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Abstract

Instruction tuning has significantly improved001
the task-following capabilities of decoder-002
based language models, yet its effects on003
encoder-based architectures remain underex-004
plored. This study investigates instruction tun-005
ing in the XLM-R model family for prompted006
classification tasks, analyzing models rang-007
ing from 250M to 10B parameters under008
three training paradigms: standard fine-tuned,009
prompted base models, and instruction-tuned010
prompted models. Our experiments, con-011
ducted on a subset of SuperGLUE classi-012
fication datasets, show that instruction tun-013
ing significantly benefits larger XLM-R vari-014
ants, particularly those with at least 500M pa-015
rameters. However, the performance gains016
do not scale directly with model size. No-017
tably, XLM-Rlarge achieves competitive im-018
provements, while XLM-RXL underperforms019
despite its substantially larger parameter count.020
These findings suggest that pre-training data021
quality and quantity may play a key role in022
how well encoder-based models leverage in-023
struction tuning. Additionally, we observe that024
the alignment between instruction tuning data025
and downstream tasks influences performance,026
underscoring the importance of data diversity.027
Our findings contribute to a more nuanced un-028
derstanding of instruction tuning in encoder029
models and offer insights into optimizing their030
task-following capabilities.031

1 Introduction032

In recent years, decoder-based large language mod-033

els (LLMs), such as GPT (OpenAI, 2024) and034

Gemini (et al., 2024), have dominated the field035

of natural language processing (NLP). Their im-036

pressive task-following capabilities, particularly af-037

ter instruction tuning, have positioned them as the038

preferred choice for various applications (Kumar,039

2024; Yang et al., 2024; Zhang et al., 2024). How-040

ever, the research focus on decoder-based architec-041

tures has inadvertently led to the under-exploration 042

of instruction tuning in encoder-based models like 043

BERT (Devlin et al., 2019a) and its derivatives (Lin 044

et al., 2022). 045

Recent studies (Xiao et al., 2024), suggest that in- 046

struction tuning can indeed benefit encoder models 047

models, yet systematic and comprehensive inves- 048

tigations remain scarce. Addressing this research 049

gap is crucial, as understanding the impact of in- 050

struction tuning on encoder models could enable 051

the development of more data-efficient and adapt- 052

able NLP systems. 053

This study aims to investigate the impact of 054

instruction tuning on the XLM-R models (Con- 055

neau et al., 2020) of different sizes in a prompted 056

classification setting. Specifically, we seek to de- 057

termine whether instruction tuning enhances the 058

model’s ability to follow task instructions and im- 059

prove classification performance when primed with 060

a task-specific prompt. Given the demonstrated suc- 061

cess of instruction tuning in decoder-based models 062

(Ouyang et al., 2022), we hypothesize that similar 063

benefits may extend to encoder-based models. 064

To systematically explore this question, we de- 065

fine several key objectives. First, we aim to evalu- 066

ate whether instruction tuning leads to measurable 067

improvements in classification accuracy. Specifi- 068

cally, we examine its impact on the XLM-R model 069

family when classification is modeled as a cloze 070

task (Trinh and Le, 2019) with problem-specific 071

prompting. Additionally, we analyze the role of 072

model size in shaping the effectiveness of instruc- 073

tion tuning, comparing performance across differ- 074

ent XLM-R variants, such as base, large, Xl and 075

XXl. Understanding these scaling effects is crucial, 076

as it could provide insights into whether instruction 077

tuning benefits are dependent on model capacity. 078

Another important goal is to assess whether in- 079

struction tuning reduces the need for labeled data 080

in prompted classification tasks, making encoder 081

models more data-efficient. 082
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<User>: Translate to French:
      The cat is on the mat.

<Assistant>: Le chat est sur le tapis.

<User>: Passage: Penguins are flightless birds.  
      According to this, can penguins fly?  

<Assistant>: No.

<CLS> Penguins are flightless birds.
<SEP>According to this, can penguins fly?

Label: 0 (False)

Data
Base Models
Fine-tuned Models

Figure 1: High-level illustration of the data preparation and model training processes.

To address these research objectives, we fine-083

tuned XLM-R models of varying sizes on an084

instruction-tuning dataset before applying them to085

classification tasks. This fine-tuning process en-086

abled the models to learn from diverse task formu-087

lations presented as natural language instructions.088

We then evaluated the models in a prompted clas-089

sification setup, leveraging the methodology from090

(Scao and Rush, 2021) to systematically measure091

data efficiency across different model sizes. The092

results were analyzed to determine whether instruc-093

tion tuning improves task performance and whether094

its effectiveness scales with model size.095

This study’s main contribution is the systematic096

exploration of instruction tuning for encoder-based097

models in prompted classification. We investigate098

whether instruction tuning enhances their ability099

to follow natural language prompts and examine100

model size as a key factor, analyzing the scaling ef-101

fects on instruction-tuned encoder models, inspired102

by trends observed in decoder-based models (Wu103

and Tang, 2024).104

The paper is structured as follows: In the next105

section we present the most relevant papers related106

to this work. In Section 3 we present our proposed107

approach. Section 4 details the experimental setup108

of this study. In Section 5 we present the results109

and discuss the findings. Finally, in Section 6 we110

present our conclusions and delineate future work.111

2 Related Work112

The empirical benefits of task-specific prompting113

in fine-tuning pre-trained language models have114

been systematically explored in the literature. Scao115

and Rush (2021) investigate the effectiveness of116

prompting compared to traditional head-based fine-117

tuning for text classification across multiple tasks118

and dataset sizes. Their findings, based on ex- 119

periments with a single model size, highlight that 120

prompting significantly enhances sample efficiency, 121

offering improvements equivalent to hundreds of 122

data points. These results reinforce the utility of 123

prompting strategies in improving the efficiency of 124

supervised learning with transformer-based archi- 125

tectures. A recent study (Clavié et al., 2025) exam- 126

ines MLM-based generative classification, demon- 127

strating that ModernBERT-Instruct can replace tra- 128

ditional classification heads and achieve competi- 129

tive zero-shot performance against LLMs. Unlike 130

the former study, which primarily examines the 131

potential of masked language modeling in a classi- 132

fication setting using a model of fixed size, Mod- 133

ernBERT (Warner et al., 2024a), and focuses on 134

comparisons with decoder models, our approach 135

systematically evaluates instruction tuning across 136

multiple XLM-R model sizes. 137

Instruction tuning has emerged as a key 138

paradigm for enhancing the generalization capa- 139

bilities of LLMs. This approach, wherein mod- 140

els are fine-tuned on diverse NLP tasks framed 141

as natural language instructions, has demonstrated 142

considerable success, particularly in decoder-based 143

architectures such as GPT and T5 (Ouyang et al., 144

2022). The ability of instruction-tuned models to 145

follow prompts and adapt to a wide range of tasks 146

has been linked to critical scaling factors, including 147

model size, training data volume, and computa- 148

tional resources (Kaplan et al., 2020; Ouyang et al., 149

2022). Larger models, in particular, exhibit more 150

pronounced benefits from instruction tuning, sug- 151

gesting that scale plays a fundamental role in emer- 152

gent instruction-following capabilities (Tay et al., 153

2023). 154

While instruction tuning has primarily been ex- 155

plored in decoder-based models, recent efforts have 156
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Figure 2: Token count distribution of samples in the filtered xP3 instruction tuning dataset.

sought to adapt this approach to encoder-based ar-157

chitectures. Xiao et al. (2024) introduce Instruct-158

XLMR, a fine-tuned version of the XLM-RXL159

and XLM-RXXL models (Conneau et al., 2020),160

demonstrating its competitive performance against161

state-of-the-art instruction-tuned models such as162

BLOOMZ and mT0 (Muennighoff et al., 2023).163

Their study provides a critical analysis of the164

strengths and limitations of instruction tuning in165

encoder models. This work presents some key in-166

sights that include: Improved efficiency and infer-167

ence speed compared to autoregressive models, en-168

hanced performance on instruction-following tasks,169

despite reduced capabilities in long-text generation170

and few-shot learning and the potential for further171

optimization in adapting encoder-based models to172

instruction tuning.173

Despite these advancements, the application of174

instruction tuning to encoder models remains an175

open research area. While preliminary results sug-176

gest that BERT-based architectures can be viable177

instruction followers, systematic investigations into178

the role of model size, dataset diversity, and opti-179

mization strategies have not been fully and thor-180

oughly addressed. Addressing these gaps is crucial181

for broadening the applicability of instruction tun-182

ing beyond decoder-based models and unlocking183

new capabilities in efficient NLP model adaptation.184

3 Proposed Methodology185

This work explores the impact of instruction tuning186

on BERT-like models for classification tasks within187

a prompting-based setting. To this end, we compare188

three distinct training paradigms:189

• Standard Fine-Tuned Models: These mod-190

els are trained end-to-end with a classification191

head, representing the traditional fine-tuning192

approach without any prompting. 193

• Prompted Base Models: Pre-trained models 194

fine-tuned and evaluated using a fixed task- 195

specific prompt without additional instruction 196

tuning. 197

• Instruction-Tuned Models: These mod- 198

els undergo instruction-tuning before task- 199

specific fine-tuning while using the same 200

prompt as the prompted base models. 201

A key research question in this study is how 202

instruction tuning affects data efficiency and per- 203

formance across different model sizes. The exper- 204

imental setup follows established methodologies 205

in prompt-based learning while systematically as- 206

sessing the impact of instruction tuning (Scao and 207

Rush, 2021). Figure 1 illustrates the data prepara- 208

tion and model training processes discussed in the 209

next sections. 210

3.1 Instruction Tuning 211

We frame the instruction tuning process as a 212

masked language modeling (MLM) task (Devlin 213

et al., 2019b). Given an instruction-target pair from 214

the instruction tuning dataset, we construct a chat- 215

style text and train the model using MLM on the 216

resulting token sequence. The masking strategy 217

differs slightly from the standard MLM approach: 218

• A randomly selected 15% of all tokens in the 219

sequence are masked, while special tokens 220

and tokens belonging to the chat template are 221

excluded from masking. 222

• The entire target sequence is always masked. 223

During instruction tuning, all tokens in the 224

target contribute to the loss, ensuring that 225
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Model #Params #Tokens #FLOPs IT FT
XLM-Rbase 250M N/A N/A 6h× 2GPU 6h× 1GPU
XLM-Rlarge 550M 6T 2.2× 1022 12h× 2GPU 10h× 1GPU
XLM-Rxl 3.5B 0.5T 8.4× 1021 16h× 8GPU 35h× 2GPU
XLM-Rxxl 10.7B 0.5T 2.9× 1022 48h× 8GPU 48h× 8GPU

Table 1: Comparison of the XLM-R model family in terms of model size, pretraining resources, and compute
investment for this study. The first three columns describe the model size and pretraining characteristics, where
the number of tokens seen during pre-training are taken from Goyal et al. (2021) and the number of floating point
operations are estimated (for details see appendix B). The last two columns show the compute resources used in this
study: IT (Instruction Tuning) and FT (Fine-tuning), both measured in GPU hours.

the model learns to generate appropriate re-226

sponses.227

This approach ensures that both input and target228

tokens contribute to the learning signal. Given that229

prior studies have employed input token masking230

in similar settings, we adopt the same strategy for231

consistency (Scao and Rush, 2021; Clavié et al.,232

2025).233

Following (Xiao et al., 2024), we use a subset234

of the xP3 dataset (Muennighoff et al., 2023) for235

the instruction tuning process. To focus on tasks236

suited for classification, we apply a filtering cri-237

terion that retains only those samples where the238

target consists of at most three tokens. Addition-239

ally, we restrict our selection to the English split240

of the dataset, as the evaluation is also conducted241

solely on English benchmarks. The final instruction242

tuning dataset contains about 12.2 million samples243

and 2.7B tokens. Figure 2 shows the document244

length distribution in number of tokens.245

3.2 Fine-tuning246

The fine-tuning process for the three types of mod-247

els follows distinct but related procedures, tailored248

to the specific approach each model uses.249

Fully fine-tuned models are trained using a clas-250

sification head, as originally proposed by Devlin251

et al. (2019b). These models are fine-tuned end-252

to-end, with the entire network, including both the253

pre-trained layers and the classification head, ad-254

justed based on the downstream task.255

For both the prompted base and the instruction-256

tuned models, the fine-tuning procedure is identi-257

cal. The downstream task is modeled as a MLM258

problem, where the input to the model is a prompt259

following the template introduced during instruc-260

tion tuning. This prompt includes a mask token261

at the position where the answer is expected. The262

model’s task is to predict the correct token to re-263

place the mask token. Other than during instruction264

tuning, no additional tokens are masked during the 265

fine-tuning procedure. 266

Tasks are designed to be answerable with a sin- 267

gle label-token, with output options restricted to a 268

predefined set of label-tokens. In this work, these 269

labels are typically limited to "yes" and "no", with 270

one task additionally including "maybe". During 271

fine-tuning, the model learns to predict the correct 272

label-token based on the context provided in the 273

prompt. 274

4 Experimental Setup 275

The objective of our experiments is to analyze the 276

impact of instruction tuning on prompted BERT- 277

like models for classification tasks. We system- 278

atically isolate three key variables: training data 279

size, model size, and whether instruction tuning is 280

applied. Other potential sources of variation, such 281

as prompt format and verbalizer (label tokens), are 282

held constant to ensure a controlled comparison. 283

4.1 Models and Scaling 284

To evaluate the scaling effects of instruction tun- 285

ing, we conduct experiments on a range of mod- 286

els spanning different sizes. Specifically, we use 287

the XLM-R model family (Conneau et al., 2020), 288

including their Xl and XXl variants (Goyal et al., 289

2021). Table 1 provides an overview of the XLM-R 290

model family, detailing their parameter counts and 291

the number of tokens processed during pre-training. 292

This allows us to assess how instruction tuning gen- 293

eralizes across different model sizes. These models 294

cover a parameter range from approximately 250 295

million to 10 billion, enabling insights into whether 296

larger models benefit disproportionately from in- 297

struction tuning. 298

4.2 Datasets and Evaluation Metrics 299

We select a subset of classification datasets from 300

the SuperGLUE benchmark (Wang et al., 2020), 301
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specifically BoolQ, CommitmentBank (CB), Choice302

of Plausible Alternatives (COPA), Word-in-Context303

(WiC), and Recognizing Textual Entailment (RTE).304

These datasets are chosen based on their diversity305

in reasoning types and their alignment with the306

capabilities of instruction-tuned language models:307

• BoolQ: Binary classification task requiring308

models to answer yes/no questions based on a309

given passage.310

• CB: Natural language inference task with311

three-way classification (entailment, contra-312

diction, neutral), evaluated using F1-score.313

• COPA: Causal reasoning task where the314

model must select the more plausible alter-315

native.316

• WiC: Lexical semantics task testing whether317

a given word is used with the same meaning318

in two different sentences.319

• RTE: Recognizing textual entailment task320

where the model determines whether a321

premise entails a hypothesis.322

These datasets encompass binary and multi-class323

classification problems, covering inference, factual324

knowledge, and lexical semantics, making them325

well-suited for evaluating the generalization effects326

of instruction tuning.327

Evaluation follows standard metrics used in Su-328

perGLUE: accuracy for most tasks, with the ex-329

ception of CB, which is evaluated using macro-330

averaged F1-score due to its imbalanced label dis-331

tribution. Additionally, we report the average per-332

formance increase as the ratio of the integrals of the333

performance curves, called Integral Performance334

Ratio (IPR). Let f and g be the performance curves,335

then the average performance increase is measured336

as:337

IPR(f, g) =
∫
f(x)dx∫
g(x)dx

− 1338

where subtracting 1 ensures we capture the rela-339

tive increase rather than the scaling factor. The340

IPR metric quantifies the percentage gain of f over341

g, providing a more holistic view of performance342

differences across the different training data sizes.343

Due to the limitations of the average prompt344

advantage metric introduced by Scao and Rush345

(2021), as discussed in Appendix A, we opted for346

an alternative metric better suited to our analysis.347

4.3 Training Data Regimes and Optimization 348

Our study focuses on the impact of instruction tun- 349

ing in low-data settings. To systematically ana- 350

lyze its effect across different training data regimes, 351

we evaluate models with varying amounts of train- 352

ing data, capping the number of examples at 128. 353

This constraint ensures that all experiments are con- 354

ducted under limited-data conditions, allowing us 355

to assess the data efficiency of instruction tuning. 356

All models were instruction tuned for one epoch 357

over the whole filtered xP3 dataset using a global 358

batch size of 128, a learning rate of 2× 10−5, and 359

a weight decay of 0.01. We fine-tuned the models 360

with a small learning rate of 1× 10−5 and train for 361

a high number of steps (> 300), as recommended 362

in a prior work for stabilizing training in low-data 363

regimes (Mosbach et al., 2021; Zhang et al., 2021). 364

During fine-tuning, we maintained a fixed prompt 365

format across tasks to control for prompt variabil- 366

ity and ensure fair comparisons across training 367

paradigms. The label set was constrained to "yes", 368

"no", and "maybe" for the CB task. All fine-tuning 369

experiments were repeated for three different ran- 370

dom seeds, to ensure robustness of our findings. 371

For both instruction tuning and fine-tuning, we 372

used FSDP (Zhao et al., 2023) for distributed train- 373

ing of larger models. 374

4.4 Computational Resources and 375

Experiment Execution 376

All experiments were conducted on an NVIDIA 377

DGX system equipped with 8 H100 (80GB) GPUs. 378

The cumulative compute cost for the total of 1, 260 379

fine-tuning experiments amounted to 470 GPU 380

hours. In addition to these experiments, an addi- 381

tional 612 GPU hours were allocated for instruc- 382

tion tuning of the models. Table 1 gives a more 383

detailed overview of the invested GPU hours. 384

5 Experiments and Discussion 385

This section evaluates the impact of instruction tun- 386

ing across different model sizes, analyzing its effec- 387

tiveness in improving classification performance, 388

examining the role of pre-training, fine-tuning and 389

compute resources. Figure 3 illustrates the perfor- 390

mance curves for three datasets, highlighting the 391

behavior of the baseline, prompted, and instruction- 392

tuned models. Additional results can be found in 393

Appendix C. Overall, we observe that prompting 394

generally improves performance over the baseline 395

in most settings, supporting the findings of Scao 396

5



Figure 3: Performance curves of various XLM-R model sizes on the COPA, WiC, and CB benchmarks. Each plot
presents the performance trends for the different fine-tuning strategies. The x-Axis indicates the amount of training
data available for fine-tuning. The baseline corresponds to the standard head-based classification approach.
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Model BoolQ CB COPA RTE WiC Average
XLM-Rbase 3.0± 1.3 1.5± 2.0 −0.9± 7.5 4.0± 2.8 −0.9± 1.1 1.3± 3.8
XLM-Rlarge 7.3± 2.6 0.4± 7.4 10.6± 4.3 10.3± 1.8 7.6± 4.9 7.3± 5.5
XLM-Rxl 8.3± 2.1 −2.5± 2.6 8.3± 5.1 12.3± 3.0 5.9± 2.3 6.5± 5.8
XLM-Rxxl 9.4± 1.1 −0.2± 4.0 11.6± 4.7 8.4± 1.0 20.0± 2.9 9.9± 7.2

Table 2: Average Integral Performance Ratio (IPR) of instruction-tuned XLM-R models over their prompted base
counterparts, reported in percentage points. A positive IPR signifies a relative improvement due to instruction
tuning, while a negative IPR indicates a relative disadvantage.

and Rush (2021).397

As stated previously, a key focus of our study398

is the impact of instruction tuning across differ-399

ent model sizes. For XLM-Rbase, the results are400

mixed. While slight improvements are observed401

on BoolQ and RTE, the performance on other tasks402

remains comparable to prompting, suggesting that403

smaller models struggle to generalize effectively404

under instruction tuning. In contrast, XLM-Rlarge405

consistently benefits from instruction tuning, show-406

ing significant improvements across four out of five407

tasks. The trend continues with XLM-RXL, which408

outperforms prompting but with slightly smaller409

gains. The performance of XLM-RXXL further rein-410

forces these findings, as it consistently outperforms411

the prompted model in nearly all tasks, with the412

strongest gains attributed to instruction tuning.413

To quantify the improvements, we examine the414

Integral Performance Ratio (IPR) scores, summa-415

rized in Table 2. The scores align with the trends416

observed in Figure 3. Instruction-tuned models417

with more than 500M parameters achieve a sub-418

stantial performance boost over their prompted419

counterparts, with an average improvement of420

7.3%. The strongest gains are observed for XLM-421

RXXL, particularly on the WiC task, where instruc-422

tion tuning yields an increase of 20%. On av-423

erage, XLM-RXXL exhibits a 9.9% improvement424

across all tasks. XLM-Rlarge, despite being signif-425

icantly smaller, also demonstrates strong perfor-426

mance gains. Meanwhile, XLM-RXL benefits from427

instruction tuning but to a lesser extent compared428

to the large and XXL variants.429

An analysis of dataset-specific trends reveals that430

the CB dataset exhibits the weakest improvements431

across all model sizes. Instruction-tuned models432

perform similarly to their prompted counterparts, in433

contrast to other datasets, where instruction tuning434

provides a clear advantage, particularly for mod-435

els exceeding 500M parameters. We hypothesize436

that this discrepancy arises due to misalignment437

between CB and the instruction tuning data. One 438

possible explanation is that data filtering during 439

instruction tuning reduced task diversity, limiting 440

the model’s ability to generalize effectively. Figure 441

4 supports this hypothesis, showing that the instruc- 442

tion tuning dataset contains a high proportion of 443

binary "yes"/"no" answers, whereas CB includes 444

an additional "maybe" label. This label is signifi- 445

cantly underrepresented, with only 5,829 samples, 446

potentially leading to the observed performance 447

gap. This suggests a major limitation of our study, 448

as model performance is highly dependent on the 449

choice of label tokens. 450

We initially expected instruction tuning benefits 451

to scale consistently with model size. While XLM- 452

RXXL exhibits the largest gains, followed closely by 453

XLM-Rlarge, the underperformance of XLM-RXL 454

compared to these two models is unexpected. One 455

likely explanation lies in pre-training differences. 456

All XLM-R models were trained on CC-100, con- 457

sisting of 167B tokens, but for varying durations. 458

As Table 1 indicates, the strong performance of 459

the large model may be attributed to a higher num- 460

ber of tokens seen during pre-training, while both 461

XL and XXL models appear undertrained. How- 462

ever, XLM-RXXL compensates for this limitation 463

due to its larger model size, enabling it to adapt 464

better to instruction tuning despite insufficient pre- 465

training. XLM-RXL, however, does not recover as 466

effectively. Additionally, XLM-RXL has the low- 467

est compute budget among the three largest mod- 468

els. XLM-Rlarge received 2.6 times the pre-training 469

compute, and XLM-RXXL approximately 3.5 times 470

the compute budget of XLM-RXL, further reinforc- 471

ing the importance of pre-training investments for 472

instruction tuning. These observations suggest that 473

both pre-training diversity and compute resources 474

play a crucial role in determining the effectiveness 475

of instruction tuning. 476

Our findings align with prior work on the impact 477

of pre-training on instruction following. Recent 478
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Figure 4: Frequency of the most common target terms
in the filtered instruction tuning dataset.

studies highlight the significance of data quality,479

model size, dataset scale, and compute budget in480

determining instruction tuning efficacy (Gunasekar481

et al., 2023; Zhao et al., 2024). Our results are also482

consistent with the findings of Clavié et al. (2025),483

who demonstrated strong zero- and few-shot per-484

formance of ModernBERT (Warner et al., 2024b)485

when instruction tuned. This model was pre-trained486

on a modern text corpus of 2T tokens, representing487

a four-fold increase in training tokens and a roughly488

twelve-fold increase in data compared to the XLM-489

RXL and XLM-RXXL models. Although CC-100490

is highly multilingual, encompassing over 100 lan-491

guages, the dataset employed for ModernBERT492

focuses primarily on English. This monolingual493

dataset exhibits greater diversity in domains com-494

pared to CC-100. Furthermore, ModernBERT’s495

training data benefits from a more recent and so-496

phisticated data collection and filtering method-497

ology, reflecting current best practices. As data498

quality has been shown to be a critical factor in499

model performance for LLMs (Gunasekar et al.,500

2023; Zhao et al., 2024), this difference in data cu-501

ration likely plays a substantial role in the observed502

results.503

6 Conclusion504

This study examined the impact of instruction tun-505

ing on XLM-R models in the context of prompted506

classification across multiple SuperGLUE tasks.507

Our findings confirm that instruction tuning pro-508

vides substantial benefits, particularly for models509

with more than 500M parameters. However, the510

performance gains do not directly scale with model511

size, challenging the assumption that larger mod-512

els inherently benefit more from instruction tun-513

ing. Our observations suggest that pre-training514

setup may play a crucial role in determining the 515

effectiveness of instruction tuning. While XLM- 516

RXXL achieves the strongest improvements, XLM- 517

Rlarge remains competitive despite being signifi- 518

cantly smaller. In contrast, XLM-RXL underper- 519

forms, despite having nearly seven times the pa- 520

rameters of the large model. This suggests that 521

pre-training compute and dataset diversity play a 522

critical role in how well a model adapts to instruc- 523

tion tuning. Insufficient pre-training appears to 524

limit the ability of larger models to fully leverage 525

instruction-tuned data, reinforcing findings from 526

broader LLM research on the importance of high- 527

quality, diverse pre-training corpora. 528

Although our study offers meaningful insights 529

into instruction tuning for encoder-based models, 530

several aspects merit further investigation. Future 531

work should investigate the relationship between 532

pre-training characteristics and instruction tuning 533

effectiveness, especially for larger models. A more 534

systematic analysis of these factors could help dis- 535

entangle their specific contributions. Additionally, 536

our instruction tuning dataset, though effective, is 537

limited in diversity. Expanding the range of instruc- 538

tion tuning tasks may improve generalization and 539

provide a broader perspective on how data diver- 540

sity shapes model adaptation. Addressing these 541

questions will further refine our understanding of 542

instruction tuning and its role in enhancing encoder- 543

based models. 544

Limitations 545

While this study provides valuable insights into the 546

impact of instruction tuning on XLM-R models 547

for prompted classification, there are several im- 548

portant limitations to consider. One key limitation 549

is the dependency of instruction tuning effective- 550

ness on the quantity and quality of pre-training 551

data. Despite experimenting with large models 552

like XLM-RXL and XLM-RXXL, we observed lim- 553

ited improvements, likely due to insufficient pre- 554

training data. This suggests that the benefits of 555

instruction tuning may be contingent on having suf- 556

ficiently large and diverse datasets, which was not 557

fully explored in this study. 558

Additionally, the use of heavily filtered instruc- 559

tion data may have constrained the models’ ability 560

to generalize effectively. The narrow range of in- 561

structions used could have limited the adaptability 562

of the models to more complex or diverse tasks. Ex- 563

panding the diversity of instruction data could help 564

8



address this limitation and improve generalization.565

Our focus on SuperGLUE classification tasks also566

limits the generalizability of our findings, as these567

tasks may not fully capture the broader capabilities568

of instruction-tuned models across other task types,569

such as question answering or text generation. Fur-570

thermore, we did not extensively explore the zero-571

shot learning potential of instruction-tuned models.572

Finally, our study was limited to the XLM-R family573

of models, and the findings may not generalize to574

other encoder architectures.575
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A Average Prompt Advantage 724

To evaluate the effectiveness of instruction tuning, 725

we initially considered the average prompt advan- 726

tage metric introduced by Scao and Rush (2021). 727

However, upon closer analysis, we identified sig- 728

nificant discrepancies between the scores and the 729

trends observed in our plots. Consequently, we opt 730

not to rely on this metric. 731

Table 3 presents the average prompt advantage 732

scores across all experiments. An example of 733

the metric’s limitations can be observed in the 734

WiC dataset. The highest reported score is for 735

XLM-Rlarge, with a value of 78.3. However, vi- 736

sual inspection of our plots clearly indicates that 737

instruction tuning provides the most substantial im- 738

provement for the XLM-RXXL model, which only 739

achieves a score of 39.2 according to the metric. 740

This discrepancy arises due to the intrinsic prop- 741

erties of the average prompt advantage metric. 742

Specifically, the metric only considers the y-band 743

where both the instruction-tuned and prompt-based 744

models have defined values. This restriction leads 745

to an underestimation of improvements when the 746

defined range is narrow. In the case of XLM-RXXL, 747

the improvement due to instruction tuning extends 748

beyond this constrained band, resulting in a severe 749

underestimation of the true advantage gained. 750

Given these limitations, we conclude that the av- 751

erage prompt advantage metric does not adequately 752

reflect the benefits of instruction tuning, particu- 753

larly for models where the overall improvement 754

is substantial but distributed beyond the defined 755

evaluation band. As a result, we refrain from using 756

this metric for reporting our findings. 757

B Estimating Pretraining Compute 758

To estimate the compute invested in pretraining 759

for the different XLM-R models, we followed an 760

empirical approach based on hyperparameters re- 761

ported by Goyal et al. (2021). Specifically, we used 762

the reported batch size and sequence length for 763

each model. 764

We simulated pretraining by generating a ran- 765

dom dataset and running a single pretraining step 766

with these hyperparameters. During this step, we 767

tracked the number of floating-point operations 768

(FLOPs) required. Using the number of training 769

tokens processed in this single step, we then extrap- 770

olated the total FLOPs for full pretraining based 771

on the total number of training tokens reported by 772

Goyal et al. (2021). Table 4 provides insights into 773
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Model BoolQ CB COPA RTE WiC Average
XLM-Rbase 24.4± 23.8 −12.4± 30.3 16.3± 62.6 17.2± 16.6 3.7± 44.1 9.9± 35.6
XLM-Rlarge 38.6± 56.6 1.1± 22.0 27.4± 24.7 58.4± 23.3 78.3± 46.0 40.8± 41.7
XLM-Rxl 46.6± 21.6 −1.0± 12.2 27.1± 29.9 45.6± 39.6 44.4± 38.5 32.5± 31.8
XLM-Rxxl 41.0± 38.1 −0.2± 17.6 39.7± 24.5 43.9± 18.3 39.6± 40.3 32.8± 30.2

Table 3: Average prompt advantage of the instruction-tuned XLM-R models over their prompt-based base models.

Model Batch Size Sequence Length 1-Step #Tokens 1-Step #FLOPs
XLM-Rlarge 8192 512 4.19× 106 1.53× 1016

XLM-Rxl 2048 512 1.05× 106 1.79× 1016

XLM-Rxxl 2048 512 1.05× 106 6.10× 1016

Table 4: Compute measurements for a single pretraining step using hyperparameters from Goyal et al. (2021).

the compute measurements for one step. By extrap-774

olating these values based on the total number of775

training tokens, we obtained the estimated FLOPs776

reported in Table 1.777

C Additional Result Plots778

Figure 5 shows the performance curves for the779

BoolQ and RTE tasks.780
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Figure 5: Performance curves of XLM-R model sizes on the BoolQ and RTE benchmarks, comparing different
fine-tuning strategies.
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