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Abstract

Instruction tuning has significantly improved
the task-following capabilities of decoder-
based language models, yet its effects on
encoder-based architectures remain underex-
plored. This study investigates instruction tun-
ing in the XLM-R model family for prompted
classification tasks, analyzing models rang-
ing from 2500 to 10B parameters under
three training paradigms: standard fine-tuned,
prompted base models, and instruction-tuned
prompted models. Our experiments, con-
ducted on a subset of SuperGLUE -classi-
fication datasets, show that instruction tun-
ing significantly benefits larger XLM-R vari-
ants, particularly those with at least S00M pa-
rameters. However, the performance gains
do not scale directly with model size. No-
tably, XLM-Ry,e achieves competitive im-
provements, while XLM-Rx; underperforms
despite its substantially larger parameter count.
These findings suggest that pre-training data
quality and quantity may play a key role in
how well encoder-based models leverage in-
struction tuning. Additionally, we observe that
the alignment between instruction tuning data
and downstream tasks influences performance,
underscoring the importance of data diversity.
Our findings contribute to a more nuanced un-
derstanding of instruction tuning in encoder
models and offer insights into optimizing their
task-following capabilities.

1 Introduction

In recent years, decoder-based large language mod-
els (LLMs), such as GPT (OpenAl, 2024) and
Gemini (et al., 2024), have dominated the field
of natural language processing (NLP). Their im-
pressive task-following capabilities, particularly af-
ter instruction tuning, have positioned them as the
preferred choice for various applications (Kumar,
2024; Yang et al., 2024; Zhang et al., 2024). How-
ever, the research focus on decoder-based architec-

tures has inadvertently led to the under-exploration
of instruction tuning in encoder-based models like
BERT (Devlin et al., 2019a) and its derivatives (Lin
et al., 2022).

Recent studies (Xiao et al., 2024), suggest that in-
struction tuning can indeed benefit encoder models
models, yet systematic and comprehensive inves-
tigations remain scarce. Addressing this research
gap is crucial, as understanding the impact of in-
struction tuning on encoder models could enable
the development of more data-efficient and adapt-
able NLP systems.

This study aims to investigate the impact of
instruction tuning on the XLM-R models (Con-
neau et al., 2020) of different sizes in a prompted
classification setting. Specifically, we seek to de-
termine whether instruction tuning enhances the
model’s ability to follow task instructions and im-
prove classification performance when primed with
a task-specific prompt. Given the demonstrated suc-
cess of instruction tuning in decoder-based models
(Ouyang et al., 2022), we hypothesize that similar
benefits may extend to encoder-based models.

To systematically explore this question, we de-
fine several key objectives. First, we aim to evalu-
ate whether instruction tuning leads to measurable
improvements in classification accuracy. Specifi-
cally, we examine its impact on the XLM-R model
family when classification is modeled as a cloze
task (Trinh and Le, 2019) with problem-specific
prompting. Additionally, we analyze the role of
model size in shaping the effectiveness of instruc-
tion tuning, comparing performance across differ-
ent XLM-R variants, such as base, large, Xl and
XXI. Understanding these scaling effects is crucial,
as it could provide insights into whether instruction
tuning benefits are dependent on model capacity.
Another important goal is to assess whether in-
struction tuning reduces the need for labeled data
in prompted classification tasks, making encoder
models more data-efficient.
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Figure 1: High-level illustration of the data preparation and model training processes.

To address these research objectives, we fine-
tuned XLM-R models of varying sizes on an
instruction-tuning dataset before applying them to
classification tasks. This fine-tuning process en-
abled the models to learn from diverse task formu-
lations presented as natural language instructions.
We then evaluated the models in a prompted clas-
sification setup, leveraging the methodology from
(Scao and Rush, 2021) to systematically measure
data efficiency across different model sizes. The
results were analyzed to determine whether instruc-
tion tuning improves task performance and whether
its effectiveness scales with model size.

This study’s main contribution is the systematic
exploration of instruction tuning for encoder-based
models in prompted classification. We investigate
whether instruction tuning enhances their ability
to follow natural language prompts and examine
model size as a key factor, analyzing the scaling ef-
fects on instruction-tuned encoder models, inspired
by trends observed in decoder-based models (Wu
and Tang, 2024).

The paper is structured as follows: In the next
section we present the most relevant papers related
to this work. In Section 3 we present our proposed
approach. Section 4 details the experimental setup
of this study. In Section 5 we present the results
and discuss the findings. Finally, in Section 6 we
present our conclusions and delineate future work.

2 Related Work

The empirical benefits of task-specific prompting
in fine-tuning pre-trained language models have
been systematically explored in the literature. Scao
and Rush (2021) investigate the effectiveness of
prompting compared to traditional head-based fine-
tuning for text classification across multiple tasks

and dataset sizes. Their findings, based on ex-
periments with a single model size, highlight that
prompting significantly enhances sample efficiency,
offering improvements equivalent to hundreds of
data points. These results reinforce the utility of
prompting strategies in improving the efficiency of
supervised learning with transformer-based archi-
tectures. A recent study (Clavié et al., 2025) exam-
ines MLM-based generative classification, demon-
strating that ModernBERT-Instruct can replace tra-
ditional classification heads and achieve competi-
tive zero-shot performance against LLMs. Unlike
the former study, which primarily examines the
potential of masked language modeling in a classi-
fication setting using a model of fixed size, Mod-
ernBERT (Warner et al., 2024a), and focuses on
comparisons with decoder models, our approach
systematically evaluates instruction tuning across
multiple XLM-R model sizes.

Instruction tuning has emerged as a key
paradigm for enhancing the generalization capa-
bilities of LLMs. This approach, wherein mod-
els are fine-tuned on diverse NLP tasks framed
as natural language instructions, has demonstrated
considerable success, particularly in decoder-based
architectures such as GPT and T5 (Ouyang et al.,
2022). The ability of instruction-tuned models to
follow prompts and adapt to a wide range of tasks
has been linked to critical scaling factors, including
model size, training data volume, and computa-
tional resources (Kaplan et al., 2020; Ouyang et al.,
2022). Larger models, in particular, exhibit more
pronounced benefits from instruction tuning, sug-
gesting that scale plays a fundamental role in emer-
gent instruction-following capabilities (Tay et al.,
2023).

While instruction tuning has primarily been ex-
plored in decoder-based models, recent efforts have
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Figure 2: Token count distribution of samples in the filtered xP3 instruction tuning dataset.

sought to adapt this approach to encoder-based ar-
chitectures. Xiao et al. (2024) introduce Instruct-
XLMR, a fine-tuned version of the XLM-Rx
and XLM-Rxx1, models (Conneau et al., 2020),
demonstrating its competitive performance against
state-of-the-art instruction-tuned models such as
BLOOMZ and mTO (Muennighoff et al., 2023).
Their study provides a critical analysis of the
strengths and limitations of instruction tuning in
encoder models. This work presents some key in-
sights that include: Improved efficiency and infer-
ence speed compared to autoregressive models, en-
hanced performance on instruction-following tasks,
despite reduced capabilities in long-text generation
and few-shot learning and the potential for further
optimization in adapting encoder-based models to
instruction tuning.

Despite these advancements, the application of
instruction tuning to encoder models remains an
open research area. While preliminary results sug-
gest that BERT-based architectures can be viable
instruction followers, systematic investigations into
the role of model size, dataset diversity, and opti-
mization strategies have not been fully and thor-
oughly addressed. Addressing these gaps is crucial
for broadening the applicability of instruction tun-
ing beyond decoder-based models and unlocking
new capabilities in efficient NLP model adaptation.

3 Proposed Methodology

This work explores the impact of instruction tuning
on BERT-like models for classification tasks within
a prompting-based setting. To this end, we compare
three distinct training paradigms:

¢ Standard Fine-Tuned Models: These mod-
els are trained end-to-end with a classification
head, representing the traditional fine-tuning

approach without any prompting.

* Prompted Base Models: Pre-trained models
fine-tuned and evaluated using a fixed task-
specific prompt without additional instruction
tuning.

* Instruction-Tuned Models: These mod-
els undergo instruction-tuning before task-
specific fine-tuning while using the same
prompt as the prompted base models.

A key research question in this study is how
instruction tuning affects data efficiency and per-
formance across different model sizes. The exper-
imental setup follows established methodologies
in prompt-based learning while systematically as-
sessing the impact of instruction tuning (Scao and
Rush, 2021). Figure 1 illustrates the data prepara-
tion and model training processes discussed in the
next sections.

3.1 Instruction Tuning

We frame the instruction tuning process as a
masked language modeling (MLM) task (Devlin
et al., 2019b). Given an instruction-target pair from
the instruction tuning dataset, we construct a chat-
style text and train the model using MLM on the
resulting token sequence. The masking strategy
differs slightly from the standard MLM approach:

* A randomly selected 15% of all tokens in the
sequence are masked, while special tokens
and tokens belonging to the chat template are
excluded from masking.

* The entire target sequence is always masked.
During instruction tuning, all tokens in the
target contribute to the loss, ensuring that



Model ‘ #Params #Tokens #FLOPs ‘ IT FT

XLM-Rpaee | 250M N/A N/A 6h x 2GPU  6h x 1GPU
XLM-Rjgrge | 550M 6T 2.2 x 10?2 | 12h x 2GPU  10h x 1GPU
XLM-Ry 3.5B 0.57 8.4 x10%! | 16h x 8GPU  35h x 2GPU
XLM-R,y 10.7B 0.57 2.9 x10%2 | 48h x 8GPU  48h x 8GPU

Table 1: Comparison of the XLM-R model family in terms of model size, pretraining resources, and compute
investment for this study. The first three columns describe the model size and pretraining characteristics, where
the number of tokens seen during pre-training are taken from Goyal et al. (2021) and the number of floating point
operations are estimated (for details see appendix B). The last two columns show the compute resources used in this
study: IT (Instruction Tuning) and FT (Fine-tuning), both measured in GPU hours.

the model learns to generate appropriate re-
sponses.

This approach ensures that both input and target
tokens contribute to the learning signal. Given that
prior studies have employed input token masking
in similar settings, we adopt the same strategy for
consistency (Scao and Rush, 2021; Clavié et al.,
2025).

Following (Xiao et al., 2024), we use a subset
of the xP3 dataset (Muennighoff et al., 2023) for
the instruction tuning process. To focus on tasks
suited for classification, we apply a filtering cri-
terion that retains only those samples where the
target consists of at most three tokens. Addition-
ally, we restrict our selection to the English split
of the dataset, as the evaluation is also conducted
solely on English benchmarks. The final instruction
tuning dataset contains about 12.2 million samples
and 2.7B8 tokens. Figure 2 shows the document
length distribution in number of tokens.

3.2 Fine-tuning

The fine-tuning process for the three types of mod-
els follows distinct but related procedures, tailored
to the specific approach each model uses.

Fully fine-tuned models are trained using a clas-
sification head, as originally proposed by Devlin
et al. (2019b). These models are fine-tuned end-
to-end, with the entire network, including both the
pre-trained layers and the classification head, ad-
justed based on the downstream task.

For both the prompted base and the instruction-
tuned models, the fine-tuning procedure is identi-
cal. The downstream task is modeled as a MLM
problem, where the input to the model is a prompt
following the template introduced during instruc-
tion tuning. This prompt includes a mask token
at the position where the answer is expected. The
model’s task is to predict the correct token to re-
place the mask token. Other than during instruction

tuning, no additional tokens are masked during the
fine-tuning procedure.

Tasks are designed to be answerable with a sin-
gle label-token, with output options restricted to a
predefined set of label-tokens. In this work, these
labels are typically limited to "yes" and "no", with
one task additionally including "maybe". During
fine-tuning, the model learns to predict the correct
label-token based on the context provided in the
prompt.

4 Experimental Setup

The objective of our experiments is to analyze the
impact of instruction tuning on prompted BERT-
like models for classification tasks. We system-
atically isolate three key variables: training data
size, model size, and whether instruction tuning is
applied. Other potential sources of variation, such
as prompt format and verbalizer (label tokens), are
held constant to ensure a controlled comparison.

4.1 Models and Scaling

To evaluate the scaling effects of instruction tun-
ing, we conduct experiments on a range of mod-
els spanning different sizes. Specifically, we use
the XLM-R model family (Conneau et al., 2020),
including their X1 and XXI variants (Goyal et al.,
2021). Table 1 provides an overview of the XLM-R
model family, detailing their parameter counts and
the number of tokens processed during pre-training.
This allows us to assess how instruction tuning gen-
eralizes across different model sizes. These models
cover a parameter range from approximately 250
million to 10 billion, enabling insights into whether
larger models benefit disproportionately from in-
struction tuning.

4.2 Datasets and Evaluation Metrics

We select a subset of classification datasets from
the SuperGLUE benchmark (Wang et al., 2020),



specifically BoolQ, CommitmentBank (CB), Choice
of Plausible Alternatives (COPA), Word-in-Context
(WiC), and Recognizing Textual Entailment (RTE).
These datasets are chosen based on their diversity
in reasoning types and their alignment with the
capabilities of instruction-tuned language models:

* BoolQ: Binary classification task requiring
models to answer yes/no questions based on a
given passage.

* CB: Natural language inference task with
three-way classification (entailment, contra-
diction, neutral), evaluated using F1-score.

* COPA: Causal reasoning task where the
model must select the more plausible alter-
native.

e WiC: Lexical semantics task testing whether
a given word is used with the same meaning
in two different sentences.

* RTE: Recognizing textual entailment task
where the model determines whether a
premise entails a hypothesis.

These datasets encompass binary and multi-class
classification problems, covering inference, factual
knowledge, and lexical semantics, making them
well-suited for evaluating the generalization effects
of instruction tuning.

Evaluation follows standard metrics used in Su-
perGLUE: accuracy for most tasks, with the ex-
ception of CB, which is evaluated using macro-
averaged F1-score due to its imbalanced label dis-
tribution. Additionally, we report the average per-
formance increase as the ratio of the integrals of the
performance curves, called Integral Performance
Ratio (IPR). Let f and g be the performance curves,
then the average performance increase is measured

as:
_ J f(x)dz )
[ g(z)dx
where subtracting 1 ensures we capture the rela-
tive increase rather than the scaling factor. The
IPR metric quantifies the percentage gain of f over
g, providing a more holistic view of performance
differences across the different training data sizes.
Due to the limitations of the average prompt
advantage metric introduced by Scao and Rush
(2021), as discussed in Appendix A, we opted for
an alternative metric better suited to our analysis.

IPR(f,9)

4.3 Training Data Regimes and Optimization

Our study focuses on the impact of instruction tun-
ing in low-data settings. To systematically ana-
lyze its effect across different training data regimes,
we evaluate models with varying amounts of train-
ing data, capping the number of examples at 128.
This constraint ensures that all experiments are con-
ducted under limited-data conditions, allowing us
to assess the data efficiency of instruction tuning.

All models were instruction tuned for one epoch
over the whole filtered xP3 dataset using a global
batch size of 128, a learning rate of 2 x 1075, and
a weight decay of 0.01. We fine-tuned the models
with a small learning rate of 1 x 10> and train for
a high number of steps (> 300), as recommended
in a prior work for stabilizing training in low-data
regimes (Mosbach et al., 2021; Zhang et al., 2021).
During fine-tuning, we maintained a fixed prompt
format across tasks to control for prompt variabil-
ity and ensure fair comparisons across training
paradigms. The label set was constrained to "yes",
"no", and "maybe" for the CB task. All fine-tuning
experiments were repeated for three different ran-
dom seeds, to ensure robustness of our findings.

For both instruction tuning and fine-tuning, we
used FSDP (Zhao et al., 2023) for distributed train-
ing of larger models.

4.4 Computational Resources and
Experiment Execution

All experiments were conducted on an NVIDIA
DGX system equipped with 8 H100 (80GB) GPUs.
The cumulative compute cost for the total of 1,260
fine-tuning experiments amounted to 470 GPU
hours. In addition to these experiments, an addi-
tional 612 GPU hours were allocated for instruc-
tion tuning of the models. Table 1 gives a more
detailed overview of the invested GPU hours.

S Experiments and Discussion

This section evaluates the impact of instruction tun-
ing across different model sizes, analyzing its effec-
tiveness in improving classification performance,
examining the role of pre-training, fine-tuning and
compute resources. Figure 3 illustrates the perfor-
mance curves for three datasets, highlighting the
behavior of the baseline, prompted, and instruction-
tuned models. Additional results can be found in
Appendix C. Overall, we observe that prompting
generally improves performance over the baseline
in most settings, supporting the findings of Scao
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Model BoolQ CB COPA RTE WiC Average

XLM-Rpgee | 3.0£1.3 15+20 —-09+75 40+28 —-09+£1.1] 1.3+£38
XIM-Rjgrge | 73 £26 04£74 106x43 103+£1.8 7.64£49 | 7.3£55
XLM-Ry 83+21 —-25+£26 83+51 123+30 59+23 | 6.5+£5.8
XLM-Ryqy [94+11 —-02+40 11.6+£47 84+£10 200+£29|99+72

Table 2: Average Integral Performance Ratio (IPR) of instruction-tuned XLM-R models over their prompted base
counterparts, reported in percentage points. A positive IPR signifies a relative improvement due to instruction
tuning, while a negative IPR indicates a relative disadvantage.

and Rush (2021).

As stated previously, a key focus of our study
is the impact of instruction tuning across differ-
ent model sizes. For XLM-Rpase, the results are
mixed. While slight improvements are observed
on BoolQ and RTE, the performance on other tasks
remains comparable to prompting, suggesting that
smaller models struggle to generalize effectively
under instruction tuning. In contrast, XLM-R;ge
consistently benefits from instruction tuning, show-
ing significant improvements across four out of five
tasks. The trend continues with XLLM-Rx; , which
outperforms prompting but with slightly smaller
gains. The performance of XLM-Rxx;, further rein-
forces these findings, as it consistently outperforms
the prompted model in nearly all tasks, with the
strongest gains attributed to instruction tuning.

To quantify the improvements, we examine the
Integral Performance Ratio (IPR) scores, summa-
rized in Table 2. The scores align with the trends
observed in Figure 3. Instruction-tuned models
with more than 5000 parameters achieve a sub-
stantial performance boost over their prompted
counterparts, with an average improvement of
7.3%. The strongest gains are observed for XLM-
Rxx1., particularly on the WiC task, where instruc-
tion tuning yields an increase of 20%. On av-
erage, XLM-Rxxr. exhibits a 9.9% improvement
across all tasks. XLM-Rjy g, despite being signif-
icantly smaller, also demonstrates strong perfor-
mance gains. Meanwhile, XLM-Rxp, benefits from
instruction tuning but to a lesser extent compared
to the large and XXL variants.

An analysis of dataset-specific trends reveals that
the CB dataset exhibits the weakest improvements
across all model sizes. Instruction-tuned models
perform similarly to their prompted counterparts, in
contrast to other datasets, where instruction tuning
provides a clear advantage, particularly for mod-
els exceeding 500M parameters. We hypothesize
that this discrepancy arises due to misalignment

between CB and the instruction tuning data. One
possible explanation is that data filtering during
instruction tuning reduced task diversity, limiting
the model’s ability to generalize effectively. Figure
4 supports this hypothesis, showing that the instruc-
tion tuning dataset contains a high proportion of
binary "yes"/"no" answers, whereas CB includes
an additional "maybe" label. This label is signifi-
cantly underrepresented, with only 5,829 samples,
potentially leading to the observed performance
gap. This suggests a major limitation of our study,
as model performance is highly dependent on the
choice of label tokens.

We initially expected instruction tuning benefits
to scale consistently with model size. While XLLM-
Rxx1. exhibits the largest gains, followed closely by
XLM-Rjyge, the underperformance of XLM-Rxy
compared to these two models is unexpected. One
likely explanation lies in pre-training differences.
All XLM-R models were trained on CC-100, con-
sisting of 1675 tokens, but for varying durations.
As Table 1 indicates, the strong performance of
the large model may be attributed to a higher num-
ber of tokens seen during pre-training, while both
XL and XXL models appear undertrained. How-
ever, XLM-Rxx1 compensates for this limitation
due to its larger model size, enabling it to adapt
better to instruction tuning despite insufficient pre-
training. XLM-Rx; , however, does not recover as
effectively. Additionally, XLLM-Rxy has the low-
est compute budget among the three largest mod-
els. XLM-Rjyge received 2.6 times the pre-training
compute, and XLM-Rxx. approximately 3.5 times
the compute budget of XLM-Rxy, further reinforc-
ing the importance of pre-training investments for
instruction tuning. These observations suggest that
both pre-training diversity and compute resources
play a crucial role in determining the effectiveness
of instruction tuning.

Our findings align with prior work on the impact
of pre-training on instruction following. Recent
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studies highlight the significance of data quality,
model size, dataset scale, and compute budget in
determining instruction tuning efficacy (Gunasekar
et al., 2023; Zhao et al., 2024). Our results are also
consistent with the findings of Clavié et al. (2025),
who demonstrated strong zero- and few-shot per-
formance of ModernBERT (Warner et al., 2024b)
when instruction tuned. This model was pre-trained
on a modern text corpus of 27 tokens, representing
a four-fold increase in training tokens and a roughly
twelve-fold increase in data compared to the XLM-
Rxr and XLM-Rxxp models. Although CC-100
is highly multilingual, encompassing over 100 lan-
guages, the dataset employed for ModernBERT
focuses primarily on English. This monolingual
dataset exhibits greater diversity in domains com-
pared to CC-100. Furthermore, ModernBERT’s
training data benefits from a more recent and so-
phisticated data collection and filtering method-
ology, reflecting current best practices. As data
quality has been shown to be a critical factor in
model performance for LLMs (Gunasekar et al.,
2023; Zhao et al., 2024), this difference in data cu-
ration likely plays a substantial role in the observed
results.

6 Conclusion

This study examined the impact of instruction tun-
ing on XLM-R models in the context of prompted
classification across multiple SuperGLUE tasks.
Our findings confirm that instruction tuning pro-
vides substantial benefits, particularly for models
with more than 500M parameters. However, the
performance gains do not directly scale with model
size, challenging the assumption that larger mod-
els inherently benefit more from instruction tun-
ing. Our observations suggest that pre-training

setup may play a crucial role in determining the
effectiveness of instruction tuning. While XLM-
Rxxr. achieves the strongest improvements, XLM-
Rjarge remains competitive despite being signifi-
cantly smaller. In contrast, XLM-Rxy underper-
forms, despite having nearly seven times the pa-
rameters of the large model. This suggests that
pre-training compute and dataset diversity play a
critical role in how well a model adapts to instruc-
tion tuning. Insufficient pre-training appears to
limit the ability of larger models to fully leverage
instruction-tuned data, reinforcing findings from
broader LLM research on the importance of high-
quality, diverse pre-training corpora.

Although our study offers meaningful insights
into instruction tuning for encoder-based models,
several aspects merit further investigation. Future
work should investigate the relationship between
pre-training characteristics and instruction tuning
effectiveness, especially for larger models. A more
systematic analysis of these factors could help dis-
entangle their specific contributions. Additionally,
our instruction tuning dataset, though effective, is
limited in diversity. Expanding the range of instruc-
tion tuning tasks may improve generalization and
provide a broader perspective on how data diver-
sity shapes model adaptation. Addressing these
questions will further refine our understanding of
instruction tuning and its role in enhancing encoder-
based models.

Limitations

While this study provides valuable insights into the
impact of instruction tuning on XLM-R models
for prompted classification, there are several im-
portant limitations to consider. One key limitation
is the dependency of instruction tuning effective-
ness on the quantity and quality of pre-training
data. Despite experimenting with large models
like XLM-Rx1, and XLM-Rxx1,, we observed lim-
ited improvements, likely due to insufficient pre-
training data. This suggests that the benefits of
instruction tuning may be contingent on having suf-
ficiently large and diverse datasets, which was not
fully explored in this study.

Additionally, the use of heavily filtered instruc-
tion data may have constrained the models’ ability
to generalize effectively. The narrow range of in-
structions used could have limited the adaptability
of the models to more complex or diverse tasks. Ex-
panding the diversity of instruction data could help



address this limitation and improve generalization.
Our focus on SuperGLUE classification tasks also
limits the generalizability of our findings, as these
tasks may not fully capture the broader capabilities
of instruction-tuned models across other task types,
such as question answering or text generation. Fur-
thermore, we did not extensively explore the zero-
shot learning potential of instruction-tuned models.
Finally, our study was limited to the XLM-R family
of models, and the findings may not generalize to
other encoder architectures.
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A Average Prompt Advantage

To evaluate the effectiveness of instruction tuning,
we initially considered the average prompt advan-
tage metric introduced by Scao and Rush (2021).
However, upon closer analysis, we identified sig-
nificant discrepancies between the scores and the
trends observed in our plots. Consequently, we opt
not to rely on this metric.

Table 3 presents the average prompt advantage
scores across all experiments. An example of
the metric’s limitations can be observed in the
WiC dataset. The highest reported score is for
XLM-Rjyge, with a value of 78.3. However, vi-
sual inspection of our plots clearly indicates that
instruction tuning provides the most substantial im-
provement for the XLM-Rxx; model, which only
achieves a score of 39.2 according to the metric.

This discrepancy arises due to the intrinsic prop-
erties of the average prompt advantage metric.
Specifically, the metric only considers the y-band
where both the instruction-tuned and prompt-based
models have defined values. This restriction leads
to an underestimation of improvements when the
defined range is narrow. In the case of XLM-Rxxt,
the improvement due to instruction tuning extends
beyond this constrained band, resulting in a severe
underestimation of the true advantage gained.

Given these limitations, we conclude that the av-
erage prompt advantage metric does not adequately
reflect the benefits of instruction tuning, particu-
larly for models where the overall improvement
is substantial but distributed beyond the defined
evaluation band. As a result, we refrain from using
this metric for reporting our findings.

B Estimating Pretraining Compute

To estimate the compute invested in pretraining
for the different XLM-R models, we followed an
empirical approach based on hyperparameters re-
ported by Goyal et al. (2021). Specifically, we used
the reported batch size and sequence length for
each model.

We simulated pretraining by generating a ran-
dom dataset and running a single pretraining step
with these hyperparameters. During this step, we
tracked the number of floating-point operations
(FLOPs) required. Using the number of training
tokens processed in this single step, we then extrap-
olated the total FLOPs for full pretraining based
on the total number of training tokens reported by
Goyal et al. (2021). Table 4 provides insights into
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Model BoolQ CB COPA RTE WiC Average
XLM-Rpase | 24.4+23.8 —124+30.3 16.3+£62.6 17.24+16.6 3.7+44.1 9.9+ 35.6
XLM-Rygge | 38.6 +56.6 1.1+220 274+24.7 584+233 78.3+46.0 | 40.8+41.7
XLM-Ry 46.6 +21.6 —-1.0+12.2 27.1+299 456+39.6 44.4+385 | 32.5+31.8
XLM-Ryy 41.04+38.1 —02+176 39.7+24.5 439+18.3 39.6+40.3 | 32.8+30.2

Table 3: Average prompt advantage of the instruction-tuned XLM-R models over their prompt-based base models.

Model Batch Size  Sequence Length 1-Step #Tokens 1-Step #FLOPs
XLM-Rjgpe | 8192 512 4.19 x 10° 1.53 x 1016
XLM-Ry 2048 512 1.05 x 106 1.79 x 1016
XLM-Ryy 2048 512 1.05 x 106 6.10 x 1016

Table 4: Compute measurements for a single pretraining step using hyperparameters from Goyal et al. (2021).

the compute measurements for one step. By extrap-
olating these values based on the total number of
training tokens, we obtained the estimated FLOPs
reported in Table 1.

C Additional Result Plots

Figure 5 shows the performance curves for the
BoolQ and RTE tasks.
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Figure 5: Performance curves of XLM-R model sizes on the BoolQ and RTE benchmarks, comparing different
fine-tuning strategies.
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