performance
of models below 220 million parameters (i.e., T5-Small, and T5-Base). However, it did not have any effect on
larger models’ performance. Our result analysis showed that using fine-tuned models mostly improved the
performance on slot value extraction for smaller models, especially for slot values with multiple words like full
names (e.g., "joseph banter"). Further, the same performance was attained for larger models with 4.8% fewer
training iterations when using summarization checkpoints. These results show that using summarization
fine-tuned models for the WD task is beneficial.

7 Conclusion

We have formulated a new problem called Workflow Discovery, in which we aim to extract workflows from
dialogues consisting of sequences of actions and slot values representing the steps taken throughout a di-
alogue to achieve a specific goal. We have examined models capable of performing three different tasks:
Workflow Discovery, Action State Tracking, and Cascading Dialogue Success. Our experiments show that
our sequence-to-sequence approach can significantly outperform existing methods that use encoder-only lan-
guage models for the AST and CDS tasks, achieving state-of-the-art results. Furthermore, our method is
able to correctly predict both in-domain and out-of-distribution workflow actions, and our action condition-
ing approach affords much better performance for out-of-domain few-shot and zero-shot learning. We hope
that our work sparks further NLP research applied to the field of process mining, but allowing for the use
logs, meta-data and dialogues as input. Moreover, we believe that this method of characterizing complex
interactions between users and agents could have significant impact on the way researchers and developers
create automated agents, viewing workflow discovery as a special type of summarization that produces a
form of natural language based program trace for task oriented dialogues.

References

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. ETC: Encoding long and structured inputs in trans-
formers. Empirical Methods in Natural Language Processing (EMNLP), November 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems (NeurIPS), 2020.

17

Published in Transactions on Machine Learning Research (02/2023)

Tom&s Brychcin and Pavel Kral. Unsupervised dialogue act induction using gaussian mixtures. European
Chapter of the Association for Computational Linguistics (EACL), 2016.

Pawetl Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Inigo Casanueva, Stefan Ultes, Osman Ramadan,
and Milica Gasi¢. Multiwoz—a large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue
modelling. Empirical Methods in Natural Language Processing (EMNLP), 2018.

Derek Chen, Howard Chen, Yi Yang, Alex Lin, and Zhou Yu. Action-based conversations dataset: A corpus
for building more in-depth task-oriented dialogue systems. North American Chapter of the ACL (NAACL),
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. North American Chapter of the ACL (NAACL), 2018.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural languages.
Association for Computational Linguistics (ACL), 2020.

Catherine Finegan-Dollak, Jonathan K Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. Improving text-to-sql evaluation methodology. Association for Computa-
tional Linguistics (ACL), 2018.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-annotated
dialogue dataset for abstractive summarization. Association for Computational Linguistics (ACL), 2019.

Matthew Henderson, Blaise Thomson, and Jason D Williams. The second dialog state tracking challenge.
Special interest group on discourse and dialogue (SIGDIAL), pp. 263-272, 2014.

Karl Moritz Hermann, Toméas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. Teaching machines to read and comprehend. CoRR, abs/1506.03340, 2015.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, Noah A. Smith, and Mari Ostendorf. In-context learning
for few-shot dialogue state tracking. arXiv, abs/2203.08568, 2022.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen tau Yih. Dense passage retrieval for open-domain question answering. Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Joo-Kyung Kim and Young-Bum Kim. Joint learning of domain classification and out-of-domain detection
with dynamic class weighting for satisficing false acceptance rates. International Speech Communication
Association (INTERSPEECH), 2018.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Dialogue state tracking with a language model using
schema-driven prompting. Empirical Methods in Natural Language Processing (EMNLP), 2021.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves
Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. Association for Computational Linguistics (ACL), 2019.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu, Andrea
Madotto, Eunjoon Cho, and Rajen Subba. Leveraging slot descriptions for zero-shot cross-domain dialogue
StateTracking. North American Chapter of the ACL (NAACL), 2021a.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A. Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,
Andrea Madotto, Eunjoon Cho, and Rajen Subba. Leveraging slot descriptions for zero-shot cross-domain
dialogue statetracking. North American Chapter of the ACL (NAACL), 2021b.

Bing Liu and Tan Lane. Attention-based recurrent neural network models for joint intent detection and slot
filling. International Speech Communication Association (INTERSPEECH), 2016.

18

Published in Transactions on Machine Learning Research (02/2023)

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv,
2019.

Qingkai Min, Libo Qin, Zhiyang Teng, Xiao Liu, and Yue Zhang. Dialogue state induction using neural
latent variable models. International Joint Conference on Artificial Intelligence (IJCAI), 2020.

Peiqing Niu, Zhongfu Chen, Meina Song, et al. A novel bi-directional interrelated model for joint intent
detection and slot filling. Association for Computational Linguistics (ACL), 2019.

Hugh Perkins and Yi Yang. Dialog intent induction with deep multi-view clustering. Empirical Methods in
Natural Language Processing (EMNLP), 2019.

Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen, and Ting Liu. A stack-propagation framework with
token-level intent detection for spoken language understanding. Empirical Methods in Natural Language
Processing (EMNLP), 2019.

Libo Qin, Wanxiang Che, Yangming Li, Mingheng Ni, and Ting Liu. Dcr-net: A deep co-interactive relation
network for joint dialog act recognition and sentiment classification. Association for the Advancement of

Artificial Intelligence (AAAI), 2020.

Dimitrios Rafailidis and Yannis Manolopoulos. The technological gap between virtual assistants and recom-
mendation systems. arXiv, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yangi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research (JMLR), 2020a.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research (JMLR), 21:1-67, 2020b.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Geunbae Lee. Out-of-domain detection based on
generative adversarial network. Empirical Methods in Natural Language Processing (EMNLP), 2018.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for constrained
auto-regressive decoding from language models. FEmpirical Methods in Natural Language Processing
(EMNLP), 2021.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and Marie Meteer. Dialogue act modeling for automatic
tagging and recognition of conversational speech. Association for Computational Linguistics (ACL), 2000.

Alane Suhr, Claudia Yan, Jack Schluger, Stanley Yu, Hadi Khader, Marwa Mouallem, Iris Zhang, and Yoav
Artzi. Executing instructions in situated collaborative interactions. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019.

Tlya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. Advances
in neural information processing systems (NeurIPS), 27, 2014.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient transformers. Inter-
national Conference on Learning Representations (ICLR), 2021.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. Empirical Methods in Natural Language
Processing (EMNLP), 2021.

19

Published in Transactions on Machine Learning Research (02/2023)

David HD Warren and Fernando CN Pereira. An efficient easily adaptable system for interpreting natural
language queries. American journal of computational linguistics, 8(3-4):110-122, 1982.

Jason D Williams, Matthew Henderson, Antoine Raux, Blaise Thomson, Alan Black, and Deepak Ramachan-
dran. The dialog state tracking challenge series. AI Magazine, 35(4):121-124, 2014.

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe Zhou, and Zhoujun Li. Building task-oriented dialogue
systems for online shopping. Association for the Advancement of Artificial Intelligence (AAAI), 2017.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz. Multiwoz 2.4: A multi-domain task-oriented dia-
logue dataset with essential annotation corrections to improve state tracking evaluation. Special interest
group on discourse and dialogue (SIGDIAL), 2022.

Dian Yu, Mingqiu Wang, Yuan Cao, Izhak Shafran, Laurent El Shafey, and Hagen Soltau. Unsupervised
slot schema induction for task-oriented dialog. North American Chapter of the ACL (NAACL), 2022.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. Cosql: A conversational text-to-sql challenge towards cross-domain natural language
interfaces to databases. Empirical Methods in Natural Language Processing (EMNLP), 2019.

Yang Yu, Wei-Yang Qu, Nan Li, and Zimin Guo. Open-category classification by adversarial sample gener-
ation. International Joint Conference on Artificial Intelligence (IJCAI), 2017.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and Jindong Chen.
Multiwoz 2.2: A dialogue dataset with additional annotation corrections and state tracking baselines.
NLP/ConvAl 2020.

Zengfeng Zeng, Dan Ma, Haiqin Yang, Zhen Gou, and Jianping Shen. Automatic intent-slot induction for
dialogue systems. Proceedings of the Web Conference (WWW), 2021.

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured classification
with probabilistic categorial grammars. Uncertainty in Artificial Intelligence (UAI), 2012.

Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and Philip S Yu. Joint slot filling and intent detection via
capsule neural networks. Association for Computational Linguistics (ACL), 2018.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization. International Conference on Machine Learning (ICML), 2020.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. International Conference on Learning Representations (ICLR), 2020.

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu, Mingqiu Wang, Harrison Lee, Abhinav Rastogi, Izhak
Shafran, and Yonghui Wu. Description-driven task-oriented dialog modeling. arXiv, 2022a.

Jeffrey Zhao, Raghav Gupta, Yuanbin Cao, Dian Yu, Mingqiu Wang, Harrison Lee, Abhinav Rastogi, Izhak
Shafran, and Yonghui Wu. Description-driven task-oriented dialog modeling. arXiv, abs/2201.08904,
2022b.

A Appendices

A.1 Ablation on the Possible Actions Randomization

A.1.1 In-Domain Setting

We run an ablation study using all our model variants to understand the effect of the randomization technique
described in Section The use of randomization is motivated by the fact that the number of possible

actions can be different when adapting to a new domain or at test time. The result of this study is shown
in Table

20

Published in Transactions on Machine Learning Research (02/2023)

Table 13: Randomization ablation results of in-domain WD on ABCD test set. w/ Possible Actions w/o
randomization represents the results without randomization, and w/ Possible Actions the results with ran-
domization as described in Section 4.1 EM and CE are the Exact the Match and Cascading Evaluation,
respectively

Model EM/CE
WD-T5-Small 44.1/67.9
w/ Possible Actions w/o randomization 42.6/66.9
w/ Possible Actions 44.8/68.6
WD-T5-Base 47.7/69.9
w/ Possible Actions w/o randomization — 48.1/70.1
w/ Possible Actions 49.5/72.3
WD-BART-Large 42.0/60.3
w/ Possible Actions w/o randomization — 43.2/61.0
w/ Possible Actions 44.9/64.3
WD-PEGASUS-Large 49.9/71.2
w/ Possible Actions w/o randomization ~ 51.9/72.0
w/ Possible Actions 52.1/72.6
WD-T5-Large 50.6/73.1
w/ Possible Actions w/o randomization 54.6/74.8
w/ Possible Actions 55.7/75.8

The results show that adding the possible actions without randomization (i.e., w/ Possible Actions w/o ran-
domization) improves the performance of all model variants except WD-T5-Small, where the EM score drops
by 1.5 points. One explanation is that this model reaches its capacity since adding the possible actions
lengthens the model input, which increases the complexity and reduces the performance, a known limitation
of Transformer models (Tay et al.| 2021; |Ainslie et al., [2020). Nonetheless, our randomization technique (i.e.,
w/ Possible Actions) resolves this issue and improves, even more, the performance of all other model variants,
especially larger ones. For example, WD-T5-Large EM score increased by 5.1 points. The performance
increase of WD-T5-Small is due to the fact that input length is reduced at training time.

A.2 Cross-Domain Zero-Shot Setting

Similar to the in-domain experimental setup, we performed an ablation study of the randomization technique
described in Section in the cross-domain zero-shot setting. Table [14] shows the result of this study.

Table 14: Randomization ablation results of cross-domain zero-shot WD on ABCD test set with "Shirt
FAQ" and "Promo Code" as target domains. w/ Possible Actions w/o randomization represents the results
without randomization, and w/ Possible Actions the results with randomization as described in Section
EM and CE are the Exact Match and Cascading Evaluation metrics, respectively.

Shirt FAQ Promo Code

Model EM/CE EM/CE
WD-T5-Small 42.3/65.1 41.0/64.8
w/ Possible Actions w/o randomization — 41.2/64.4 40.9/64.5
w/ Possible Actions 42.5/66.5 41.0/65.0
WD-T5-Base 46.0/67.6 45.1/68.8
w/ Possible Actions 46.9/68.7 45.3/68.8

w/ Possible Actions w/o randomization 47.8/69.7 45.7/69.0

Adding the possible actions (i.e., w/ Possible Actions) to the input has a similar negative effect on the
smaller model (i.e., WD-T5-Small) as observed in the in-domain experiment results in Table @ and similarly,
it increased the performance of the larger variant (i.e., WD-T5-Base). However, our randomized actions

21

Published in Transactions on Machine Learning Research (02/2023)

conditioning technique (i.e., w/ Possible Actions™) resolves this issue and improves performance on both
model variants.

A.3 Plausible Predictions in the Zero-Shot Setting

Predicted
Workflow

Generate new
code

~Task-Oriented Dialogue

Hi. My name is Alessandro

Phoenix. My Order ID is
9602071593. The promo code | tried
to use on these Michael Kors jeans
keeps saying it's invalid

Predicted
Workflow

J B know Action

~Task-Oriented Dialogue
| am a little upset | checked on my
order and found out that you now
have the same boofts for $12 less

_

/This seems to be an error on our . (Sir_wce it seems you are still L_Jpsef with h
part. | am going to generate you a New Action this matter, what | can do is offer a
new promo code, just give me one promo code that should cover the

(_more moment. \difference.

(a) (b)

Figure 3: Plausible (a) and known (b) workflow actions generated during the ABCD cross-domain zero-shot
experiment.

Predicted

~Task-Oriented Dialogue

Workflow
Could you also let me know the star i
rating of the hotel, and I'd also like \l/
to know if they have wifi.

Check rating

The Aylesbray Lodge Guest House has
four stars and free internet.

New Action

Figure 4: Plausible workflow action generated during the MultiWOZ cross dataset zero-shot experiment.

This section shows cases of plausible workflow actions predicted in the zero-shot setting that are not part of
the possible actions. The generated actions are either "fine-grained" versions of existing actions or entirely
new ones. For example, Figure [3a]shows a case where the model predicted generate new code while the closet
possible action is offer promo code. However, our analysis showed that there is a clear separation between
cases in which agents offer a promo code as shown in Figure BB and when they generate a new one if the old
promo code is no longer working, as shown in Figure

Another example is shown in Figure [4] of an entirely new action that has no similarities with any other
possible action. Here the customer is clearly asking for the rating of the hotel Hence the check rating action.
Our dataset analysis showed that there are 10 test samples where customers requested to get the rating of
hotels or restaurants.

A.4 WD Dataset

A.4.1 MultiwWOZ Workflow Actions

Table [15] shows the MultiWOZ workflow natural language action names we used in all our experiments.

A.4.2 ABCD Workflow Actions

Table [I6] shows the ABCD workflow natural language actions names we used in all our experiments.

22

Published in Transactions on Machine Learning Research (02/2023)

Table 15: MultiWOZ workflow actions

Action Name Natural Language Action Name
find_ hotel search for hotel

book hotel book hotel

find train search for train

book train book train ticket

find attraction search for attractions
find restaurant search for restaurants
book_restaurant book table at restaurant

find__hospital search for hospital
book taxi book taxi

find_ taxi search for taxi
find_bus search for bus

find_ police search for police station

Table 16: ABCD workflow actions

Action Name Natural Language Action Name
pull-up-account pull up customer account
enter-details enter details
verify-identity verify customer identity
make-password create new password
search-timing search timing
search-policy check policy
validate-purchase validate purchase
search-faq search faq

membership check membership level
search-boots search for boots
try-again ask customer to try again
ask-the-oracle ask oracle

update-order update order information
promo-code offer promo code
update-account update customer account
search-membership get memberships information
make-purchase make purchase
offer-refund offer refund

notify-team notify team
record-reason record reason
search-jeans search for jeans
shipping-status get shipping status
search-shirt search for shirt
instructions provide instructions
search-jacket search for jacket
log-out-in ask customer to log out log in
select-faq select topic in faq
subscription-status get subscription status
send-link send link to customer
search-pricing check pricing

23

Published in Transactions on Machine Learning Research (02/2023)

A.4.3 Dataset Statistics

This section shows the dataset set statistics for the WD task for ABCD and MultiWoz datasets. Table
shows the size for each split, the average workflow length across each dataset, and the number of domains.
Figure 5] and Figure [7] show the workflow length distribution for each data split on ABCD and MultiWoz,
respectively. Figure [f]and Figure [§show the action distribution for each data split on ABCD and MultiWoz,
respectively.

Table 17: WD dataset statistics for ABCD and MultiWoz datasets.

Train Samples # Dev Samples # Test Sampl Average # Domai
ain Samples ev Samples est Samples o Length omains
ABCD 8034 1004 1004 18.5 30
MultiWoz 5048 527 544 3 8
Train Dev Test
2

2500 A
2000 A
1500 4
1000 4

500 4

E | B H | B
Bosm o Imo 2 B
oot n - -] A —~ 18 =l Rl ~ -

- P T T LA s e T T T T T
12345678 91011121314 19 2324 1234567 891011121314 19 2324 1234567 8 91011121314 19 2324

Figure 5: Workflow length distribution for each ABCD dataset split.

24

Published in Transactions on Machine Learning Research (02/2023)

5653

B Train
N Dev
B Test

5000

4000 -

2924

3000 +

1956
1942

2000+

1671
1381
1288
1392
1276

1157

1000

746

Figure 6: Action distribution for each ABCD dataset split.

Train Dev Test

2000

1750

1500

1250

1000

750

250 § 174 183 . 194 194

116 113

Figure 7: Workflow length distribution for each MultiWoz dataset split.

25

Published in Transactions on Machine Learning Research (02/2023)

1792

B Train

1750

1500

1250

1000

750 A

500 A

250 A

Figure 8: Intent distribution for each MultiWoz dataset split.

26

Published in Transactions on Machine Learning Research (02/2023)

A.5 Prompt and target formats for WD, AST, and CDS tasks

— Pwp
Dialogue: "Hi there, | am having trouble with my promo code,
keeps saying it is invalid" "May | Have your account ID please?" Twp
"Account ID is 123674" ... "okay. I'll check our system." "It seems Pull up account [123674]; Ask oracle[nonel;
that this is an error on our end. | will generate you a new ...; Generate new code [none]; ...
promo code." ... "Great thank you so much!” "Have a great

day" Actions: Offer refund, promo code, Get subscription
status, Pull up account, Ask oracle, notify team, ...

(a) Workflow Discovery (WD). Illustration of a prompt (Pwp) — consisting of an entire dialogue, and the target
(Twp) — consisting of a structured summary for the WD task. Pwp is composed of the delimiters in bold that
separate the dialogue utterances in blue and the optional list of possible actions in green. Twp is composed of the
predicted workflow actions, and matching slot values in brackets. The actions are either known (highlighted in green)
or invented (highlighted in orange).

— Pasr
Context "Hi there, | am having trouble with my promo code, — TAST
Pull up account [123674]

keeps saying it is invalid" "May | Have your account ID please?"
"Account ID is 123674"

— Pasr
Context: "Hi there, | am having trouble with my promo code, — Tasr
keeps saying it is invalid" "May | Have your account ID please?"”
"Account ID is 123674” “Pull up account [123674]" ... "It seems Promo code [none]
that this is an error on our end. | will generate you a new

promo code."

1SV

(b) Action State Tracking (AST). Illustration of prompts (Past) and targets (Tast) for the AST task at different
turns in the dialogue. Pagsr is composed of the context delimiter in bold and the context utterances in blue that can
contain previous action turn text (underlined).

— Pcps
. . . respond
Context: Hi there, | am having frouble with my promo code, Tcps
keeps saying it is invalid" Candidates: "hello. how may | help Promo code invalid; respond; May | Have
you today?2” "okay." "May | Have your account ID please?" your account ID please?
"have a nice day!” ...
— Pcps - Taction
Context: Hi there, | am having trouble with my promo code, 0 CDS]) .
keeps saying it is invalid" “May | Have your account ID o Promo code invalid; action; Pull up
please?” "Account ID is 123674" Candidates: "have a nice) account [123674]
day!” “Can you give me your username, please?2” ...
— Pcps end
Context: Hi there, | am having trouble with my promo code, r TCDS
keeps saying it is invalid" ... "Great thank you so much!" Promo code invalid; end
"Have a great day" Candidates: "sure!” "okay." "thank you so
much." "welcome to acmebrands. how may | help?" ...

(c) Cascading Dialogue Success (CDS). Illustration of prompts (Pcps) and targets Tops for the CDS task at
different turns in the dialogue. Pcps is composed of the delimiters in bold that separate the dialogue utterances in
blue and the list of possible agent response candidates in green. ngg"”d, action and TEls are the targets when
the next step is to respond with an utterance, perform an action, and end the conversation, respectively. "Promo

code invalid" is the entire dialogue intent.

Figure 9: Illustration of prompt and target formats for WD, AST, and CDS tasks.

27

	Introduction
	Related Work
	Workflow Discovery (WD)
	WD Task Definition
	WD Compared to Existing Tasks

	Baselines and Methodology
	Text-to-Text Workflow Discovery
	Text-to-Text Action State Tracking
	Text-to-Text Cascading Dialogue Success

	Experimental Setup
	Implementation Details
	Datasets
	Metrics

	Experimental Results
	Action State Tracking
	Cascading Dialogue Success (CDS)
	Workflow Discovery (WD)
	In-Domain Workflow Actions
	ABCD Cross-Domain Zero-Shot
	MultiWOZ Cross-Dataset Zero-Shot
	MultiWOZ Cross-Dataset Few-Shot
	Using Natural Language Action Names
	Using Models Fine-tuned on Summarization

	Conclusion
	Appendices
	Ablation on the Possible Actions Randomization
	In-Domain Setting

	Cross-Domain Zero-Shot Setting
	Plausible Predictions in the Zero-Shot Setting
	WD Dataset
	MultiWOZ Workflow Actions
	ABCD Workflow Actions
	Dataset Statistics

	Prompt and target formats for WD, AST, and CDS tasks

