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ABSTRACT

Connectionist Temporal Classification (CTC) is a widely used method for auto-
matic speech recognition (ASR), renowned for its simplicity and computational
efficiency. However, it often falls short in recognition performance. In this work,
we propose the Consistency-Regularized CTC (CR-CTC), which enforces consis-
tency between two CTC distributions obtained from different augmented views of
the input speech mel-spectrogram. We provide in-depth insights into its essential
behaviors from three perspectives: 1) it conducts self-distillation between random
pairs of sub-models that process different augmented views; 2) it learns contex-
tual representation through masked prediction for positions within time-masked
regions, especially when we increase the amount of time masking; 3) it suppresses
the extremely peaky CTC distributions, thereby reducing overfitting and improv-
ing the generalization ability. Extensive experiments on LibriSpeech, Aishell-1,
and GigaSpeech datasets demonstrate the effectiveness of our CR-CTC. It signifi-
cantly improves the CTC performance, achieving state-of-the-art results compara-
ble to those attained by transducer or systems combining CTC and attention-based
encoder-decoder (CTC/AED).

1 INTRODUCTION

End-to-end approaches (Graves et al., 2006; Graves, 2012; Chan et al., 2015), which eliminate the
need of pre-aligned speech-text data, have replaced traditional hybrid systems (Bourlard & Mor-
gan, 2012; Hinton et al., 2012) and become dominant methods in automatic speech recognition
(ASR). Prominent examples include Connectionist Temporal Classification (CTC) (Graves et al.,
2006), Transducer (Graves, 2012) (also known as RNN-T), and the method that combines CTC
and attention-based encoder-decoder (AED) (Chan et al., 2015), referred to as CTC/AED (Watan-
abe et al., 2017). To handle the alignment between speech and token sequences, CTC (Graves et al.,
2006) introduces a blank token and makes independent predictions at each frame, training the model
to maximize the total probability over all valid alignments. Transducer (Graves, 2012) extends CTC
by introducing a prediction network and a joint network, explicitly modeling the interdependencies
on output labels. CTC/AED (Watanabe et al., 2017) integrates CTC into AED (Chan et al., 2015) for
jointly training, while the CTC and AED scores are fused during the decoding process. Among these
three methods, CTC is the simplest and most computationally efficient due to its frame-independent
assumption, making it a strong candidate for real-world deployment. However, it significantly lags
behind transducer and CTC/AED in terms of recognition performance, which limits its applicability.

To improve the CTC performance, in this work we propose the Consistency-Regularized CTC (CR-
CTC), which takes two different augmented views of the same speech mel-spectrogram as input,
and enforces consistency between the resulting CTC distributions. We analyze its internal behaviors
from three following perspectives. First, it performs self-distillation between sub-models randomly
sampled by drop-based techniques (Srivastava et al., 2014; Huang et al., 2016). Second, for positions
within time-masked regions, the model is required to predict the target token distributions, forcing
it to learn contextual representation based on unmasked context, akin to self-supervised learning
methods (Devlin et al., 2019; Baevski et al., 2020; Hsu et al., 2021). Therefore, we especially in-
crease the amount of time masking in CR-CTC to enhance this masked prediction behavior. Third,
the consistency regularization suppresses extremely peaky CTC distributions, which mitigates over-
fitting and improves the model’s generalization ability. Inspired by this, we additionally propose an
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simple method specifically designed to learn smoother CTC distributions (Appendix Section A.1),
which is experimentally validated to be effective.

We conduct experiments on LibriSpeech, Aishell-1, and GigaSpeech datasets using Zipformer (Yao
et al., 2024) as speech encoder. The results demonstrate the superiority of CR-CTC, which signif-
icantly outperforms vanilla CTC and achieves results comparable to, or even slightly better than,
those of transducer and CTC/AED. In addition, CR-CTC can further improve the performance of
transducer and CTC/AED when employed for jointly training. We perform detailed ablation studies
on LibriSpeech dataset to investigate the effect of each functional component in CR-CTC and to
validate our explanations.

2 RELATED WORK

Self-distillation. Unlike traditional knowledge distillation (Buciluǎ et al., 2006; Hinton et al., 2015),
which transfers knowledge from a larger and high-capacity teacher model to a smaller student model,
self-distillation (Furlanello et al., 2018; Zhu et al., 2018; Mobahi et al., 2020; Allen-Zhu & Li,
2020) involves learning from a same-architecture model that processes the same training data. This
approach enables the model to extract more refined representations and achieve improved perfor-
mance. For example, BANs (Furlanello et al., 2018) introduces a re-training procedure in which a
newly initialized student model is trained to match a pre-trained teacher model, subsequently serv-
ing as the teacher in the next iteration. Some works also explore constructing the teacher and student
models from a shared network, distilling knowledge from deeper layers to shallower layers (Zhang
et al., 2019; Kim et al., 2024), or between pairs of sub-models randomly initialized through drop-
based techniques (Srivastava et al., 2014; Huang et al., 2016), such as R-Drop (Wu et al., 2021) and
cosub (Touvron et al., 2023). Our CR-CTC fundamentally conducts self-distillation between ran-
dom sub-models, sharing similar idea to R-Drop and cosub, while our approach further use different
augmented input views, which enriches the diversity of predictions from these sub-models.

Masked prediction. Masked prediction has proven highly effective in self-supervised learning (De-
vlin et al., 2019; Baevski et al., 2019; Joshi et al., 2020; Baevski et al., 2020; Hsu et al., 2021; He
et al., 2022; Baevski et al., 2023). In this approach, the model is tasked with predicting masked
positions based on the surrounding unmasked context, which encourages the learning of robust
contextual representations. Notable methods for speech representation learning include wav2vec
2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), and data2vec 2.0 (Baevski et al., 2023), which
primarily differ in their prediction targets. Specifically, wav2vec 2.0 (Baevski et al., 2020) jointly
trains a representation quantizer and learns to distinguish the true quantized target from distrac-
tors (Oord et al., 2018). HuBERT generates target labels through offline clustering, while data2vec
2.0 uses contextualized representations from a teacher model as its targets. Our CR-CTC essentially
performs masked prediction for positions within time-masked regions, where the target labels are
frame-level token distributions generated based on another augmented view of input.

Peaky CTC distributions. CTC models are known for predicting extremely peaky distribu-
tions (Graves et al., 2006; Sak et al., 2015), which can be harmful in certain scenarios, such as
forced alignment (Huang et al., 2024) and knowledge distillation (Ding et al., 2020). These peaky
distributions lead to inaccurate alignments as the model assigns excessive blanks to non-silence
frames. To address this, label priors are employed to suppress the peaky distributions, thereby im-
proving the accuracy of forced alignment (Huang et al., 2024). As position mismatches of CTC
spikes can hinder knowledge distillation performance, some approaches propose to encourage con-
sistent alignments between the teacher and student (Ding et al., 2020) or to utilize sequence-level
distillation (Takashima et al., 2019). Unlike previous works, we demonstrate that peak suppression
in CR-CTC can improve the generalization ability of the CTC models.

Consistency regularization. The technique of consistency regularization has demonstrated effec-
tiveness in learning generalizable image representations across various learning paradigms, includ-
ing self-supervised (Chen et al., 2020; Grill et al., 2020; He et al., 2020; Chen & He, 2021), semi-
supervised (Sajjadi et al., 2016; Laine & Aila, 2016; Sohn et al., 2020), and supervised (Wu et al.,
2021; Touvron et al., 2023; Heo et al., 2023) learning tasks. Self-supervised methods, such as Sim-
CLR (Chen et al., 2020), BYOL (Grill et al., 2020), MoCo (He et al., 2020) and SimSiam (Chen
& He, 2021), aim to align hidden representations of unlabeled image data from different model
branches or different augmented views. They address the training issue of feature collapsing into a
constant vector (Chen & He, 2021) through contrastive learning (Chen et al., 2020; He et al., 2020),
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momentum encoder (Grill et al., 2020; He et al., 2020), and stop-gradient operation (Chen & He,
2021). In semi-supervised learning, a prominent example leveraging consistency regularization is
FixMatch (Sohn et al., 2020). It generates pseudo-labels based on high-confidence predictions from
weakly augmented images, then trains the model to predict these pseudo-labels using the strongly
augmented versions of the same images. Additionally, in supervised learning, methods such as R-
Drop (Wu et al., 2021) and cosub (Touvron et al., 2023) encourage consistency between predictions
of randomly sampled sub-models using drop-based techniques.

When employing consistency regularization as unsupervised objective to train transformer encoders
on unlabeled speech data, a new training issue arises in the form of the shortcut learning prob-
lem (Geirhos et al., 2020), which is tackled using reconstruction loss in Speech SimCLR (Jiang et al.,
2020) and temporal augmentation in C-Siam (Khorram et al., 2022). Some studies explore leverag-
ing consistency regularization to enhance model robustness during predicting the pseudo-labels of
untranscribed data, which are generated based on different augmentations (Masumura et al., 2020;
Weninger et al., 2020; Chen et al., 2021b; Higuchi et al., 2021; Sapru, 2022) or through speech chain
reconstruction (Qi et al., 2022). In contrast to these self/semi-supervised ASR works, our work fo-
cuses on a fully supervised setting, where we introduce consistency loss as a regularization term
to improve performance of CTC model trained on labeled data. As the consistency regularization
is enforced on CTC distributions, which are stably supervised by the main CTC loss, it inherently
avoids the training issues associated with the unsupervised objectives as observed in Speech Sim-
CLR (Jiang et al., 2020) and C-Siam (Khorram et al., 2022).

The idea of R-Drop (Wu et al., 2021) has also been extended to supervised ASR (Gao et al., 2022;
Yoon et al., 2024). For example, to improve the CTC/AED system, (Gao et al., 2022) specially
designs the spatial-temporal dropout to construct the sub-models, with consistency regularization
enforced exclusively on the CTC spike frames. Cons-KD (Yoon et al., 2024) integrates consistency
regularization into a knowledge distillation system, enabling the student model to be more robust
to inconsistency induced by dropout. In this work, we focus on improving the performance of pure
CTC systems and are the first to enable CTC models to match the performance of transducer and
CTC/AED systems by a simple yet effective approach. Moreover, we introduce peak suppression as
a novel explanatory perspective, demonstrating for the first time that it can mitigate overfitting and
enhance the generalization ability of CTC models.

3 METHOD

We first introduce the standard CTC algorithm in Section 3.1. Then we present the detailed im-
plementation of our proposed Consistency-Regularized CTC (CR-CTC) in Section 3.2, followed by
in-depth explanations from different perspectives in Section 3.3.

3.1 PRELIMINARY: CONNECTIONIST TEMPORAL CLASSIFICATION

The ASR task is to convert a sequence of speech frames x = {xt}T1 of length T to a sequence of
transcript tokens y = {yu ∈ V}U1 of length U , where V is the vocabulary and typically T ≥ U .
CTC (Graves et al., 2006) extends the vocabulary V to V ′ = V ∪ {ϵ} with a blank token ϵ, and aims
to maximize the total posterior probability of all valid alignments π = {πt ∈ V ′}T1 between x and
y. Let B(π) denote the many-to-one map that merges repeating tokens and removes all blanks in π,
and p(π|x) denote the posterior probability of alignment π, the CTC loss function is formulated as:

LCTC(x,y) = − log
∑

π∈B−1(y)

p(π|x). (1)

Specifically, given the input x, it employs an encoder f to estimate the |V ′|-dimensional probability
distributions z = {zt}T1 : z = f(x) 1, where f is modeled by a speech encoder network such as
Zipformer (Yao et al., 2024) followed by a linear projection layer and a softmax function. Note
that we now start to use LCTC(z,y) instead of LCTC(x,y) for ease of description in the following
sections. Under the frame-independent assumption (Graves et al., 2006), p(π|x) is computed as:

p(π|x) =
T∏

t=1

zt,πt
, (2)

1T is typically downsampled in the encoder f by a factor of 4 for efficiency. This is omitted for the sake of
simplicity in expression.
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Figure 1: Overall architecture of CR-CTC.

where zt,πt is the probability of emitting token πt at frame t.

3.2 OUR APPROACH: CONSISTENCY-REGULARIZED CTC

Figure 1 illustrates the overall architecture of our proposed CR-CTC. It takes as input two different
augmented views, x(a) and x(b), both derived from the input speech mel-spectrogram x. The two
input views are then passed through a shared speech encoder f , which estimates the per-frame
distributions: z(a) = f(x(a)), z(b) = f(x(b)). In addition to computing the CTC losses on both
branches: LCTC(z

(a),y) and LCTC(z
(b),y), we introduce an auxiliary loss (defined in Equation 4)

to enforce consistency between z(a) and z(b): LCR(z
(a), z(b)). The overall loss of the whole model

is formulated as:

L =
1

2
(LCTC(z

(a),y) + LCTC(z
(b),y)) + αLCR(z

(a), z(b)), (3)

where α is a hyper-parameter that controls the consistency regularization.

Different augmented views. The two different augmented views, x(a) and x(b), are generated by in-
dependently applying SpecAugment (Park et al., 2019) to two copies of the input mel-spectrogram x.
SpecAugment involves warping along time axis, masking blocks of frequency channels, and mask-
ing blocks of time steps. Since time warping alters feature timing and thus shifts output timestamps,
we apply it first before creating the copies to prevent significant timestamp mismatches between
the outputs of two branches. Subsequently, random frequency masking and time masking are both
applied to the two copies, resulting in x(a) and x(b). Note that we also increase the amount of
time masking by a factor of 2.5 compared to regular systems. The reason behind this adjustment is
explained in Section 3.3, with implementation details provided in Section 4.1.

Consistency regularization loss. The consistency regularization is applied on each frame t, by min-
imizing the bidirectional Kullback-Leibler divergence (denoted as DKL) between each pair of distri-
butions z(a)t and z

(b)
t : DKL(sg(z(b)t )∥z(a)t ) and DKL(sg(z(a)t )∥z(b)t ), where sg denotes the operation

stopping gradient on the target distributions. The regularization loss LCR(z
(a), z(b)) is formulated

as:

LCR(z
(a), z(b)) =

1

2

T∑
t=1

DKL(sg(z(b)t )∥z(a)t ) +DKL(sg(z(a)t )∥z(b)t ). (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 EXPLANATION

We now explain the essential behaviors of our proposed CR-CTC from three different perspectives:
1) it performs self-distillation between pairs of sub-models with different input views; 2) it conducts
contextual representation learning by predicting the token distributions at masked positions based
on unmasked context; 3) it suppresses extremely peaky CTC distributions, mitigating overfitting and
enhancing generalization ability. We conduct an empirical investigation through ablation studies in
Section 4.3, and the experimental results validate our explanations.

Self-distillation. When using model regularization techniques such as dropout (Srivastava et al.,
2014) and stochastic depth (Huang et al., 2016), which randomly drop parts of the model (neurons
or layers), it can be viewed as implicitly training randomly sampled sub-models that are ultimately
combined into an ensemble during inference. Similar to R-Drop (Wu et al., 2021) and cosub (Tou-
vron et al., 2023), in CR-CTC, enforcing consistency regularization between the two branches en-
ables to perform self-distillation between pairs of randomly sampled sub-models derived from the
shared model f , with each sub-model receiving supervision signals in the form of per-frame pre-
dictions from the other. In addition, feeding different augmented views (with larger amount of time
masking) exposes these sub-models to varied aspects of the input data, enhancing their prediction
diversity and facilitating richer knowledge transfer as well as complementary representation learn-
ing.

Masked prediction. In CR-CTC, consistency regularization requires frames within the time-masked
regions in each branch to predict the corresponding token distributions, which are generated by
the other branch on the fly. Similar to masked-based self-supervised models (Devlin et al., 2019;
Baevski et al., 2020; Hsu et al., 2021), this behavior encourages the model to capture acoustic in-
formation on the unmasked context and exploit its implicit language modeling capability. Inde-
pendently applying random time masking to the two branches reduces the occurrence of positions
masked by both branches, thereby improve the quality of the provided target distributions for these
masked positions. Furthermore, increasing the amount of time masking in CR-CTC enhances con-
textual representation learning through the masked prediction behavior.

Peak suppression. In line with previous works (Graves et al., 2006; Sak et al., 2015), we also
observe that CTC tends to learn extremely peaky distributions. As shown in Figure 2 (left), almost
all non-blank tokens occupy only one frame, while the remaining frames are dominated by the blank
token, with both types of emissions occurring with extremely high probabilities. This phenomenon
suggests potential overfitting to training data, which limits generalization abality to unseen data.

Enforcing prediction consistency between the two branches in CR-CTC guides the model to learn
the average of their predictions, ultimately resulting in smoother distributions. The peak suppression
behavior reduces overconfidence on training data, thereby improving the model’s generalization
ability. As presented in Figure 2 (right), CR-CTC exhibits reduced token emitting probabilities and
an increased occurrence of repeating non-blank tokens. A comparison of concrete statistics on the
distribution peakedness between CTC and CR-CTC is provided in Table 6.

Inspired by this, we also propose a simple method, called Smooth-Regularized CTC (SR-CTC),
which incorporates an auxiliary loss into regular CTC, specifically encouraging the model to learn
smoother CTC distributions. Appendix Section A.1 presents the details of SR-CTC.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the effectiveness of our proposed CR-CTC, we conduct experiments on three
publicly available ASR datasets: 1) LibriSpeech (Panayotov et al., 2015), which contains 1000 hours
of English speech; 2) Aishell-1 (Bu et al., 2017), which consists of 170 hours of Mandarin speech;
3) GigaSpeech (Chen et al., 2021a), comprising 10000 hours of English speech.

Implementation details. Our experiments are performed using the icefall framework 2, with Lhotse
toolkit (Żelasko et al., 2021) for data preparation. For regular ASR recipes in icefall, default param-
eter settings of SpecAugment (Park et al., 2019) include a time warping factor of 80, 2 frequency

2https://github.com/k2-fsa/icefall
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Figure 2: Visualization of token emitting probabilities for vanilla CTC (left) and our CR-CTC (right)
on four randomly selected samples from LibriSpeech test set. The gray dashed lines indicate the
blank token. Compared to vanilla CTC, the token distributions in CR-CTC are smoother with lower
emitting probabilities and more repeating non-blank tokens.

masking regions with a maximum width of 27, and 10 time masking regions with a maximum width
of 100, along with a maximum masking fraction of 15% specifically for time masking 3. In our CR-
CTC systems, we utilize larger amount of time masking through increasing both the number of time
masking regions and the maximum masking fraction by a factor of 2.5. Speed perturbation (Ko et al.,
2015) with factors 0.9, 1.0 and 1.1 is applied to LibriSpeech (Panayotov et al., 2015) and Aishell-
1 (Bu et al., 2017) datasets. The input features are 80-dimensional mel-spectrograms extracted
using 25-ms windows with a 10-ms shift. For LibriSpeech and GigaSpeech datasets, we employ
500-class Byte Pair Encoding (BPE) (Sennrich et al., 2016) word pieces as modeling units, while
for Aishell-1 dataset, we use 4336-class characters. By default, we set α in Equation 3 to 0.2. Zip-
former (Yao et al., 2024), which uses dropout (Srivastava et al., 2014) and stochastic depth (Huang
et al., 2016), is used as our speech encoder due to its speed and high performance. It takes input
features at frame rate of 100Hz, processes the sequence through 6 stacks with frame rates of 50Hz,
25Hz, 12.5Hz, 6.25Hz, 12.5Hz, and 25Hz, and finally produces the encoder output at frame rate
of 25Hz. Following (Yao et al., 2024), pruned transducer (Kuang et al., 2022), a highly optimized
and memory-efficient version of transducer, is employed for comparison. Word-error-rate (WER)
and character-error-rate (CER) are employed as ASR metrics for English and Mandarin datasets,
respectively. As CR-CTC requires two forward pass during training, we train CR-CTC models with
half the batch size and half the number of epochs compared to CTC models, ensuring a fair com-

3See the SpecAugment implementation in Lhotse for more details: https://github.com/
lhotse-speech/lhotse/blob/master/lhotse/dataset/signal_transforms.py
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parison in terms of training cost. Training configuration in terms of number of GPUs and training
epochs are provided in Appendix Section A.2. For CTC and CR-CTC systems, we use prefix search
decoding (Graves et al., 2006) with a beam size of 4 for comparisons against other state-of-the-art
models, and employ greedy search decoding for ablation studies. Results comparison between these
two decoding methods are provided in Appendix Section A.3. For pruned transducer models, we
use beam search decoding with beam size of 4 (Kang et al., 2023). For CTC/AED systems, we use
joint decoding that combines CTC scores and AED scores (Watanabe et al., 2017).

4.2 COMPARISON WITH STATE-OF-THE-ART MODELS

In this section, we compare our CR-CTC with other state-of-the-art models. For LibriSpeech and
GigaSpeech datasets, we also use CR-CTC as an auxiliary loss in CTC/AED and pruned transducer
systems for joint training (denoted as CR-CTC/AED and pruned transducer w/ CR-CTC), to further
validate the representation learning capability of CR-CTC. Note that for the models that combine
CR-CTC and pruned transducer, we only utilize the transducer head for decoding, without incor-
porating the CTC scores. For the larger GigaSpeech dataset, we additionally use a even larger
scale of Zipformer (Zipformer-XL). Model configuration of different scales of Zipformer are pro-
vided in Table 14. For Aishell-1 dataset, which is considerably smaller, we conduct experiments on
Zipformer-S and Zipformer-M to ensure comparable parameter counts with other models reported
in the literature.

Table 1: WER(%) performance of our method on LibriSpeech dataset compared to the best results
reported in the literature without using an external language model.

Model Params (M) WER (%)
test-clean test-other

CTC/AED, E-Branchformer-B (Kim et al., 2023) 41.1 2.49 5.61
CTC/AED, Branchformer (Peng et al., 2022) 116.2 2.4 5.5
CTC/AED, E-Branchformer-L (Kim et al., 2023) 148.9 2.14 4.55

Transducer, ContextNet-S (Han et al., 2020) 10.8 2.9 7.0
Transducer, ContextNet-M (Han et al., 2020) 31.4 2.4 5.4
Transducer, ContextNet-L (Han et al., 2020) 112.7 2.1 4.6

Transducer, Conformer-S (Gulati et al., 2020) 10.3 2.7 6.3
Transducer, Conformer-M (Gulati et al., 2020) 30.7 2.3 5.0
Transducer, Conformer-L (Gulati et al., 2020) 118.8 2.1 4.3

Transducer, MH-SSM 32L (Fathullah et al., 2023) 140.3 2.01 4.61
Transducer, Stateformer 25L (Fathullah et al., 2023) 139.8 1.91 4.36

CTC/AED, Zipformer-S (Yao et al., 2024) 46.3 2.46 6.04
CTC/AED, Zipformer-M (Yao et al., 2024) 90.0 2.22 4.97
CTC/AED, Zipformer-L (Yao et al., 2024) 174.3 2.09 4.59

Pruned transducer, Zipformer-S (Yao et al., 2024) 23.3 2.42 5.73
Pruned transducer, Zipformer-M (Yao et al., 2024) 65.6 2.21 4.79
Pruned transducer, Zipformer-L (Yao et al., 2024) 148.4 2.00 4.38

CTC, Zipformer-S 22.1 2.85 6.89
CTC, Zipformer-M 64.3 2.52 6.02
CTC, Zipformer-L 147.0 2.5 5.72

CR-CTC, Zipformer-S (ours) 22.1 2.52 5.85
CR-CTC, Zipformer-M (ours) 64.3 2.1 4.61
CR-CTC, Zipformer-L (ours) 147.0 2.02 4.35

CR-CTC/AED, Zipformer-L (ours) 174.3 1.96 4.08
Pruned transducer w/ CR-CTC, Zipformer-L (ours) 148.8 1.88 3.95

LibriSpeech dataset. Table 1 presents the results on LibriSpeech dataset for CR-CTC and other
state-of-the-art models. Our CR-CTC significantly outperforms the CTC baselines on all three scales
of Zipformer encoder. When comparing to CTC/AED models, our CR-CTC achieves lower WER on
Zipformer-M/L, while yielding comparable result on Zipformer-S. Similarly, our CR-CTC surpasses
pruned transducer on Zipformer-M, and performs comparably on Zipformer-L. It also demonstrates
that CR-CTC can further enhance the performance of CTC/AED and pruned transducer models
when used for jointly training. A notable result is that pruned transducer combined with CR-CTC
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using Zipformer-L achieves a new state-of-the-art result of 1.88%/3.95% on test-clean/test-other,
outperforming both the transducer models with Conformer-L (Gulati et al., 2020) and Stateformer
25L (Fathullah et al., 2023).

Table 2: WER(%) performance of our method on Aishell-1 dataset compared to the best results
reported in the literature without using an external language model.

Model Params (M) WER (%)
dev test

CTC/AED, Conformer in ESPnet (Watanabe et al., 2018) 46.2 4.5 4.9
CTC/AED, Conformer in WeNet (Yao et al., 2021) 46.3 − 4.61
CTC/AED, E-Branchformer in ESPnet (Watanabe et al., 2018) 37.9 4.2 4.5
CTC/AED, Branchformer (Peng et al., 2022) 45.4 4.19 4.43

Pruned transducer, Zipformer-S (Yao et al., 2024) 30.2 4.4 4.67
Pruned transducer, Zipformer-M (Yao et al., 2024) 73.4 4.13 4.4

CTC, Zipformer-S 23.1 4.89 5.26
CTC, Zipformer-M 66.2 4.47 4.8

CTC/AED, Zipformer-S 39.3 4.47 4.8
CTC/AED, Zipformer-M 83.2 4.0 4.32

CR-CTC, Zipformer-S (ours) 23.1 3.9 4.12
CR-CTC, Zipformer-M (ours) 66.2 3.72 4.02

Aishell-1 dataset. Table 2 presents the results on Aishell-1 dataset. Our CR-CTC models not only
significantly outperform vanilla CTC by a substantial margin but also achieve better results than all
other CTC/AED and pruned transducer models. For example, CR-CTC with Zipformer-S surpasses
CTC/AED with Zipformer-M while using much fewer parameters.

Table 3: WER(%) performance of our method on GigaSpeech dataset compared to the best results
reported in the literature without using an external language model.

Model Params (M) WER (%)
dev test

CTC/AED, Transformer (Chen et al., 2021a) 87 12.30 12.30
CTC/AED, Conformer in Wenet (Zhang et al., 2022) 113.2 10.7 10.6
CTC/AED, Conformer in ESPnet (Chen et al., 2021a) 113.2 10.9 10.8
CTC/AED, E-Branchformer in ESPnet (Watanabe et al., 2018) 148.9 10.6 10.5

CTC, Zipformer-S 22.1 12.08 11.95
CTC, Zipformer-M 64.3 11.23 11.27
CTC, Zipformer-L 147.0 11.16 11.16
CTC, Zipformer-XL 286.6 10.8 10.87

CTC/AED, Zipformer-S 46.3 11.4 11.39
CTC/AED, Zipformer-M 90.0 10.57 10.61
CTC/AED, Zipformer-L 174.3 10.26 10.38
CTC/AED, Zipformer-XL 315.5 10.22 10.33

Pruned transducer, Zipformer-S 23.3 10.98 10.94
Pruned transducer, Zipformer-M 65.6 10.37 10.42
Pruned transducer, Zipformer-L 148.4 10.23 10.28
Pruned transducer, Zipformer-XL 288.2 10.09 10.2

CR-CTC, Zipformer-S (ours) 22.1 11.68 11.58
CR-CTC, Zipformer-M (ours) 64.3 10.62 10.72
CR-CTC, Zipformer-L (ours) 147.0 10.31 10.41
CR-CTC, Zipformer-XL (ours) 286.6 10.15 10.28

CR-CTC/AED, Zipformer-XL (ours) 315.5 9.92 10.07
Pruned transducer w/ CR-CTC, Zipformer-XL (ours) 286.6 9.95 10.03

GigaSpeech dataset. Table 3 shows the results on GigaSpeech dataset. Our CR-CTC consistently
achieves a significantly lower WER than vanilla CTC across all scales of Zipformer. In comparisons
with CTC/AED or pruned transducer models, our CR-CTC demonstrates comparable performance
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on Zipformer L/XL. Additionally, the results indicate that employing CR-CTC for joint training can
further improve the performance of both CTC/AED and pruned transducer models.

4.3 ABLATION STUDIES

We now perform ablation studies on LibriSpeech dataset using Zipformer-M encoder to investigate
the effect of each component in CR-CTC (Section 3.2), and to validate our explanations of its be-
haviors (Section 3.3). Results of tuning α in Equation 3 and the ratio used to increase the amount of
time masking are presented in Table 15.

Table 4: Ablation studies for self-distillation in CR-CTC on LibriSpeech dataset using Zipformer-M
encoder and greedy search decoding.

Method WER (%)
test-clean test-other

CTC baseline 2.51 6.02

EMA-distilled CTC 2.31 5.25

CR-CTC (final) 2.12 4.62
No larger time masking 2.19 4.98
No larger time masking, no different augmented views 2.27 5.11
Use hard-label CE-based LCR 2.14 4.84
Remove sg in LCR 2.24 4.97

Self-distillation. One self-distillation method in self-supervised learning is to construct a teacher
model by tracking the model weights using exponential moving average (EMA) (Grill et al., 2020;
He et al., 2020; Baevski et al., 2023). For comparison, we include this approach, referred to as
EMA-distilled CTC, which incorporates an auxiliary loss to learn from the CTC distribution of the
EMA teacher model. Its details are provided in Appendix Section A.6. As presented in Table 4, CR-
CTC significantly outperforms EMA-distilled CTC, demonstrating its superiority in self-distillation.
For CR-CTC, both the lack of increased time masking and the absence of different augmented views
lead to WER degradation, indicating the effectiveness of enhancing the input diversity between sub-
models during self-distillation. Replacing DKL with hard label-based cross-entropy (CE) function
in LCR (Equation 4) results in a WER degradation of 0.02%/0.22% on test-clean/test-other. This
suggests the advantage of using DKL which enables a finer-grained self-distillation as it distills over
the full CTC lattice, whereas the hard label CE-based method only distills the best alignment. When
removing the sg operation inLCR, the WER increase by 0.12%/0.35%, which implies that the model
might have a tendency towards a degenerated solution (Chen & He, 2021) that is insensitive to the
pattern of input masking and model dropout.

Table 5: Ablation studies for masked prediction in CR-CTC on LibriSpeech dataset using Zipformer-
M encoder and greedy search decoding.

Method WER (%)
test-clean test-other

CTC baseline 2.51 6.02
Use larger time masking 2.68 6.28

CR-CTC (final) 2.12 4.62
No larger time masking 2.19 4.98
No larger time masking, no different augmented views 2.27 5.11
No larger time masking, use larger frequency masking 2.26 4.98
Exclude self-masked frames in LCR 2.32 5.26
Exclude self-unmasked frames in LCR 2.32 5.02

Masked prediction. As reported in Table 5, without increasing the amount of time masking, the
WER of CR-CTC increases by 0.07%/0.36% on test-clean/test-other, suggesting the effectiveness
of enhancing the masked prediction behavior for contextual representation learning. Additionally,
without using different augmented views, the WER increases further by 0.12%/0.13%. This indi-
cates the advantage of independently applying random time masking, which improves the quality
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of the provided target distributions for the masked positions. However, using larger amount of
frequency masking leads to a WER degradation of 0.07% on test-clean, implying that the perfor-
mance gain from increasing the amount of time masking is primarily due to the masked prediction
behavior, rather than merely increasing the input diversity for the two branches. Furthermore, ap-
plying larger amount of time masking does not benefit the CTC baseline, as it increases the WER
by 0.17%/0.26%. In the final CR-CTC system, excluding frames with time-masked regions in the
current branch (self-masked) from LCR (Equation 4) leads to a larger WER degradation compared
to excluding the remaining unmasked frames (self-unmasked). This highlights the importance of the
masked prediction behavior in the overall performance of CR-CTC.

Table 6: Ablation studies for peak suppression in CR-CTC on LibriSpeech dataset using Zipformer-
M encoder and greedy search decoding. We include the averaged duration of all non-blank tokens,
as well as the averaged emitting probabilities of the blank token and all non-blank tokens on the best
alignments.

Method Non-blank duration Emit probability (%) WER (%)
(frames) blank non-blank test-clean test-other

CTC baseline 1.04 99.64 98.50 2.51 6.02

SR-CTC 4.25 95.44 90.04 2.32 5.22

CR-CTC 1.28 94.19 89.42 2.12 4.62

Peak suppression. To measure the peakedness of the learned CTC distributions, we compute the
averaged duration over all non-blank tokens, as well as the averaged emitting probabilities for the
blank token and all non-blank tokens, based on the best alignment obtained through greedy search
decoding on the test sets. We also include the method SR-CTC (described in Appendix Section A.1)
for comparison. As presented in Table 6, compared to the CTC baseline, CR-CTC learns smoother
distributions and significantly improves the recognition performance. Note that SR-CTC also sur-
passes the CTC baseline by 0.19%/0.8% on test-clean/test-other, while exhibiting a notably larger
average duration of non-blank tokens. This manifests the effectiveness of peak suppression in re-
ducing overfitting and improving generalization performance.

Table 7: Comparison between CR-CTC and methods using an auxiliary head for jointly training on
LibriSpeech dataset using Zipformer-M encoder and greedy search decoding.

Method Params (M) WER (%)
test-clean test-other

CTC baseline 64.3 2.51 6.02

CTC w/ AED head 90.0 2.46 5.57
CTC w/ pruned transducer head 65.8 2.42 5.4

CR-CTC 64.3 2.12 4.62

Compared to using auxiliary head for jointly training. The straightforward approach to improve
the CTC performance is using an auxiliary head of AED (Chan et al., 2015; Hentschel et al., 2024)
or pruned transducer (Kuang et al., 2022) for jointly training, while retaining only the CTC head for
inference. As reported in Table 7, CR-CTC significantly outperforms these two methods with less
model parameters, suggesting the advantage of our method.

5 CONCLUSION

In this work, we introduce the CR-CTC to enhance CTC performance. Specifically, it takes as
input two different augmented views of the same speech mel-spectrogram, and enforce consis-
tency between the two obtained CTC distributions. We explain our method from three different
perspectives: 1) self-distillation between randomly sampled sub-models; 2) masked prediction for
positions within time-masked regions, facilitating the learning of contextual representation; 3) peak
suppression, which reduces overfitting and improves the model’s generalization ability. Extensive
experiments on LibriSpeech, Aishell-1, and GigaSpeech datasets demonstrate the effectiveness of
CR-CTC. Additionally, detailed ablation studies validate our explanations.
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A APPENDIX

A.1 SMOOTH-REGULARIZED CTC

Smooth-regularized CTC (SR-CTC) discourages peaky distributions by adding an smooth regular-
ization loss (denoted as LSR) to regular CTC model. Specifically, we first apply a smooth kernel K
of size 3 to the model prediction z, smoothing it along the time dimension: z(s) = smooth(z,K).
The smoothing operation is done by using a 1-D depth-wise convolution layer. Then we minimize
the DKL between z and z(s), similar to the consistency loss in CR-CTC (Equation 4):

LSR(z, z
(s)) =

T∑
t=1

DKL(sg(z(s)t )∥zt). (5)

The overall loss of SR-CTC is formulated as:

L′ = LCTC(z,y) + βLSR(z, z
(s)), (6)

where β is a hyper-parameter. In this work, we use K = (0.25, 0.5, 0.25) and β = 0.2.

We validate its effectiveness in Section 4.3. Table 6 presents the experimental result.

A.2 TRAINING CONFIGURATION

Training configuration, including the number of GPUs and training epochs, on LibriSpeech, Aishell-
1 and GigaSpeech datasets are presented in Table 8, Table 9, and Table 10, respectively.

Table 8: Training configuration on LibriSpeech dataset.

Model GPUs Epochs(80G NVIDIA Tesla A100)

CTC, Zipformer-S 1 100
CTC, Zipformer-M 2 100
CTC, Zipformer-L 2 100

CR-CTC, Zipformer-S 1 50
CR-CTC, Zipformer-M 2 50
CR-CTC, Zipformer-L 2 50

CR-CTC/AED, Zipformer-L 2 50
Pruned transducer w/ CR-CTC, Zipformer-L 2 50

Table 9: Training configuration on Aishell-1 dataset.

Model GPUs Epochs(80G NVIDIA Tesla A100)

CTC, Zipformer-S 1 120
CTC, Zipformer-M 1 120

CTC/AED, Zipformer-S 1 60
CTC/AED, Zipformer-M 1 60

CR-CTC, Zipformer-S 1 60
CR-CTC, Zipformer-M 1 60

A.3 RESULTS OF DIFFERENT DECODING METHODS

Results comparison between greedy search decoding and prefix search decoding for CTC and CR-
CTC on LibriSpeech, Aishell-1 and GigaSpeech datasets are presented in Table 11, Table 12, and
Table 13, respectively.
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Table 10: Training configuration on GigaSpeech dataset.

Model GPUs Epochs(80G NVIDIA Tesla A100)

CTC, Zipformer-S 2 60
CTC, Zipformer-M 2 60
CTC, Zipformer-L 2 60
CTC, Zipformer-XL 4 60

CTC/AED, Zipformer-S 2 30
CTC/AED, Zipformer-M 2 30
CTC/AED, Zipformer-L 2 30
CTC/AED, Zipformer-XL 4 30

Pruned transducer, Zipformer-S 2 30
Pruned transducer, Zipformer-M 2 30
Pruned transducer, Zipformer-L 2 30
Pruned transducer, Zipformer-XL 4 30

CR-CTC, Zipformer-S 2 30
CR-CTC, Zipformer-M 2 30
CR-CTC, Zipformer-L 2 30
CR-CTC, Zipformer-XL 4 30

CR-CTC/AED, Zipformer-XL 4 30
Pruned transducer w/ CR-CTC, Zipformer-XL 4 30

Table 11: WER (%) results of different decoding methods on LibriSpeech dataset.

Model Greedy search decoding Prefix search decoding
test-clean test-other test-clean test-other

CTC, Zipformer-S 2.85 6.91 2.85 6.89
CTC, Zipformer-M 2.51 6.02 2.52 6.02
CTC, Zipformer-L 2.49 5.7 2.5 5.72

CR-CTC, Zipformer-S 2.57 5.95 2.52 5.85
CR-CTC, Zipformer-M 2.12 4.62 2.1 4.61
CR-CTC, Zipformer-L 2.03 4.37 2.02 4.35

Table 12: WER (%) results of different decoding methods on Aishell-1 dataset.

Model Greedy search decoding Prefix search decoding
dev test dev test

CTC, Zipformer-S 4.88 5.26 4.89 5.26
CTC, Zipformer-M 4.46 4.8 4.47 4.8

CR-CTC, Zipformer-S 3.9 4.12 3.9 4.12
CR-CTC, Zipformer-M 3.73 4.02 3.72 4.02

Table 13: WER (%) results of different decoding methods on GigaSpeech dataset.

Model Greedy search decoding Prefix search decoding
dev test dev test

CTC, Zipformer-S 12.15 12.03 12.08 11.95
CTC, Zipformer-M 11.3 11.31 11.23 11.27
CTC, Zipformer-L 11.21 11.19 11.16 11.16
CTC, Zipformer-XL 10.85 10.91 10.8 10.87

CR-CTC, Zipformer-S 11.85 11.8 11.68 11.58
CR-CTC, Zipformer-M 10.78 10.88 10.62 10.72
CR-CTC, Zipformer-L 10.42 10.56 10.31 10.41
CR-CTC, Zipformer-XL 10.28 10.41 10.15 10.28
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Table 14: Model configuration of Zipformer at four different scales.

Scale layer-numbers embedding-dimensions feed-forward-dimensions

S {2,2,2,2,2,2} {192,256,256,256,256,256} {512,768,768,768,768,768}
M {2,2,3,4,3,2} {192,256,384,512,384,256} {512,768,1024,1536,1024,768}
L {2,2,4,5,4,2} {192,256,512,768,512,256} {512,768,1536,2048,1536,768}

XL {2,2,4,5,4,2} {192,384,768,1024,768,384} {512,1024,2048,3072,2048,1024}

A.4 MODEL CONFIGURATION OF DIFFERENT SCALES OF ZIPFORMER

Table 14 presents model configuration of different scales of Zipformer.

A.5 ABLATION STUDIES ON HYPER-PARAMETER TUNING

Table 15 presents results of tuning hyper-parameters, including α in Equation 3 and the ratio used
to increase the amount of time masking for CR-CTC.

Table 15: Results of tuning α that controls LCR (Equation 3) and the ratio used to increase the
amount of time-masking for CR-CTC on LibriSpeech dataset using Zipformer-M encoder and
greedy search decoding.

Hyper-parameter WER (%)
test-clean test-other

α = 0.1 2.19 4.8
α = 0.2 (final) 2.12 4.62
α = 0.3 2.23 4.84

1.0× time masking 2.19 4.98
1.5× time masking 2.19 4.73
2.0× time masking 2.17 4.71
2.5× time masking (final) 2.12 4.62
3.0× time masking 2.17 4.81

A.6 EMA-DISTILLED CTC

In EMA-distilled CTC, the teacher model f (e) is dynamically constructed for self-distillation. Its
weights θ(e) are updated using the exponential moving average of the current model’s weights θ:
θ(e) ← τθ(e) + (1 − τ)θ, where τ = min(0.9999, 1 − 10/max(20, step)). The teacher model
f (e) processes the unmasked input x(e), and produces the CTC distribution z(e) = f (e)(x(e)) which
serves as distillation target for the current model f . Similar to LCR in CR-CTC (Equation 4), the
distillation loss LEMA is defined as:

LEMA(z, z
(e)) =

T∑
t=1

DKL(sg(z(e)t )∥zt). (7)

The overall loss of EMA-distilled CTC is formulated as:

L′′ = LCTC(z,y) + γLEMA(z, z
(e)), (8)

where γ is a hyper-parameter. In this work, we use γ = 0.2. Table 4 presents the experimental
result.

A.7 RESULTS USING CONFORMER ENCODER

To validate the effectiveness and generalization ability of our proposed CR-CTC, we conduct ex-
periments on LibriSpeech dataset using a Conformer (Gulati et al., 2020) encoder, comparing dif-
ferent methods including CTC (Graves et al., 2006), CTC/AED (Watanabe et al., 2017), pruned
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transducer (Kuang et al., 2022) and CR-CTC. Specifically, we use a 12-layer Conformer, with an
embedding dimension of 512, a convolution kernel size of 31, and a feedforward hidden dimension
of 2048. For the CTC/AED model, the AED decoder is modeled by a 6-layer Transformer, where
each layer has an attention dimension of 512 and a feedforward hidden dimension of 2048. The
vanilla CTC model is trained for 100 epochs, while the other three models are trained for 50 epochs.
Table 16 presents the experimental results. CR-CTC substantially outperforms the vanilla CTC and
achieves marginally better results compared to the pruned transducer and CTC/AED.

Table 16: WER(%) performance of difference methods on LibriSpeech dataset using a 12-layer
Conformer encoder.

Method Params (M) WER (%)
test-clean test-other

CTC 77.4 2.92 7.15
CTC/AED 103.1 2.5 5.94
Pruned transducer 78.6 2.49 5.87
CR-CTC (ours) 77.4 2.43 5.78
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