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ABSTRACT

Large Language Model (LLM) agents are rapidly improving to handle increas-
ingly complex web-based tasks. Most of these agents rely on general-purpose,
proprietary models like GPT-4 and focus on designing better prompts to im-
prove their planning abilities. However, general-purpose LLMs are not specif-
ically trained to understand specialized web contexts such as HTML, and they
often struggle with long-horizon planning. We explore an alternative approach
that fine-tunes open-source LLMs using production-scale workflow data collected
from over 250 domains corresponding to 6 billion tokens. This simple yet ef-
fective approach shows substantial gains over prompting-based agents on exist-
ing benchmarks—our WorkflowAgent achieves state-of-the-art performance on
Mind2Web and substantially improves the baseline task success rate from 37.2%
to 51.3% on WebArena. We further perform detailed ablation studies on vari-
ous fine-tuning design choices and provide insights into LLM selection, training
recipes, context window optimization, and effect of dataset sizes.

1 INTRODUCTION

Large language model (LLM) agents have advanced significantly in web navigation. They can carry
out user-specified tasks in multiple steps by reasoning on their own what actions to take and what
external resources to interface with. Recent studies (Zheng et al., 2024; Lai et al., 2024; Zhang
et al., 2024) have shown that, with better planning and exploration strategies, LLM agents can
independently solve various web tasks ranging from simple navigation, such as locating a specific
Wikipedia page, to more complex operations, such as booking flights or restaurants.

Despite these improvements, the performance of existing web agents on research benchmarks re-
mains significantly below human levels (Deng et al., 2023; Zhou et al., 2024; Drouin et al., 2024).
One possible reason is their dependence on general-purpose LLMs. Indeed, all top-performing
agents like WebPilot (Zhang et al., 2024), AWM (Wang et al., 2024b), and SteP (Sodhi et al., 2024)
rely on prompting proprietary models like GPT-4 (OpenAI, 2024a). These general-purpose LLMs
are not optimized for interpreting web contexts such as HTML or accessibility trees; their pretraining
and alignment processes do not address navigation-related challenges; and their proprietary nature
presents a major obstacle in adapting them to web environments via continual training.

In this work, we explore an alternative approach by fine-tuning open-source LLMs with a large set
of real-world web workflow data1 to develop specialized web agents (Figure 1). Through extensive
experiments, we show that this approach not only boosts the web understanding and planning abili-
ties of LLMs, achieving state-of-the-art results on various benchmarks, but also allows us to develop
agent models significantly smaller than proprietary LLMs, drastically reducing the serving costs.

To achieve these results, we first collect a set of proprietary workflow data representing action
sequences executed by real users in real web environments. This dataset encompasses a large and
diverse spectrum of websites (over 250 domains and 10,000 subdomains), task objectives, task
difficulty, and task length. Each step in the workflow features not only the raw HTML-DOM of
the website but also a comprehensive documentation of the action, including action description in

1Due to privacy concerns, we restrict access to our proprietary dataset. However, we will release a version of
WorkflowAgent trained on open-source datasets (Deng et al., 2023). We will also release our data preprocessing
and model fine-tuning code.
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Figure 1: Left: Most existing LLM web agents are built on top of general-purpose, proprietary models like
GPT-4 and rely heavily on prompt engineering. Their performance is enhanced by leveraging external planning,
reasoning, and memory modules. Right: We explore an alternative way to develop specialized agents by fine-
tuning open-source LLMs using a large set of high-quality, real-world workflow data. This significantly boosts
agent’s navigation and planning capacity, enabling it to outperform proprietary models with a smaller LLM
backbone, thereby reducing serving costs.

natural language, mouse or keyboard operation, and the CSS selector of the target HTML element.
We reformat the data into a next-step prediction formulation and fine-tune a set of open-source
LLMs via the parameter-efficient LoRA (Hu et al., 2022). After preprocessing and reformatting,
our training dataset contains more than 6 billion tokens.

With access to this production-scale dataset, we develop WorkflowAgent, the first family of special-
ized, single-stage LLM agents capable of directly generating the next step based on the website’s
DOM and action history. This is in contrast with previous fine-tuned agents that require multiple
stages to produce an action, e.g., first narrowing down to a set of target element candidates and then
selecting one from the candidates (Deng et al., 2023). WorkflowAgent significantly outperforms
existing GPT-4-based and multi-stage agents. Notably, our 7B-parameter model achieves state-of-
the-art performance on Mind2Web (Deng et al., 2023) with an over 50% step success rate and a
nearly 10% task success rate. These numbers substantially surpass the typical 30% step success rate
and 1-2% task success rate seen in existing prompting-based agents. On the end-to-end task exe-
cution benchmark WebArena (Zhou et al., 2024), WorkflowAgent boosts the task success rate from
37.2% to 51.3%, marking the highest performance among all published, text-only LLM agents.

Beyond the empirical results, our work also provides several insights valuable for future web agent
research: (1) we show that direct fine-tuning on highly structured inputs (HTML-DOM) is feasible
and can improve the agent’s ability in identifying the correct target; (2) we identify an effective
HTML preprocessing strategy that balances between preserving essential information and minimiz-
ing context length; (3) we provide a thorough analysis on various design choices in fine-tuning, such
as LLM backbone and context window selection; (4) we illustrate how fine-tuning improves agent
performance as dataset size increases.

Our work highlights the potential of building web agents via specialized fine-tuning with production-
scale data. This approach not only improves agents’ capabilities relative to prompt-engineered al-
ternatives, but also reduces inference costs due to the smaller sizes of open-source LLMs. While
our work focuses on studying the effect of fine-tuning, WorkflowAgent can be extended to leverage
more sophisticated search or memory modules (Koh et al., 2024; Wang et al., 2024b), combined
with existing planning frameworks (Yao et al., 2022; Madaan et al., 2023; Shinn et al., 2023), or
integrated into multi-modal web agent systems as the text model (Wang et al., 2024a). We view
WorkflowAgent as an important step towards developing AI assistants and fully automated agents
for real-world web applications.

2 RELATED WORK

Prompting-based agent frameworks. The majority of web agent works reuse existing LLMs and
propose different prompting strategies to improve action prediction. One line of research focuses on
exploiting previous experience via self-feedback (Sun et al., 2023) or in-context demonstrations (Fu
et al., 2024; Zheng et al., 2024; Wang et al., 2024b; Ou et al., 2024). A separate line of work
centers around encouraging exploration by including external evaluators (Pan et al., 2024), using
synthesized instructions (Murty et al., 2024), or applying more sophisticated search algorithms like
stack (Sodhi et al., 2024), best-first tree search (Koh et al., 2024), or Monte Carlo Tree Search (Zhang
et al., 2024). Chain-of-Thought (Wei et al., 2023) or ReAct (Yao et al., 2023) prompting have also
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been used (He et al., 2024). Despite the research efforts, these prompting methods rely heavily
on the quality of the LLM used. Open-source models such as LLaMA (Dubey et al., 2024), Code
LLaMA (Rozière et al., 2024), and Flan-T5 (Chung et al., 2022) generally underperform proprietary
models like GPT-4. However, fine-tuning proprietary LLMs can often be costly and challenging, as
it is restricted to being done through APIs. This implies an opportunity for enhancing open-source
LLMs to match or outperform proprietary agents.

Fine-tuning-based web agents. Compared to developing better reasoning and planning frame-
works, comparatively less attention has been given to optimizing the LLMs themselves to better
handle web environments. Due to the difficulty of directly generating a single target element from
the raw HTML, which often contains thousands of elements, existing work mostly focuses on multi-
stage prediction. MindAct (Deng et al., 2023) proposes a two-stage pipeline that first uses a small
LM to filter the web elements and then uses a more powerful LM to select from the filtered elements
in a multi-choice question answering format. Both LMs can be fine-tuned using the Mind2Web
dataset. WebAgent (Gur et al., 2023) uses HTML-5 to first process the HTML and then fine-tunes
a 540B Flan-UPalm to generate code for controlling web pages. More recently, AutoWebGLM (Lai
et al., 2024) trains a single ChatGLM3 6B (GLM et al., 2024) using a combination of curriculum
learning, reinforcement learning, and rejection sampling fine-tuning. Despite the complicated train-
ing and inference procedures, these methods often underperform agents that prompt GPT-4. In
contrast, our work shows that given sufficient high-quality workflow data, fine-tuning a single LLM
can achieve strong performance. We note that the newly released OpenAI o1 (OpenAI, 2024c) can
be viewed as a specialized agent with a complicated planning framework. Nonetheless, we show
in Section 4.1 that WorkflowAgent outperforms o1-preview by a large margin on our proprietary
dataset. Moreover, while none of the training details for o1 have been released, our work provides
valuable insights into data preprocessing and fine-tuning.

Beyond the aforementioned work, there is an earlier line of research that fine-tunes LLMs for HTML
inputs (Gur et al., 2022; Nakano et al., 2022; Liu et al., 2023). However, their primary application is
question-answering tasks, such as answering “could sunflowers really track the sun across the sky”,
and they cannot be used to generate a sequence of actions based solely on the user objective.

Lastly, we note that an emerging line of research has committed to developing multi-modal web
agents that use screenshots along with HTML observations. Examples include CogAgent (Hong
et al., 2023), SeeClick (Cheng et al., 2024), WebVoyager (He et al., 2024), and AWA 1.5 (JaceAI,
2024). However, our current version of WorkflowAgent focuses exclusively on text-based inputs due
to the lack of extensive, high-quality paired data and effective visual preprocessing schemes. Thus,
we do not include comparisons with the aforementioned multi-modal methods in our experiments
and leave developing multi-modal WorkflowAgent as future work.

3 METHOD

In this section, we first overview the general setup of solving web-based tasks with LLM agents.
Then, we detail our proposed method to develop specialized agents from open-source LLMs.

3.1 GENERAL SETUP

We consider solving web-based task as a sequential decision-making process guided by a high-level
objective. For each task, the user first specifies an objective and a starting web page. Then, at
every step, the agent outputs an action based on the task objective, the current web page, and the
history. Formally, denote the user objective as q. The web environment is governed by a transition
function T that can evolve over time. The agent is instantiated by a language model L. At each time
step t, the agent observes ot produced by the environment state st and observes the history ht =
H(o1:t−1, a1:t−1). It outputs an action at = L(q, ot, ht), which is executed in the environment, and
the state changes correspondingly st+1 = T (st, at). This iterative process stops when the agent
issues a stop signal, or a task termination condition is met, such as we have reached a predefined
maximum number of steps.

For single-modal, text-only agents, the observation ot typically consists of the website’s URL, the
HTML-DOM (Object Model for HTML, which defines HTML elements and their properties, meth-
ods, and events), and potentially the accessibility tree (a representation that can be understood by
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assistive technologies like screen readers). Since the raw HTML-DOM is often long and contains
redundant structural information, most methods employ preprocessing and pruning strategies, which
could be as simple as retaining a fixed set of HTML tags and attributes or more complex ones like
LLM-based element ranking and filtering (Deng et al., 2023).

The action at emulates the keyboard and mouse operations available on web pages. The most general
action space in existing work consists of element operations, such as clicking, typing, and key
combination pressing; tab actions, such as opening, closing, and switching between tabs; navigation
actions, such as going forward and backward in the browsing history (Zhou et al., 2024).

As discussed earlier, previous web agent work focuses on presenting useful demonstrations through
ht or iteratively revising at to improve the quality of the predicted next step. In contrast, we explore
whether we can improve the model L itself by learning from a vast amount of data and incorporating
more information into ot, such as the natural language description and HTML representation of a
action. We detail our approach in the next section.

3.2 WORKFLOWAGENT: SPECIALIZING WEB AGENTS THROUGH FINE-TUNING

3.2.1 COLLECTING PRODUCTION-SCALE DATA

We collected a large set of real-world proprietary data through a workflow documentation software
that streamlines the creation of step-by-step guides to achieve web-based tasks. The software allows
users to record their interactions with the web through a browser extension and converts the interac-
tions into well-annotated instructions, which can be then customized to specific business needs. Our
dataset consists of everyday workflows in common web application domains, encompassing cus-
tomer relationship management (CRM) tools like HubSpot and Salesforce; productivity tools like
Notion and Calendley; social platforms like Facebook and LinkedIn; shopping sites like Amazon
and Shopify; and many others.

Each workflow features a high-level user objective and a step-by-step documentation of the action
sequence to achieve the task. The objective spans a wide range of topics, such as “add a user in a
Salesforce” or “invite someone to manage Facebook ad accounts”. Each step contains the following
information: the current web page’s URL, raw HTML-DOM, a natural language description of the
action performed, the type of action, and the autogenerated CSS selector to identify the action target.
There are three types of actions in the dataset:

• mouse click action: click at an element

• keyboard sequence action: type a sequence of characters to an element

• keyboard combination action: press a set of keys together (e.g., hotkey like ctrl+c)

Note that there is no scroll actions in our action space since all elements are already fully accessible
in the captured data. This is because we capture the full DOM from a system perspective, which
inherently includes the entire webpage as observed from the backend. This method differs from user-
centric data collection, where only the elements within the visible browser viewport are captured.

To ensure the quality of the data, we remove workflows with invalid selectors, i.e., the selector
cannot be used to locate a target element in the DOM. We also remove non-English workflows to
reduce dataset complexity and enable us to explore English-only LLMs like Mistral 7B (MistralAI,
2023). The resulting dataset is at production scale: using raw data collected over a two-month
period, we are able to extract workflow data from more than 250 domains and 10,000 subdomains
with an average task length of 11 steps, which correspond to about 6 billion training tokens. This
large-scale, high-quality, real-world dataset is unmatched in prior web agent research.

Since this dataset is collected from real users and might contain sensitive and confidential informa-
tion, it will not be released to the public to protect user privacy. The dataset is solely for research
purposes and has been anonymized to prevent the identification of any individual.

3.2.2 PREPROCESSING

For WorkflowAgent, we consider an observation space consisting mainly of the URL and HTML-
DOM. Specifically, HTML-DOM provides agents with all structural and content information about
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the web page that are essential for generating the next step and long-term planning. For instance,
while a drop-down menu may not be visible on the website before expansion, the agent can detect the
menu items from the DOM and determine whether to click and expand it. We do not use accessibility
tree to develop WorkflowAgent because it may lose information about the HTML elements, such as
the drop-down items, and does not generalize across different browsers and devices.

Given our observation space, a subsequent problem is that the DOM can be quite long and exceed
the context window of prevailing open-source LLMs. To reduce the DOM sizes, we propose a
pruning algorithm that maintains the essential structure and content while eliminating redundant or
disruptive elements that could hinder the LLM’s understanding. Specifically, we first use the Beau-
tifulSoup library (Richardson, 2007) to remove non-essential components such as metadata, CSS,
and JavaScript. Then, we utilize a tag-attribute white list to retain useful tag level information like
retaining interactive elements. Since some attribute values can contain random character sequences
that do not provide useful information, we propose a novel detection method that removes the at-
tributes with character-to-token-ratio smaller than 2, i.e., len(s)

len(tokenizer(s)) < 2, where s denotes the
value string. Intuitively, if each character in a string is encoded using a separate token, it is highly
likely that the string is not semantically meaningful. Lastly, we remove the comments and extra
whitespaces to clean up the DOM. After pruning, we assign each tag in the HTML with a unique ID
by traversing the HTML tree from bottom to top. More details about preprocessing and analysis on
the tokenizer-pruning method can be found in Appendix A.1.

We restrict the action space of WorkflowAgent to the three types of operations specified in Sec-
tion 3.2.1. To preprocess the action sequences, we rewrite each step into five lines as follows:

1.
Description: Click the “Menu” button to browse all food options
Action: mouse click action
Node: 832
Target: <svg class=“open-hamburger-icon” node=“832” role=“img”>

The first line represents the current time step. The second line is the natural language description
of the action, which can help LLMs to learn about the rationale behind applying a specific action.
The third line is one of the three operations in the action space. The fourth line is the unique ID
assigned to the target element. The last line details the HTML tag and attributes, which can be
directly obtained from the processed DOM.

For the history, we consider only previous actions, omitting previous observations due to the exten-
sive length of the DOMs. That is, ht = a1:t−1. Therefore, at each step, WorkflowAgent will be
given the task objective, URL, HTML-DOM, and all previous actions in the aforementioned five-
line format. Its goal is to output the next action at = L(q, ot, a1:t−1) that helps complete the task.
In Appendix A.3, we provide an example of a full workflow.

Lastly, during our inspection, we find that 10% of the action descriptions in the dataset are not
informative (e.g., “click here”). In these cases, we use GPT-4o (OpenAI, 2024b) to regenerate the
action description from screenshots. We provide the prompt as well as examples of the regenerated
action descriptions in Appendix A.4.1.

3.2.3 FINE-TUNING WITH LORA

After preprocessing, we divide the dataset into two splits. The test set comprises of 1200 workflows
with diverse objectives and domains. We use the remaining workflows as the training data to adapt
LLMs via standard supervised fine-tuning. Note that for each example, the label is a single next-
step instead of all remaining steps needed to complete the task. The agent is trained to generate all
information in the five-line format described above, including the natural language description.

To reduce fine-tuning cost, we opt for the parameter efficient method LoRA (Hu et al., 2022) instead
of full fine-tuning, since we have not observed significant performance gain by updating more pa-
rameters. We also follow previous work (Zhao et al., 2023) to fine-tune the layernorms in addition
to the LoRA adapters. Based on empirical observations, we set the fine-tuning epoch to 2, effective
batch size to 32, LoRA rank to 64 and α to 128. We use a cosine scheduler with 30 warmup steps
and a learning rate of 1e-4.
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Table 1: Performance of different LLMs fine-tuned on 1B workflow tokens on the test split of our proprietary
dataset. We highlight the best results for small/medium/large models. EM is short for Exact Match. ⋆Qwen2
57B is fine-tuned at a 29K context window and evaluated on a subset of samples due to compute constraints.

Model # Params Before Fine-Tuning After Fine-Tuning
EM (%) Calibrated EM (%) EM (%) Calibrated EM (%)

Mistral-7B-Instruct-v0.3 7B 3.89 5.13 19.92 26.31
Qwen2-7B-Instruct 7B 6.06 7.92 29.34 38.72
Llama-3.1-Instruct-8B 8B 1.42 1.88 28.34 37.42
Qwen2.5-14B-Instruct 14B 8.79 11.6 31.76 41.89
Codestral-22B-v0.1 22B 4.53 6.08 31.11 41.25
Mixtral-8x7B-Instruct-v0.1 56B-A12B 7.35 9.82 28.38 37.49
Qwen2-57B-A14-Instruct 57B-A14B 5.72 7.51 31.02 40.10

3.2.4 EXPLORING THE DESIGN SPACE

There are multiple design choices for WorkflowAgent that might affect the prediction accuracy, fine-
tuning cost, and inference latency. We focus on three aspects and perform detailed ablation studies
to find out the optimal modeling and training configurations.

Pretrained LLM Selection. Intuitively, the quality of a fine-tuned web agent should be relevant
to the quality of the pretained LLM. We identify two axes that are crucial to performance—model
architecture and model size—and explore seven open-source LLMs spanning these axes: Llama 3.1
8B (Dubey et al., 2024), Mistral 7B (MistralAI, 2023), Mixtral 8x7B (MistralAI, 2024b), Qwen2
7B (Yang et al., 2024), Qwen2 57B (Yang et al., 2024), Qwen2.5 14B (Yang et al., 2024), and
Codestral 22B (MistralAI, 2024a). We fine-tune these models with 1 billion training tokens and
evaluate their performance on the test split of the dataset we collected.

Table 2: Ablations on context window length.

Model Context EM (%) CEM (%)
Qwen2 7B 32K 29.34 38.72
Qwen2 7B 65K 31.42 36.22
Qwen2.5 14B 32K 31.76 41.89
Qwen2.5 14B 65K 33.96 39.15

Table 3: Ablations on dataset size. All settings are
trained and evaluated with Qwen2-7B-Instruct and
32K context window.

# Train Tokens EM (%) CEM (%)
1B 29.34 38.72
3B 32.65 43.06
6B 34.96 46.42

Given that many of the evaluated LLMs have a
maximum context window of approximately 32K,
and the processed DOM can exceed this limit, we
divide the DOM sequentially into chunks that fit
into the context window. For fine-tuning, we use
the chunk containing the correct target, but for eval-
uation, we use the last chunk since the target’s lo-
cation is not known beforehand. When evaluating
at a 32K context window, 25% of the test data do
not have the correct target tag in the DOM, i.e.,
these tasks are unachievable. Thus, we compute
two metrics for evaluation: (1) exact match (EM)
measures the model’s ability to select exactly the
same HTML tag as the ground truth; (2) calibrated
exact match (Calibrated EM, or CEM) measures
the percentage of correct target predictions where
the target tag was present in the truncated HTML
DOM, i.e., it is EM on the set of examples where the observation contains sufficient information to
complete the task. As we scale the context window, these two metrics converge. DOM chunking
presents a limitation due to relatively small context windows, which can introduce noise into evalu-
ations. Therefore, effectively extending the context window or developing inference strategies that
avoid the need to truncate long observations is a crucial next step for this work.

We report the performance of different LLMs before and after fine-tuning in Table 1. Notably,
for all models, specialized fine-tuning drastically increases the prediction accuracy. Among the
models with <10B parameters, Qwen2 outperforms both Mistral 7B and Llama 3.1. We observe
performance gains as model size increases. For example, the calibrated EM for Qwen2 57B is higher
than its 7B counterpart. Mixtral 8x7B outperforms Mistral 7B by a large margin as well. However,
fine-tuning larger models is significantly more resource-intensive—while Qwen2 7B can be fine-
tuned using 8 H100 GPUs in just one day, Qwen2 57B takes over a week using the same hardware
configuration. Larger models also incur longer inference times and require multiple GPUs even
at a 32K context length. Among the seven LLMs, Qwen2 7B strikes a balance between prediction
accuracy, fine-tuning and inference costs. We thus use it as the default backbone for WorkflowAgent.
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Context Window Length. We evaluate the models with 65K context window to add additional
context and increase the rate of solvable tasks (Table 2). On both Qwen2 and Qwen2.5, scaling the
context window from 32K to 65K leads to approximately 2% performance boost for Exact Match
but approximately 2.5% performance drop for Calibrated Exact Match. We hypothesize that this
performance degradation might be due to rotary position embedding (Su et al., 2021) and the fact that
it becomes harder to pick the correct target given twice as many options to choose from. Besides, we
note that using 65K context window increases the inference time by approximately 4× in practice.

Dataset Size. Lastly, we are interested in understanding the effect of fine-tuning dataset size on
the agent’s performance. To this end, we sample our training set without replacement into smaller
subsets and fine-tune Qwen2 7B on them. Results are shown in Table 3. Plotting on a log-linear
scale, we observe that there is a roughly 2% performance boost when we double our dataset size.

To sum up, using our proprietary dataset, we study the effect of LLM backbone, context window,
and dataset size on the agent performance. We find that (1) scaling parameter count generally im-
proves prediction quality, but the latency and training time of large LLMs can be prohibitive; (2)
using longer context window boosts model performance on EM but increases the inference time
significantly; (3) training with more tokens is helpful. Based on these insights, we use Qwen2 7B
fine-tuned on the full 6B-token dataset at a 32K context window as the final version of WorkflowA-
gent. The results shown in later sections are based on this model. Since WorkflowAgent only has
7B parameters, it is much cheaper to serve at inference time than large-scale proprietary models.

4 RESULTS

Table 4: Comparing specialized WorkflowAgent
with general-purpose, non-fine-tuned baselines on
the full test set.

Model EM (%) CEM (%)
Qwen2 7B 6.28 8.20
GPT-4o mini 12.60 13.26
GPT-4o 15.24 16.02

WorkflowAgent 34.96 46.42

We evaluate WorkflowAgent on three web datasets.
We first consider the next-step prediction setting,
where performance is evaluated only on a single
next step. We show that WorkflowAgent not only
outperforms various general-purpose LLMs on our
proprietary dataset but also achieves state-of-the-art
on the public benchmark Mind2Web (Deng et al.,
2023). Then, we move to the end-to-end task com-
pletion benchmark WebArena (Zhou et al., 2024)
and show that WorkflowAgent augmented with GPT-
4o achieves top performance among all existing
agent systems.

4.1 PROPRIETARY DATASET

Figure 2: EM comparison between WorkflowAgent
and OpenAI models on different domains.

To study whether specialized fine-tuning is indeed
beneficial, we first compare the performance of
WorkflowAgent with general-purpose baselines
on our proprietary test data. We consider the non-
fine-tuned Qwen2 7B, GPT-4o, and GPT-4o mini.
We use in-context demonstrations to prompt them
to generate actions in the same five-line format as
defined in Section 3.2.2. All OpenAI baselines in
this work follow the prompt in Appendix A.4.2.

Table 5: Comparing WorkflowAgent with OpenAI
baselines on 500 test samples. Since OpenAI base-
lines are evaluated at a longer 128K context window,
they have a smaller gap between EM and CEM.

Models Context EM (%) CEM (%)
o1-mini 128K 17.40 18.32
o1-preview 128K 22.60 23.79
GPT-4o mini 128K 13.80 14.53
GPT-4o 128K 16.60 17.96

WorkflowAgent 32K 44.6 53.86

Results on the full 1200 test workflows are shown
in Table 4. We note that WorkflowAgent signifi-
cantly outperforms the proprietary GPT-4o and 4o
mini. This shows the benefit of specialized fine-
tuning over using general-purpose LLMs. More-
over, while the non-fine-tuned Qwen2 performs
extremely poorly, fine-tuning with our dataset
boosts its performance by nearly 6×, which highlights the importance of domain-specific data.

We also plot the Exact Match metric for four types of commonly seen domains, including cus-
tomer relationship management (CRM) tools, E-commerce platforms, productivity tools, and social
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Table 6: WorkflowAgent achieves state-of-the-art on Mind2Web. EA is short for element accuracy,
AF1 is short for action F1, and SR is short for success rate. We note that the three categories are
based on increasing level of domain generalization difficulty. However, since we do not train on
Mind2Web data, our performance is similar across different test sets.

Method Uses M2W Cross-Task Cross-Website Cross-Domain
train set? EA AF1 Step SR Task SR EA AF1 Step SR Task SR EA AF1 Step SR Task SR

Multi-Stage, Multi-Choice QA
MindAct (Flan-T5B) ✓ 43.6 76.8 41.0 4.0 32.1 67.6 29.5 1.7 33.9 67.3 31.6 1.6
MindAct (Flan-T5L) ✓ 53.4 75.7 50.3 7.1 39.2 67.1 35.3 1.1 39.7 67.2 37.3 2.7
MindAct (Flan-T5XL) ✓ 55.1 75.7 52.0 5.2 42.0 65.2 38.9 5.1 42.1 66.5 39.6 2.9
AutoWebGLM (ChatGLM3) ✓ - - 66.4 - - - 56.4 - - - 55.8 -
AWM-offline (GPT-4) ✓ 50.6 57.3 45.1 4.8 41.4 46.2 33.7 2.3 36.4 41.6 32.6 0.7
MindAct (GPT-4) × 41.6 60.6 36.2 2.0 35.8 51.1 30.1 2.0 21.6 52.8 18.6 1.0
AWM-online (GPT-4) × 50.0 56.4 43.6 4.0 42.1 45.1 33.9 1.6 40.9 46.3 35.5 1.7
Direct Generation
Flan-T5B Fine-Tuned ✓ 20.2 52.0 17.5 0 13.9 44.7 11.0 0 14.2 44.7 11.9 0.4
HTML-T5-XL ✓ 60.6 81.7 57.8 10.3 47.6 71.9 42.9 5.6 50.2 74.9 48.3 5.1
Synapse (GPT-3.5) ✓ 34.0 - 30.6 2.4 29.1 - 24.2 0.6 29.6 - 26.4 1.5
WorkflowAgent (Ours) × 54.2 90.7 52.2 10.7 58.8 88.3 57.4 10.2 58.0 86.6 56.3 8.8

platforms (Figure 2). While our agent’s performance varies by domain, with a 6% gap between the
best performing domain and the worst performing one, we observe that WorkflowAgent consistently
outperforms the general-purpose baselines across all of them.

As we were wrapping up this work, OpenAI released o1 (OpenAI, 2024c), a series of specialized
models for solving complex tasks in science, coding, and math. Since it has better planning abil-
ity, we also include it in our baselines. However, we did not run the o1 models on the full test set
due to cost and API call limitations. Instead, we subsample 500 workflows and compare with Work-
flowAgent. As shown in Table 5, o1-preview performs the best among all general-purpose baselines.
However, WorkflowAgent still outperforms it by a wide margin, highlighting the importance of fine-
tuning on real-world web navigation data. It is worth noting that WorkflowAgent only contains 7B
parameters and does not require any inference time scaling, whereas most proprietary baselines are
typically larger in size and slower at inference time. This makes WorkflowAgent a better choice in
terms of accuracy, latency, and cost.

4.2 MIND2WEB

Mind2Web (Deng et al., 2023) is a text-based dataset for assessing the navigation ability of web
agents across different tasks, websites, and domains. Each task features a human demonstration of a
real-world workflow, such as booking a hotel on Airbnb. At each step, the agent is asked to predict a
single action, consisting of an operation and the target element. Performance is measured by element
accuracy, which checks if the correct target is selected; action F1 score, which measures operation
correctness like text input; step success rate, which evaluates whether both the target element and
the operation are correct; and task success rate, indicating all steps are correct.

The original Mind2Web benchmark reports two sets of baselines: (1) a single-stage, generation-
based agent (i.e., fine-tuned Flan-T5B) directly generates the operation and the target based on
the full DOM; (2) multi-stage, multi-choice question-answering agents (i.e., the MindAct family)
first use a pretrained element-ranking model to filter out 50 candidate elements from the full DOM
and then use a separate LLM to recursively select an action from five candidates in a multi-choice
question-answering (QA) fashion until one action is chosen. Both sets of baselines are trained using
the training data and then evaluated on the test set. Note that direct generation is more challenging
than multi-choice QA, and all multi-stage baselines outperform generation baselines by a large mar-
gin. Beyond the Mind2Web original baselines, we also consider memory-augmented agents such as
AWM (Wang et al., 2024b) and Synapse (Zheng et al., 2024), fine-tuned AutoWebAGLM (Lai et al.,
2024) and HTML-T5 (Gur et al., 2023).

WorkflowAgent belongs to the single-stage, generation category. We directly evaluate its perfor-
mance on the Mind2Web test data without using Mind2Web training data for further adaptation. For
performance robustness, we call WorkflowAgent five times and use majority vote to select the final
generated action. More details about DOM processing and output comparison are in Appendix A.5.
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Table 7: Task success rates (SR) on WebArena and score breakdown on five web domains. WorkflowAgent
consistently outperforms all considered baselines, often improving the previous-best results by more than 10%.

Method LLM Total SR Shopping CMS Reddit GitLab Maps

AutoWebGLM ChatGLM3 6B 18.2 - - - - -
AutoEval GPT-4 20.2 25.5 18.1 25.4 28.6 31.9
BrowserGym GPT-4 23.5 - - - - -
BrowserGymaxtree GPT-4 15.0 17.2 14.8 20.2 19.0 25.5
SteP GPT-4 33.0 37.0 24.0 59.0 32.0 30.0
AWM GPT-4 35.5 30.8 29.1 50.9 31.8 43.3
Tree Search GPT-4o 19.2 - - - - -
WebPilot GPT-4o 37.2 36.9 24.7 65.1 39.4 33.9
Multi-Agent System (Ours) WorkflowAgent + GPT4o 51.3 48.1 35.5 70.2 58.8 51.9

We report all evaluation metrics in Table 6. WorkflowAgent achieves state-of-the-art performance
on Mind2Web. More specifically, for both step and task success rates, we outperform not only
the generation baselines but also all multi-stage QA baselines. Our action F1’s are significantly
higher, which means that WorkflowAgent is good at specifying the content of typing actions. Even
though we have not tuned WorkflowAgent on Mind2Web training data, the fact that we outperform
Mind2Web fine-tuned models on all except two metrics suggests that WorkflowAgent can generalize
across various domains and websites. We attribute this to the diversity and high quality of the
workflows in our dataset. Relatedly, the three test sets (Cross-Task, Cross-Website, Cross-Domain)
are designed to capture different degrees of domain generalization difficulty. Since we do not train
on Mind2Web data, the performance of WorkflowAgent is similar across all three test sets.

While these results are promising, we note that a limitation of static, text-based benchmark is that
the ground truth evaluation does not account for different action sequences that could reach the same
goal. For instance, to book a flight, one can first enter the destination or first choose the departure
date, but the ground truth trajectory only accounts for one possibility. Considering this, we also
evaluated WorkflowAgent on a dynamic benchmark WebArena (Zhou et al., 2024).

4.3 END-TO-END TASK EXECUTION ON WEBARENA

WebArena (Zhou et al., 2024) features 812 web navigation tasks across five domains: E-commerce
(OneStopShop), social forums (Reddit), software development (GitLab), content management
(CMS), and online map (OpenStreetMap). Unlike the static Mind2Web, it implements a dynamic
environment for agents to interact with and allows for assessing the functional accuracy of action
sequences. Since the WebArena environment is implemented to accept only target element IDs
specified in the accessibility tree, whereas WorkflowAgent operates on DOM and outputs targets in
HTML, we employ GPT-4o to map between the different representations.

More generally, we tackle end-to-end task solving by developing a multi-agent system that utilizes
GPT-4o to simulate user interactions with WorkflowAgent: (1) objective refinement: user adds
details about the task objective to help complete the task; (2) action generation: based on the current
website and action history, WorkflowAgent outputs an action suggestion; (3) action execution: user
executes the suggested action, e.g., clicking a button; (4) completeness evaluation: user observes the
current state and decides whether the task is completed.

We apply the above pipeline to solve the WebArena tasks. In stage 3, GPT-4o maps the agent’s
output in HTML to the accessibility tree format, which is then processed by the WebArena envi-
ronment. To further improve performance, we allow WorkflowAgent to generate multiple actions
in stage 2 and select the one with the highest confidence using majority vote and GPT-4o analysis.
More details about evaluating WorkflowAgent on WebArena can be found in Appendix A.6.

We compare our performance with all top-performing, text-only agents on the WebArena leader-
board. We note that we do not include Autonomous Web Agent (AWA) 1.5 (JaceAI, 2024) as a
baseline because it uses a proprietary system to parse the HTML-DOM and web screenshots, rather
than building from the WebArena GitHub. This allows them to have richer observations and bypass
the accessibility tree action mapping step. In contrast, WorkflowAgent is single-modal, text-only,
and we stick to the original WebArena implementation. That said, AWA 1.5 employs more ad-
vanced reasoning, planning, and progress tracking techniques and is the only agent system with a
higher average task success rate than ours.
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Table 8: We replace WorkflowAgent with GPT-4o in our four-stage pipeline to study how much WorkflowA-
gent contributes to the performance. The success rates drop significantly for all domains.

Method LLM Total SR Shopping CMS Reddit GitLab Maps

Single-Agent GPT-4o 34.2 31.9 21.3 44.7 38.2 42.6
Multi-Agent WorkflowAgent + GPT4o 51.3 48.1 35.5 70.2 58.8 51.9

Table 9: Task success rates on a subset of WebArena. The numbers after the domains indicate the number of
tasks considered. All model are used along with GPT-4o to formulate the multi-agent system. We see that the
general trends agree with what we found on our proprietary dataset.

Agent Backbone # Train Tokens Total SR (158) Shopping (36) CMS (39) Reddit (24) GitLab (33) Maps (26)
Mistral 7B 1B 41.8 41.7 30.8 50.0 42.4 42.3
Qwen2 7B 1B 44.3 52.8 33.3 50.0 48.5 42.3
Qwen2 7B 3B 47.5 55.6 33.3 58.3 48.5 46.2
Qwen2 7B 6B 55.0 58.3 41.0 70.8 63.6 46.2

The results are shown in Table 7. Compared with existing text-only baselines, WorkflowAgent aug-
mented with GPT-4o obtains the highest task success rate in all five categories, leading to 14.1%
performance improvements in total success rate over the previous-best WebPilot results. In particu-
lar, on Reddit and GitLab tasks where the domains are more realistic and thus closer to the ones in
our training data, our method demonstrates stronger generalization ability and higher task success
rates than in other domains.

To better understand the contribution of WorkflowAgent to the multi-agent system, we perform an
ablation study that leverages GPT-4o for all four-stages of the proposed pipeline. As shown in
Table 8, using WorkflowAgent consistently outperforms only using GPT-4o, and the GPT-4o-only
setting is less effective than existing agents like WebPilot. This shows that our strong performance
on WebArena can be mostly attributed to the action generation process of WorkflowAgent. Apart
from getting better results, the multi-agent system is cheaper than using GPT-4o alone, as calling
WorkflowAgent to generate a next action incurs negligible cost as it is served locally. We follow
Agent-E (Abuelsaad et al., 2024) to report the number of API calls for proprietary models. Due
to the four-stage pipeline design, our multi-agent system requires 3 GPT-4o calls for each action
step (action analysis, action mapping, and completeness evaluation), plus an addition API call at the
beginning of each task for objective refinement. This makes our four-stage method more expensive
than agent systems that utilize a single API call per step.

We also use WebArena to verify the signals observed in our proprietary test data. To do so, we
randomly select a subset of 158 WebArena tasks with non-overlapping objective templates and run
ablation studies following the ones presented in Section 3.2.4 to study the effect of LLM backbones
and the number of training tokens. As shown in Table 9, on all domains, Qwen2 7B outperforms
Mistral 7B, and the task success rate increases as the number of training tokens increases. These
trends suggest that improvements on our proprietary dataset lead to even greater improvements on
WebArena, further highlighting the advantages of fine-tuning web agents with large-scale datasets.

5 CONCLUSION

In this work, we explore how fine-tuning open-source LLMs with high-quality real-world workflow
data can benefit developing specialized web agents. We present WorkflowAgent, which consistently
outperforms existing methods that prompt proprietary models in various evaluation settings and
benchmarks. We also provide empirical insights into data processing and model fine-tuning.

Limitations and Future Work. The long-context nature of DOMs presents great challenges in
adapting LLMs. In the short term, we aim to enable WorkflowAgent to compare and reason over
multiple DOM chunks so that its observation is always complete. This might require integrating
a memory component, which could also aid in maintaining context or state across interactions to
improve multi-step reasoning. Besides, we currently do not incorporate planning into WorkflowA-
gent, so its output will be directly used as the next action. However, adding better action selection
strategies such as Monte Carlo Tree Search (MCTS) could potentially facilitate online planning and
exploration, further improving the agent’s decision-making processes in complex scenarios. In the
long run, we aim to expand WorkflowAgent’s capabilities to handle multi-modal inputs and mul-
tilingual content. This would significantly broaden its applicability across different linguistic and
visual contexts, making it more versatile and robust in real-world web environments.
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A APPENDIX

A.1 PREPROCESSING

A.1.1 OVERALL PRUNING PIPELINE

We overview the pruning algorithm used for processing the HTML DOM in the paper. The code
for preprocessing, chunking the DOM for fine-tuning, fine-tuning, and inference can be found in the
supplementary material, which we will release on GitHub later.

def assign_element_id(all_tags):
for i, tag in enumerate(all_tags[::-1]):

tag["node"] = int(i)

salient_attributes = { "alt", "aria-role", "aria-label", ... }

def clean_tag(tag):
for attr in list(tag.attrs):

if attr in tag:
if type(tag[attr]) == list:
tag[attr] = " ".join(tag[attr])

tag[attr] = str(tag[attr])[:32]
if len(str(tag[attr])) > 32 and token_ratio(str(tag[attr])) < 2:
del(tag[attr])
continue

if "script" in attr.lower():
del tag[attr]
continue

if attr.lower() not in salient_attributes:
del tag[attr]
continue

elif (tag[attr] == "" or tag[attr] == "none"):
del tag[attr]
continue

if attr in tag:
if tag.name == "iframe":
if attr != "node":

del tag[attr]
tag = soup.prettify()
return tag[:tag.find(">")+1]

valid_tags = { 'div', 'body', 'span', 'svg', 'input', 'img', 'p', ...}
code_elements_to_decompose = { 'style', 'script' }

def removing_tags(all_tags):
count = 0
for tag in all_tags:

if tag.name in code_elements_to_decompose:
tag.decompose()

elif tag.name not in valid_tags:
tag.unwrap()

return all_tags

def generate_output(step_count, desc, kind, element_id, target_html):
return f"{step_count}.\nDescription: {desc}\nAction: {kind}

\nNode: {element_id}\nTarget: {target_html}\n"
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A.1.2 TOKENIZER PRUNING

In this section, we provide more details on the tokenizer-based detection method to remove random
character strings. The rationale behind our approach is based on the observation that typical English
words consist of more than two characters. Assuming the token count is t and the character count is
s, this means that when t = 1, s ≥ 2, leading to s

t ≥ 2. By setting the pruning threshold to 2 and
removing tag attributes with s

t < 2, we aim to eliminate strings composed solely of single-character
tokens, which are likely to be nonsensical.

In our actual implementation, we employ this technique only for tag attributes with s > 32, being
more lenient for shorter attributes. To show that this tokenizer pruning strategy is effective and to
study the performance across different tokenizers and pruning thresholds, we perform the following
experiments.

We take three tokenizers from different models: Qwen2-7B-Instruct, Mistral-7B-Instruct-v0.3,
and Meta-Llama-3-8B. For each tokenizer, we vary the pruning thresholds across a set of values:
{1.5, 1.75, 2, 2.25, 2.5}. Note that it is meaningless to study overly small thresholds (e.g., it is im-
possible to have s

t < 1) or overly large thresholds (e.g., s
t < 3 could result in the loss of meaningful

attributes, as many English words contain three letters). We randomly sample 1000 DOMs from our
proprietary test dataset, apply our standard pruning pipeline followed by tokenizer pruning, and then
perform three analysis:

• False positives: we use the Python enchant library to detect if there are meanful English
words within the pruned strings. Note that even though these are actual words, many of
them are related to DOM structure and can be safely ignored. Still, we count them as false
positives since the tokenizer method is designed to remove random character strings.

• Average s and t for the entire DOM before and after tokenizer pruning: this is for under-
standing the reduction in content length.

• Lastly, we sort tags and attributes by the frequency of being pruned to identify patterns.

Table 10: Tokenizer pruning analysis.

Tokenizer Prune Threshold False Positive (%) ↓ Before Pruning (K) After Pruning (K)
s t s t ∆t

Qwen2-7B-Instruct

1.5 0.025

224.3 79.14

221.4 77.11 2.03
1.75 0.013 217.3 74.67 4.47

2 0.18 215.7 73.89 5.21
2.25 0.36 213.9 73.13 6.01
2.5 0.38 210.0 71.63 7.51

Mistral-7B-Instruct-v0.3

1.5 0.012

224.3 90.54

219.5 87.10 3.44
1.75 0.18 216.1 85.07 5.47

2 0.44 212.7 83.40 7.14
2.25 0.49 205.3 80.20 10.34
2.5 11.28 190.3 74.44 16.10

Meta-Llama-3-8B

1.5 0.0097

224.3 71.44

223.1 70.60 0.84
1.75 0.012 218.3 67.85 3.59

2 0.035 216.8 67.09 3.43
2.25 0.023 215.2 66.41 5.03
2.5 0.10 212.7 65.46 5.98

As shown in Table 10, there is a clear trade-off between precision and context reduction: greater
reductions in content length tend to result in higher false positive rates. While different tokenizers
exhibit varying sensitivities to the pruning thresholds, a threshold of 2 achieves the most balanced
trade-off, which aligns with our intuition. We then list the top-5 tag-attribute pairs most frequently
pruned under threshold 2 along with their pruning counts:

• Qwen: (‘div’, ‘class’): 3188, (‘span’, ‘class’): 11426, (‘a’, ‘href’): 8802, (‘button’, ‘class’):
6844, (‘i’, ‘class’): 5010

• Mistral: (‘div’, ‘class’): 5288, (‘span’, ‘class’): 15824, (‘a’, ‘href’): 12948, (‘button’,
‘class’): 7998, (‘svg’, ‘class’): 5871
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• Llama: (‘div’, ‘class’): 29559, (‘span’, ‘class’): 8823,(‘button’, ‘class’): 5889, (‘i’,
‘class’): 4608, (‘svg’, ‘class’): 2577

Attributes such as ‘class’ often contain random character strings and are frequently pruned. How-
ever, we observe differences in how tokenizers handle the href attribute: both Qwen and Mistral
tokenizers tend to prune it away, whereas the Llama tokenizer preserves it, indicating its better ca-
pability in tokenizing URLs. Although we currently use the Qwen tokenizer in our preprocessing
pipeline to align with the backbone model of WorkflowAgent, the Llama tokenizer can be a com-
pelling alternative for future consideration since it is better at recognizing URLs and producing
shorter token sequences.

A.2 DETAILS ABOUT FINE-TUNING AND INFERENCE

We provide the code for fine-tuning WorkflowAgent and using it at inference time in the supplemen-
tary material. The code files include detailed configurations such as learning rate, LoRA configura-
tion, and generation configuration. There is also implementation of our evaluation metrics.

A.3 EXAMPLE PROMPT AND LABEL FOR WORKFLOWAGENT

Objective: Grant delegation access to another user in Gmail settings.
URL: https://mail.google.com/mail/u/0/
Observation: {processed dom}
Step-by-step guide:
1.
Description: Click "See all settings"
Action: mouse_click_action
Node: 254
Target: <button class="Tj" node="254">
2.
Description: Click "Accounts"
Action: mouse_click_action
Node: 2625
Target: <a class="f0 LJOhwe"

href="https://mail.google.com/mail/u/0/?tab=#settings/accounts"
node="2625" role="tab">

↪→
↪→
3.
Description: Click "Add another account"
Action: mouse_click_action
Node: 1215
Target: <span class="LJOhwe sA" id=":kp" node="1215" role="link">

A.4 OPENAI PROMPTS

A.4.1 DATA PREPARATION

Below shows the prompt to generate step descriptions.

Regenerated Action Descriptions. We provide a few examples of generated action descriptions
using GPT-4o.

• “Click on the Submit button.”
• “Type in the name of the item.”
• “Double-click on the highlighted text.”

A.4.2 PROPRIETARY BENCHMARK BASELINES

Below shows the prompt for all OpenAI baselines. The text is the prepend for every input to which
we append the task input with the corresponding objective, URL, DOM, and action history.
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You are navigating a webpage to achieve an objective. Given the
objective, a list of the previous actions, the current action, and a
screenshot of the current action on the webpage. The objective and
previous steps are only here to ground the current step, the current
action and its screenshot are the most useful to your task. Give me
a concise description of the current action being done on the webpage.
You should look at the part of the webpage with the red circle, this is
where the user clicked for the current action. Describe this action
and ensure your response is in the same format, concise, coherent.
Use any relevant information in the image to ground the action
description. Your response should NOT use any json or markdown formatting.
The response should be a single sentence that starts with an action verb.
For example, 'Click on the 'SUBMIT' button.'

You are an autonomous intelligent agent tasked with solving web-based
tasks. These tasks will be accomplished through the use of
specific actions you can issue.
Here's the information you'll have:
- The user's objective: This is the task you're trying to complete.
- The current web page's URL: This is the page you're currently navigating.
- Part of the current web page's HTML: Each element is assigned in
descending order with an unique ID, denoted by the attribute \"node\".
The actions you can perform include:
- mouse_click_action: click
- keyboard_sequence_action: type a sequence of characters
- keyboard_combination_action: press a set of keys together
(e.g., hotkey like ctrl+c)
You will generate a step-by-step guide to complete the task based on the
given information. You will only produce a SINGLE next step.
Do NOT use additional punctuation, or any markdown formatting.
The output should be in the following format:
Description: Click \"Users\"
Action: mouse_click_action
Node: 93
Target: <a node=\"93\" class=\"slds-tree__item-label\">
Now complete the following task by generating the next step.
{task input}

A.5 MIND2WEB EXPERIMENT DETAILS

Data and Label Conversion. To apply WorkflowAgent to Mind2Web data, we first re-process the
provided DOM using the procedure detailed in Section 3.2.2. We store a map between our node
ID and the backend ID given in the dataset. Then, we transform the history action provided in the
dataset to our 5-line format. After WorkflowAgent generates the next step, we check the backend ID
of the provided label and map it to the node ID in our processed DOM. We then compare this label
with the target node ID generated by WorkflowAgent. We provide the code for the DOM processing
and label conversion process in the supplementary material and will release them later.

DOM Chunking and Action Generation. When the DOM length exceeds the 32K context window,
we chunk the DOM sequentially and run the prediction workflow on each piece. For each piece of
DOM, we call WorkflowAgent five times to obtain five valid actions. We then aggregate all possible
actions and select the one with the highest number of appearances. We use the following generation
configuration: do sample=True, top p=0.95, temperature=0.6.
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A.6 WEBARENA EXPERIMENT DETAILS

A.6.1 FOUR-STAGE PIPELINE

Stage 1: GPT-4o refines the intent. We use the following prompt:

I have a simple task objective related to [DOMAIN], rewrite it into a single paragraph of detailed
step-by-step actions to achieve the task. When revising the objective, follow the rules:
- Assume you are already on the correct starting website and are logged in.
- Do not include any newlines, tabs, step numbers in the rewritten objective.
- Follow the example as much as possible.
- [IN-CONTEXT DEMONSTRATIONS FOR DOMAIN RULES]
Here is an example:
Simple Task Objective:[IN-CONTEXT DEMONSTRATION]
Detailed Task Objective: [IN-CONTEXT DEMONSTRATIONS]
Now, rewrite the following objective:

Stage 2: We process the environment-generated DOM using our preprocessing procedure. When
the DOM length exceeds the 32K context window, we chunk the DOM sequentially and run the
prediction workflow on each piece. For each piece of DOM, we call WorkflowAgent multiple times
to obtain multiple valid actions. We use the following generation configuration: do sample=True,
top p=0.95, temperature=0.6. We then aggregate all possible actions, pick the top candidates, and
prompt GPT-4o to select the best candidate using the following prompt:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be
accomplished through series of actions. The information you’ll have includes:
- The user’s objective
- The current web page’s URL
- The current web page’s accessibility tree
- Previous steps performed by the user, where each step includes a description of the action and
the target web element
- Several proposed next steps, labeled by “No.”
Your goal is to select the best next step that can complete the task and output this candidate’s
number, follow the following rules:
- Do not repeat previous steps
- Reject candidates with incorrect intentions, e.g., searching for an item different from the one
specified in the objective
- Reject candidates with factual errors, e.g., the description and the chosen web target do not
match
- Only output a single number after to represent the selected candidate but not explanation
Now analyze the following case:
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Stage 3: GPT-4o maps the output of WorkflowAgent to accessibility tree format using the following
prompt:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be ac-
complished through series of actions. The information you’ll have includes:
- The user’s objective
- The current web page’s URL
- A snippit of the current web page’s HTML
- A snippit of the current web page’s accessibility tree
- Previous steps performed by the user
Your goal is to translate a proposed next step, which consists of an action and a HTML element,
into the following format:
- ‘click [accessibility tree id]’: This action clicks on an interactive (non-static) element with
a specific id. Note this id is the number inside “[]” in the accessibility tree, not the HTML
attribute “node”. Brackets are required in the response. For example, a valid response is “click
[1234]”
- ‘type [accessibility tree id] [content]’: Use this to type the content into the field with a specific
id in the accessibility tree. For example, a valid response is “type [1234] [New York]”. The
second bracket should include everything that needs to appear in the textbox, but not only the
added content. Do not change the letter case
- ‘press [key comb]’: Simulates pressing a key combination on the keyboard (e.g., press
[PageDown], press [Enter])
- ‘go back‘: Return this when the current web page does not contain useful information and the
user should go back to the previous web page
When mapping the next step into actions in the above formats, follow the following rules:
- Take the user’s objective into consideration, so the action must help complete the task
- Do not repeat previous steps
- Only output a single step in the above format but not explanation
Note also: [IN-CONTEXT DEMONSTRATION OF RULES]
Now analyze the following case:

The action is then returned to the environment for execution.

Stage 4: GPT-4o evaluates if the task objective is achieved. For operational tasks, if the task is
completed, nothing is returned. For information seeking tasks, if the task is completed, GPT-4o
retrieves the answer to the question. The prompt looks like the following:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be ac-
complished through series of actions. The information you’ll have includes:
- The user’s task, including a high-level objective and a more detailed illustration
- The current web page’s URL and accessibility tree
- Previous steps performed by the user, where each step includes a description of the action and
the target web element
You should follow the rules: [IN-CONTEXT DEMONSTRATION RULES]
You will decide whether the task specified by the high-level objective is completed (which
means the **last** step of the detailed instruction is completed and the current webpage com-
pletes the task) and respond “completed” or “incomplete”. If the task requires returning a
number or a string and the answer can be obtained in the current webpage, reply “completed,
[answer]” where “[answer]” is the number or string. If the task requires finding a webpage and
the current webpage satisfies the requirement, reply “completed, [answer]” where “[answer]” is
the current URL. Now analyze the following case. First provide the reasonings. Then summa-
rize the answer with “Summary:”, followed by “completed” or “incomplete”, followed by the
answer to the question if applicable. Do not include newlines after “Summary:”.
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A.6.2 SCROLLING ACTIONS AND COMBOBOX SELECTION

In our data collection process, we capture the full DOM from a system perspective, which inherently
includes the entire webpage as observed from the backend. This method differs from user-centric
data collection, where only the elements within the visible browser viewport are captured. Conse-
quently, there is no concept of scrolling in our training datasets since all elements are already fully
accessible in the captured data.

However, we recognize the importance of scroll actions in solving WebArena from a user perspec-
tive. To address this, before issuing any action to the environment, our multi-agent system includes
a viewport check that uses the bounding box position to determine if the target element is within
the visible webpage area. If not, the system manually inserts necessary scroll actions to bring the
element into view. This ensures accurate interaction with web elements in a typical user scenario.

To handle combox selection, our agent discovers a workaround that bypasses the need for scrolling
through comboboxes. Specifically, after clicking on the combobox, it types the name of the desired
item in the combobox, which brings the item to the top of the dropdown menu. Then, the agent can
simply click the item or press Enter. This approach avoids the need for scrolling and is especially
effective in densely populated lists. It improves the task success rate on a large number of Map,
Reddit, and GitLab tasks.

A.6.3 GPT-4O-ONLY SETTING

When we use GPT-4o for stage 2, we use the following prompt:

You are an autonomous intelligent agent tasked with solving web-based tasks. These tasks
will be accomplished through the use of specific actions you can issue. Here’s the information
you’ll have:
- The user’s objective: This is the task you’re trying to complete.
- The current web page’s URL: This is the page you’re currently navigating.
- The current web page’s HTML: Each element is assigned with an unique ID, denoted by the
attribute “node”.
The actions you can perform include:
- mouse click action: click
- keyboard sequence action: type a sequence of characters
- keyboard combination action: press a set of keys together (e.g., hotkey like ctrl+c)
You will generate a step-by-step guide to complete the task based on the given information. At
each step, you can perform only one action to one web element. The output should be in the
correct format: a single step consisting of a text description, an action, as well as the node and
HTML of the target web element to perform the action. Be coherent, concise, and accurate
in your response. Do NOT use any special characters (e.g., “*”, “#”, etc.) in your response.
Follow EXACTLY the format of the response below.
Here is one example:
Description: click “Users”
Action: mouse click action
Node: 93
Target: <a class=“slds-tree item-label” node=“93”>
Now complete the following task by generating a single next step:

A.6.4 RESULTS

We include the action trajectories of WorkflowAgent on successful tasks in the supplementary mate-
rial. Below, we provide example action trajectories produced by our agent and explanations to shed
light on its decision making process.

Domain: Shopping

Task ID: 466

Intent: Add 2 Hawaiian Bamboo Orchid Roots #zc50 - by Discount Hawaiian Gifts to my wish list.
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Actions:

1. click [1585] where [1585] is combobox ‘Search’ autocomplete: both hasPopup: listbox
required: False expanded: False → Click on the search bar.

2. type [1585] [Hawaiian Bamboo Orchid Roots #zc50 - by Discount Hawaiian Gifts ] where
[1585] is combobox ‘Search’ focused: True autocomplete: both hasPopup: listbox re-
quired: False expanded: True → Type the target item name.

3. press [enter] → Do the search.
4. scroll [down] → Scroll down the page to find out the target item.
5. click [4859] where [4859] is link ‘2 Hawaiian Bamboo Orchid Roots #zc50 - by Discount

Hawaiian Gifts’ → Open the item page.
6. click [6733] where [6733] is link ‘Add to Wish List’→ Add item to wish list.

Domain: CMS

Task ID: 244

Intent: Show me the email address of the customer who is the most unhappy with Olivia zip jacket.

Actions:

1. click [108] where [108] is link ‘MARKETING’ → Click on the “MARKETING” button in
the side bar.

2. click [419] where [419] is link ‘All Reviews → Clicking the side bar shows more option.
We can then click on the “All Reviews” button.

3. click [2195] where [2195] is button ‘Reset Filter’ → Remove all previous set filters.
4. type [4435] [olivia] where [4435] is textbox ‘’ required: False → In the search box, type

“olivia”.
5. press [enter]→ Do the search
6. stop [emma.lopez@gmail.com] → Inspect all listed reviews and return the email of the

negative review.

Domain: Reddit

Task ID: 403

Intent: Change my reddit bio to “Awesome Prompt Artist”

Actions:

1. click [12] where [12] is button ‘MarvelsGrantMan136’ hasPopup: menu expanded: False
→ Click my user name on the top right corner.

2. click [249] where [249] is link ‘Profile’ → After the drop-down menu shows up, click
“Profile”.

3. click [886] where [886] is link ‘Edit biography’ → Click the “Edit biography” button.
4. type [2456] [Awesome Prompt Artist] where [2456] is textbox ‘Biography’ required: False

describedby: user biography biography help → Type the target content.
5. click [2474] where [2474] is button ‘Save’ → Save the new profile.

Domain: GitLab

Task ID: 293

Intent: Show me the command to clone Super Awesome Robot with SSH.

Actions:
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1. click [1507] where [1507] is textbox ‘Search GitLab’ required: False → Click on the search
bar.

2. type [1516] [Super Awesome Robot] where [1516] is searchbox ‘Search GitLab’ focused:
True describedby: search-input-description → Type the repo name in the search bar.

3. click [2082] where [2082] is link ‘Convex Eggtart / Super Awesome Robot’ → Click on
the correct repo.

4. click [2699] where [2699] is link ‘Clone’ → Click on the “Clone” button.
5. stop [git clone ssh://git@metis.lti.cs.cmu:2222/convexegg/super awesome robot.git] →

Read the command from the pop-up window.

Domain: Maps

Task ID: 7

Intent: Tell me the full address of all international airports that are within a driving distance of 50
km to Carnegie Mellon University.

Actions:

1. click [35] where [35] is textbox ‘Search’ focused: True required: False → Click on the
search box.

2. type [35] [airport Pittsburgh] where [35] is textbox ‘Search’ focused: True required: False
→ Type “airport Pittsburgh” in the search box.

3. stop [Pittsburgh International Airport, Airport Boulevard, Findlay Township, Allegheny
County, 15231, United States.] → Return “Pittsburgh International Airport, Airport Boule-
vard, Findlay Township, Allegheny County, 15231, United States.” as the answer.
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