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Abstract

Watermarking is a promising copyright pro-
tection method for Deep Neural Networks
(DNNGs). It works by embedding a secret iden-
tity message into the DNN during training,
and extracting it later when copyright is dis-
puted. Prior work has proposed various tech-
niques that can embed secret identity mes-
sages into different layers of a DNN. We ob-
serve that models nowadays are frequently cre-
ated and distributed in the form of Low-Rank
Adaptation (LoRA) weights, because of its
significant savings in training cost. We pro-
pose SEAL (SEcure wAtermarking on LoRA
weights), the first watermarking method tai-
lored for LoRA weights. Unlike existing meth-
ods that focus on specific layers and are un-
suitable for LoRA’s unique structure, SEAL
embeds a secret, non-trainable matrix between
trainable LoRA weights, serving as a passport
to claim ownership. SEAL then entangles this
passport with the LoRA weights through fine-
tuning, and distributes the finetuned weights
after hiding the passport. We demonstrate that
SEAL is robust against a variety of known at-
tacks, and works without compromising the
performance of watermarked models on vari-
ous NLP tasks.

1 Introduction

Recent years have witnessed an increasing demand
for protecting deep neural networks (DNNs) as in-
tellectual properties (IPs), mainly due to the signif-
icant cost of collecting quality data and training
DNNs on it. In response, researchers have pro-
posed various DNN watermarking methods for
DNN copyright protection (Uchida et al., 2017;
Darvish Rouhani et al., 2019; Zhang et al., 2018;
Fan et al., 2019; Zhang et al., 2020; Xu et al., 2024;
Lim et al., 2022), which work by secretly embed-
ding identity messages into the DNNs during train-
ing. The IP holders can present the identity mes-
sages to a verifier in the event of a copyright dispute
to claim ownership.
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Figure 1: SEAL scheme: A passport matrix C' is em-
bedded into LoRA weights during training, creating a
watermarked model. The concealed passport C), verifies
ownership, ensuring loss-free watermarking, attack re-
sistance, and performance enhancement.

Meanwhile, recent advances in Parameter-
Efficient FineTuning (PEFT), particularly Low-
Rank Adaptation (LoRA) (Hu et al., 2022), have
been transforming the way the majority of domain-
specific DNNs are built. LoRA is the de facto
method and format in the open-source commu-
nity because of its properties—light-weight, no
inference latency, and offers performance compa-
rable to full finetuning. Although LoRA utilizes
pretrained foundation models, the finetuning re-
sults reside entirely within the LoRA adapters,
which should be considered IPs. As Luo et al.,
2024 has reported, over 100K LoRA weights are
shared on platforms like Civit Al', indicating their
high prevalence. Unfortunately, existing white-box
DNN watermarking schemes are not suitable for
LoRA where weights are released in open source,
as they only support embedding identity messages
in specific architecture-bounded component, such
as kernels in convolutional layer (Uchida et al.,
2017; Liu et al., 2021; Zhang et al., 2020; Lim
et al., 2022). These methods are not suitable for
the unique requirements of LoRA, highlighting the
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need for a specialized watermarking solution.

This paper proposes SEAL, the first watermark-
ing scheme designed to protect the copyright of
LoRA weights. The key idea of SEAL is to inte-
grate a constant matrix within the LoRA frame-
work, acting as a hidden identity message that is
difficult to extract, remove, modify or even counter-
feit, thus offering robust IP protection. A constant
in SEAL, non-trainable matrix, which is entangled
with the up and down blocks of LoRA. This con-
stant matrix in SEAL naturally directs the gradi-
ents through itself during finetuning, eliminating
the need to design additional constraint losses for
watermark embedding. Additionally, after training
ends, SEAL decomposes the constant matrix into
two and integrates each into the up and down blocks
of LoRA, respectively. This decomposition ensures
that the resulting model appears indistinguishable
from a standard LoRA-trained model to external
observers, offering a versatile and less intrusive
method for safeguarding DNNGs.

We validate the robustness of SEAL as an IP
protection mechanism with a variety of concrete
attacks reported in the literature, namely removal
(See et al., 2016), obfuscation (Yan et al., 2023;
Pegoraro et al., 2024), and ambiguity attacks (Fan
et al., 2019). To successfully remove identity mes-
sages, we show in Section 4.6 that an attacker
would need to zero out 99.9% of the weights,
which in turn results in severe performance degra-
dation of the host task. In Section 4.6, we demon-
strate that SEAL is structurally immune to the struc-
tural obfuscation attack recently proposed by (Yan
et al., 2023).We additionally show in Section 4.7
that an adversary would need to generate a matrix
with over 70% similarity to the hidden passport to
pass the verification process, thus demonstrating
SEAL’s robustness against ambiguity attacks.

Importantly, SEAL’s robustness against these
attacks comes at virtually no fidelity cost; apply-
ing SEAL does not degrade the performance of
the original task. Our fidelity evaluation shows
that SEAL achieves performance comparable to,
and sometimes even surpassing, standard LoRA
in tasks ranging from commonsense reasoning to
instruction tuning.

Our contributions are three-fold:

1. Simple yet Strong Copyright Protection for
LoRA: We present SEAL, the first watermark-
ing scheme for protecting LoORA weights by em-
bedding a hidden identity message using a con-

stant matrix, eliminating the need for additional
loss terms, offering a straightforward yet robust
solution.

2. Robustness Against Attacks: We demonstrate
SEAL’s resilience against various attacks, in-
cluding removal, obfuscation, and ambiguity at-
tacks, showing it maintains robust IP protection
even under severe adversarial conditions.

3. Enhanced Performance: Our approach ensures
structural camouflage and functional invariance,
meaning that applying SEAL does not degrade
the performance of the task. In fact, our fidelity
evaluation indicates that SEAL achieves per-
formance comparable to, and sometimes even
surpassing.

2 Preliminary

2.1 Low-Rank Adaptation

LoRA (Hu et al., 2022) is an adaptation method
based on the premise that specific tasks has "in-
trinsic low rank" within the full parameter space
of a model. LoRA leverages the capabilities of
a pretrained model, transferring its performance
on a specific task. During training, the pretrained
model’s weights, W € R®*?, remain frozen, and
only two low-rank decomposed matrices, A €
R"%% and B € RY*", are treated as trainable pa-
rameters.

W =W + AW =W + BA (1)

The absence of activation functions between A and
B allows for efficient integration into the pretrained
model after training by simply adding B A to the
original weights.

2.2 White-box Watermarks

We focus on white-box scenarios where model
weights are publicly accessible. This setup is natu-
ral for LoRAs, as their entire weights are usually
shared due to their smaller size compared to full
models (Hu et al., 2022).

Existing white-box watermarking methods can
be broadly categorized into three types based on
where the secret message is embedded (Yan et al.,
2023): weight-, activation-, and passport-based.

* Weight-based methods embed watermarks, a se-
cret bit sequence consisting of values such as
{1, -1}, directly into the model weights. (Uchida
et al., 2017, Liu et al., 2021, Fernandez et al.,
2024)



* Activation-based methods utilize activation maps
for special input and layer pair to embed the iden-
tity messages of the IP holder (Darvish Rouhani
et al., 2019, Lim et al., 2022).

* Passport-based methods, first introduced by Fan
et al., 2019, adds a so-called passport layer, a
linear layer with scale factors and bias shifts
following a convolutional layer. This passport
layer embeds a unique identifier, passport, into
the neural network. During verification, a forged
passport can be detected because the model’s per-
formance degrades with invalid passports. Zhang
et al., 2020 extended this concept to normaliza-
tion layers.

2.3 Attacks on Watermarks

Attacks on white-box DNN watermarks are cate-
gorized into three types: removal, obfuscation, and
ambiguity attacks. Table 1 shows that what are the
targets of each attack method.

Target
Attack Identity  Verification
Removal Erase Invalidate
Obfuscation Disregard Invalidate
Ambiguity Forge Bypass

Table 1: Attack and its purpose on each target type

Removal/Obfuscation Attacks aim to remove or
obfuscate the identity messages embedded in the
models such that the original identity informa-
tion cannot be extracted in the verification phase.
We show that SEAL has robustness against re-
moval/obfuscation attacks in Section 4.6.

* Pruning: This attack involves eliminating neu-
rons that are deemed unnecessary or have min-
imal impact on the DNN’s inference process
(Uchida et al., 2017; Darvish Rouhani et al.,
2019). It is straight way to remove embedded
identity. Usually, pruning attacks zeroing out
model’s weight based on its L1-norms.

¢ Fine-tuning: If the dataset used to train the DNN
is publicly accessible, attackers can retrain the
victim model without the watermark constraint
loss (Chen et al., 2021; Guo et al., 2021; Yan
et al., 2023).

* Structural Obfuscation: (Yan et al., 2023; Pego-
raro et al., 2024) recently proposed attack method
focuses solely on disrupting the watermark verifi-
cation process with modifying the structure of the
DNN, while preserving its original functionality.
When verification process launched, verifier can

not retrieve watermark from obfuscated structure
of weight because distribution of its parameter
has been changed.

Ambiguity Attacks aim to falsely claim ownership
by forging counterfeit watermarks. The adversaries
can deceive the verifier into recognizing them as
the rightful owner (Fan et al., 2019; Zhang et al.,
2020; Chen et al., 2023). Each DNN watermarking
scheme needs specific countermeasures to address
ambiguity attacks effectively. For instance, Chen
et al., 2023 train an additional layer to replace the
passport, acting as a counterfeit watermark.

2.4 Criteria for Evaluation

Measure of Success. A defensive algorithm for
attacks on DNN watermarks must satisfy the fol-
lowing requirements (Uchida et al., 2017):

e Fidelity: The insertion of a watermark should
not degrade the performance of the host task. If
any performance degradation occurs, it should
be minimal or justified by a trade-off with other
benefits.

¢ Robustness: Once embedded, the watermark
should be resistant to attempts to remove or ob-
fuscate the identity messages. If an attacker man-
ages to remove or obfuscate them, it should come
at a significant degradation of the host task’s per-
formance, or a computational cost comparable to
the original finetuning cost.

Attacker. We consider an adversary who attempts
to attack open-sourced watermarked LoRA weights
for a known base model. The goal of the adversary
is to nullify the ownership verification of the LoRA
weights, either by extracting the watermark, by
erasing it, or by embedding their own, counterfeit
watermark over the original one. We assume that
the adversary has the following capabilities:

* Minimal Utility Loss: The adversary should not
undermine the utility of the model. Otherwise
such attack is futile as the attacker cannot benefit
from a malfunctioning model.

* Limited Computational Cost: Compromising the
watermark should not require computational re-
sources larger than those required for training
LoRA weights by adversaries themselves.

* No Dataset Access: As many LoRA training pro-
cesses involve proprietary assets of the model
owners, access to the original training data can-
not always be taken for granted. Thus, the adver-
sary’s goal should be to undermine the owner’s
watermarks without access to the original train-
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Figure 2: SEAL Scheme: The figure illustrates the overall process of the SEAL watermarking method. (a) A constant
matrix C'is initialized along with LoRA weights A and B. (b) During training, C' is entangled with the LoRA
weights. (¢) After training, C' is decomposed into C and C5. (d) The decomposed parts are concealed within the
weights, resulting in entangled weights A’ and B’. Detailed forward and backward passes are in Appendix B.

ing data. Otherwise, the adversary can build their
own model from scratch, eliminating the need
for an attack in the first place.

» Watermark Knowledge: Based on Kerckhoff’s
principle, we assume that the adversary knows
about SEAL but does not know the exact water-
mark embedded.

3 SEAL: The Watermarking Scheme

Previous methods (Fan et al., 2019; Zhang et al.,
2020) are architecture-dependent, and while our ap-
proach is also dependent on LoRA, direct compar-
isons are challenging. However, due to similarities
with passport-based watermarking—such as using
a linear layer, embedding the watermark within
the passport layer, concealing the passport, and
used during training—we categorize our method as
passport-based.

As depicted in Figure 2, SEAL at a high level
operates as follows. First, SEAL introduces the
given passport as a non-trainable matrix, in be-
tween the training of trainable parameters B and
A. Next, we train the weights on the host task with
this non-trainable passport present. Once trained,
SEAL decomposes the passport into two, which
are then concealed by multiplying each with B and
A, respectively. The final results, denoted by B’
and A’ are distributed as LoRA weights.

Throughout this section, we use notations intro-
duced by Fan et al., 2019, with additional defini-
tions and adaptations as necessary. We summarized
them in Appendix A.

3.1 Entangling Passports during Training

SEAL embeds the watermark during training by
inserting the non-trainable, constant matrix C' be-
tween the trainable parameters A and B. Doing so

effectively entangles the given passport with A and
B. The concept of entanglement is superficially
similar to the entanglement proposed by Jia et al.,
2021. It involves indistinguishable distributions be-
tween host and watermarked tasks. In our context,
we define entanglement as follows.

Definition 1 (Entanglement). Given trainable pa-
rameters A and B, and a non-trainable parameter
C, A and B are in entanglement via C'if and only
if they produce the correct output only when C' is
present between them.

Another difference between SEAL and prior
work is that SEAL eliminates the need for addi-
tional loss functions to embed the watermark. C
directly influences the computations of A and B
during the forward pass, and modifies the gradi-
ent flow in the backward pass, thereby embedding
itself through normal training process. Details of
training both passes can be found in Appendix B.

3.2 Hiding Passports for Distribution

After successfully establishing the entanglement
between the passport and other trainable parame-
ters, the passport must be concealed before distri-
bution. Therefore, we decompose the passport C
of the IP holder into two matrices such that their
product reconstructs C, as shown in Figure 2 (c).
By distributing each of the the decomposed pass-
port into trainable parameters, IP holder can hide
secret passport, C'.
Definition 2 (Decomposition Function). For a
given constant C, a function f is a decomposi-
tion function of C' where f(C) = C;Cs and
CiCy=C.

An example of a watermark decomposition using
SVD is

Fs0a(C) = (Ucv/S)(VESVE) @)



where UCZCVg = (. Using this example, the
resulting matrices are

B' = B(Ucy/Xc) and A" = (VEcVE) A (3)

This process ensures that models trained with
SEAL, which contain three matrices per layer,
N(A, B, C), can be distributed in a form that re-
sembles standard LoRA implementations with only
two matrices, N(A', B').

3.3 Passport-based Ownership Verification

The key idea of passport-based watermarking is
that, when presented with forged passports under
ambiguity attacks, the model’s performance deteri-
orates due to which the ownership verification fails
(Fan et al., 2019).

Definition 3 (Verification Process). The DNN
ownership verification process of SEAL, de-
noted by V, is defined as a three-tuple,
V(N(A, B, Ct), Mt, EV).

The outcome of the verification process depends
on the presented passport C, where C} is the run-
time passport used during inference. This depen-
dency indicates that the integrity of the verifica-
tion process relies significantly on the accuracy
and authenticity of the presented passport. The
threshold of the verification is defined as ey =
IM(N(A, B,C)) — M,(N(A, B, Cp)| where C is
the distributed passport and C), is the concealed
passport. With a forged passport Cpq,, # C), the
fidelity score, M4, (N(A, B, Cuay)), will deterio-
rate such that the discrepancy is larger than a thresh-
old, i.e., | M}, — Myq,| > €v. This condition tests
the robustness of the model against verification
attempts with forged passports.

The reason why the IP holder can pass the ver-
ification process while the adversary cannot is as
follows: During the verification process, the fidelity
score is measured using the passport C; submitted
by either the IP holder or the adversary. To pass the
verification process, Cy must be entangled with the
parameters A and B. This entanglement can only
occur if Cy was used during the training process.
Therefore, the legitimate IP holder, who has used
the passport during training, can submit C; and
pass the verification process.

Additionally, the method for extracting the
passport involves multiplying N(A’, B’) with the
pseudo-inverse of A and B. This allows us to re-
trieve the embedded passport, C from N(A', B').

If the adversary creates a forged triplet such that
N(A", B") = N(Audvs Badv, Cadv), they still can-
not create another Cyq,y With | Mg, — Mp,| < €.
This is because the adversary does not participate
in the training phase and therefore cannot acquire
multiple forged passports. As a result, the nature
of the entanglement process prevents the adversary
from successfully passing the verification with a
forged passport.

4 Experiments

4.1 Experimental Setup

Fidelity. To demonstrate that the performance of
models after embedding SEAL passports does not
degrade, we conducted a variety of tasks encom-
passing both language and image modalities. Ini-
tially, we evaluate our model by comparing it with
various open-source large language models such as
LLaMA-2-7B/13B (Touvron et al., 2023), LLaMA-
3-8B (Al@Meta, 2024), Gemma-2B (Team et al.,
2024), and Mistral-7B-v0.1 (Jiang et al., 2023) on
commonsense reasoning tasks. Next, we verify the
model’s effectiveness on instruction tuning tasks.
Following this, we extend our approach to multi-
modal Vision Language Model (Liu et al., 2024)
by evaluating the model’s performance on visual
instruction tuning. Finally, we assess SEAL’s capa-
bilities on image-generative tasks (Rombach et al.,
2022).

Robustness. We evaluated the robustness of SEAL
against removal and ambiguity attacks by measur-
ing the fidelity scores in commonsense reasoning
tasks. For removal attacks, we verified the presence
of the extracted watermark. For ambiguity attacks,
we measured fidelity scores to ensure accurate ver-
ification of genuine versus counterfeit passports.

4.2 Commonsense Reasoning

Table 2 displays the comparative performance of
commonsense reasoning tasks across various mod-
els, including LLaMA-2-7B/13B, LLaMA-3-8B,
Gemma-2B, and Mistral-7B-v0.1. The experimen-
tal results emphasize that SEAL can be seamlessly
integrated into existing LoRA architectures, mak-
ing it an invaluable tool for safeguarding intellec-
tual property without affecting the model’s opera-
tional performance.

4.3 Instruction Tuning

Table 3 shows the scores for LLaMA-2-7B and
Gemma-2B, instruction tuned with both LoRA and



Method

BoolQ PIQA SIQA HellaSwag Wino ARC-e ARC-c OBQA Avg. 1

LoRA 7456 8341 79.89 89.06 84.61 8695 7551 86.80 82.60
LLaMA-2-7B SEAL (Ours) 73.15 76.61 80.86 83.80 86.03 81.39 67.15 84.20 79.15
SEAL' (Ours) 73.00 86.24 81.78 90.92 86.50 88.59 75.17 86.00 83.53

LoRA  75.08 87.21 82.09 92.05 8840 90.57 77.82 86.00 84.90

LLaMA-2-13B SEAL (Ours) 75.32 87.27 83.52 93.83 88.95 90.49 79.95 88.60 85.99
SEAL! (Ours) 75.32 88.90 83.42 9391 89.42 91.33 81.40 88.20 86.49

LoRA  73.58 86.13 80.35 91.85 8595 90.11 78.58 85.00 83.94

LLaMA-3-8B SEAL (Ours) 7391 88.41 82.81 94.65 88.00 91.84 8242 85.60 85.96
SEAL! (Ours) 75.63 90.21 83.47 96.00 90.21 92.97 84.98 9120 88.08

LoRA 6596 78.62 7523 7920 76.64 79.13 62.80 72.40 73.75

Gemma-2B  SEAL (Ours) 66.45 82.16 7820 83.72 79.95 82.62 68.09 79.40 77.57

SEAL! (Ours) 66.54 82.70 79.53 87.70  80.58 84.01 69.63 79.80 78.81

LoRA  75.87 91.13 81.99 9454 88.56 93.14 83.02 89.00 87.16

Mistral-7B-v0.1 SEAL (Ours) 73.79 86.84 81.62 90.80 87.68 90.27 79.52 88.20 84.84
SEAL! (Ours) 77.19 90.32 82.86 94.56 89.74 93.14 83.70 91.20 87.84

Table 2: Accuracy comparison of eight sub-tasks of commonsense reasoning for LLaMA-2-7B/13B (Touvron et al.,
2023), LLaMA-3-8B (AI@Meta, 2024), Gemma-2B (Team et al., 2024), and Mistral-7B-v0.1 (Jiang et al., 2023)
using LoRA, and SEAL methods. The dataset was obtained from (Hu et al., 2023) and the hyperparameters were
modified accordingly. Note: SEALfrepresents a constant matrix C' that was randomly initialized from a normal

distribution.

Inst. Tune
Task Textual Visual Text-to-Image
Metric| MT-B  Avg. |CLIP-T CLIP-I DINO.
LoRA| 538 669 | 0.198 0.801 0.669
SEAL | 550 63.1 | 0.202 0.804 0.647

Table 3: Fidelity on wide range of Tasks. Inst. Tune:
Instruction Tuning. MT-B: MT-Bench, (Zheng et al.,
2023), Score of Visual Inst. Tune: average of seven
vision-language tasks. CLIP-I, DINO. show subject
fidelity score and CLIP-T represents prompt fidelity
score.

SEAL, using a 10K subset of Alpaca dataset (Taori
et al., 2023). The scores represent the average rat-
ings given by GPT-4 on a scale of 1 to 10 for the
models’ responses to questions from MT-Bench
(Zheng et al., 2023). Since the Alpaca dataset is
optimized for single-turn interactions, the average
score for single-turn performance from MT-Bench
is used. The results demonstrates that applying
SEAL results in no quality degradation when com-
pared to LoRA, confirming the fidelity of SEAL.

4.4 Visual Instruction Tuning

Table 3 shows the average performance across 7
visual instruction tuning benchmarks for LoRA
and SEAL on LLaVA-1.5 with detailed elaboration

in Appendix E. Our results indicates comparable
performance between the two methods.

4.5 Text-to-Image Synthesis

The experimentation with the Stable Diffusion
model (Rombach et al., 2022) in conjunction with
dataset of DreamBooth (Ruiz et al., 2023) trained
with LoRA elucidates the versatility and robustness
of SEAL when integrated into diverse architectures.
Referring to Table 3, which contains the metrics
used for evaluation, we observe a detailed compari-
son of subject fidelity (DINO, CLIP-I) and prompt
fidelity (CLIP-T). We provide detailed information
of dataset, hyperparameters, and evaluation metrics
on Appendix D. Our results corroborate these find-
ings, demonstrating that SEAL can maintain high fi-
delity in both subject representation and prompt ac-
curacy without degrading model performance. Ad-
ditionally, comparison images of LoORA and SEAL
on the same subject of the DreamBooth dataset pro-
vide visual evidence of these performance metrics;
these images are available in Figure 7 .

4.6 Robustness against Removal &
Obfuscation Attacks

Pruning Attacks. We conducted pruning attacks
on SEAL-trained weights, N(-, C'), by zeroing out
N(-, C) based on its L1-norms. We used statistical
testing instead of Bit Error Rate (BER) because,
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Figure 3: Pruning Attack: The x-axis represents the zeroing ratio, the left y-axis shows the fidelity score, and the
right y-axis displays the -log(p-value) on a log scale. If -log(p-value) is above 3.3 (i.e., p-value < 5e-4), detecting
the watermark succeeds. The graphs show that as the zeroing ratio increases, the fidelity score decreases, and the
-log(p-value) also decreases. This indicates the watermark remains detectable until 99.9% of the weights are zeroed,
which significantly degrades the host task’s performance, demonstrating SEAL’s robustness against pruning attacks.

unlike prior work (Uchida et al., 2017; Fernandez
et al., 2024; Zhang et al., 2020) that used a small
number of bits, N~102, the amount of our water-
mark bits are approximately N ~10°, necessitating
a different approach. In hypothesis testing, if the
p-value is smaller than our significance level («
= 0.0005), we reject the null hypothesis, “the ex-
tracted watermark is an irrelevant matrix with C.”
Rejecting the hypothesis implies that the extracted
watermark is not random noise but exists within
the model.

Figure 3 shows the fidelity score and -log(p-

value) measured by zeroing the smallest parameters
of N(+, C) based on their L1 norms. The fidelity
score is the average from the commonsense reason-
ing tasks, and the p-value indicates the probabil-
ity of failing to identify the extracted watermark
C. Figure 4.6 show that removing the watermark
necessitates zeroing 99.9% of the weights, which
significantly degrades the host task’s performance,
thus proving SEAL’s robustness against pruning
attacks.
Finetuning Attacks. Prior works (Uchida et al.,
2017; Yan et al., 2023) define finetuning attacks as
training the victim model with a similar distribution
and without a constraint loss to embed the water-
mark. However, our SEAL does not use a constraint
loss for embedding the watermark. Therefore, we
adopted the following attack strategy. We resumed
training on a 3-epoch trained passport-distributed
SEAL weight, N(A’, B"), using the commonsense
reasoning dataset, applying the same LoRA struc-
ture but without the constant matrix between its up
and down blocks for one additional epoch.

Figure 4 shows that even if an adversary obtains
the original dataset and attempts to resume training

10°
p-value = 5e-4

10% — -log(p-value)
2
$103
N
Zh 102
S
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10°
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Figure 4: The p-value changes during finetuning at-
tacks. This plot shows -log(p-value) over training steps
while finetuning LoRA upon SEAL trained weight. The
dashed line represents the significance level (p-value =
Se-4). Despite continued training, the p-value remains
below the significance level, indicating that the water-
mark remains detectable.

on the SEAL weights, the watermark embedded
in the SEAL weights remains detectable. Hyperpa-
rameters are in Table 10.

Structural Obfuscation Attacks. Structural obfus-
cation attacks target the structure of DNN models
while maintaining their functionality (Yan et al.,
2023; Pegoraro et al., 2024). In the case of LoRA,
an attacker can alter the structure of N(-) by chang-
ing the rank r of the matrices A € R"™™% and
B € R"", However, even if r is extended, N(-) re-
mains functionally equivalent to Ny ¢ (-), allowing
the distributed passport C to be still detectable. To
mitigate the effects of structural obfuscation with
a minimal impact on the host task, we decompose
N(-) using SVD and modify it based on its sin-
gular values, sorting by large singular values and
discarding the smaller ones, resulting in N ~ Ng,4.

Figure 6 shows the results of performing struc-
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Figure 5: Ambiguity Attacks: Fidelity score as average accuracy on Commonsense Reasoning tasks. The x-axis
represents the dissimilarity, 7, where Cy = (1 — 7)C)p 4+ 7Cyq,. C, is the concealed passport, and Cyg,, is an
irrelevant matrix of the adversary. When r > 0.6, the difference between fidelity scores significantly drops below

the threshold of the verification process, €y, as shown in Table 4.
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Figure 6: Structural Obfuscation Attack on SEAL
weight of Gemma-2B via SVD. The original rank is
32, and the ranks are obfuscated from 31 down to 1.

tural obfuscation via SVD. The original rank is 32,
and the results are obfuscated from rank 31 down
to 1. The fidelity score remains unchanged, and
the passport C' is still detectable, demonstrating
SEAL’s robustness against structural obfuscation
attacks.

4.7 Robustness against Ambiguity Attacks

Model ‘ Ci=C Ci=0C) ‘ €y
LLaMA-2-7B 82.2 82.7 0.5
Mistral-7B-v0.1 84.2 87.9 3.7
Gemma-2B 76.3 76.6 0.3

Table 4: Fidelity Score of each passport in weight.
Cy = C represents the fidelity score when the dis-
tributed passport is used, while C; = C,, shows the
fidelity score with the concealed passport. €y is the ver-
ification threshold, indicating the required fidelity score
difference for a passport to be accepted as genuine.

Successful ambiguity attacks embed the adver-
sary’s counterfeit watermark, C,4,, while main-

taining an fidelity score, M4, , that meets the veri-
fication threshold ey-. Although the IP holder uses
C), during training, the distributed SEAL weights
N(-, C) do not contain explicit information about
Cp. Thus, the adversary’s C,q, is unrelated to
C)p. To test this, we blended irrelevant watermark
Cadv With the ground truth C), at various ratios,
r, and measured the fidelity score, M;(N(-, Ct))
with C; = (1 — r)C), + rCqy,. The verification
thresholds ¢y for different models are shown in
Table 4.

As Figure 5 illustrates, even under favorable con-
ditions for the adversary, they would need to sub-
mit a counterfeit watermark C,, 4, that is more than
r = 0.3 to the hidden passport C), for Gemma-2B
and LLaMA-2-7B models, and more than » = 0.6
for Mistral-7B-v0.1. Given the lack of information
about C),, it is practically impossible for the adver-
sary to succeed in ambiguity attacks, demonstrating
SEAL’s robustness.

5 Conclusion

In this study, we introduced SEAL, the first ap-
proach to watermarking for LoRA frameworks.
SEAL introduces an entanglement technique that
entangles a nontrainable, secret matrix that works
as a passport within the LoRA structure during
training. This allows for robust watermarking with-
out affecting the performance or efficiency of
LoRA. Our empirical evaluations demonstrate that
SEAL maintains the fidelity and robustness of the
watermarked LoRA across various testing scenar-
ios. The approach not only safeguards the intellec-
tual property of LoRA weights but also ensures
the preservation of their functional integrity, even
under potential attack scenarios.



Limitations

While SEAL represents a pioneering advancement
in watermarking for DNNs adapted via LoRA, its
integration is inherently bound to the LoRA ar-
chitecture. This specificity may appear to limit its
applicability compared to other DNN structures
that do not employ LoRA. However, it is impor-
tant to note that many prior watermarking methods
are also tailored to specific layers or types within
DNN architectures. Furthermore, adapting our wa-
termarking approach to general DNNs can be
straightforwardly achieved by applying the LoRA
architecture itself, which is versatile and integrates
well with various DNN configurations. This miti-
gates concerns regarding the limited applicability
of our method and underscores its potential for
broader adaptation. Additionally, while our method
demonstrates significant benefits, the precise mech-
anisms by which the constant matrix enhances per-
formance when integrated into the LoRA structure
remain unexplored. This is an important area for
further investigation.

Future research should aim to extend the princi-
ples and mechanisms of SEAL to a broader array
of DNN structures, potentially offering a more gen-
eralized framework for DNN watermarking. This
would not only enhance the versatility of DNN
watermarking techniques but also contribute to a
deeper understanding of how such security mea-
sures can be efficiently implemented across various
machine learning paradigms.

6 Ethical Considerations

Privacy and Confidentiality. The integration of
watermarking techniques in DNNs, such as SEAL,
necessitates careful consideration of privacy and
confidentiality. Watermarks embed specific infor-
mation into a model, and it is crucial to ensure that
this does not compromise the privacy of the data
used for training or the integrity of the model it-
self. Effective measures must be in place to prevent
unauthorized access and misuse of the embedded
data, safeguarding sensitive or proprietary informa-
tion. Additionally, the process should be designed
to ensure that the embedded watermarks do not
inadvertently expose confidential information.

Intellectual Property and Ownership Rights.
SEAL aims to protect intellectual property by
embedding watermarks to assert ownership over
LoRA weights. This is particularly important in the

context of open-source communities where models
are frequently shared and reused. By providing a
method to verify the origin of a model, SEAL helps
to ensure that creators can claim rightful ownership
and receive recognition for their work. However, it
is essential to establish clear guidelines and legal
frameworks to address the rights of multiple stake-
holders involved in the development, training, and
deployment of these models.

Potential Risks. While SEAL is designed to pro-
tect intellectual property and assert ownership, it
also presents potential risks if misused. Malicious
actors could potentially use watermarking to falsely
claim ownership of models they did not develop.
Additionally, the embedding process must be trans-
parent and well-documented to avoid unintended
consequences, such as biases or performance degra-
dation in specific applications. Ensuring the in-
tegrity of the watermarking process helps maintain
trust in the technology and prevents ethical issues.
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A Symbol Table

Table 5: Table of key components and symbols in SEAL
scheme, adapted from Fan et al., 2019.

Symbol Description

Pretrained weight for training upon
Low-Rank Adaptation. W € Rb*@

Up and down block of LoRA.

B € R¥™", A € R"™*% such that
r << min(b,a)

The adaptation layer. N(A, B) is
LoRA layer and N(A, B, C) is
SEAL layer. AW = N(-)

The passport of SEAL. C'is the
passport distributed in B and A

w

B, A

N, AW

C,C,

Cy is the passport at inference time.
Cldv 1s the counterfeit passport
forged by the adversary.

C’t ) Cadv

The decomposition function.

f(C) = 0102, where 0102 =C
For a given C}, the fidelity score,
M;(N(A, B, C})).

The verification process against
ambiguity attack. V (M.(-),ey) = {
True, False }.

The threshold of the verification
process. |M; — M| < ey

M,

€v

B Training Process of SEAL
B.1 Forward Pass

In the SEAL watermarking scheme, the forward
pass calculates the output W’ by combining the
original weights and the entangled matrices. The
formula is given by:

W' =W+ AW =W + BCA 4)
Here, B and A are the trainable parameters, and
C, as defined in Table 5, acts as a non-trainable
parameter or passport, embedding security within
the model’s operational framework. During the for-
ward pass, C' is strategically placed between B
and A. This placement ensures that the output W’
reflects the combined influence of these matrices,
effectively entangling B and A with the watermark
C', making the layer, N(-) dependent on the pres-
ence of C.
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B.2 Backward Pass

In the backward pass, we calculate the gradients
of the loss function ¢ with respect to the trainable
parameters A and B. To illustrate, let’s consider
the structure BC A and assume the loss function
& = ¢(Ax) where A = BCA.

A:=BCA and ®=¢(Az) (5

The partial gradient of ® with respect to A is
calculated as:

0P

1= (BC)" 99 _ crpr 9o

0A 0A ©

Similarly, the partial gradient of ® with respect
to B is:

92 _9¢
0B~ 0A

_9¢

T AT
_8AAC

(ca)’ (7)

To clarify, during backpropagation, we calculate
how changes in the trainable parameters A and B
affect the loss function ¢. The presence of the con-
stant matrix C ensures that the weights A and B
are updated in a manner that maintains their entan-
glement with C, thereby embedding the watermark
into the model weights effectively.

C Commonsense Reasoning Tasks

Commonsense Reasoning tasks are divided into
eight sub-tasks: Boolean Questions (BoolQ) (Clark
et al., 2019), Physical Interaction QA (PIQA) (Bisk
et al., 2020), Social Interaction QA (SIQA) (Sap
et al., 2019), Narrative Completion (HellaSwag)
(Zellers et al., 2019), Winograd Schema Challenge
(Wino) (Sakaguchi et al., 2021), ARC Easy (ARC-
e), ARC Challenge (ARC-c¢) (Clark et al., 2018),
and Open Book QA (OBQA) (Mihaylov et al.,
2018).

D Text-to-Image Synthesis
D.1 DreamBooth Dataset

The DreamBooth dataset encompasses 30 distinct
subjects from 15 different classes, featuring a di-
verse array of unique objects and live subjects, in-
cluding items such as backpacks and vases, as well
as pets like cats and dogs. Each of the subjects
contains 4-6 number of images. These subjects are
categorized into two primary groups: inanimate
objects and live subjects/pets. Of the 30 subjects,
21 are dedicated to objects, while the remaining 9
represent live subjects/pets.



Hyperparamas Gemma-2B  Mistral-7B-v0.1 LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B
Method LoRA SEAL LoRA SEAL LoRA SEAL LoRA SEAL LoRA SEAL
r 32

alpha 32

Dropout 32

LR 2e-4  2e-5 2e-5 2e-5 2e-4  2e-5 2e4 25 2e4 2e5

Optimizer AdamW

LR scheduler Linear

Weight Decay 0

Warmup Steps 100

Total Batch size 16

Epoch 3

Target Modules Query Key Value UpProj DownProj

Table 6: Hyperparameter configurations of SEAL and LoRA for Gemma-2B, Mistral-7B-v0.1, LLaMA2-7B/13B,
and LLaMA3-8B on the commonsense reasoning. All experiments are done with 4x A100 80GB (for LLaMA-2-
13B) and 4x RTX 3090 (for the other models) with approximately 15 hours.

Method LoRA SEAL
r 32

alpha 32
Dropout 0.0

LR le-4

LR scheduler Constant
Optimizer AdamW
Weight Decay le-2
Total Batch size 32

Steps 60
Target Modules Q K V Out AddK AddV

Table 7: Hyperparameter configurations of SEAL and
LoRA for Text-to-Image Synthesis. All experiements
are done with 4x RTX 4090 with approximate 15 min-
utes per subject.

D.2 Evaluation Details

For subject fidelity, following (Gal et al., 2022;
Ruiz et al., 2023), we use CLIP-I, DINO. CLIP-
I, an image-text similarity metric, compares the
CLIP (Radford et al., 2021) visual features of the
generated images with those of the same subject
images. DINO (Caron et al., 2021), trained in a
self-supervised manner to distinguish different im-
ages, is suitable for comparing the visual attributes
of the same object generated by models trained
with different methods. For prompt fidelity, the
image-text similarity metric CLIP-T compares the
CLIP features of the generated images and the cor-
responding text prompts without placeholders, as
mentioned in (Ruiz et al., 2023; Nam et al., 2024).
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Following (Ruiz et al., 2023), for the evaluation,
we generate four images for each of 30 subjects
and 25 prompts, resulting in a total of 3,000 images.
We utilize ViT-B/32 (Dosovitskiy et al., 2021) for
CLIP and ViT-S/16 (Dosovitskiy et al., 2021) for
DINO.

SEAL

Input Images LoRA

AR
x-\fl. e

a <V> cat on the beach

Figure 7: Comparison of LoORA and SEAL in Text-to-
Image Synthesis

E Viusal Instruction Tuning

We compared fidelity of SEAL, LoRA and FT on
the visual instruction tuning tasks with LLaVA-
1.5-7B (Liu et al., 2024). To ensure a fair compar-
ison, we used same original model provided by
(Liu et al., 2024) uses the same configuration as
the LoRA setup with same training dataset. We
adhere to (Liu et al., 2024) setting to filter the train-
ing data and design the tuning prompt format. The



Method # Params (%) VQAv2 GQA VisWiz SQA VQAT POPE MMBench Avg

FT 100 78.5 61.9 50 66.8  58.2 85.9 64.3 66.5
LoRA 4.61 79.1 62.9 47.8 684 582 86.4 66.1 66.9
SEAL 4.61 75.4 58.3 41.6 66.9 529 86.0 60.5 63.1

Table 8: Performance comparison of different methods across seven visual instruction tuning benchmarks

Method LoRA SEAL
r 128

alpha 128

LR 2e-4 2e-5
LR scheduler Linear
Optimizer AdamW
Weight Decay 0
Warmup Ratio 0.03
Total Batch size 64

Table 9: Hyperparameters for visual instruction tuning.
All experiments were performed with 4x A100 80GB
with approximately 24 hours

fine-tuned models are subsequently assessed on
seven vision-language benchmarks: VQAv2(Goyal
et al., 2017), GQA(Hudson and Manning, 2019),
VisWiz(Gurari et al., 2018), SQA(Lu et al., 2022),
VQAT(Singh et al., 2019), POPE(Li et al., 2023),
and MMBench(Liu et al., 2023).
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Models LLaMA-2-7B

Method LoRA
r 32
alpha 32
LR 2e-5
Optimizer AdamW
LR scheduler Linear
Weight Decay 0
Warmup Steps 100
Batch size 16
Epoch 1

Target Modules Query Key Value UpProj DownProj

Table 10: Hyperparameter configurations of Finetruning Attack on SEAL-weight which trains on 3-epoch. We
resume training on N(A’; B"), which passport C is distributed in A, B.
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