
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS SPECIALIZED WEB AGENTS USING
PRODUCTION-SCALE WORKFLOW DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents are rapidly improving to handle increas-
ingly complex web-based tasks. Most of these agents rely on general-purpose,
proprietary models like GPT-4 and focus on designing better prompts to im-
prove their planning abilities. However, general-purpose LLMs are not specif-
ically trained to understand specialized web contexts such as HTML, and they
often struggle with long-horizon planning. We explore an alternative approach
that fine-tunes open-source LLMs using production-scale workflow data collected
from over 250 domains corresponding to 6 billion tokens. This simple yet ef-
fective approach shows substantial gains over prompting-based agents on exist-
ing benchmarks—our WorkflowAgent achieves state-of-the-art performance on
Mind2Web and substantially improves the baseline task success rate from 37.2%
to 51.3% on WebArena. We further perform detailed ablation studies on vari-
ous fine-tuning design choices and provide insights into LLM selection, training
recipes, context window optimization, and effect of dataset sizes.

1 INTRODUCTION

Large language model (LLM) agents have advanced significantly in web navigation. They can carry
out user-specified tasks in multiple steps by reasoning on their own what actions to take and what
external resources to interface with. Recent studies (Zheng et al., 2024; Lai et al., 2024; Zhang
et al., 2024) have shown that, with better planning and exploration strategies, LLM agents can
independently solve various web tasks ranging from simple navigation, such as locating a specific
Wikipedia page, to more complex operations, such as booking flights or restaurants.

Despite these improvements, the performance of existing web agents on research benchmarks re-
mains significantly below human levels (Deng et al., 2023; Zhou et al., 2024; Drouin et al., 2024).
One possible reason is their dependence on general-purpose LLMs. Indeed, all top-performing
agents like WebPilot (Zhang et al., 2024), AWM (Wang et al., 2024b), and SteP (Sodhi et al., 2024)
rely on prompting proprietary models like GPT-4 (OpenAI, 2024a). These general-purpose LLMs
are not optimized for interpreting web contexts such as HTML or accessibility trees; their pretraining
and alignment processes do not address navigation-related challenges; and their proprietary nature
presents a major obstacle in adapting them to web environments via continual training.

In this work, we explore an alternative approach by fine-tuning open-source LLMs with a large set
of real-world web workflow data1 to develop specialized web agents (Figure 1). Through extensive
experiments, we show that this approach not only boosts the web understanding and planning abili-
ties of LLMs, achieving state-of-the-art results on various benchmarks, but also allows us to develop
agent models significantly smaller than proprietary LLMs, drastically reducing the serving costs.

To achieve these results, we first collect a set of proprietary workflow data representing action
sequences executed by real users in real web environments. This dataset encompasses a large and
diverse spectrum of websites (over 250 domains and 10,000 subdomains), task objectives, task
difficulty, and task length. Each step in the workflow features not only the raw HTML-DOM of
the website but also a comprehensive documentation of the action, including action description in

1Due to privacy concerns, we restrict access to our proprietary dataset. However, we will release a version of
WorkflowAgent trained on open-source datasets (Deng et al., 2023). We will also release our data preprocessing
and model fine-tuning code.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Left: Most existing LLM web agents are built on top of general-purpose, proprietary models like
GPT-4 and rely heavily on prompt engineering. Their performance is enhanced by leveraging external planning,
reasoning, and memory modules. Right: We explore an alternative way to develop specialized agents by fine-
tuning open-source LLMs using a large set of high-quality, real-world workflow data. This significantly boosts
agent’s navigation and planning capacity, enabling it to outperform proprietary models with a smaller LLM
backbone, thereby reducing serving costs.

natural language, mouse or keyboard operation, and the CSS selector of the target HTML element.
We reformat the data into a next-step prediction formulation and fine-tune a set of open-source
LLMs via the parameter-efficient LoRA (Hu et al., 2022). After preprocessing and reformatting,
our training dataset contains more than 6 billion tokens.

With access to this production-scale dataset, we develop WorkflowAgent, the first family of special-
ized, single-stage LLM agents capable of directly generating the next step based on the website’s
DOM and action history. This is in contrast with previous fine-tuned agents that require multiple
stages to produce an action, e.g., first narrowing down to a set of target element candidates and then
selecting one from the candidates (Deng et al., 2023). WorkflowAgent significantly outperforms
existing GPT-4-based and multi-stage agents. Notably, our 7B-parameter model achieves state-of-
the-art performance on Mind2Web (Deng et al., 2023) with an over 50% step success rate and a
nearly 10% task success rate. These numbers substantially surpass the typical 30% step success rate
and 1-2% task success rate seen in existing prompting-based agents. On the end-to-end task exe-
cution benchmark WebArena (Zhou et al., 2024), WorkflowAgent boosts the task success rate from
37.2% to 51.3%, marking the highest performance among all published, text-only LLM agents.

Beyond the empirical results, our work also provides several insights valuable for future web agent
research: (1) we show that direct fine-tuning on highly structured inputs (HTML-DOM) is feasible
and can improve the agent’s ability in identifying the correct target; (2) we identify an effective
HTML preprocessing strategy that balances between preserving essential information and minimiz-
ing context length; (3) we provide a thorough analysis on various design choices in fine-tuning, such
as LLM backbone and context window selection; (4) we illustrate how fine-tuning improves agent
performance as dataset size increases.

Our work highlights the potential of building web agents via specialized fine-tuning with production-
scale data. This approach not only improves agents’ capabilities relative to prompt-engineered al-
ternatives, but also reduces inference costs due to the smaller sizes of open-source LLMs. While
our work focuses on studying the effect of fine-tuning, WorkflowAgent can be extended to leverage
more sophisticated search or memory modules (Koh et al., 2024; Wang et al., 2024b), combined
with existing planning frameworks (Yao et al., 2022; Madaan et al., 2023; Shinn et al., 2023), or
integrated into multi-modal web agent systems as the text model (Wang et al., 2024a). We view
WorkflowAgent as an important step towards developing AI assistants and fully automated agents
for real-world web applications.

2 RELATED WORK

Prompting-based agent frameworks. The majority of web agent works reuse existing LLMs and
propose different prompting strategies to improve action prediction. One line of research focuses on
exploiting previous experience via self-feedback (Sun et al., 2023) or in-context demonstrations (Fu
et al., 2024; Zheng et al., 2024; Wang et al., 2024b; Ou et al., 2024). A separate line of work
centers around encouraging exploration by including external evaluators (Pan et al., 2024), using
synthesized instructions (Murty et al., 2024), or applying more sophisticated search algorithms like
stack (Sodhi et al., 2024), best-first tree search (Koh et al., 2024), or Monte Carlo Tree Search (Zhang
et al., 2024). Chain-of-Thought (Wei et al., 2023) or ReAct (Yao et al., 2023) prompting have also

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

been used (He et al., 2024). Despite the research efforts, these prompting methods rely heavily
on the quality of the LLM used. Open-source models such as LLaMA (Dubey et al., 2024), Code
LLaMA (Rozière et al., 2024), and Flan-T5 (Chung et al., 2022) generally underperform proprietary
models like GPT-4. However, fine-tuning proprietary LLMs can often be costly and challenging, as
it is restricted to being done through APIs. This implies an opportunity for enhancing open-source
LLMs to match or outperform proprietary agents.

Fine-tuning-based web agents. Compared to developing better reasoning and planning frame-
works, comparatively less attention has been given to optimizing the LLMs themselves to better
handle web environments. Due to the difficulty of directly generating a single target element from
the raw HTML, which often contains thousands of elements, existing work mostly focuses on multi-
stage prediction. MindAct (Deng et al., 2023) proposes a two-stage pipeline that first uses a small
LM to filter the web elements and then uses a more powerful LM to select from the filtered elements
in a multi-choice question answering format. Both LMs can be fine-tuned using the Mind2Web
dataset. WebAgent (Gur et al., 2023) uses HTML-5 to first process the HTML and then fine-tunes
a 540B Flan-UPalm to generate code for controlling web pages. More recently, AutoWebGLM (Lai
et al., 2024) trains a single ChatGLM3 6B (GLM et al., 2024) using a combination of curriculum
learning, reinforcement learning, and rejection sampling fine-tuning. Despite the complicated train-
ing and inference procedures, these methods often underperform agents that prompt GPT-4. In
contrast, our work shows that given sufficient high-quality workflow data, fine-tuning a single LLM
can achieve strong performance. We note that the newly released OpenAI o1 (OpenAI, 2024c) can
be viewed as a specialized agent with a complicated planning framework. Nonetheless, we show
in Section 4.1 that WorkflowAgent outperforms o1-preview by a large margin on our proprietary
dataset. Moreover, while none of the training details for o1 have been released, our work provides
valuable insights into data preprocessing and fine-tuning.

Beyond the aforementioned work, there is an earlier line of research that fine-tunes LLMs for HTML
inputs (Gur et al., 2022; Nakano et al., 2022; Liu et al., 2023). However, their primary application is
question-answering tasks, such as answering “could sunflowers really track the sun across the sky”,
and they cannot be used to generate a sequence of actions based solely on the user objective.

Lastly, we note that an emerging line of research has committed to developing multi-modal web
agents that use screenshots along with HTML observations. Examples include CogAgent (Hong
et al., 2023), SeeClick (Cheng et al., 2024), WebVoyager (He et al., 2024), and AWA 1.5 (JaceAI,
2024). However, our current version of WorkflowAgent focuses exclusively on text-based inputs due
to the lack of extensive, high-quality paired data and effective visual preprocessing schemes. Thus,
we do not include comparisons with the aforementioned multi-modal methods in our experiments
and leave developing multi-modal WorkflowAgent as future work.

3 METHOD

In this section, we first overview the general setup of solving web-based tasks with LLM agents.
Then, we detail our proposed method to develop specialized agents from open-source LLMs.

3.1 GENERAL SETUP

We consider solving web-based task as a sequential decision-making process guided by a high-level
objective. For each task, the user first specifies an objective and a starting web page. Then, at
every step, the agent outputs an action based on the task objective, the current web page, and the
history. Formally, denote the user objective as q. The web environment is governed by a transition
function T that can evolve over time. The agent is instantiated by a language model L. At each time
step t, the agent observes ot produced by the environment state st and observes the history ht =
H(o1:t−1, a1:t−1). It outputs an action at = L(q, ot, ht), which is executed in the environment, and
the state changes correspondingly st+1 = T (st, at). This iterative process stops when the agent
issues a stop signal, or a task termination condition is met, such as we have reached a predefined
maximum number of steps.

For single-modal, text-only agents, the observation ot typically consists of the website’s URL, the
HTML-DOM (Object Model for HTML, which defines HTML elements and their properties, meth-
ods, and events), and potentially the accessibility tree (a representation that can be understood by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

assistive technologies like screen readers). Since the raw HTML-DOM is often long and contains
redundant structural information, most methods employ preprocessing and pruning strategies, which
could be as simple as retaining a fixed set of HTML tags and attributes or more complex ones like
LLM-based element ranking and filtering (Deng et al., 2023).

The action at emulates the keyboard and mouse operations available on web pages. The most general
action space in existing work consists of element operations, such as clicking, typing, and key
combination pressing; tab actions, such as opening, closing, and switching between tabs; navigation
actions, such as going forward and backward in the browsing history (Zhou et al., 2024).

As discussed earlier, previous web agent work focuses on presenting useful demonstrations through
ht or iteratively revising at to improve the quality of the predicted next step. In contrast, we explore
whether we can improve the model L itself by learning from a vast amount of data and incorporating
more information into ot, such as the natural language description and HTML representation of a
action. We detail our approach in the next section.

3.2 WORKFLOWAGENT: SPECIALIZING WEB AGENTS THROUGH FINE-TUNING

3.2.1 COLLECTING PRODUCTION-SCALE DATA

We collected a large set of real-world proprietary data through a workflow documentation software
that streamlines the creation of step-by-step guides to achieve web-based tasks. The software allows
users to record their interactions with the web through a browser extension and converts the interac-
tions into well-annotated instructions, which can be then customized to specific business needs. Our
dataset consists of everyday workflows in common web application domains, encompassing cus-
tomer relationship management (CRM) tools like HubSpot and Salesforce; productivity tools like
Notion and Calendley; social platforms like Facebook and LinkedIn; shopping sites like Amazon
and Shopify; and many others.

Each workflow features a high-level user objective and a step-by-step documentation of the action
sequence to achieve the task. The objective spans a wide range of topics, such as “add a user in a
Salesforce” or “invite someone to manage Facebook ad accounts”. Each step contains the following
information: the current web page’s URL, raw HTML-DOM, a natural language description of the
action performed, the type of action, and the autogenerated CSS selector to identify the action target.
There are three types of actions in the dataset:

• mouse click action: click at an element

• keyboard sequence action: type a sequence of characters to an element

• keyboard combination action: press a set of keys together (e.g., hotkey like ctrl+c)

Note that there is no scroll actions in our action space since all elements are already fully accessible
in the captured data. This is because we capture the full DOM from a system perspective, which
inherently includes the entire webpage as observed from the backend. This method differs from user-
centric data collection, where only the elements within the visible browser viewport are captured.

To ensure the quality of the data, we remove workflows with invalid selectors, i.e., the selector
cannot be used to locate a target element in the DOM. We also remove non-English workflows to
reduce dataset complexity and enable us to explore English-only LLMs like Mistral 7B (MistralAI,
2023). The resulting dataset is at production scale: using raw data collected over a two-month
period, we are able to extract workflow data from more than 250 domains and 10,000 subdomains
with an average task length of 11 steps, which correspond to about 6 billion training tokens. This
large-scale, high-quality, real-world dataset is unmatched in prior web agent research.

Since this dataset is collected from real users and might contain sensitive and confidential informa-
tion, it will not be released to the public to protect user privacy. The dataset is solely for research
purposes and has been anonymized to prevent the identification of any individual.

3.2.2 PREPROCESSING

For WorkflowAgent, we consider an observation space consisting mainly of the URL and HTML-
DOM. Specifically, HTML-DOM provides agents with all structural and content information about

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the web page that are essential for generating the next step and long-term planning. For instance,
while a drop-down menu may not be visible on the website before expansion, the agent can detect the
menu items from the DOM and determine whether to click and expand it. We do not use accessibility
tree to develop WorkflowAgent because it may lose information about the HTML elements, such as
the drop-down items, and does not generalize across different browsers and devices.

Given our observation space, a subsequent problem is that the DOM can be quite long and exceed
the context window of prevailing open-source LLMs. To reduce the DOM sizes, we propose a
pruning algorithm that maintains the essential structure and content while eliminating redundant or
disruptive elements that could hinder the LLM’s understanding. Specifically, we first use the Beau-
tifulSoup library (Richardson, 2007) to remove non-essential components such as metadata, CSS,
and JavaScript. Then, we utilize a tag-attribute white list to retain useful tag level information like
retaining interactive elements. Since some attribute values can contain random character sequences
that do not provide useful information, we propose a novel detection method that removes the at-
tributes with character-to-token-ratio smaller than 2, i.e., len(s)

len(tokenizer(s)) < 2, where s denotes the
value string. Intuitively, if each character in a string is encoded using a separate token, it is highly
likely that the string is not semantically meaningful. Lastly, we remove the comments and extra
whitespaces to clean up the DOM. After pruning, we assign each tag in the HTML with a unique ID
by traversing the HTML tree from bottom to top. More details about preprocessing and analysis on
the tokenizer-pruning method can be found in Appendix A.1.

We restrict the action space of WorkflowAgent to the three types of operations specified in Sec-
tion 3.2.1. To preprocess the action sequences, we rewrite each step into five lines as follows:

1.
Description: Click the “Menu” button to browse all food options
Action: mouse click action
Node: 832
Target: <svg class=“open-hamburger-icon” node=“832” role=“img”>

The first line represents the current time step. The second line is the natural language description
of the action, which can help LLMs to learn about the rationale behind applying a specific action.
The third line is one of the three operations in the action space. The fourth line is the unique ID
assigned to the target element. The last line details the HTML tag and attributes, which can be
directly obtained from the processed DOM.

For the history, we consider only previous actions, omitting previous observations due to the exten-
sive length of the DOMs. That is, ht = a1:t−1. Therefore, at each step, WorkflowAgent will be
given the task objective, URL, HTML-DOM, and all previous actions in the aforementioned five-
line format. Its goal is to output the next action at = L(q, ot, a1:t−1) that helps complete the task.
In Appendix A.3, we provide an example of a full workflow.

Lastly, during our inspection, we find that 10% of the action descriptions in the dataset are not
informative (e.g., “click here”). In these cases, we use GPT-4o (OpenAI, 2024b) to regenerate the
action description from screenshots. We provide the prompt as well as examples of the regenerated
action descriptions in Appendix A.4.1.

3.2.3 FINE-TUNING WITH LORA

After preprocessing, we divide the dataset into two splits. The test set comprises of 1200 workflows
with diverse objectives and domains. We use the remaining workflows as the training data to adapt
LLMs via standard supervised fine-tuning. Note that for each example, the label is a single next-
step instead of all remaining steps needed to complete the task. The agent is trained to generate all
information in the five-line format described above, including the natural language description.

To reduce fine-tuning cost, we opt for the parameter efficient method LoRA (Hu et al., 2022) instead
of full fine-tuning, since we have not observed significant performance gain by updating more pa-
rameters. We also follow previous work (Zhao et al., 2023) to fine-tune the layernorms in addition
to the LoRA adapters. Based on empirical observations, we set the fine-tuning epoch to 2, effective
batch size to 32, LoRA rank to 64 and α to 128. We use a cosine scheduler with 30 warmup steps
and a learning rate of 1e-4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Performance of different LLMs fine-tuned on 1B workflow tokens on the test split of our proprietary
dataset. We highlight the best results for small/medium/large models. EM is short for Exact Match. ⋆Qwen2
57B is fine-tuned at a 29K context window and evaluated on a subset of samples due to compute constraints.

Model # Params Before Fine-Tuning After Fine-Tuning
EM (%) Calibrated EM (%) EM (%) Calibrated EM (%)

Mistral-7B-Instruct-v0.3 7B 3.89 5.13 19.92 26.31
Qwen2-7B-Instruct 7B 6.06 7.92 29.34 38.72
Llama-3.1-Instruct-8B 8B 1.42 1.88 28.34 37.42
Qwen2.5-14B-Instruct 14B 8.79 11.6 31.76 41.89
Codestral-22B-v0.1 22B 4.53 6.08 31.11 41.25
Mixtral-8x7B-Instruct-v0.1 56B-A12B 7.35 9.82 28.38 37.49
Qwen2-57B-A14-Instruct 57B-A14B 5.72 7.51 31.02 40.10

3.2.4 EXPLORING THE DESIGN SPACE

There are multiple design choices for WorkflowAgent that might affect the prediction accuracy, fine-
tuning cost, and inference latency. We focus on three aspects and perform detailed ablation studies
to find out the optimal modeling and training configurations.

Pretrained LLM Selection. Intuitively, the quality of a fine-tuned web agent should be relevant
to the quality of the pretained LLM. We identify two axes that are crucial to performance—model
architecture and model size—and explore seven open-source LLMs spanning these axes: Llama 3.1
8B (Dubey et al., 2024), Mistral 7B (MistralAI, 2023), Mixtral 8x7B (MistralAI, 2024b), Qwen2
7B (Yang et al., 2024), Qwen2 57B (Yang et al., 2024), Qwen2.5 14B (Yang et al., 2024), and
Codestral 22B (MistralAI, 2024a). We fine-tune these models with 1 billion training tokens and
evaluate their performance on the test split of the dataset we collected.

Table 2: Ablations on context window length.

Model Context EM (%) CEM (%)
Qwen2 7B 32K 29.34 38.72
Qwen2 7B 65K 31.42 36.22
Qwen2.5 14B 32K 31.76 41.89
Qwen2.5 14B 65K 33.96 39.15

Table 3: Ablations on dataset size. All settings are
trained and evaluated with Qwen2-7B-Instruct and
32K context window.

Train Tokens EM (%) CEM (%)
1B 29.34 38.72
3B 32.65 43.06
6B 34.96 46.42

Given that many of the evaluated LLMs have a
maximum context window of approximately 32K,
and the processed DOM can exceed this limit, we
divide the DOM sequentially into chunks that fit
into the context window. For fine-tuning, we use
the chunk containing the correct target, but for eval-
uation, we use the last chunk since the target’s lo-
cation is not known beforehand. When evaluating
at a 32K context window, 25% of the test data do
not have the correct target tag in the DOM, i.e.,
these tasks are unachievable. Thus, we compute
two metrics for evaluation: (1) exact match (EM)
measures the model’s ability to select exactly the
same HTML tag as the ground truth; (2) calibrated
exact match (Calibrated EM, or CEM) measures
the percentage of correct target predictions where
the target tag was present in the truncated HTML
DOM, i.e., it is EM on the set of examples where the observation contains sufficient information to
complete the task. As we scale the context window, these two metrics converge. DOM chunking
presents a limitation due to relatively small context windows, which can introduce noise into evalu-
ations. Therefore, effectively extending the context window or developing inference strategies that
avoid the need to truncate long observations is a crucial next step for this work.

We report the performance of different LLMs before and after fine-tuning in Table 1. Notably,
for all models, specialized fine-tuning drastically increases the prediction accuracy. Among the
models with <10B parameters, Qwen2 outperforms both Mistral 7B and Llama 3.1. We observe
performance gains as model size increases. For example, the calibrated EM for Qwen2 57B is higher
than its 7B counterpart. Mixtral 8x7B outperforms Mistral 7B by a large margin as well. However,
fine-tuning larger models is significantly more resource-intensive—while Qwen2 7B can be fine-
tuned using 8 H100 GPUs in just one day, Qwen2 57B takes over a week using the same hardware
configuration. Larger models also incur longer inference times and require multiple GPUs even
at a 32K context length. Among the seven LLMs, Qwen2 7B strikes a balance between prediction
accuracy, fine-tuning and inference costs. We thus use it as the default backbone for WorkflowAgent.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Context Window Length. We evaluate the models with 65K context window to add additional
context and increase the rate of solvable tasks (Table 2). On both Qwen2 and Qwen2.5, scaling the
context window from 32K to 65K leads to approximately 2% performance boost for Exact Match
but approximately 2.5% performance drop for Calibrated Exact Match. We hypothesize that this
performance degradation might be due to rotary position embedding (Su et al., 2021) and the fact that
it becomes harder to pick the correct target given twice as many options to choose from. Besides, we
note that using 65K context window increases the inference time by approximately 4× in practice.

Dataset Size. Lastly, we are interested in understanding the effect of fine-tuning dataset size on
the agent’s performance. To this end, we sample our training set without replacement into smaller
subsets and fine-tune Qwen2 7B on them. Results are shown in Table 3. Plotting on a log-linear
scale, we observe that there is a roughly 2% performance boost when we double our dataset size.

To sum up, using our proprietary dataset, we study the effect of LLM backbone, context window,
and dataset size on the agent performance. We find that (1) scaling parameter count generally im-
proves prediction quality, but the latency and training time of large LLMs can be prohibitive; (2)
using longer context window boosts model performance on EM but increases the inference time
significantly; (3) training with more tokens is helpful. Based on these insights, we use Qwen2 7B
fine-tuned on the full 6B-token dataset at a 32K context window as the final version of WorkflowA-
gent. The results shown in later sections are based on this model. Since WorkflowAgent only has
7B parameters, it is much cheaper to serve at inference time than large-scale proprietary models.

4 RESULTS

Table 4: Comparing specialized WorkflowAgent
with general-purpose, non-fine-tuned baselines on
the full test set.

Model EM (%) CEM (%)
Qwen2 7B 6.28 8.20
GPT-4o mini 12.60 13.26
GPT-4o 15.24 16.02

WorkflowAgent 34.96 46.42

We evaluate WorkflowAgent on three web datasets.
We first consider the next-step prediction setting,
where performance is evaluated only on a single
next step. We show that WorkflowAgent not only
outperforms various general-purpose LLMs on our
proprietary dataset but also achieves state-of-the-art
on the public benchmark Mind2Web (Deng et al.,
2023). Then, we move to the end-to-end task com-
pletion benchmark WebArena (Zhou et al., 2024)
and show that WorkflowAgent augmented with GPT-
4o achieves top performance among all existing
agent systems.

4.1 PROPRIETARY DATASET

Figure 2: EM comparison between WorkflowAgent
and OpenAI models on different domains.

To study whether specialized fine-tuning is indeed
beneficial, we first compare the performance of
WorkflowAgent with general-purpose baselines
on our proprietary test data. We consider the non-
fine-tuned Qwen2 7B, GPT-4o, and GPT-4o mini.
We use in-context demonstrations to prompt them
to generate actions in the same five-line format as
defined in Section 3.2.2. All OpenAI baselines in
this work follow the prompt in Appendix A.4.2.

Table 5: Comparing WorkflowAgent with OpenAI
baselines on 500 test samples. Since OpenAI base-
lines are evaluated at a longer 128K context window,
they have a smaller gap between EM and CEM.

Models Context EM (%) CEM (%)
o1-mini 128K 17.40 18.32
o1-preview 128K 22.60 23.79
GPT-4o mini 128K 13.80 14.53
GPT-4o 128K 16.60 17.96

WorkflowAgent 32K 44.6 53.86

Results on the full 1200 test workflows are shown
in Table 4. We note that WorkflowAgent signifi-
cantly outperforms the proprietary GPT-4o and 4o
mini. This shows the benefit of specialized fine-
tuning over using general-purpose LLMs. More-
over, while the non-fine-tuned Qwen2 performs
extremely poorly, fine-tuning with our dataset
boosts its performance by nearly 6×, which highlights the importance of domain-specific data.

We also plot the Exact Match metric for four types of commonly seen domains, including cus-
tomer relationship management (CRM) tools, E-commerce platforms, productivity tools, and social

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 6: WorkflowAgent achieves state-of-the-art on Mind2Web. EA is short for element accuracy,
AF1 is short for action F1, and SR is short for success rate. We note that the three categories are
based on increasing level of domain generalization difficulty. However, since we do not train on
Mind2Web data, our performance is similar across different test sets.

Method Uses M2W Cross-Task Cross-Website Cross-Domain
train set? EA AF1 Step SR Task SR EA AF1 Step SR Task SR EA AF1 Step SR Task SR

Multi-Stage, Multi-Choice QA
MindAct (Flan-T5B) ✓ 43.6 76.8 41.0 4.0 32.1 67.6 29.5 1.7 33.9 67.3 31.6 1.6
MindAct (Flan-T5L) ✓ 53.4 75.7 50.3 7.1 39.2 67.1 35.3 1.1 39.7 67.2 37.3 2.7
MindAct (Flan-T5XL) ✓ 55.1 75.7 52.0 5.2 42.0 65.2 38.9 5.1 42.1 66.5 39.6 2.9
AutoWebGLM (ChatGLM3) ✓ - - 66.4 - - - 56.4 - - - 55.8 -
AWM-offline (GPT-4) ✓ 50.6 57.3 45.1 4.8 41.4 46.2 33.7 2.3 36.4 41.6 32.6 0.7
MindAct (GPT-4) × 41.6 60.6 36.2 2.0 35.8 51.1 30.1 2.0 21.6 52.8 18.6 1.0
AWM-online (GPT-4) × 50.0 56.4 43.6 4.0 42.1 45.1 33.9 1.6 40.9 46.3 35.5 1.7
Direct Generation
Flan-T5B Fine-Tuned ✓ 20.2 52.0 17.5 0 13.9 44.7 11.0 0 14.2 44.7 11.9 0.4
HTML-T5-XL ✓ 60.6 81.7 57.8 10.3 47.6 71.9 42.9 5.6 50.2 74.9 48.3 5.1
Synapse (GPT-3.5) ✓ 34.0 - 30.6 2.4 29.1 - 24.2 0.6 29.6 - 26.4 1.5
WorkflowAgent (Ours) × 54.2 90.7 52.2 10.7 58.8 88.3 57.4 10.2 58.0 86.6 56.3 8.8

platforms (Figure 2). While our agent’s performance varies by domain, with a 6% gap between the
best performing domain and the worst performing one, we observe that WorkflowAgent consistently
outperforms the general-purpose baselines across all of them.

As we were wrapping up this work, OpenAI released o1 (OpenAI, 2024c), a series of specialized
models for solving complex tasks in science, coding, and math. Since it has better planning abil-
ity, we also include it in our baselines. However, we did not run the o1 models on the full test set
due to cost and API call limitations. Instead, we subsample 500 workflows and compare with Work-
flowAgent. As shown in Table 5, o1-preview performs the best among all general-purpose baselines.
However, WorkflowAgent still outperforms it by a wide margin, highlighting the importance of fine-
tuning on real-world web navigation data. It is worth noting that WorkflowAgent only contains 7B
parameters and does not require any inference time scaling, whereas most proprietary baselines are
typically larger in size and slower at inference time. This makes WorkflowAgent a better choice in
terms of accuracy, latency, and cost.

4.2 MIND2WEB

Mind2Web (Deng et al., 2023) is a text-based dataset for assessing the navigation ability of web
agents across different tasks, websites, and domains. Each task features a human demonstration of a
real-world workflow, such as booking a hotel on Airbnb. At each step, the agent is asked to predict a
single action, consisting of an operation and the target element. Performance is measured by element
accuracy, which checks if the correct target is selected; action F1 score, which measures operation
correctness like text input; step success rate, which evaluates whether both the target element and
the operation are correct; and task success rate, indicating all steps are correct.

The original Mind2Web benchmark reports two sets of baselines: (1) a single-stage, generation-
based agent (i.e., fine-tuned Flan-T5B) directly generates the operation and the target based on
the full DOM; (2) multi-stage, multi-choice question-answering agents (i.e., the MindAct family)
first use a pretrained element-ranking model to filter out 50 candidate elements from the full DOM
and then use a separate LLM to recursively select an action from five candidates in a multi-choice
question-answering (QA) fashion until one action is chosen. Both sets of baselines are trained using
the training data and then evaluated on the test set. Note that direct generation is more challenging
than multi-choice QA, and all multi-stage baselines outperform generation baselines by a large mar-
gin. Beyond the Mind2Web original baselines, we also consider memory-augmented agents such as
AWM (Wang et al., 2024b) and Synapse (Zheng et al., 2024), fine-tuned AutoWebAGLM (Lai et al.,
2024) and HTML-T5 (Gur et al., 2023).

WorkflowAgent belongs to the single-stage, generation category. We directly evaluate its perfor-
mance on the Mind2Web test data without using Mind2Web training data for further adaptation. For
performance robustness, we call WorkflowAgent five times and use majority vote to select the final
generated action. More details about DOM processing and output comparison are in Appendix A.5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Task success rates (SR) on WebArena and score breakdown on five web domains. WorkflowAgent
consistently outperforms all considered baselines, often improving the previous-best results by more than 10%.

Method LLM Total SR Shopping CMS Reddit GitLab Maps

AutoWebGLM ChatGLM3 6B 18.2 - - - - -
AutoEval GPT-4 20.2 25.5 18.1 25.4 28.6 31.9
BrowserGym GPT-4 23.5 - - - - -
BrowserGymaxtree GPT-4 15.0 17.2 14.8 20.2 19.0 25.5
SteP GPT-4 33.0 37.0 24.0 59.0 32.0 30.0
AWM GPT-4 35.5 30.8 29.1 50.9 31.8 43.3
Tree Search GPT-4o 19.2 - - - - -
WebPilot GPT-4o 37.2 36.9 24.7 65.1 39.4 33.9
Multi-Agent System (Ours) WorkflowAgent + GPT4o 51.3 48.1 35.5 70.2 58.8 51.9

We report all evaluation metrics in Table 6. WorkflowAgent achieves state-of-the-art performance
on Mind2Web. More specifically, for both step and task success rates, we outperform not only
the generation baselines but also all multi-stage QA baselines. Our action F1’s are significantly
higher, which means that WorkflowAgent is good at specifying the content of typing actions. Even
though we have not tuned WorkflowAgent on Mind2Web training data, the fact that we outperform
Mind2Web fine-tuned models on all except two metrics suggests that WorkflowAgent can generalize
across various domains and websites. We attribute this to the diversity and high quality of the
workflows in our dataset. Relatedly, the three test sets (Cross-Task, Cross-Website, Cross-Domain)
are designed to capture different degrees of domain generalization difficulty. Since we do not train
on Mind2Web data, the performance of WorkflowAgent is similar across all three test sets.

While these results are promising, we note that a limitation of static, text-based benchmark is that
the ground truth evaluation does not account for different action sequences that could reach the same
goal. For instance, to book a flight, one can first enter the destination or first choose the departure
date, but the ground truth trajectory only accounts for one possibility. Considering this, we also
evaluated WorkflowAgent on a dynamic benchmark WebArena (Zhou et al., 2024).

4.3 END-TO-END TASK EXECUTION ON WEBARENA

WebArena (Zhou et al., 2024) features 812 web navigation tasks across five domains: E-commerce
(OneStopShop), social forums (Reddit), software development (GitLab), content management
(CMS), and online map (OpenStreetMap). Unlike the static Mind2Web, it implements a dynamic
environment for agents to interact with and allows for assessing the functional accuracy of action
sequences. Since the WebArena environment is implemented to accept only target element IDs
specified in the accessibility tree, whereas WorkflowAgent operates on DOM and outputs targets in
HTML, we employ GPT-4o to map between the different representations.

More generally, we tackle end-to-end task solving by developing a multi-agent system that utilizes
GPT-4o to simulate user interactions with WorkflowAgent: (1) objective refinement: user adds
details about the task objective to help complete the task; (2) action generation: based on the current
website and action history, WorkflowAgent outputs an action suggestion; (3) action execution: user
executes the suggested action, e.g., clicking a button; (4) completeness evaluation: user observes the
current state and decides whether the task is completed.

We apply the above pipeline to solve the WebArena tasks. In stage 3, GPT-4o maps the agent’s
output in HTML to the accessibility tree format, which is then processed by the WebArena envi-
ronment. To further improve performance, we allow WorkflowAgent to generate multiple actions
in stage 2 and select the one with the highest confidence using majority vote and GPT-4o analysis.
More details about evaluating WorkflowAgent on WebArena can be found in Appendix A.6.

We compare our performance with all top-performing, text-only agents on the WebArena leader-
board. We note that we do not include Autonomous Web Agent (AWA) 1.5 (JaceAI, 2024) as a
baseline because it uses a proprietary system to parse the HTML-DOM and web screenshots, rather
than building from the WebArena GitHub. This allows them to have richer observations and bypass
the accessibility tree action mapping step. In contrast, WorkflowAgent is single-modal, text-only,
and we stick to the original WebArena implementation. That said, AWA 1.5 employs more ad-
vanced reasoning, planning, and progress tracking techniques and is the only agent system with a
higher average task success rate than ours.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 8: We replace WorkflowAgent with GPT-4o in our four-stage pipeline to study how much WorkflowA-
gent contributes to the performance. The success rates drop significantly for all domains.

Method LLM Total SR Shopping CMS Reddit GitLab Maps

Single-Agent GPT-4o 34.2 31.9 21.3 44.7 38.2 42.6
Multi-Agent WorkflowAgent + GPT4o 51.3 48.1 35.5 70.2 58.8 51.9

Table 9: Task success rates on a subset of WebArena. The numbers after the domains indicate the number of
tasks considered. All model are used along with GPT-4o to formulate the multi-agent system. We see that the
general trends agree with what we found on our proprietary dataset.

Agent Backbone # Train Tokens Total SR (158) Shopping (36) CMS (39) Reddit (24) GitLab (33) Maps (26)
Mistral 7B 1B 41.8 41.7 30.8 50.0 42.4 42.3
Qwen2 7B 1B 44.3 52.8 33.3 50.0 48.5 42.3
Qwen2 7B 3B 47.5 55.6 33.3 58.3 48.5 46.2
Qwen2 7B 6B 55.0 58.3 41.0 70.8 63.6 46.2

The results are shown in Table 7. Compared with existing text-only baselines, WorkflowAgent aug-
mented with GPT-4o obtains the highest task success rate in all five categories, leading to 14.1%
performance improvements in total success rate over the previous-best WebPilot results. In particu-
lar, on Reddit and GitLab tasks where the domains are more realistic and thus closer to the ones in
our training data, our method demonstrates stronger generalization ability and higher task success
rates than in other domains.

To better understand the contribution of WorkflowAgent to the multi-agent system, we perform an
ablation study that leverages GPT-4o for all four-stages of the proposed pipeline. As shown in
Table 8, using WorkflowAgent consistently outperforms only using GPT-4o, and the GPT-4o-only
setting is less effective than existing agents like WebPilot. This shows that our strong performance
on WebArena can be mostly attributed to the action generation process of WorkflowAgent. Apart
from getting better results, the multi-agent system is cheaper than using GPT-4o alone, as calling
WorkflowAgent to generate a next action incurs negligible cost as it is served locally. We follow
Agent-E (Abuelsaad et al., 2024) to report the number of API calls for proprietary models. Due
to the four-stage pipeline design, our multi-agent system requires 3 GPT-4o calls for each action
step (action analysis, action mapping, and completeness evaluation), plus an addition API call at the
beginning of each task for objective refinement. This makes our four-stage method more expensive
than agent systems that utilize a single API call per step.

We also use WebArena to verify the signals observed in our proprietary test data. To do so, we
randomly select a subset of 158 WebArena tasks with non-overlapping objective templates and run
ablation studies following the ones presented in Section 3.2.4 to study the effect of LLM backbones
and the number of training tokens. As shown in Table 9, on all domains, Qwen2 7B outperforms
Mistral 7B, and the task success rate increases as the number of training tokens increases. These
trends suggest that improvements on our proprietary dataset lead to even greater improvements on
WebArena, further highlighting the advantages of fine-tuning web agents with large-scale datasets.

5 CONCLUSION

In this work, we explore how fine-tuning open-source LLMs with high-quality real-world workflow
data can benefit developing specialized web agents. We present WorkflowAgent, which consistently
outperforms existing methods that prompt proprietary models in various evaluation settings and
benchmarks. We also provide empirical insights into data processing and model fine-tuning.

Limitations and Future Work. The long-context nature of DOMs presents great challenges in
adapting LLMs. In the short term, we aim to enable WorkflowAgent to compare and reason over
multiple DOM chunks so that its observation is always complete. This might require integrating
a memory component, which could also aid in maintaining context or state across interactions to
improve multi-step reasoning. Besides, we currently do not incorporate planning into WorkflowA-
gent, so its output will be directly used as the next action. However, adding better action selection
strategies such as Monte Carlo Tree Search (MCTS) could potentially facilitate online planning and
exploration, further improving the agent’s decision-making processes in complex scenarios. In the
long run, we aim to expand WorkflowAgent’s capabilities to handle multi-modal inputs and mul-
tilingual content. This would significantly broaden its applicability across different linguistic and
visual contexts, making it more versatile and robust in real-world web environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi
Kokku. Agent-e: From autonomous web navigation to foundational design principles in agen-
tic systems, 2024. URL https://arxiv.org/abs/2407.13032.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 9313–9332, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
URL https://aclanthology.org/2024.acl-long.505.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models, 2022. URL https://arxiv.org/abs/2210.11416.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=kiYqbO3wqw.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena:
How capable are web agents at solving common knowledge work tasks? arXiv preprint
arXiv:2403.07718, 2024.

Abhimanyu Dubey, ..., and Zhiwei Zhao. The llama 3 herd of models, 2024. URL https://
arxiv.org/abs/2407.21783.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for
large language model agents. arXiv preprint arXiv:2403.08978, 2024.

Team GLM, ..., and Zihan Wang. Chatglm: A family of large language models from glm-130b to
glm-4 all tools, 2024.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdh-
ery, Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large lan-
guage models. ArXiv, abs/2210.03945, 2022. URL https://api.semanticscholar.
org/CorpusID:252780086.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. ArXiv, abs/2307.12856, 2023. URL https://api.semanticscholar.
org/CorpusID:260126067.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
2024. URL https://arxiv.org/abs/2401.13919.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui
agents, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

11

https://arxiv.org/abs/2407.13032
https://aclanthology.org/2024.acl-long.505
https://arxiv.org/abs/2210.11416
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:252780086
https://api.semanticscholar.org/CorpusID:252780086
https://api.semanticscholar.org/CorpusID:260126067
https://api.semanticscholar.org/CorpusID:260126067
https://arxiv.org/abs/2401.13919
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

JaceAI. Awa 1.5 achieves breakthrough performance on we-
barena benchmark, 2024. URL https://www.jace.ai/post/
awa-1-5-achieves-breakthrough-performance-on-webarena-benchmark.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-
based web navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 5295—-5306, 2024.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong,
and Jie Tang. Webglm: Towards an efficient web-enhanced question answering system with
human preferences, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Ma-
jumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement
with self-feedback, 2023.

MistralAI. Announcing mistral 7b, 2023. URL https://mistral.ai/news/
announcing-mistral-7b/.

MistralAI. Codestral: Hello world, 2024a. URL https://mistral.ai/news/
codestral/.

MistralAI. Mixtral of experts, 2024b. URL https://mistral.ai/news/
mixtral-of-experts/.

Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. Bagel: Boot-
strapping agents by guiding exploration with language. arXiv preprint arXiv:2403.08140, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022. URL https://arxiv.
org/abs/2112.09332.

OpenAI. Gpt-4 technical report, 2024a. URL https://arxiv.org/abs/2303.08774.

OpenAI. Gpt-4o, 2024b. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Introducing openai o1, 2024c. URL https://openai.com/o1/.

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale, 2024. URL https://arxiv.org/abs/2409.
15637.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

Leonard Richardson. Beautiful soup documentation. April, 2007.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

12

https://www.jace.ai/post/awa-1-5-achieves-breakthrough-performance-on-webarena-benchmark
https://www.jace.ai/post/awa-1-5-achieves-breakthrough-performance-on-webarena-benchmark
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2308.12950

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Paloma Sodhi, S. R. K. Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for
web actions. In Conference on Language Modeling (COLM), 2024. URL https://arxiv.
org/abs/2310.03720.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=rnKgbKmelt.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
els. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ehfRiF0R3a.

Jiayuan Wang, Zhiruo anf Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629, 2022. URL
https://api.semanticscholar.org/CorpusID:252762395.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration, 2024. URL
https://arxiv.org/abs/2408.15978.

Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning layernorm in atten-
tion: Towards efficient multi-modal llm finetuning, 2023. URL https://arxiv.org/abs/
2312.11420.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=Pc8AU1aF5e.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-
istic web environment for building autonomous agents. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
oKn9c6ytLx.

13

https://arxiv.org/abs/2310.03720
https://arxiv.org/abs/2310.03720
https://openreview.net/forum?id=rnKgbKmelt
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2407.10671
https://api.semanticscholar.org/CorpusID:252762395
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2408.15978
https://arxiv.org/abs/2312.11420
https://arxiv.org/abs/2312.11420
https://openreview.net/forum?id=Pc8AU1aF5e
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PREPROCESSING

A.1.1 OVERALL PRUNING PIPELINE

We overview the pruning algorithm used for processing the HTML DOM in the paper. The code
for preprocessing, chunking the DOM for fine-tuning, fine-tuning, and inference can be found in the
supplementary material, which we will release on GitHub later.

def assign_element_id(all_tags):
for i, tag in enumerate(all_tags[::-1]):

tag["node"] = int(i)

salient_attributes = { "alt", "aria-role", "aria-label", ... }

def clean_tag(tag):
for attr in list(tag.attrs):

if attr in tag:
if type(tag[attr]) == list:
tag[attr] = " ".join(tag[attr])

tag[attr] = str(tag[attr])[:32]
if len(str(tag[attr])) > 32 and token_ratio(str(tag[attr])) < 2:
del(tag[attr])
continue

if "script" in attr.lower():
del tag[attr]
continue

if attr.lower() not in salient_attributes:
del tag[attr]
continue

elif (tag[attr] == "" or tag[attr] == "none"):
del tag[attr]
continue

if attr in tag:
if tag.name == "iframe":
if attr != "node":

del tag[attr]
tag = soup.prettify()
return tag[:tag.find(">")+1]

valid_tags = { 'div', 'body', 'span', 'svg', 'input', 'img', 'p', ...}
code_elements_to_decompose = { 'style', 'script' }

def removing_tags(all_tags):
count = 0
for tag in all_tags:

if tag.name in code_elements_to_decompose:
tag.decompose()

elif tag.name not in valid_tags:
tag.unwrap()

return all_tags

def generate_output(step_count, desc, kind, element_id, target_html):
return f"{step_count}.\nDescription: {desc}\nAction: {kind}

\nNode: {element_id}\nTarget: {target_html}\n"

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1.2 TOKENIZER PRUNING

In this section, we provide more details on the tokenizer-based detection method to remove random
character strings. The rationale behind our approach is based on the observation that typical English
words consist of more than two characters. Assuming the token count is t and the character count is
s, this means that when t = 1, s ≥ 2, leading to s

t ≥ 2. By setting the pruning threshold to 2 and
removing tag attributes with s

t < 2, we aim to eliminate strings composed solely of single-character
tokens, which are likely to be nonsensical.

In our actual implementation, we employ this technique only for tag attributes with s > 32, being
more lenient for shorter attributes. To show that this tokenizer pruning strategy is effective and to
study the performance across different tokenizers and pruning thresholds, we perform the following
experiments.

We take three tokenizers from different models: Qwen2-7B-Instruct, Mistral-7B-Instruct-v0.3,
and Meta-Llama-3-8B. For each tokenizer, we vary the pruning thresholds across a set of values:
{1.5, 1.75, 2, 2.25, 2.5}. Note that it is meaningless to study overly small thresholds (e.g., it is im-
possible to have s

t < 1) or overly large thresholds (e.g., s
t < 3 could result in the loss of meaningful

attributes, as many English words contain three letters). We randomly sample 1000 DOMs from our
proprietary test dataset, apply our standard pruning pipeline followed by tokenizer pruning, and then
perform three analysis:

• False positives: we use the Python enchant library to detect if there are meanful English
words within the pruned strings. Note that even though these are actual words, many of
them are related to DOM structure and can be safely ignored. Still, we count them as false
positives since the tokenizer method is designed to remove random character strings.

• Average s and t for the entire DOM before and after tokenizer pruning: this is for under-
standing the reduction in content length.

• Lastly, we sort tags and attributes by the frequency of being pruned to identify patterns.

Table 10: Tokenizer pruning analysis.

Tokenizer Prune Threshold False Positive (%) ↓ Before Pruning (K) After Pruning (K)
s t s t ∆t

Qwen2-7B-Instruct

1.5 0.025

224.3 79.14

221.4 77.11 2.03
1.75 0.013 217.3 74.67 4.47

2 0.18 215.7 73.89 5.21
2.25 0.36 213.9 73.13 6.01
2.5 0.38 210.0 71.63 7.51

Mistral-7B-Instruct-v0.3

1.5 0.012

224.3 90.54

219.5 87.10 3.44
1.75 0.18 216.1 85.07 5.47

2 0.44 212.7 83.40 7.14
2.25 0.49 205.3 80.20 10.34
2.5 11.28 190.3 74.44 16.10

Meta-Llama-3-8B

1.5 0.0097

224.3 71.44

223.1 70.60 0.84
1.75 0.012 218.3 67.85 3.59

2 0.035 216.8 67.09 3.43
2.25 0.023 215.2 66.41 5.03
2.5 0.10 212.7 65.46 5.98

As shown in Table 10, there is a clear trade-off between precision and context reduction: greater
reductions in content length tend to result in higher false positive rates. While different tokenizers
exhibit varying sensitivities to the pruning thresholds, a threshold of 2 achieves the most balanced
trade-off, which aligns with our intuition. We then list the top-5 tag-attribute pairs most frequently
pruned under threshold 2 along with their pruning counts:

• Qwen: (‘div’, ‘class’): 3188, (‘span’, ‘class’): 11426, (‘a’, ‘href’): 8802, (‘button’, ‘class’):
6844, (‘i’, ‘class’): 5010

• Mistral: (‘div’, ‘class’): 5288, (‘span’, ‘class’): 15824, (‘a’, ‘href’): 12948, (‘button’,
‘class’): 7998, (‘svg’, ‘class’): 5871

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Llama: (‘div’, ‘class’): 29559, (‘span’, ‘class’): 8823,(‘button’, ‘class’): 5889, (‘i’,
‘class’): 4608, (‘svg’, ‘class’): 2577

Attributes such as ‘class’ often contain random character strings and are frequently pruned. How-
ever, we observe differences in how tokenizers handle the href attribute: both Qwen and Mistral
tokenizers tend to prune it away, whereas the Llama tokenizer preserves it, indicating its better ca-
pability in tokenizing URLs. Although we currently use the Qwen tokenizer in our preprocessing
pipeline to align with the backbone model of WorkflowAgent, the Llama tokenizer can be a com-
pelling alternative for future consideration since it is better at recognizing URLs and producing
shorter token sequences.

A.2 DETAILS ABOUT FINE-TUNING AND INFERENCE

We provide the code for fine-tuning WorkflowAgent and using it at inference time in the supplemen-
tary material. The code files include detailed configurations such as learning rate, LoRA configura-
tion, and generation configuration. There is also implementation of our evaluation metrics.

A.3 EXAMPLE PROMPT AND LABEL FOR WORKFLOWAGENT

Objective: Grant delegation access to another user in Gmail settings.
URL: https://mail.google.com/mail/u/0/
Observation: {processed dom}
Step-by-step guide:
1.
Description: Click "See all settings"
Action: mouse_click_action
Node: 254
Target: <button class="Tj" node="254">
2.
Description: Click "Accounts"
Action: mouse_click_action
Node: 2625
Target: <a class="f0 LJOhwe"

href="https://mail.google.com/mail/u/0/?tab=#settings/accounts"
node="2625" role="tab">

↪→
↪→
3.
Description: Click "Add another account"
Action: mouse_click_action
Node: 1215
Target:

A.4 OPENAI PROMPTS

A.4.1 DATA PREPARATION

Below shows the prompt to generate step descriptions.

Regenerated Action Descriptions. We provide a few examples of generated action descriptions
using GPT-4o.

• “Click on the Submit button.”
• “Type in the name of the item.”
• “Double-click on the highlighted text.”

A.4.2 PROPRIETARY BENCHMARK BASELINES

Below shows the prompt for all OpenAI baselines. The text is the prepend for every input to which
we append the task input with the corresponding objective, URL, DOM, and action history.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

You are navigating a webpage to achieve an objective. Given the
objective, a list of the previous actions, the current action, and a
screenshot of the current action on the webpage. The objective and
previous steps are only here to ground the current step, the current
action and its screenshot are the most useful to your task. Give me
a concise description of the current action being done on the webpage.
You should look at the part of the webpage with the red circle, this is
where the user clicked for the current action. Describe this action
and ensure your response is in the same format, concise, coherent.
Use any relevant information in the image to ground the action
description. Your response should NOT use any json or markdown formatting.
The response should be a single sentence that starts with an action verb.
For example, 'Click on the 'SUBMIT' button.'

You are an autonomous intelligent agent tasked with solving web-based
tasks. These tasks will be accomplished through the use of
specific actions you can issue.
Here's the information you'll have:
- The user's objective: This is the task you're trying to complete.
- The current web page's URL: This is the page you're currently navigating.
- Part of the current web page's HTML: Each element is assigned in
descending order with an unique ID, denoted by the attribute \"node\".
The actions you can perform include:
- mouse_click_action: click
- keyboard_sequence_action: type a sequence of characters
- keyboard_combination_action: press a set of keys together
(e.g., hotkey like ctrl+c)
You will generate a step-by-step guide to complete the task based on the
given information. You will only produce a SINGLE next step.
Do NOT use additional punctuation, or any markdown formatting.
The output should be in the following format:
Description: Click \"Users\"
Action: mouse_click_action
Node: 93
Target:
Now complete the following task by generating the next step.
{task input}

A.5 MIND2WEB EXPERIMENT DETAILS

Data and Label Conversion. To apply WorkflowAgent to Mind2Web data, we first re-process the
provided DOM using the procedure detailed in Section 3.2.2. We store a map between our node
ID and the backend ID given in the dataset. Then, we transform the history action provided in the
dataset to our 5-line format. After WorkflowAgent generates the next step, we check the backend ID
of the provided label and map it to the node ID in our processed DOM. We then compare this label
with the target node ID generated by WorkflowAgent. We provide the code for the DOM processing
and label conversion process in the supplementary material and will release them later.

DOM Chunking and Action Generation. When the DOM length exceeds the 32K context window,
we chunk the DOM sequentially and run the prediction workflow on each piece. For each piece of
DOM, we call WorkflowAgent five times to obtain five valid actions. We then aggregate all possible
actions and select the one with the highest number of appearances. We use the following generation
configuration: do sample=True, top p=0.95, temperature=0.6.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 WEBARENA EXPERIMENT DETAILS

A.6.1 FOUR-STAGE PIPELINE

Stage 1: GPT-4o refines the intent. We use the following prompt:

I have a simple task objective related to [DOMAIN], rewrite it into a single paragraph of detailed
step-by-step actions to achieve the task. When revising the objective, follow the rules:
- Assume you are already on the correct starting website and are logged in.
- Do not include any newlines, tabs, step numbers in the rewritten objective.
- Follow the example as much as possible.
- [IN-CONTEXT DEMONSTRATIONS FOR DOMAIN RULES]
Here is an example:
Simple Task Objective:[IN-CONTEXT DEMONSTRATION]
Detailed Task Objective: [IN-CONTEXT DEMONSTRATIONS]
Now, rewrite the following objective:

Stage 2: We process the environment-generated DOM using our preprocessing procedure. When
the DOM length exceeds the 32K context window, we chunk the DOM sequentially and run the
prediction workflow on each piece. For each piece of DOM, we call WorkflowAgent multiple times
to obtain multiple valid actions. We use the following generation configuration: do sample=True,
top p=0.95, temperature=0.6. We then aggregate all possible actions, pick the top candidates, and
prompt GPT-4o to select the best candidate using the following prompt:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be
accomplished through series of actions. The information you’ll have includes:
- The user’s objective
- The current web page’s URL
- The current web page’s accessibility tree
- Previous steps performed by the user, where each step includes a description of the action and
the target web element
- Several proposed next steps, labeled by “No.”
Your goal is to select the best next step that can complete the task and output this candidate’s
number, follow the following rules:
- Do not repeat previous steps
- Reject candidates with incorrect intentions, e.g., searching for an item different from the one
specified in the objective
- Reject candidates with factual errors, e.g., the description and the chosen web target do not
match
- Only output a single number after to represent the selected candidate but not explanation
Now analyze the following case:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Stage 3: GPT-4o maps the output of WorkflowAgent to accessibility tree format using the following
prompt:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be ac-
complished through series of actions. The information you’ll have includes:
- The user’s objective
- The current web page’s URL
- A snippit of the current web page’s HTML
- A snippit of the current web page’s accessibility tree
- Previous steps performed by the user
Your goal is to translate a proposed next step, which consists of an action and a HTML element,
into the following format:
- ‘click [accessibility tree id]’: This action clicks on an interactive (non-static) element with
a specific id. Note this id is the number inside “[]” in the accessibility tree, not the HTML
attribute “node”. Brackets are required in the response. For example, a valid response is “click
[1234]”
- ‘type [accessibility tree id] [content]’: Use this to type the content into the field with a specific
id in the accessibility tree. For example, a valid response is “type [1234] [New York]”. The
second bracket should include everything that needs to appear in the textbox, but not only the
added content. Do not change the letter case
- ‘press [key comb]’: Simulates pressing a key combination on the keyboard (e.g., press
[PageDown], press [Enter])
- ‘go back‘: Return this when the current web page does not contain useful information and the
user should go back to the previous web page
When mapping the next step into actions in the above formats, follow the following rules:
- Take the user’s objective into consideration, so the action must help complete the task
- Do not repeat previous steps
- Only output a single step in the above format but not explanation
Note also: [IN-CONTEXT DEMONSTRATION OF RULES]
Now analyze the following case:

The action is then returned to the environment for execution.

Stage 4: GPT-4o evaluates if the task objective is achieved. For operational tasks, if the task is
completed, nothing is returned. For information seeking tasks, if the task is completed, GPT-4o
retrieves the answer to the question. The prompt looks like the following:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be ac-
complished through series of actions. The information you’ll have includes:
- The user’s task, including a high-level objective and a more detailed illustration
- The current web page’s URL and accessibility tree
- Previous steps performed by the user, where each step includes a description of the action and
the target web element
You should follow the rules: [IN-CONTEXT DEMONSTRATION RULES]
You will decide whether the task specified by the high-level objective is completed (which
means the **last** step of the detailed instruction is completed and the current webpage com-
pletes the task) and respond “completed” or “incomplete”. If the task requires returning a
number or a string and the answer can be obtained in the current webpage, reply “completed,
[answer]” where “[answer]” is the number or string. If the task requires finding a webpage and
the current webpage satisfies the requirement, reply “completed, [answer]” where “[answer]” is
the current URL. Now analyze the following case. First provide the reasonings. Then summa-
rize the answer with “Summary:”, followed by “completed” or “incomplete”, followed by the
answer to the question if applicable. Do not include newlines after “Summary:”.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.6.2 SCROLLING ACTIONS AND COMBOBOX SELECTION

In our data collection process, we capture the full DOM from a system perspective, which inherently
includes the entire webpage as observed from the backend. This method differs from user-centric
data collection, where only the elements within the visible browser viewport are captured. Conse-
quently, there is no concept of scrolling in our training datasets since all elements are already fully
accessible in the captured data.

However, we recognize the importance of scroll actions in solving WebArena from a user perspec-
tive. To address this, before issuing any action to the environment, our multi-agent system includes
a viewport check that uses the bounding box position to determine if the target element is within
the visible webpage area. If not, the system manually inserts necessary scroll actions to bring the
element into view. This ensures accurate interaction with web elements in a typical user scenario.

To handle combox selection, our agent discovers a workaround that bypasses the need for scrolling
through comboboxes. Specifically, after clicking on the combobox, it types the name of the desired
item in the combobox, which brings the item to the top of the dropdown menu. Then, the agent can
simply click the item or press Enter. This approach avoids the need for scrolling and is especially
effective in densely populated lists. It improves the task success rate on a large number of Map,
Reddit, and GitLab tasks.

A.6.3 GPT-4O-ONLY SETTING

When we use GPT-4o for stage 2, we use the following prompt:

You are an autonomous intelligent agent tasked with solving web-based tasks. These tasks
will be accomplished through the use of specific actions you can issue. Here’s the information
you’ll have:
- The user’s objective: This is the task you’re trying to complete.
- The current web page’s URL: This is the page you’re currently navigating.
- The current web page’s HTML: Each element is assigned with an unique ID, denoted by the
attribute “node”.
The actions you can perform include:
- mouse click action: click
- keyboard sequence action: type a sequence of characters
- keyboard combination action: press a set of keys together (e.g., hotkey like ctrl+c)
You will generate a step-by-step guide to complete the task based on the given information. At
each step, you can perform only one action to one web element. The output should be in the
correct format: a single step consisting of a text description, an action, as well as the node and
HTML of the target web element to perform the action. Be coherent, concise, and accurate
in your response. Do NOT use any special characters (e.g., “*”, “#”, etc.) in your response.
Follow EXACTLY the format of the response below.
Here is one example:
Description: click “Users”
Action: mouse click action
Node: 93
Target:
Now complete the following task by generating a single next step:

A.6.4 RESULTS

We include the action trajectories of WorkflowAgent on successful tasks in the supplementary mate-
rial. Below, we provide example action trajectories produced by our agent and explanations to shed
light on its decision making process.

Domain: Shopping

Task ID: 466

Intent: Add 2 Hawaiian Bamboo Orchid Roots #zc50 - by Discount Hawaiian Gifts to my wish list.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Actions:

1. click [1585] where [1585] is combobox ‘Search’ autocomplete: both hasPopup: listbox
required: False expanded: False → Click on the search bar.

2. type [1585] [Hawaiian Bamboo Orchid Roots #zc50 - by Discount Hawaiian Gifts] where
[1585] is combobox ‘Search’ focused: True autocomplete: both hasPopup: listbox re-
quired: False expanded: True → Type the target item name.

3. press [enter] → Do the search.
4. scroll [down] → Scroll down the page to find out the target item.
5. click [4859] where [4859] is link ‘2 Hawaiian Bamboo Orchid Roots #zc50 - by Discount

Hawaiian Gifts’ → Open the item page.
6. click [6733] where [6733] is link ‘Add to Wish List’→ Add item to wish list.

Domain: CMS

Task ID: 244

Intent: Show me the email address of the customer who is the most unhappy with Olivia zip jacket.

Actions:

1. click [108] where [108] is link ‘MARKETING’ → Click on the “MARKETING” button in
the side bar.

2. click [419] where [419] is link ‘All Reviews → Clicking the side bar shows more option.
We can then click on the “All Reviews” button.

3. click [2195] where [2195] is button ‘Reset Filter’ → Remove all previous set filters.
4. type [4435] [olivia] where [4435] is textbox ‘’ required: False → In the search box, type

“olivia”.
5. press [enter]→ Do the search
6. stop [emma.lopez@gmail.com] → Inspect all listed reviews and return the email of the

negative review.

Domain: Reddit

Task ID: 403

Intent: Change my reddit bio to “Awesome Prompt Artist”

Actions:

1. click [12] where [12] is button ‘MarvelsGrantMan136’ hasPopup: menu expanded: False
→ Click my user name on the top right corner.

2. click [249] where [249] is link ‘Profile’ → After the drop-down menu shows up, click
“Profile”.

3. click [886] where [886] is link ‘Edit biography’ → Click the “Edit biography” button.
4. type [2456] [Awesome Prompt Artist] where [2456] is textbox ‘Biography’ required: False

describedby: user biography biography help → Type the target content.
5. click [2474] where [2474] is button ‘Save’ → Save the new profile.

Domain: GitLab

Task ID: 293

Intent: Show me the command to clone Super Awesome Robot with SSH.

Actions:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1. click [1507] where [1507] is textbox ‘Search GitLab’ required: False → Click on the search
bar.

2. type [1516] [Super Awesome Robot] where [1516] is searchbox ‘Search GitLab’ focused:
True describedby: search-input-description → Type the repo name in the search bar.

3. click [2082] where [2082] is link ‘Convex Eggtart / Super Awesome Robot’ → Click on
the correct repo.

4. click [2699] where [2699] is link ‘Clone’ → Click on the “Clone” button.
5. stop [git clone ssh://git@metis.lti.cs.cmu:2222/convexegg/super awesome robot.git] →

Read the command from the pop-up window.

Domain: Maps

Task ID: 7

Intent: Tell me the full address of all international airports that are within a driving distance of 50
km to Carnegie Mellon University.

Actions:

1. click [35] where [35] is textbox ‘Search’ focused: True required: False → Click on the
search box.

2. type [35] [airport Pittsburgh] where [35] is textbox ‘Search’ focused: True required: False
→ Type “airport Pittsburgh” in the search box.

3. stop [Pittsburgh International Airport, Airport Boulevard, Findlay Township, Allegheny
County, 15231, United States.] → Return “Pittsburgh International Airport, Airport Boule-
vard, Findlay Township, Allegheny County, 15231, United States.” as the answer.

22

	Introduction
	Related Work
	Method
	General Setup
	WorkflowAgent: Specializing Web Agents Through Fine-Tuning
	Collecting Production-Scale Data
	Preprocessing
	Fine-Tuning with LoRA
	Exploring the Design Space

	Results
	Proprietary Dataset
	Mind2Web
	End-to-End Task Execution on WebArena

	Conclusion
	Appendix
	Preprocessing
	Overall Pruning Pipeline
	Tokenizer Pruning

	Details about Fine-Tuning and Inference
	Example Prompt and Label for WorkflowAgent
	OpenAI Prompts
	Data Preparation
	Proprietary Benchmark Baselines

	Mind2Web Experiment Details
	WebArena Experiment Details
	Four-Stage Pipeline
	Scrolling Actions and Combobox Selection
	GPT-4o-Only Setting
	Results

