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Foundation models are reshaping computational pathology by enabling transfer learning, where mod-
els pre-trained on vast datasets can be adapted for downstream diagnostic, prognostic, and therapeutic
response tasks. Despite these advances, foundation models are still limited in their ability to encode
the entire gigapixel whole-slide images without additional training and often lack complementary mul-
timodal data. Here, we introduce THREADS, a slide-level foundation model capable of generating uni-
versal representations of whole-slide images of any size. THREADS was pretrained using a multimodal
learning approach on a diverse cohort of 47,171 hematoxylin and eosin (H&E)-stained tissue sections,
paired with corresponding genomic and transcriptomic profiles—the largest such paired dataset to be
used for foundation model development to date. This unique training paradigm enables THREADS to
capture the tissue’s underlying molecular composition, yielding powerful representations applicable to
a wide array of downstream tasks. In extensive benchmarking across 54 oncology tasks, including clin-
ical subtyping, grading, mutation prediction, immunohistochemistry status determination, treatment
response prediction and survival prediction THREADS outperformed all baselines while demonstrating
remarkable generalizability and label efficiency. It is particularly well-suited for predicting rare events,
further emphasizing its clinical utility. We intend to make the model publicly available for the broader
community.
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Introduction

With the advancement of precision medicine and targeted therapies, problem statements in oncology focus
increasingly on rare conditions and targeted populations. As research questions become more specific, the
assumption of data abundance, which underpinned early successes in AI for pathology1, 2, such as Gleason
grading3 and metastasis detection4, no longer applies. Many current problem statements in oncology, espe-
cially for patient prognostication, and treatment response prediction, involve small patient cohorts, frequently
fewer than 100 patients. The limitation of data scarcity is compounded by the size of digitized tissue sections
(whole-slide images, WSIs), which can be several gigabytes each. Consequently, most computational pathol-
ogy predictive models operate in a scenario where the input data size vastly exceeds the number of available
samples for model training, making model training incredibly complex.

In response to these challenges, numerous foundation models specifically designed for pathology have
been developed5–7. These models enable transfer learning from large pretraining data with hundreds of thou-
sands of WSIs and billions of cells to narrow applications, such as biomarker prediction. However, most of
these models are patch encoders and, by design, are restricted to encoding small regions of interest, orders of
magnitude smaller than clinical whole-slide imaging data, which can be several gigabytes. Existing models ad-
dress the limitation by training an additional model, which can be computationally expensive to train and may
require a lot of downstream labels. Addressing this limitation is critical for advancing foundation models in
pathology to more varied tasks and overcoming the data abundance requirement. Some models have explored
whole-slide image representation learning to derive off-the-shelf slide embeddings that can be used for various
downstream tasks at minimal cost6, 8–11. However, they remain limited in scope by the diversity of training data
with organ and disease-specific models9, 10, and the predictive capabilities of the resulting representations.

Here, we introduce a new foundation model for pathology, THREADS, a general-purpose encoder model
that can generate WSI embeddings. THREADS was pretrained through multimodal contrastive learning, where
molecular profiles obtained with next-generation sequencing are used as a guide for learning the slide rep-
resentation. We posit that molecular data brings a holistic and unbiased view of the tissue morphology that
encapsulates biologically and clinically relevant information9, 10. To train THREADS, we assembled the most
extensive multimodal training dataset to date, named MBTG-47K, consisting of more than 47,000 samples.
Each sample includes a WSI and its corresponding molecular profile obtained from an adjacent tissue sec-
tion (Figure 1.a). MBTG-47K was curated from Massachusetts General Hospital (MGH, 6,899 samples,
or 14.6%), Brigham and Women’s Hospital (BWH, 20,556 samples or 43.6%), The Cancer Genome Atlas
Program (TCGA, 10,209 samples or 21.6%), and the Genotype–Tissue Expression (GTEx, 9,507 samples or
20.2%) consortium12 (Extended Data Table 1). This pretraining strategy leads to a slide embedding space
that encodes rich information about tissue morphology, disease, and composition (Figure 1.b).

We validate THREADS across a wide range of tasks in oncology, covering clinical tasks for cancer sub-
typing and grading, gene mutation prediction, immunohistochemistry status prediction, and treatment response
and survival prediction (Figure 1.d). In total, our model is evaluated on 54 pathology tasks from 23 co-
horts across 17 different sources. THREADS achieves state-of-the-art performance, significantly outperform-
ing three whole-slide encoder models PRISM 13 (P-value<0.001), GIGAPATH 6 (P-value<0.001) and CHIEF
11 (P-value<0.001), and attention-based multiple instance learning classification baselines (P-value<0.001).
THREADS can also serve as an effective initialization for additional model fine-tuning, which brings a sig-
nificant improvement over training a model from scratch (P-value<0.001). This establishes THREADS as a
foundational model that can drive AI advancements in histopathology.
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Figure 1: Study overview. a. Tissue site distribution of MBTG-47K used for THREADS pretraining. b. 2-
dimensional tSNE 14 representation of THREADS WSI embedding space on MBTG-47K colored by primary
organ. Each point is a WSI. c. Block diagram of THREADS architecture for WSI representation learning. d.
Overview of THREADS downstream evaluation composed of 54 tasks. Tasks are grouped into four families:
clinical subtyping and grading (n=8 tasks), gene mutation prediction (n=21 tasks), immunohistochemistry
status prediction (n=12 tasks), and treatment response and survival prediction (n=13 tasks). WSI: whole-slide
image; tSNE: t-distributed stochastic neighbor embedding; MGH: Mass General Hospital; BWH: Brigham and
Women’s Hospital.
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Results

Whole-slide image classification with THREADS

THREADS design. THREADS consists of two components. An ROI encoder model (CONCHV1.5 15) con-
sisting of a Vision Transformer-Large16, 17 (ViT-L) model trained on millions of image patches via multimodal
learning between ROIs and text captions; and a slide encoder that aggregates tile embeddings into a slide
representation using attention-based modeling (Figure 1.c and Extended Data Figure 1). We use two types
of next-generation sequencing (NGS) data for THREADS pretraining: transcriptomic profiles obtained with
bulk RNA sequencing (MGH, TCGA, and GTEx samples), and genomic profiles capturing single nucleotide
variants (SNVs), insertions and deletions (indels), and copy number variants (CNVs) of a targeted gene panel
(BWH samples). The transcriptomic profiles are encoded using a single-cell foundation model pretrained on
5.7 million cells of various cancer types18, and the genomic profiles using a multi-layer perceptron model19.
We employ cross-modal contrastive learning to align the slide representation with the corresponding molecular
embedding. Additional information is provided in the Online Methods, Pretraining dataset curation.

Downstream evaluation. We propose a large benchmark for assessing foundation models in hematoxylin and
eosin (H&E)-stained whole-slide imaging. Our evaluation includes 54 tasks from 23 different cohorts, covering
four families of tasks: clinical subtyping and grading (n=8 tasks, 20,427 WSIs), gene mutation prediction (n=21
tasks, 3,503 WSIs), immunohistochemistry (IHC) status prediction (n=12 tasks, 2,469 WSIs), and patient
prognostication including treatment response and survival prediction (n=13 tasks, 2,857 WSIs). We curated
tasks from a set of in-house data (n=12 tasks including 3,550 WSIs from three cohorts) and publicly available
data (n=42 tasks including 23,161 WSIs from 17 cohorts). The diversity of tasks makes our benchmark suitable
for assessing the predictive performance of slide encoders under different scenarios, from well-established
clinical tasks with data abundance, such as colorectal cancer grading and breast cancer subtyping, to specific
problem statements in treatment response prediction typically characterized by small patient cohorts. Our
evaluation constitutes, to date, the most comprehensive benchmark introduced in computational pathology.
All tasks follow a unified evaluation with either five-fold cross-validation into 80:20 splits or 50-train-test
splits, depending on cohort size with label- and patient-stratified splits. An overview of each evaluation task is
provided in Figure 1.d, with additional descriptions in the Online Methods, Downstream tasks and datasets,
statistics for each task in Extended Data Table 2,3,4,5,6,7, and links to access public cohorts detailed in
Extended Data Table 8.

Baselines. We compare THREADS against three foundation models for encoding WSIs: PRISM, GIGAPATH,
and CHIEF. PRISM is based on the Virchow7 patch encoder (ViT-Huge, 632 million parameters) followed
by a Perceiver model20 (45 million parameters) pretrained using contrastive learning with matched patient-
level pathology reports (195,344 specimens). GIGAPATH is based on a ViT-Giant patch encoder (1.13 billion
parameters) pretrained on 171,000+ WSIs (>30,000 patients) using DINOv221, and a LongNet22 slide en-
coder pretrained using masked autoencoding. Finally, CHIEF is based on the CTransPath23, 24 patch encoder
(Swin-Transformer, 28 million parameters) followed by an attention-based multiple instance learning (AB-
MIL) model25 pretrained on 60,530 WSIs using contrastive learning with the tissue site. Additional information
is provided in the Online Methods and Baselines.

We evaluate THREADS and baselines using linear probing (i.e., by learning a logistic regression model) to
classify slide embeddings into the downstream task label. To prevent overfitting, we avoid hyperparameter
tuning and set a fixed cost, number of iterations, and solver in linear probe models. We evaluate model per-
formance using the area under the receiver operating characteristic (AUC) for all binary classification tasks,
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quadratic Cohen’s kappa for grading, balanced accuracy for multi-class clinical subtyping, and concordance-
index (c-index) for survival tasks. We provide additional information in the Online Methods, Evaluation
metrics.

Linear probing. THREADS provides state-of-the-art performance in linear probing evaluation. THREADS

leads to an absolute performance gain over PRISM, GIGAPATH, and CHIEF of 6.3%, 9.9%, 6.7%, respectively
(Figure 2.a). Employing a mixed-effects statistical model to compare the overall performance (Online Meth-
ods, Statistical analysis), we showed that THREADS significantly outperformed PRISM (P<0.001), CHIEF

(P<0.001), and GIGAPATH (P<0.001). When investigating each family of tasks, THREADS demonstrates
absolute performance improvements of 2.1% in clinical subtyping and grading over PRISM, the second-best
model (P<0.001, Figure 2.b), 6.1% in mutation prediction over CHIEF (P<0.001, Figure 2.c), 4.6% in IHC
status prediction over PRISM (P<0.01, Figure 2.d), and 8.9% in prognostication over PRISM (P<0.001, Fig-
ure 2.e). At the individual task level, THREADS outperforms PRISM in 44/54 tasks, CHIEF in 49/54 tasks, and
GIGAPATH in 54/54 tasks. The performance per task is detailed in Extended Data tables 9 to 37.

When investigating performance in diagnostic tasks (cancer subtyping and grading), THREADS with a linear
model achieves performance levels that are competitive with specialist models3, 26. For instance, THREADS

reaches 98.3% AUC in breast cancer subtyping (invasive lobular carcinoma vs. invasive ductal carcinoma),
and 98.2% AUC in lung cancer subtyping (lung adenocarcinoma vs. lung squamous cell carcinoma). In
comparison, an attention-based MIL model25 trained on the same data with >1.5 million parameters reaches
98.3% and 98.0%, respectively (Extended Data Table 9 and 10). In colorectal cancer grading, THREADS

with linear probing reaches 91.9% quadratic Cohen’s kappa score, just 2.3% lower than training a dedicated
ABMIL model (94.2%) (Extended Data Table 13). These findings underscore the extensive capabilities of
THREADS in providing rich slide representations for clinical use.

To validate the superior performance of THREADS in linear probing evaluation, we additionally benchmarked
THREADS and baselines with varying the regularization cost (Extended Data Figure 3 and Extended Data
Table 38). THREADS provides significant performance gain over all baselines for all the regularization costs
explored: 4.3% absolute performance gain over PRISM (second-best performer) with large regularization
(C=0.01), and 5.7% over CHIEF (second-best performer) with small regularization (C=10). THREADS is
also less sensitive to changes in regularization than baselines across all regularization strengths, showing the
model’s robustness and versatility.

Transferability of THREADS. We also investigated whether linear models trained with THREADS embedding
show generalization properties when tested in external cohorts. To this end, we selected a subset of tasks from
our evaluation pipeline for which we have an external test set. Specifically, we first train a linear probe classifier
on the entirety of one dataset and test on the entirety of the external set. We studied transferability in six differ-
ent types of cancer: prediction of BAP1 and PRMB1 mutations in clear cell renal cell carcinoma, IDH mutation
in a cohort of glioblastoma and low-grade glioma, prediction of ER/PR status in invasive breast cancer, subtyp-
ing in lung cancer, and survival prediction in pancreatic adenocarcinoma. Overall, THREADS provides strong
transferability properties that lead to significantly better performance than PRISM (P-value<0.001), GIGAP-
ATH (P-value<0.001), and CHIEF (P-value<0.001) as shown in Extended Data Figure 5 and Extended Data
Table 39. THREADS outperforms all baselines in 8/9 tasks (task-wise P-values <0.001 in 7/9 tasks in compar-
ison to the second-best baseline). In lung and breast cancer subtyping, THREADS preserves a high predictive
performance of 98.4% and 96.5% AUC, respectively, on the external cohort. Similarly, in ER and PR status
prediction, THREADS leads to 88.5% and 79.4% AUC, maintaining high predictive performance. These results
highlight the ability of THREADS to capture clinically and biologically relevant information without overfitting
on cohort- and institution-specific features.
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Data and label efficiency of THREADS

As pathology and oncology progress, problem statements become increasingly specific, resulting in scenarios
that inherently face constraints in data availability. Such limitations are particularly prevalent in predicting pa-
tient treatment response and resistance. As part of our evaluation pipeline, we curated six treatment prediction
tasks and one treatment assessment task covering several cancer types. Specifically, we tested THREADS to
predict response in patients treated with temozolomide in glioblastoma (93 patients, Figure 2.f), bevacizumab
in ovarian cancer (36 patients, Figure 2.g), hormonal therapy in prostate adenocarcinoma (53 patients, Fig-
ure 2.h), and neoadjuvant chemotherapy in high-grade serous ovarian cancer (183 patients, Extended Data
Table 37), and platinum (and taxane for a subset) in ovarian metastasis of metastatic breast cancer (75 pa-
tients, Extended Data Table 36). THREADS also provides a tool for response assessment to detect signs of
vascular invasion in patients with breast cancer treated with neoadjuvant chemotherapy (53 WSIs, Figure 2.i).
THREADS provides better performance than baselines in all seven tasks, overall significantly outperforming
baselines as assessed using a mixed-effect model statistical analysis (P-value<0.001, Figure 2.l). When con-
sidering individual tasks, THREADS significantly outperforms all baselines in 4/7 (P-value<0.05).

THREADS embeddings can also be used for patient survival prediction. We employ this approach for
predicting overall survival in patients with pancreatic adenocarcinoma (Figure 2.k), colon and rectum adeno-
carcinoma (Figure 2.l), clear cell renal cell carcinoma (Extended Data Table 33), head and neck squamous
carcinoma (Extended Data Table 34), and lung adenocarcinoma (Extended Data Table 32). Across all
six survival tasks from our evaluation, THREADS provides the best predictive performance in five of them,
overall providing significantly better performance than all baselines (P-value<0.001, Figure 2.m). The sur-
vival analysis using Kaplan Meier estimators also reveals the superior stratification capabilities of THREADS,
which provide better separation between groups of patients considered as low and high risk than all baselines
(Extended Data Figure 6).

To complement our analysis in data-scarce problem statements, we benchmarked THREADS and baselines in
few-shot learning experiments, where we monitor the test performance when training on an increasing number
of samples: k = 1, 2, 4, 8, 16, 32, where k is the number of training samples per class. We use the GBM-
Treatment response dataset for treatment response prediction (Extended Data Figure 4.a and Extended Data
Table 43)), EBRAINS dataset27 for fine-grained (n=30 classes) and coarse-grained (n=12) brain tumor sub-
typing (Figure 2.m, Extended Data Figure 4.b, and Extended Data Table 42), the BRACS dataset28 for
fine-grained (n=7) and coarse-grained (n=3) breast tumor subtyping (Extended Data Figure 4.c,d and Ex-
tended Data Table 41), and the BCNB dataset29 for ER status prediction (Extended Data Figure 4.e,f and
Extended Data Table 40). THREADS provides the best linear probing performance, outperforming baselines
for most values of k. The predictive capabilities of THREADS are particularly highlighted in subtyping rare
brain tumors, where THREADS performance with k=4 is superior to PRISM performance (second best per-
former) with k=16 (Figure 2.n).

THREADS fine-tuning

THREADS can also serve as weight initialization for further finetuning on a downstream task. This approach
combines the benefit of large-scale pretraining while letting the model adapt to the nuances of the downstream
application. Here, we fine-tuned a THREADS-initialized model on every downstream task in our evaluation
pipeline. We employ a unified fine-tuning recipe that is applied to all tasks (Online Methods, Baselines).
To mitigate overfitting and costly hyperparameter searches, we did not apply layer-wise learning rate decay,
weight decay, or gradient accumulation. We apply a similar strategy to fine-tune CHIEF. For GIGAPATH, we
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Figure 2: Evaluation of THREADS and baselines with linear probing. a. Average performance of THREADS

and baselines on 54 tasks. THREADS is compared against PRISM, GIGAPATH, and CHIEF. Average perfor-
mance per family of tasks: b. clinical subtyping and grading (8 tasks), c. mutation prediction (21 tasks), d. IHC
status prediction (12 tasks), and e. treatment response and survival prediction tasks (13 tasks). f–k THREADS

performance on treatment response and prognostication tasks characterized by label scarcity (n=36 to n=144
patients). Binary tasks (f–i) are measured with AUC. Survival tasks (j,k) are measured with concordance-
index. f. Temozolomide treatment response in glioblastoma (GBM). g. Bevacizumab treatment response in
ovarian cancer (OV). h. Neoadjuvant response assessment in invasive breast cancer (BRCA). i. Hormonal
therapy response in prostate adenocarcinoma (PRAD). j. Overall survival (OS) prediction in pancreatic duc-
tal adenocarcinoma (PDAC). k. Overall survival prediction in colon adenocarcinoma (COAD). l. Number of
tasks where each model (THREADS and baselines) reaches highest performance across all tasks (n=54 tasks),
treatment response (n=6 tasks) and survival tasks (n=7 tasks). m. Few-shot learning performance of THREADS

against baselines in brain tumor subtyping. k refers to the number of training samples per class. Error bars rep-
resent the standard error measured across multiple folds. Boxes indicate quartile values of model performance
(n=5 runs), and whiskers extend to data points within 1.5-fold the interquartile range. Task-wise P-values were
determined using two-sided Tukey Honest Significance Difference tests accounting for multiple comparisons
following a positive result (P<0.05) of a two-way ANOVA. Statistical significance across multiple tasks (e.g.,
for each family) was assessed using a mixed-effects model. P<0.05: *, P<0.01: **, P<0.001: ***.
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follow the recommended recipe of gradient accumulation, weight decay, and layer-wise learning rate decay.
Fine-tuning recipe for PRISM is not provided.

THREADS leads to significantly better performance than CHIEF fine-tuning (absolute gain of 17.9% and P-
value<0.001 assessed with mixed-effects statistical modeling) and GIGAPATH (absolute gain of 7.3%, P-
value<0.001) in our 54-task evaluation pipeline. When inspecting individual tasks, THREADS leads to sig-
nificantly better performance than CHIEF and GIGAPATH in 54/54 tasks and 40/54 tasks (P-value<0.001),
respectively (Figure 3.a). In addition, THREADS fine-tuning leads to a 4.3% absolute performance boost over
an attention-based MIL baseline trained from scratch (P-value<0.001 assessed with mixed-effects modeling).
THREADS leads to the largest performance gain in challenging tasks characterized by small to medium-size
cohorts, such as mutation prediction (absolute gain of 5.5% over ABMIL and 7.7% over GIGAPATH, Figure
3.b), treatment response and survival prediction (gain of 4.3% over ABMIL and 9.4% over GIGAPATH, Figure
3.c) and IHC status prediction (gain of 4.5% over ABMIL and 9.8% over GIGAPATH, Figure 3.d). In clinical
subtyping and grading tasks, characterized by larger cohorts, THREADS performance is comparable to GIGA-
PATH fine-tuning and ABMIL training Figure 3.e. Additional results for specific tasks are provided in Figure
3.f,g,h,i,j.

We additionally compared THREADS fine-tuning with a randomly initialized THREADS model. Overall, fine-
tuning leads to an average absolute gain of 2.2% across all 54 tasks (P-value<0.001 assessed with mixed-effects
statistical modeling as shown in Figure 3.k). In examining task performance across different families of tasks,
we find that fine-tuning yields the most significant improvement, a 2.8% increase, in mutation prediction tasks,
which typically involve challenging tasks and cohorts of small to medium size. Conversely, it shows the
smallest improvement, a 0.5% increase, in clinical subtyping and grading, where the training cohorts tend to
be larger and the tasks more objective. Additional results for specific tasks are provided in (Figure 3.l).

Retrieval capabilities of THREADS

THREADS is designed to provide off-the-shelf slide and patient embeddings. This property enables case and
patient retrieval without additional model training or fine-tuning. To this end, we extract THREADS slide
(and patient) embeddings for a collection of samples for which a diagnosis has already been made. We use
these samples as a reference database to compare new query cases, which are first embedded using THREADS,
and then compared to the k most similar embeddings (Figure 3.a). The other three slide encoders (PRISM,
GIGAPATH, and CHIEF) are processed and evaluated in a similar manner. We evaluate retrieval performance
using mean Average Precision at k (mAP@k), which measures the average number of relevant results within
the top k retrieved items, weighted by their rank and averaged over all queries.

In rare brain tumor retrieval assessed with the EBRAINS dataset (30 classes, n=2,319 cases), THREADS pro-
vides the best overall performance for all values of k, significantly outperforming all baselines (P-value<0.001
for 3/3 baselines at all k) (Figure 3.b). We additionally study retrieval performance on the CPTAC consor-
tium data, which aggregates cases from 10 cancer types for a total of 2,115 slides. THREADS outperforms
all three baselines for k = 1, 5, and 10 (P-value<0.05 for 3/3 baselines at mAP@1, P-value<0.001 for 2/3
baselines at mAP@5, and P-value<0.001 for 2/3 baselines at mAP@10) (Figure 3.c). These results high-
light how THREADS can encode clinically relevant information and retrieve similar cases for comparison and
investigation. Additional results are provided in Extended Data Table 45 and 44.

Molecular prompting with THREADS
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Figure 3: THREADS fine-tuning. a. Average performance of THREADS and baselines finetuned on 54 bench-
marking tasks, along with average performance for each family of tasks: b. clinical subtyping and grading
(8 tasks), c. mutation prediction (21 tasks), d. IHC status prediction (12 tasks), and e. treatment response
and survival prediction (13 tasks). Task-wise comparison of THREADS and baselines finetuned on individual
tasks: f. RAS status prediction in SURGEN colorectal adenocarcinoma (COAD). g. TP53 mutation prediction
in CPTAC-COAD. h. PIK3CA mutation prediction in CPTAC breast invasive carcinoma (BRCA). i. Beva-
cizumab response prediction in ovarian cancer with fine-tuning. j. Temozolomide response prediction in MGB
glioblastoma (GBM). k. Comparison of THREADS fine-tuning vs. training a THREADS model from scratch
on our benchmark and families of tasks. l. Task-wise performance of THREADS fine-tuning vs. THREADS

randomly initialized on ten representative tasks. Error bars represent standard error, and the centers correspond
to the mean computed values of each metric. Task-wise P-values were determined using two-sided Tukey
Honest Significance Difference tests accounting for multiple comparisons following a positive result (P<0.05)
of a two-way ANOVA. Statistical significance across multiple tasks (e.g., for each family) was assessed using
a mixed-effects model. P<0.05: *, P<0.01: **, P<0.001: ***.
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A hallmark characteristic of multimodal foundation models is to enable transfer and generalization without
task supervision. In vision-language models like CLIP 30 and CONCH 15, such capabilities include zero-shot
classification, in which by formulating class labels (e.g., “Lung Adenocarcinoma”, “Lung Squamous Cell
Carcinoma”) as text prompts via natural language, tasks such as NSCLC subtyping can be performed with-
out requiring training data. In THREADS, we introduce a novel multimodal capability known as “molecular
prompting” (Figure 4.d), in which canonical molecular profiles (e.g., molecular representations of their corre-
sponding disease states) can be leveraged to perform clinical tasks without requiring any task-specific model
development. To perform molecular prompting, for each class, we average the representations of molecular
profile data from a support dataset (encoded using the molecular branch of THREADS) to create class-wise
molecular prototypes, which can then be used for cross-modal slide retrieval and classification. At inference
time, we classify a query WSI by assigning it to the class of the nearest molecular prompt based on L2 distance.

We evaluated molecular prompting across eight tasks, including clinical cancer subtyping, gene mutation and
IHC status prediction, and prognostication (Figure 4.e). Classification with molecular prompts achieves com-
petitive performance across diverse tasks. Building IDH wild-type and mutant prompts from TCGA-GBMLGG
and testing on EBRAINS yields a high AUC of 0.960, comparable to linear probing with THREADS WSI em-
bedding (0.961). Molecular prompts can also represent typical high- and low-risk profiles, allowing patient
survival to be estimated based on similarity to these prompts (additional information is provided in Online
Methods, Evaluation). For instance, high- and low-risk prompts generated from TCGA-CCRCC and applied
to prognosis prediction on CPTAC-CCRCC achieve a competitive C-index of 0.687. Additional results can be
found in Extended Data Table 46.

Insights into THREADS.

Scaling laws. We additionally study scaling laws in THREADS, building on existing works in foundation
models that highlighted the benefits of larger training datasets and model sizes5, 7. To this end, we pretrained
THREADS using subsets of MBTG-47K of varying sizes. We sampled 1%, 5%, 25%, 50%, and 75% of the data
from each source, ensuring uniform sampling across major tissue sites. This resulted in the creation of MBTG-
1 (473 histomolecular pairs), MBTG-5 (2,356 histomolecular pairs), MBTG-25 (11,791 histomolecular pairs),
MBTG-50 (23,584 histomolecular pairs), and MBTG-75 (35,377 histo-molecular pairs). THREADS highlights
a data scaling law, as shown in Figure 5.a. Across all tasks, we observe a +3.9% performance increase when
using 1% to 100% of MBTG-47K. All families of tasks benefit from data scaling, with treatment response
and survival prediction tasks showing the largest performance gain (+5.2%). When comparing THREADS

against baselines, we also observe that our approach is more data-efficient than PRISM (trained on 195,344
specimens), GIGAPATH (trained on 171,189 whole-slide images), and CHIEF (trained on 60,530 whole-slide
images). Additional information is provided in Extended Data Table 47.

We also assessed model scaling laws by ablating THREADS using a varying number of attention heads, result-
ing in models with a single head (5.0 million parameters in the slide encoder), two heads (proposed approach,
11.3 million parameters), four heads (19.7 million parameters), six heads (28.1 million parameters) and a ViT
model with two Transformer layers (16.1 million parameters). We observe that model scaling peaks with a
two-head model and then plateaus or leads to decreased performance (-1.0% when using six vs. two attention
heads). A ViT baseline trained with THREADS leads to lower performance than our proposed architecture by
6.3%. Comparing THREADS against PRISM and GIGAPATH highlights the parameter-efficiency of THREADS.
Despite being 4.0× and 7.5× smaller than PRISM and GIGAPATH slide encoders, THREADS leads to signifi-
cantly better performance on our benchmark. CHIEF is lightweight due to its compact architecture but provides
significantly lower performance than our single-head model. This analysis highlights that scaling model size
in slide encoder does not necessarily lead to better performance and that other factors are more important.
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Additional information is provided in Extended Data Table 48.

Mean pooling. To better understand the superior performance of THREADS over baselines, we conducted
additional ablations. First, we compared the quality of THREADS patch embeddings (based on CONCHV1.5)
against GIGAPATH patch encoder, PRISM patch encoder (based on VIRCHOW), and CHIEF patch encoder
(based on CTRANSPATH). To this end, we adopt mean pooling to derive a slide embedding, which we then
use for linear probing classification. CONCHV1.5 with mean pooling reaches an average of 68.9% across
all tasks outperforming VIRCHOW, GIGAPATH and CHIEF by 2.7%, 2.6% and 3.8%, respectively (Figure
5.a and Extended Data Table 47). We hypothesize that this gain stems from (i) vision-language fine-tuning
in CONCHV1.5, whereas VIRCHOW, GIGAPATH, and CTRANSPATH are vision-only models, and (ii) from
extracting patch features on larger regions (512×512-pixel regions vs. 256×256-pixel in baselines) which
can better capture morphological context. We also note that CONCHV1.5 is a ViT-Large model (307 million
vision parameters), whereas PRISM uses a ViT-H (632 million parameters, 2.0× more than CONCHV1.5), and
GIGAPATH used a ViT-G (1.13 billion parameters, 3.7× more than CONCHV1.5), highlighting the parameter-
efficiency of our pipeline.
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Figure 4: Retrieval and prompting capabilities of THREADS. a. Method overview for case retrieval. b. Rare
brain tumor subtype retrieval in EBRAINS (n=30 subtypes) evaluated using mean Average Precision (mAP).
c. Cancer subtype retrieval in CPTAC (n=10 cancer subtypes) evaluated using mAP. d. Method overview
for molecular prompting. e. Molecular prompting performance on eight tasks. Error bars represent 95%
confidence intervals and the centers correspond to computed values of each metric. P-values were determined
using two-sided Tukey Honest Significance Difference tests accounting for multiple comparisons following a
positive result (P<0.05) of a two-way ANOVA. P<0.05: *, P<0.01: **, P<0.001: ***.
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Figure 5: Properties of THREADS. a. Data scaling law of THREADS across all tasks and families of tasks.
Percentage of training slides varies from 1% to 100% of MBTG-47K. b. Model scaling law of THREADS

across all tasks and families of tasks. c. Absolute performance gain of THREADS and slide encoder baselines
over the mean pooling baselines from their respective patch encoder and RESNET50-IN. Performance aver-
aged on our 54-task benchmark. Absolute performance gain of THREADS and slide encoder baselines over
the mean pooling baselines from their respective patch encoder and RESNET50-IN for each family of tasks:
d. clinical subtyping and grading (8 tasks), e. mutation prediction (21 tasks), f. immunohistochemistry sta-
tus (IHC) prediction (12 tasks), g. treatment response and survival prediction (13 tasks). RESNET50-IN is
ResNet50 model pretrained on ImageNet (IN).
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We additionally compare slide encoders with their respective mean pooling baselines, i.e., CONCHV1.5
mean pooling and THREADS, GIGAPATH mean pooling and GIGAPATH, CTRANSPATH mean pooling and
CHIEF, and VIRCHOW mean pooling and PRISM (Figure 5.c). Using linear probing evaluation across all
tasks, THREADS leads to a gain of 6.36% over CONCHV1.5 mean pooling (P-value<0.001) and 19.3% over
RESNET50-IN mean pooling (P-value<0.001). In contrast, GIGAPATH slide encoder leads to lower perfor-
mance than mean pooling (-0.83%). Both PRISM and CHIEF lead to a performance gain over their respec-
tive mean pooling (2.86% in PRISM and 4.40% in CHIEF), lower than THREADS performance gain. This
observation highlights the complexity of whole-slide representation learning in capturing information-dense
off-the-shelf embeddings.

Clustering in THREADS embedding space. To study the superior performance of THREADS in predicting
clinically and biologically relevant information from whole slide images, we explored the clustering capabili-
ties of the latent space compared to baselines. To this end, we embedded all slides from the ten CPTAC cohorts
(n=2,115 WSIs) using THREADS and baselines. We then applied K-means clustering, where the number of
clusters was set to the number of cancer types (n=10). From there, we computed two clustering metrics: the
adjusted Rand index (ARI) and mutual information (MI) (Extended Data Figure 2). THREADS highlights
better clustering capabilities than PRISM, GIGAPATH, and CHIEF (for instance ARI=0.654 for THREADS vs.
0.354 for CHIEF). In addition, we derived tSNE visualization of the latent space, which further highlights the
separability of THREADS compared to baselines. We conducted a similar analysis with EBRAINS for fine
brain tumor subtyping (30 classes). We observe similar trends with THREADS highlighting better clustering
and linear separability than baselines (for instance, MI=2.104 for THREADS vs. 1.44 for GIGAPATH).

Discussion

In this study, we introduced THREADS, a foundation model for pathology that can provide biologically and
clinically relevant representations of H&E-stained whole-slide images. THREADS uses a novel multimodal
pretraining strategy, where the learned slide representation is guided by its corresponding molecular profile.
Using this strategy, the resulting slide representations can capture morphological features reflective of the un-
derlying molecular composition of the tissue. THREADS was thoroughly tested on a wide benchmark of 54
tasks, covering four families of tasks: clinical cancer subtyping and grading, gene mutation prediction, im-
munohistochemistry status prediction, and treatment response and survival prediction. THREADS consistently
shows state-of-the-art performance under several evaluation scenarios, including in- and out-of-domain gener-
alization, few-shot learning, and case retrieval. Importantly, THREADS can reach clinical-grade performance
on subtyping and grading tasks using simple linear models built upon our slide embeddings. THREADS also
highlights great potential for patient outcome prediction and can help identify patients who will respond to
certain treatments.

THREADS sets apart from existing methods using its unique pretraining strategy based on multimodal
alignment with molecular profiles. Unlike PRISM 13, which relies on matching pathology reports, molecular
data provide an unbiased, objective perspective on cellular and tissue states, free from the subjective influences
inherent in written reports. On the other hand, CHIEF 11 and GIGAPATH 6 employ weaker pretraining signals,
relying on contrastive alignment with tissue sites and masked autoencoding, respectively. We hypothesize that
these approaches lack the capacity to capture the subtle morphological features essential for addressing most
clinical tasks. Our investigation into scaling laws of THREADS further reveals that the saturation point of
model and data scale remains an open question in slide representation learning. We found that simpler clinical
tasks, such as cancer grading, do not benefit significantly from larger pretraining datasets. However, more
challenging tasks–particularly those involving treatment response prediction and molecular predictions–show
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substantial performance gains when models are trained on larger and more diverse datasets. This indicates
that data diversity and pretraining strategy are critical factors influencing the efficacy of the resulting model.
THREADS is significantly smaller than existing models, being 7.5 × smaller than GigaPath and 4.0 × smaller
than PRISM. This suggests that in slide representation learning, simply scaling model size may not be the
most influencing factor for building general-purpose models. In addition, THREADS is trained on a highly
diverse dataset that includes 39 main human tissue sites following the highest level of the OncoTree cancer
classification system. In contrast, GIGAPATH, CHIEF, and PRISM are trained on less diverse tissue sites, often
with a skewed distribution toward skin, breast, and lung cases. We hypothesize that the broader diversity in
THREADS likely contributes to its enhanced generalizability and robustness across a wide range of tasks and
tissue types.

Despite these advancements, certain limitations remain. Although THREADS was pretrained on an un-
precedented cohort of over 47,000 histomolecular pairs, it cannot encompass the full spectrum of molecular
and morphological heterogeneity. As next-generation sequencing becomes more widely deployed in clini-
cal settings, the potential to scale THREADS ’ pretraining dataset by orders of magnitude may reshape this
landscape, potentially uncovering new scaling laws that are currently beyond reach with our existing cohorts.
Additionally, extending our molecular-guided approach to include other molecular assays, such as immunohis-
tochemistry and special stains, could broaden the scope of THREADS 10. In addition, THREADS architecture
uses a multihead attention-based model, which treats patch embeddings independently. Attempts to replace
our backbone with a Vision Transformer model fail to match the performance of simpler models, even the
ones with a single attention head. The use of larger image patches (512 × 512 pixels) instead of the typical
256 × 256 pixels in most patch encoders may reduce the need for explicit context modeling. Alternatively,
slide encoders based on Transformers may need a larger pretraining cohort size for significant performance
improvements.

THREADS has the potential to impact various aspects of computational pathology and oncology. First,
it can bring off-the-shelf integration in data-scarce scenarios. THREADS can be readily used to prototype new
tasks and assess predictive performance at a minimal cost. In addition, the reduced training data requirements
enable the development of clinical-grade predictive systems for rare diseases. Researchers and clinicians can
also utilize THREADS pretrained weights as initialization for additional fine-tuning on specific tasks. This
transfer learning approach can accelerate model development and can improve performance on specialized
tasks, such as rare molecular alteration classification or treatment response and resistance prediction. Finally,
the case retrieval capabilities of THREADS make it well-suited for identifying rare conditions in clinical set-
tings. Overall, our study highlights the rich biological information contained in molecular assays, which can
be transferred to slide encoders to advance the development of diagnostic and prognostic tools. Future work
will focus on scaling the pretraining dataset size and increasing the biological richness of the training signal
by including additional modalities.

Online Methods

The Mass General Brigham (MGB) institutional review board approved the retrospective analysis of pathol-
ogy slides (whole-slide images or WSIs), corresponding next-generation sequencing (NGS) assays, and cor-
responding reports used in this study. Research conducted in this study involved a retrospective analysis of
pathology slides and NGS assays, and the participants were not directly involved or recruited for the study.
The requirement for informed consent to analyze archival pathology slides and NGS assays was waived. Be-
fore scanning and digitization, all pathology slides were de-identified to ensure anonymity. The sample sizes
were determined by the availability of the data.
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Pretraining dataset curation

We present THREADS pretraining dataset, MBTG-47K, a large and diverse dataset composed of paired formalin-
fixed paraffin-embedded (FFPE) haematoxylin and eosin (H&E) whole-slide images (WSIs), tissue bulk RNA
expression, and DNA variant data including single nucleotide variations (SNV), insertions and deletions (in-
dels), and copy number variations (CNV). Sourced from the Massachusetts General Hospital (MGH), the
Brigham and Women’s Hospital (BWH), the Genotype-Tissue Expression (GTEx) consortium, and The Can-
cer Genome Atlas (TCGA), the dataset comprises 47,171 WSIs from 39 major organs, totaling 125,148,770
512 × 512-pixel histology images tiled at 20× magnification. 26,615 WSIs have associated RNA expression
data, and 20,556 WSIs have associated DNA variant data. The total size of the dataset is 40.7 TB. We describe
each data source contributing to the MBTG-47K dataset. Additional information is provided in Extended
Data Table 1.

MGH. Anchored multiplex PCR31 and next-generation sequencing (NGS) of total nucleic acid were applied
to generate bulk RNA expression data using FusionPlex (Integrated DNA Technologies, Coralville, IA). The
Solid Fusion Assay V2 is a clinically validated pan-cancer RNA assay that targets canonical exons involved in
fusion variants of 59 genes and control genes. The assay generates predominantly RNA reads to detect gene
fusions, splicing, exon-skipping events, and gene expression. In this study, we focused on bulk gene expression
data. Transcript abundance for each gene was quantified using the Kallisto 0.50.1 pseudo alignment software,
with an index built from GENCODE Human Release v45 (genome assembly GRCh38.p14). Measurements
from different isoforms were summed to acquire a single total per gene. RNA expression was summarized as
transcripts per million (TPM) and further normalized by taking the log2 of TPM across 54 genes. No additional
batch effect normalization techniques were applied. The associated H&E glass slides were scanned using an
Aperio GT450 scanner at 40×. In total, 6,899 FFPE H&E WSI and bulk RNA expression pairs from 25 tissue
sites were utilized. The final MGH dataset amounted to 11.0 TB.

BWH. OncoPanel is an Agilent SureSelect hybrid capture targeted DNA NGS assay designed to detect SNVs,
indels, CNVs, and some structural variations. Library preparation, sequencing, and bioinformatics analysis
have been previously described32. Similar to the MGH Solid Fusion Assay V2, OncoPanel testing was per-
formed according to a routine clinical workflow with expert molecular pathologist review. For THREADS, we
sourced SNV, CNV, and indel data associated with 20,556 FFPE H&E slides from 32 tissue sites. We subsetted
the data to 239 common genes across the OncoPanel versions used in this study (ranging from 2012 to 2020).
CNVs were categorized into four groups: two-copy deletion, loss, gain, and amplification. SNVs and indels
were categorized into three groups: small coding change, large coding change, and non-coding change. The
mutation status of each gene was multi-hot encoded and concatenated together to form a vector of length 7;
therefore, across the 239 genes, the variant status vector has a length of 1,673. The H&E WSIs associated with
the OncoPanel testing were scanned using an Aperio GT450 scanner at 40× magnification. The final BWH
dataset amounted to 12.0 TB.

TCGA. The Cancer Genome Atlas (TCGA) contributed 10,209 FFPE H&E WSIs from 32 cancer types, paired
with bulk RNA expression. TCGA includes histology data from over 11,000 cancer patients, with tissue sam-
ples scanned at 40× and 20× magnification using Aperio and Hamamatsu scanners. The expression data
comprises bulk whole-transcriptomic RNA sequencing analysis from approximately 20,000 samples across 33
cancer types, with a sequencing depth of 50-200 million reads per sample, using Illumina HiSeq platforms.
Exclusion criteria for WSIs were frozen tissue, benign and non-diagnostic, missing appropriate magnification
information and metadata necessary for processing, and lacking associated RNA expression. While TCGA pro-
vides whole-transcriptome sequencing, we selected a set of 4,917 cancer-related genes33, which was reduced
to 4,848 genes present in the vocabulary of our transcriptomic encoder (scGPT encoder18) used to generate
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molecular embeddings (Online Methods, Model Design and Development). RNA expression was measured
in transcripts per million (TPM) and further normalized by taking the log2 of TPM. No additional batch effect
normalization techniques were applied. The final TCGA dataset amounted to 10.5 TB.

GTEx. The Genotype-Tissue Expression (GTEx)12 contributed 9,507 FFPE H&E WSIs and bulk RNA ex-
pression pairs from 29 tissue sites to MBTG-47K. GTEx includes FFPE WSIs from 24,782 non-cancerous
samples scanned at 40× magnification using either Aperio AT2 or Hamamatsu NanoZoomer-XR. The expres-
sion data comprises whole-transcriptome bulk RNA sequencing from 17,382 samples, with a depth of 50-100
million reads per sample, using Illumina HiSeq 2000/2500 platforms. Exclusion criteria for WSIs include
missing appropriate magnification information and metadata necessary for processing and lacking associated
RNA expression. Even though GTEx provides whole-transcriptome sequencing, we selected a set of 5,000
genes showing maximum variation (as measured by the standard deviation of log2 of TPM) across all organs.
This gene set was reduced to 4,932 genes found in the vocabulary of our transcriptomic encoder (scGPT18).
RNA expression was measured in transcripts per million (TPM) and further normalized by taking the log2 of
TPM. No additional batch effect normalization techniques were applied. The final GTEx dataset amounted to
7.2 TB.

Downstream tasks and datasets

We provide a description of each task and cohort in our benchmark, which includes 54 tasks from 23 datasets
across nine major organs. Our benchmark covers six types of tasks: morphological tumor subtyping (Extended
Data Table 2, 52, 53, 56, 57, 58, 59), tumor grading (Extended Data Table 3, 54, 55), immunohistochemistry
status prediction (Extended Data Table 4), prediction of gene-level mutations (Extended Data Table 5),
treatment response prediction (Extended Data Table 6), and survival prediction (Extended Data Table 7).

MGB-Breast. We used an internal cohort of invasive breast cancer (BRCA) for morphological and immuno-
histochemistry status prediction10, 34. MGB-Breast comprises 1,264 WSIs (mix of biopsies and resections)
scanned from Brigham and Women’s Hospital (one WSI per patient). We curated one morphological subtyp-
ing task (Extended Data Table 52) and three immunohistochemistry (IHC) status prediction tasks: estrogen
receptor (ER) status prediction, progesterone receptor (PR) status prediction, and human epidermal growth
factor receptor 2 (HER2) status prediction. ER, PR, and HER2 status were manually extracted from pathology
reports. Additional information is provided in Extended Data Table 2 and Extended Data Table 4.

MGB-Lung. We used an internal cohort of lung cancer cases for morphological and IHC status prediction10, 34.
MGB-Lung comprises 1,939 WSIs scanned from Brigham and Women’s Hospital (one WSI per patient). We
curated one morphological subtyping task (Extended Data Table 53) and six immunohistochemistry tasks: (1)
thyroid transcription factor-1 (TTF-1) status prediction, (2) protein 40 (P40) status prediction, (3) protein 63
(P63) status prediction, (4) Napsin A status prediction, (5) caudal type homeobox 2 (CDX2) status prediction,
and (6) cytokeratin 5 and 6 (CK5-6) status prediction. Additional information is provided in Extended Data
Table 2 and Extended Data Table 4.

BCNB. We used the public BCNB dataset29 (Breast Cancer Core-Needle Biopsy) for IHC status prediction in
breast cancer. BCNB comprises 1,058 WSIs (one WSI per patient) which we use for ER status prediction, PR
status prediction, and HER2 status prediction. Additional information is provided in Extended Data Table 2.

MUT-HET-RCC. We used the MUT-HET-RCC dataset35 for mutation prediction in renal cell carcinoma.
MUT-HET-RCC comprises 1,291 WSIs (one WSI per patient) which we use for (1) BAP1 mutation prediction,
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(2) PBRM1 mutation prediction, and (3) SETD2 mutation prediction. Additional information is provided in
Extended Data Table 5.

IMP. We used the public IMP-CRS 2024 dataset (IMP)36 for colorectal cancer grading. IMP consists of 5,333
WSIs collected from colorectal biopsies and polypectomies. IMP is used for 3-class tumor grading into non-
neoplastic lesions, low-grade lesions (adenomas with low-grade dysplasia), and high-grade lesions (adenomas
with high-grade dysplasia and invasion) (see Extended Data Table 54). Additional information is provided in
Extended Data Table 3.

Prostate cANcer graDe Assessment (PANDA). We used the public PANDA data for prostate cancer grading
(ISUP grading)3. PANDA comprises 10,616 core needle biopsies from Radboud University Medical Cen-
ter and Karolinska Institute, each annotated with an ISUP grade (6-class classification task). We follow
prior work5, 37 in excluding slides with equivocal labels (https://www.kaggle.com/competitions/
prostate-cancer-grade-assessment/discussion/169230), which resulted in 9,555 slides with
the label breakdown shown in Extended Data Table 55. We used the train split (7,647 WSIs) and test split
(954 WSIs) from GIGAPATH 6, and we did not use their validation split (954 WSIs). Additional information is
provided in Extended Data Table 3.

Clinical Proteomic Tumor Analysis Consortium (CPTAC). We used the public CPTAC data for pan-cancer
mutation prediction38, 39. Specifically, we included (1) CPTAC-BRCA (invasive breast cancer) for PIK3CA
and TP53 mutation prediction, (2) CPTAC-CCRCC (clear-cell renal-cell carcinoma) for BAP1 and PBRM1
mutation prediction, (3) CPTAC-COAD (colon adenocarcinoma) for KRAS and TP53 mutation prediction,
(4) CPTAC-GBM (glioblastoma) for EGFR and TP53 mutation prediction, (5) CPTAC-HNSC (head and neck
squamous cell carcinoma) for CASP8 mutation prediction, (6) CPTAC-LSCC (squamous cell lung carcinoma)
for KEAP1 and ARID1A mutation prediction, (7) CPTAC-LUAD (lung adenocarcinoma) for EGFR, STK11
and TP53 mutation prediction, and (8) CPTAC-PDAC (pancreatic ductal adenocarcinoma) for SMAD4 muta-
tion prediction. We also used overall survival data for CPTAC-CCRCC, CPTAC-PDAC, CPTAC-LUAD, and
CPTAC-HNSC40. Additional information is provided in Extended Data Table 5.

BReAst Carcinoma Subtyping (BRACS). We used the public BRACS dataset28 for coarse- and fine-grained
breast morphological subtyping. BRACS consists of 547 breast carcinoma WSIs from 189 patients sourced
from IRCCS Fondazione Pascale. Each WSI is used for coarse-grained (Extended Data Table 56) and fine-
grained (Extended Data Table 57) morphological subtyping. Due to the limited size of the official test set,
we redefined train-test splits with an 80:20 ratio. Because BRACS-Fine and BRACS-Coarse are slide-level
prediction tasks with multiple slides per case, we kept all slides belonging to the same patient together, ensuring
one patient does not end up in both train and test. Therefore, this dataset was not explicitly label-stratified (as
each patient would have multiple labels). Additional information is provided in Extended Data Table 2.

EBRAINS. We used the EBRAINS dataset27 for coarse- and fine-grained brain tumor subtyping. EBRAINS
consists of 3,114 WSIs acquired by the EBRAINS Digital Tumor Atlas at the University of Vienna. We reused
splits from UNI5, which kept categories with at least 30 samples, resulting in 2,319 slides. Each WSI is used
for coarse-grained (Extended Data Table 58) and fine-grained (Extended Data Table 59) morphological
subtyping. Splits are stratified by patients to ensure slides from a patient are not found in both train and test
splits. Additional information is provided in Extended Data Table 2.

OV-Bevacizumab. We used the OV-Bevacizumab dataset41 for treatment response prediction in ovarian cancer.
OV-Bevacizumab consists of 288 WSIs from 78 patients. Non-responders are defined as having a measurable
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regrowth of the tumor or as a serum CA-125 concentration of more than twice the value of the upper limit
of normal during the treatment course for the bevacizumab therapy. We kept all patients who received beva-
cizumab as their first-line treatment and additionally removed four cases (case IDs: P00181938C, 2630938,
2224393, 2937351), which were labeled as both responders and non-responders, yielding 85 WSIs from 36
patients. Additional information is provided in Extended Data Table 6.

NADT-Prostate. We used the neoadjuvant androgen deprivation therapy (NADT)-Prostate dataset42 for hor-
monal therapy response prediction in prostate adenocarcinoma. Baseline tumor volumes were estimated using
multiparametric magnetic resonance imaging (mpMRI). After 6 months of NADT combined with enzalu-
tamide, patients underwent a second mpMRI before radical prostatectomy (RP). The final pathologic response
to treatment was defined by a residual cancer burden of 0.05 cubic centimeters, distinguishing responders from
non-responders. While the entire dataset consists of 1,401 WSIs with various stains, we only used the H&E
stained WSIs, yielding 449 WSIs from 36 patients (20× magnification). Additional information is provided in
Extended Data Table 6.

Treatment response in glioblastoma (GBM-Treatment). We collected an internal cohort of 93 glioblastoma
patients, accounting for 347 H&E-stained slides, who received radiotherapy and temozolomide43, 44. Based on
patient survival in months following treatment initiation (all patients deceased) and a cutoff of 15 months 45,
we stratified the patients into responders and non-responders. Additional information is provided in Extended
Data Table 6.

Post-NAT-BRCA. We used the post-neoadjuvant therapy (NAT) breast invasive carcinoma (Post-NAT-BRCA)
dataset46 to assess the presence of lymphovascular invasion in post-NAT WSIs. The dataset contains 53 H&E-
stained WSIs from 50 patients (20× magnification). Additional information is provided in Extended Data
Table 6.

SURGEN. We used public cases from the SR386 cohort of SurGen47, which includes 389 patients with colon
and rectum adenocarcinoma. For each patient, we predict mismatch repair (MMR) loss, BRAF mutation,
KRAS mutation, 5-year death, and overall survival. Treatment information is available only for a subset of
patients. Additional information is provided in Extended Data Table 7 and 5.

MBC. We used the public Bergstrom dataset48, 49 from which we retrieved 77 metastatic breast cancer patients
(MBC) with corresponding H&E WSIs (n=99 WSIs, 1 to 2 WSI per patient). All 77 patients were treated
with platinum, with a subset of 54 who were additionally treated with taxane. We predict Response Evaluation
Criteria in Solid Tumors (RECIST1.1) and overall survival. Since all patients in MBC received the same
treatment, predicting survival can be considered as predicting response to the treatment given. Additional
information is provided in Extended Data Table 7 and 5.

BOEHMK. We used the public BOEHMK50 dataset comprising 183 patients for which we could retrieve the
H&E WSI and corresponding metadata, including overall and progression free survival. Patients were diag-
nosed with high-grade serous ovarian cancer and treated with neoadjuvant chemotherapy followed by interval
debulking surgery, or underwent primary debulking surgery. Since all patients in BOEHMK received the same
treatment, predicting progression free survival can be considered as predicting response to the treatment given.
Additional information is provided in Extended Data Table 6 and 7.

TCGA (generalizability). TCGA-GBMLGG consists of 1,123 WSIs from 558 patients with glioblastomas
multiforme (GBM) and lower-grade gliomas (LGG). The WSIs are classified into two classes: isocitrate de-
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hydrogenase (IDH) mutation (425 WSIs) and no IDH mutation (698 WSIs). EBRAINS serves as an external
cohort for this task (IDH MUT: 333 WSIs, IDH WT 540 WSIs). TCGA-BRCA (invasive breast carcinoma)
consists of 1,048 WSIs from 983 patients. The WSIs are classified into two cancer subtypes: invasive duc-
tal carcinoma (IDC) (838 WSIs) and invasive ductal carcinoma (ILC) (210 WSIs). MGB-Breast subtyping
serves as external cohort for this task. TGCA-BRCA is also used for IHC status prediction: ER (996 WSIs
total, 78.3% WSIs positive), PR (993 WSIs total, 68.2% WSIs positive), HER2 (692 WSIs total, 22.8% WSIs
positive)10. BCNB serves as external cohort IHC status prediction. TCGA-Lung (lung cancer) consists of
1,043 WSIs from 946 patients with non-small cell lung cancer (NSCLC). The WSIs are classified into two
classes: lung adenocarcinoma (LUAD, 531 slides) and lung squamous cell carcinoma (LUSC, 512 slides).
MGB-Lung subtyping serves as the external cohort for this task. We define TCGA-LUAD as only the adeno-
carcinomas and use this dataset for overall survival prediction (509 WSIs from 446 patients, 60.1% censored).
CPTAC-LUAD is used as the external test cohort for this task. TCGA-PDAC (pancreatic ductal adenocarci-
noma) consists of 180 WSIs from 166 patients with PDAC. We use overall survival labels (47.2% censored)
while testing on CPTAC-PDAC for external validation.

Data splits. We created two types of splits: k = All splits, which distribute all available samples between train
and test, and fewshot splits, which restrict the size of the training set to only a few examples (“shots”). For
certain datasets (EBRAINS, PANDA, IMP), we use “official” single-fold k = All splits that have been publicly
released. Otherwise, we create 80:20 train:test splits using 5-fold cross-validation or 50-fold bootstrapping. We
also create fewshot splits with k ∈ {1, 2, 4, 8, 16, 32} examples per class. For fewshot splits, if there is more
than one k = All fold, then corresponding fewshot splits are created by sampling k items from the training
set of each k = All fold, and masking the remainder. Otherwise, bootstrapped fewshot splits are created by
repeatedly sampling k items from the single training fold. Note that the test set of all splits for each task is the
same. For certain tasks with classes containing too few labeled examples, we omit k = 32 fewshot splits.

Model design and development

Each WSI goes through three steps: (1) tissue detection and patching, (2) feature extraction from each patch,
and (3) slide encoding using THREADS.

Tissue segmentation and patching. Each slide is tiled into fixed-size image patches and processed using
a pretrained vision model to extract patch-level feature embeddings. For compute efficiency, we only pro-
cess patches overlapping with tissue and ignore background regions. Background vs. tissue segmentation is
performed using a deep learning feature pyramidal network (FPN) fine-tuned from the segmentation-
models-pytorch package51 on an in-house dataset of mask annotations. Non-overlapping 512×512-pixel
patches are extracted at 20× magnification (∼ 0.5 µm/px) for each slide.

Patch encoder. We use the CONCHV1.5 patch encoder, the next iteration of CONCH15. CONCHV1.5 was
trained by initializing UNI weights5 followed by full multimodal fine-tuning using image captions. UNI is
a state-of-the-art vision-only foundation model for pathology trained on 100 million image patches of size
224×224 pixels using a Vision Transformer Large (ViT-L)16. Fine-tuning was conducted with 1.17 million
vision-language pairs (pathology image/caption pairs) using CoCa52 on 448×448-pixel patches, as described
in 15, 53. 512×512-pixel patches were resized to 448×448, and normalized using default ImageNet mean and
standard deviation parameters before being passed to CONCHV1.5. An overview of CONCHV1.5 training
hyperparameters is provided in Extended Data Table 49.

Slide encoder. THREADS consists of an attention-based multiple instance learning (ABMIL) model 25, 54 with
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single or multiple attention heads, depending on the configuration. For the single-headed configuration, raw
patch embeddings are projected from 768-dimensional CONCHV1.5 features to 1024-dimensional features X
using a pre-attention network with three hidden layers, layer normalization, GELU activation, and 0.1 dropout.
The attention head processes batched input patch features X ∈ RN×1024, where N is the number of patches.
The gated attention mechanism comprises three fully connected layers: two parallel layers (a and b) with
a hidden dimension of 1024 and 25% dropout, followed by a final layer (c). The attention weights α are
computed as:

α = c(tanh(aX)⊙ σ(bX)) (1)

where ⊙ denotes element-wise multiplication, tanh and σ represent the hyperbolic tangent and sigmoid func-
tions, respectively. The final slide-level features s are computed by multiplying the softmax-normalized atten-
tion scores by the patch features:

s = softmax(α)⊤X (2)

In the multi-headed configuration, the pre-attention network includes a third hidden layer (GELU activation,
0.1 dropout), which projects from hidden dimension 1024 to M × 1024, where M is the number of heads. The
output of this layer is chunked into M feature vectors, each processed separately by its corresponding attention
head. The aggregated slide-level features from each head are concatenated and projected with a post-attention
linear layer L : R(M×1024) → R1024 to derive the final 1024-dimensional slide embedding.

Gene expression encoder. We encode gene expression data using a modified scGPT model18. scGPT is a
single-cell foundation model based on the Transformer architecture17. While originally developed for single-
cell gene expression encoding, we adapted it to operate on bulk RNA expression data55. Expression data
preprocessing was performed for each data source as described in Online Methods, Pretraining dataset
curation. scGPT consists of three encoders: a gene-identity encoder G, an expression-value encoder E, and
a transformer encoder T . G is a lookup table of learned 512-dimensional gene identity embeddings followed
by layer normalization. E is a 2-layer MLP that expands each 1-dimensional continuous expression value into
a 512-dimensional vector, and is preceded by 0.2 dropout and followed by layer normalization. The outputs
of G and E are summed and passed into T , which consists of 12 stacked Transformer blocks, each with eight
attention heads. We bypass the final decoder layers of scGPT and pass the mean of all tokens (including CLS)
from the last transformer layer into a 2-layer projection head P : R512 → R1024. During THREADS pretraining,
all layers of the gene expression encoder are fine-tuned. G, E, and T are initialized from the pancancer
checkpoint (pretrained on 5.7 million cells of various cancer types), while P is randomly initialized.

SNV and CNV encoder. SNV and CNV data represent unstructured data that can be challenging to encode.
Here, we adopt a simple strategy of using a multi-hot encoding passed through a 4-layer MLP (1 input, 2
hidden, and 1 output) with ReLU activation and 0.2 dropout19. Details about the multi-hot encoding strategy
are presented in the Online Methods, Pretraining dataset curation. The hidden dimension of the MLP is set
to the input size (ie., 1673), and mapped to the final output dimension, 1024. Our gene mutation encoder has
10128068 parameters in total.

Pretraining protocol. We pretrained THREADS using 4 × 80GB A100 GPUs. The model was trained with a
batch size of 300 per GPU for a maximum of 101 epochs, with early stopping based on RankMe56 (for details,
see Model Selection below). We start with a 5-epoch linear warmup, gradually increasing the learning rate
from 0 to 1× 10−5. After the warmup, we apply a cosine scheduler that decays the learning rate from 1× 10−5

down to 1 × 10−8 by the end of training. The weight decay is set to 0.0001 throughout. To improve training
efficiency and data diversity, we sample 512 patches per slide during each training iteration. The AdamW
optimizer was employed with β values of (0.9, 0.999). Hyperparameters and training settings are provided in
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Extended Data Table 50 and 51.

Model selection. During pretraining, assessing the quality of the latent space and knowing when to stop
training can be challenging. Previous works have relied on monitoring the downstream task performance at
regular intervals, e.g., at the end of each epoch. However, this evaluation can be computationally intensive and
result in optimizing testing performance during training, which risks artificially inflating the results. Following
prior work10, 10, we instead assess the expressivity of the embedding space by computing the smooth rank56 of
all slide embeddings within the training dataset after each epoch. Intuitively, a higher rank indicates greater
diversity among the patch embeddings, ensuring that the representations have not collapsed into a limited
number of modes, i.e., a low-rank space. Here, we compute the rank as the entropy of the d (assuming d < n)
L1-normalized singular values of the slide embedding matrix H ∈ Rn×d, which can be expressed as:

RankMe(H) = exp(−
d∑

k=1

pk log(pk)), pk =
σk(H)∑n

k=1 |σk(H)|
+ ϵ (3)

where σk denotes the kth singular value of H (sorted from large to low), and ϵ is small constant set to 1e−7 for
numerical stability. A model checkpoint is saved if the rank of the training dataset increases. Rank monitoring
is started after the initial learning rate ramp-up.

Slide embedding extraction. For evaluation, we take the final output of the slide encoder with dimensionality
1024 (Eq. 2). For patients with multiple WSIs, we provided the union of all patch embeddings from all WSIs
(belonging to that patient) to THREADS, resulting in a patient-level embedding. All patches in a slide are used
while extracting slide embedding, i.e., no patch sampling is done Slide embeddings were extracted using bf16
precision on 1× 24GB NVIDIA 3090Ti.

Finetuning. We finetune THREADS slide encoder using the AdamW optimizer with a base learning rate
of 0.000025. We do not apply weight decay, layer-wise learning rate decay, or gradient accumulation. All
THREADS finetuned models are trained with a weighted cross-entropy loss for five epochs with a batch size
of 1, sampling 2048 patches per batch. We use the same learning rate scheduler as GIGAPATH. No early
stopping was applied; the final model used is the one obtained after five epochs. All fine-tuning experiments
were conducted on a 1× 24GB NVIDIA 3090Ti with bf16 precision.

Baselines

THREADS is compared against four types of baselines: GIGAPATH, PRISM, CHIEF and attention-based multi-
ple instance learning (ABMIL).

GIGAPATH

Slide encoder. GIGAPATH 6 is a slide encoder model consisting of a pretrained patch encoder and a pretrained
slide encoder. The patch encoder is a Vision Transformer (ViT) pretrained on 171,000+ pan-cancer WSIs
from over 30,000 patients using DINOv221. The slide encoder was trained using a LongNet22 model with
masked autoencoding. 1536-dimensional patch features were extracted using the GIGAPATH patch encoder
on 256×256 patches at 20× magnification. We employed the official demo of GIGAPATH for extracting
slide embeddings1 and used the slide encoder checkpoint from Huggingface, resulting in a 768-dimensional

1https://github.com/prov-gigapath/prov-gigapath/blob/main/gigapath/slide encoder.py
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pooled embedding. For patients with multiple WSIs, we processed each WSI separately and averaged the WSI
embeddings. Slide embeddings were extracted using fp16 precision on 1× 24GB NVIDIA 3090Ti.

Finetuning. To finetune GIGAPATH slide encoder, we follow the official recipe: The patch encoder is kept
frozen, and we initialized GIGAPATH slide encoder using the HuggingFace checkpoint and added a randomly
initialized linear classification head. As per the official codebase2, we finetuned GIGAPATH for all tasks using
a batch size of 1, the AdamW optimizer, effective base learning rate of 0.00025, gradient accumulation over
32 steps, weight decay of 0.05, layer-wise learning rate decay of 0.95, and 5 epochs, without early stopping.
We use a learning rate scheduler with half-cycle cosine decay after a one-epoch linear warmup up to the base
learning rate. All patches were provided (no sampling) during training or testing. GIGAPATH finetuning was
performed using 1× 80GB NVIDIA A100 with fp16 precision.

Mean pooling. We additionally define a baseline where we average GIGAPATH patch embeddings, resulting
into a slide embedding.

PRISM

Slide encoder. PRISM is a vision-language slide encoder that uses Virchow (ViT-H/14)7 patch encoding.
Virchow was trained on > 2 × 109 patches (from over 100,000 patients) using DINOv221. PRISM was then
trained using a Perceiver20 model with CoCa52 on 587,000 WSIs-clinical reports pairs. Following the official
Virchow demo3, we first tiled all WSIs into 256×256-pixel patches at 20× and then used the publicly available
patch encoder from HuggingFace to extract 2560-dimensional patch features. We then used the official PRISM

codebase4 to aggregate the patch embeddings of each WSI into a 1280-dimensional slide encoding. For patients
with multiple WSIs, we provided the union of all patch embeddings from all WSIs (belonging to that patient)
to PRISM. Slide embeddings are extracted using fp16 precision on 1× 24GB NVIDIA 3090Ti.

Mean pooling. We additionally define a baseline where we average VIRCHOW patch embeddings into a slide
embedding.

CHIEF

Slide embedding extraction. CHIEF 11 is an ABMIL-based slide encoder model that uses 768-dimensional
CTRANSPATH patch embeddings23. CHIEF was trained using contrastive learning by aligning the slide rep-
resentation with a text embedding of the tissue site. Following the official implementation, we compute
768-dimensional CHIEF pooled embeddings by passing CTransPath patch embeddings into the CHIEF slide
encoder. For patients with multiple WSIs, we provided the union of all patch embeddings from all WSIs (be-
longing to that patient) to CHIEF. Slide embeddings are extracted using fp32 precision on 1× 24GB NVIDIA
3090Ti.

CHIEF finetuning We employ the same finetuning recipe as in THREADS as both models are based on
attention-based multiple instance learning. CHIEF finetuning was performed using 1× 24GB NVIDIA 3090Ti
with fp32 precision.

2https://github.com/prov-gigapath/prov-gigapath/blob/main/scripts/run panda.sh
3https://huggingface.co/paige-ai/Virchow
4https://huggingface.co/paige-ai/Prism
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Mean pooling. We additionally define a baseline where we average CTRANSPATH patch embeddings into a
slide embedding.

RESNET50-IN

Mean pooling. We first extract patch embeddings using a ResNet5057 model trained on ImageNet58 (IN). We
define a baseline where we average RESNET50-IN patch embeddings into a slide embedding.

Attention-based multiple instance learning

We use the widely employed attention-based multiple instance learning (ABMIL) architecture. ABMIL as-
signs patch-level importance scores using a single-headed non-gated attention mechanism. These attention
scores are used to weight the patch embeddings, which are then summed to derive a slide embedding used for
classification. The model is designed with a pre-attention linear layer which preserves the dimensionality of
the input patch features (768 for CONCHV1.5) with GELU activation and 0.1 dropout, an attention network
with two layers (hidden dimension 512) where the first layer has tanh activation and 0.25 dropout, and a post-
attention linear layer with GELU activation and 0.1 dropout. The ABMIL models were trained for 20 epochs
with a batch size of 1, a learning rate of 0.0003 using a cosine scheduler, and the AdamW optimizer with a
weight decay of 1× 10−5. We use the final checkpoint for evaluation without early stopping. During training,
we randomly sample 2048 patch features from each WSI. In patient-level tasks, if a patient has more than one
WSI, then sampling is done from the union of all patches from those WSIs. During testing, all patches are pro-
vided to the model. For classification problems, we use a balanced cross-entropy loss. For survival prediction,
we use a negative log-likelihood (NLL) loss adapted for survival prediction 19.

Evaluation

Linear probing

In-domain. In classification tasks, we employ linear probing evaluation based on scikit-learn. We use a fixed
cost set to 0.5, lbfgs solver, a maximum of 10,000 training iterations, and balanced class weights. Since we
do not include a validation set, we did not perform any hyperparameter search, e.g. over the cost. Post-hoc
evaluation of the impact of the cost is reported in Extended Data Table 38 and Extended Data Figure 4.
To ensure fair comparisons, this evaluation recipe is applied to all sets of pooled features (THREADS, PRISM,
GIGAPATH, CHIEF, and respective MEAN POOLING baselines). In survival tasks, we use the CoxNet model
from sksurv59, training all models for 10,000 iterations. We set the α parameter of the CoxNet model to 0.07
for overall survival prediction tasks and to 0.01 for progression-free survival prediction tasks. We make the
following exceptions to ensure convergence: in CPTAC-CCRCC overall survival prediction, we set α to 0.01
in CHIEF, and in BOEHMK progression-free survival prediction, we set α to 0.02 in PRISM.

Out-of-domain (transferability). We run several sets of experiments to evaluate whether linear classifiers
trained on one dataset can generalize to the same task on another dataset (Extended Data Table 39. We use
the same setup as above and train on all samples of the ”train” dataset and evaluate on a single fold containing
all samples of the ”test” dataset. We evaluate the performance over 100 bootstraps of the test set outputs.

Retrieval
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We evaluate retrieval on tasks: cancer type retrieval (Extended Data Table 45) and EBRAINS fine and coarse
subtype retrieval (Extended Data Table 44). For cancer type retrieval, we use 10 CPTAC cohorts: BRCA,
CCRCC, COAD, HNSC, LUAD, LUSC, PDAC, GBM, OV, and UCEC. Each WSI within a cohort is labeled
as the cancer type associated with that cohort. We use L2 distance as the similarity metric and simply compare
the raw slide embedding of each slide in the test set with that of each slide in the training set. We consider up
to the top 10 most similar retrieved slides and assess whether their class label matches that of the query slide.
We compute mean average precision at k (mAP@k) for k ∈ {1, 5, 10}. Consider a set of n queries where for
each query i (where i = 1, 2, . . . , n), yi is the true label of the i-th query and rij is the label of the retrieved
item at rank j for query i (where j = 1, 2, . . . , k). Then, mAP@k is computed as:

mAP@k =
1

n

n∑
i=1

(
1

k

k∑
j=1

δrij ,yi ·
∑j

s=1 δris,yi
j

)
, where

δa,b =

{
1 if a = b,

0 if a ̸= b.

Prompting

In prompting, a training dataset of RNA expression profiles with task labels is encoded using an RNA expres-
sion encoder (scGPT from THREADS pretraining), producing class prompts by averaging profiles within each
class. For testing with an independent dataset, a WSI is encoded via the THREADS WSI encoder, and the L2
distance to all class prompts from the training set is computed. The final prediction is the class of the prompt
nearest to the WSI embedding. For classification, all samples within each class are used to construct prompts.
In survival prediction, prompts are based on the top and bottom 25% of uncensored patients ranked by sur-
vival time, representing low- and high-risk categories. The risk score at test time is defined as the distance
between the WSI query and high-risk prompt minus the distance between the WSI query and low-risk prompt.
In prompting with CONCHV1.5 MEAN POOLING, WSI embeddings are formed by averaging patch embed-
dings and further averaged by class to create prompts. At test time, classification uses the distance between
the WSI prompt and query slide embedding, while survival prediction applies the same approach, substituting
high- and low-risk molecular prompts with MEAN POOLING WSI prompts.

Metrics

For binary classification tasks, we report macro-AUC. For multi-class subtyping tasks, we report balanced ac-
curacy, and for multi-class grading tasks, we report quadratic weighted kappa score. For survival prediction
tasks, we report the concordance index (c-index). macro-AUC is a threshold-free measure that computes the
area under the receiver operating curve that plots the true positive rate against the false positive rate as the
classification threshold changes. Balanced accuracy takes the class imbalance in the evaluation set into ac-
count by computing the unweighted average of the recall of each class. Quadratic weighted Cohen’s kappa
quantifies the agreement between two annotators (e.g., ground truth and model prediction) on a classification
problem, adjusting for chance agreement and penalizing based on the distance between categories. The score
ranges from -1 (complete disagreement) to 1 (perfect agreement), with 0 indicating chance-level agreement.
Concordance index (C-index) evaluates the predictive accuracy of a risk model in survival analysis by con-
sidering the order of predicted risks and actual event times. It calculates the proportion of pairs where the
individual with higher predicted risk either experiences the event earlier or is censored later. The C-index
ranges from 0.5 (random) to 1 (perfect prediction). For a clear overview of the metric used for each task, see
column ”Metric” in Extended Data Tables 2 to 7).

24



Statistical analysis

For all tasks with more than one test fold, we report the mean and standard error across all folds of the corre-
sponding evaluation metric. For tasks with only a single test fold, we estimate 95% confidence intervals with
non-parametric bootstrapping using 100 bootstrap replicates.

To assess the performance of all baselines on a specific task, we first performed a two-way Analysis of Variance
(ANOVA), where the null hypothesis was that mean performance values did not differ across methods. We
leveraged consistent evaluation folds that enabled direct comparisons across methods. If the ANOVA showed
there was a statistically significant result (i.e., P-value<0.05), a post-hoc two-sided, one-way Tukey’s Honest
Significant Difference (HSD) test was conducted to determine which pairs of methods differed significantly.
Tukey’s HSD test performs adjustment for multiple comparisons by default, so reported P-values have been
adjusted for multiple comparisons60. Log-rank tests were used to compare Kaplan-Meier curves for statistically
significant differences19.

In addition to comparing performance on individual tasks, we aimed to assess which model performs best
across all tasks (the full benchmark and each family of tasks). To compare models on the full benchmark, we
fit a mixed-effects model on the data, estimating the baseline performance while accounting for the random
effect of each dataset. Contrasts between individual baselines were made using pairwise comparisons using the
estimated marginal means approach 61, 62. Briefly, after fitting our mixed-effects model with dataset as a random
effect and model type as a fixed effect, we calculate the estimated marginal means for each model. We then
performed pairwise comparisons between models using Tukey’s method to adjust for multiple comparisons. A
similar methodology was applied for each of the four families of tasks.

For all few-shot settings (Extended Data Fig. 6), we report results using box plots that indicate quartile values
of model performance with whiskers extending to data points within 1.5× the interquartile range.

Computing hardware and software

We used Python (version 3.10.12) and PyTorch (version 2.3.0, CUDA 12.3) (https://pytorch.org/)
for all experiments and analyses in the study (unless otherwise specified), which can be replicated using open-
source libraries as outlined below. To train THREADS in a CLIP-style manner, we modified the original CLIP
algorithm implemented by https://github.com/mlfoundations/open_clip. We used the im-
plementation of scGPT from https://github.com/bowang-lab/scGPT. For pretraining, we used
4× 80GB NVIDIA A100 GPUs configured for multi-GPU training using distributed data-parallel (DDP). All
other computations for downstream experiments were performed on single 24GB NVIDIA 3090 GPUs. All
WSI processing was supported by OpenSlide (version 4.3.1), openslide-python (version 1.3.1), and Trident
(https://github.com/mahmoodlab/trident), which additionally requires Pillow (version 10.2.0),
segmentation-models-pytorch (version 0.0.3), and opencv-python (version 4.10.0.84). We use Scikit-learn63

(version 1.5.0), Scikit-survival (version 0.23.0), and faiss (version 1.8.0) for training downstream machine
learning models, specifically Logistic regression, and Cox PH. Implementations of other slide encoders bench-
marked in the study are found at the following links: GigaPath (https://github.com/prov-gigapath/
prov-gigapath), which additionally required fairscale (version 0.4.13), flash-attn (version 2.5.8), and ninja
(version 1.11.1.1), PRISM (https://huggingface.co/paige-ai/Prism), and CHIEF (https:
//github.com/hms-dbmi/CHIEF). Matplotlib (version 3.8.4) and Seaborn (version 0.13.2) were used
to create plots and figures. Usage of other miscellaneous Python libraries is listed in the Reporting Summary.
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Code availability

Preprocessing code to (i) segment tissue from background, (ii) whole-slide image patching, and (iii) patch em-
bedding extraction for CONCHV1.5, CTRANSPATH, GIGAPATH, and VIRCHOW can be accessed at https:
//github.com/mahmoodlab/trident. Code to run our benchmark can be accessed from https://
github.com/mahmoodlab/patho-bench. Access to curated labels of publicly available cohorts, and
data splits employed in the study can be found at https://huggingface.co/datasets/MahmoodLab/
patho-bench. THREADS model weights and code to extract slide embeddings will be released upon publi-
cation.

Data availability

MBTG-47K: TCGA imaging data can be accessed through the NIH genomic data commons (https://
portal.gdc.cancer.gov). TCGA transcriptomics data can be accessed through the Xena Hub (https:
//xenabrowser.net/). GTEx imaging and transcriptomics data can be accessed through the GTEx por-
tal (https://www.gtexportal.org/home/). Pretraining data from BWH and MGH are proprietary
patient data, and cannot be made publicly available.

Benchmark: Download links to access publicly available cohorts included as part of our benchmark are
reported in Extended Data Table 8. Curated labels can be accessed via the THREADS-Benchmarking GitHub
repository. In-house cohorts cannot be made publicly available.
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Extended Data Figure 1: Detailed architecture of THREADS. THREADS employs a multimodal contrastive
learning approach to align a whole-slide image representation with its corresponding molecular profile, ob-
tained either using a DNA or RNA assay. a. The vision encoding branch uses a multihead attention-based
model to pool patch embeddings into a slide embedding. b. The RNA encoding branch uses an scGPT model
pretrained on 5.7 million cells of various cancer types, which is fully fine-tuned to yield a transcriptome embed-
ding. c. The DNA encoding branch uses a multilayer perceptron (MLP) to transform copy number variations
(CNV), insertions and deletions (indels), and single nucleotide variants (SNV) into a genomic embedding.
WSI: whole-slide image; ViT: vision transformer; concat.: concatenations; TPM: transcripts per million.
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Extended Data Figure 2: Clustering capabilities of THREADS. 2-dimensional tSNE representation of CPTAC
cohort stratified by cancer type (n=10 cancer types) using THREADS (a.), PRISM (b.), GigaPath (c.), and
CHIEF (d.). 2-dimensional tSNE representation of EBRAINS cohort stratified by tumor type (n=12 tumor
types) using THREADS (e.), PRISM (f.), GigaPath (g.), and CHIEF (g.). ARI: Adjusted random index; MI:
Mutual information; tSNE: t-distributed stochastic neighbor embedding.
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Extended Data Figure 3: Impact of regularization in linear probing evaluation in our benchmark (54
tasks). a. Evolution of the average performance when varying the cost (inverse of regularization strength) in
linear probing evaluation. b. Percentage of tasks where each baseline performs best based on the cost in linear
probing evaluation. Adaptive regularization computes regularization cost by taking the embedding dimension
times the number of classes normalized by 10064.
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Extended Data Figure 4: Few shot performance of THREADS compared to baselines. k refers to the number
of training samples per class. a. Temozolomide response prediction in glioblastoma. b. Coarse-grained
brain tumor subtyping in EBRAINS dataset. c. Fine-grained breast tumor subtyping in BRACS dataset. d.
Coarse-grained breast tumor subtyping in BRACS dataset. e. Estrogen receptor status prediction in BCNB. f.
Progesterone receptor status prediction in BCNB. Boxes indicate quartile values of model performance (n=5
runs), and whiskers extend to data points within 1.5-fold the interquartile range.
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Extended Data Figure 5: Transferability of THREADS. THREADS and baselines are trained on one cohort and
tested on an independent unseen test cohort. All test cohorts are independent of the MBTG-47K pretraining
cohort. a. Clear cell renal cell carcinoma (ccRCC) BAP1 mutation prediction (CPTAC → MUT-HET-RCC).
b. ccRCC PBRM1 mutation prediction (CPTAC → MUT-HET-RCC). c. Glioblastoma and low-grade glioma
(GBMLGG) IDH mutation prediction (TCGA → EBRAINS). d. Invasive breast cancer (BRCA) estrogen
receptor (ER) status prediction (TCGA → BCNB). e. BRCA progesterone receptor (ER) status prediction
(TCGA → BCNB). f. BRCA subtype prediction (TCGA → MGB-Breast). g. NSCLC (lung adenocarcinoma,
LUAD and lung squamous cell carcinoma LUSC) subtyping prediction (TCGA → MGB-Lung). h. LUAD
overall survival prediction (TCGA → CPTAC). i. Pancreatic adenocarcinoma (PDAC) overall survival pre-
diction (TCGA → CPTAC). j. Kaplan Meier (KM) curve of THREADS for PDAC overall survival prediction
(TCGA → CPTAC). k. KM curve for GigaPath overall survival prediction (TCGA → CPTAC). Error bars
represent 95% confidence intervals and the centers correspond to computed values of each metric. In Kaplan-
Meier curves, line shows value and shaded region shows 95% confidence interval. Task-wise P-values were
determined using two-sided Tukey Honest Significance Difference tests accounting for multiple comparisons
following a positive result (P<0.05) of a two-way ANOVA. Statistical significance across multiple tasks (e.g.,
for each family) was assessed using a mixed-effects model. In Kaplan-Meier curves, P-values correspond to
log-rank tests. P<0.05: *, P<0.01: **, P<0.001: ***.
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Extended Data Figure 6: Survival analysis of THREADS and baselines. Kaplan Meier survival plots of
THREADS (a,b,c), PRISM (d,e,f), GigaPath (g,h,i), and CHIEF (j,k,l) tested on pancreatic adenocarcinoma
(PDAC), clear cell renal cell carcinoma (ccRCC), and colon adenocarcima (COAD). The shaded region high-
lights 95% confidence intervals. P-values for Kaplan Meier curves were obtained using log-rank statistical
testing.
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Extended Data Table 1: Tissue Type Distribution in MBTG-47k. THREADS-pretraining consists of 47,171
WSIs across 40 major tissue types collected from Massachusetts General Hospital (MGH), Brigham &
Women’s Hospital (BWH), The Cancer Genome Atlas (TCGA), and the Genotype-Tissue Expression (GTEx)
consortium. Primary organs defined according to the highest level of the oncotree classification.

Primary organ
Number of slides

BWH GTEx MGH TCGA Total

Adipose 0 879 0 0 879
Adrenal Gland 182 162 8 387 739
Ampulla Of Vater 23 0 12 0 35
Artery 0 882 0 0 882
Biliary Tract 97 0 112 36 245
Bladder/Urinary Tract 596 0 97 451 1144
Blood 5 0 0 0 5
Bone 419 0 18 4 441
Bowel 2150 691 661 373 3875
Breast 457 327 256 1124 2164
Cervix 110 0 20 275 405
CNS/Brain 2394 646 774 1080 4894
Esophagus/Stomach 0 1202 276 0 1478
Eye 20 0 24 80 124
Head And Neck 549 129 449 470 1597
Heart 0 620 0 1 621
Kidney 508 64 114 885 1571
Liver 1825 0 172 337 2334
Lung 1264 383 1620 1042 4309
Lymph 1740 0 0 138 1878
Lymphoid 0 0 2 0 2
Muscle 0 563 0 0 563
Ovary/Fallopian Tube 820 116 173 71 1180
Pancreas 587 201 425 196 1409
Penis 6 0 0 0 6
Peripheral Nervous System 16 436 0 12 464
Peritoneum 469 0 27 2 498
Pleura 613 0 0 86 699
Prostate 474 165 127 447 1213
Skin 686 988 542 322 2538
Soft Tissue 1509 0 217 614 2340
Spleen 0 158 2 2 162
Stomach 1037 0 0 544 1581
Testis 88 245 1 256 590
Thorax 0 0 0 3 3
Thymus 38 0 6 142 186
Thyroid 401 465 377 518 1761
Unknown 431 0 230 0 661
Uterus 939 89 129 310 1467
Vulva/Vagina 103 96 28 1 228

Total 20556 9507 6899 10209 47171
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Extended Data Table 2: Summary of morphological subtyping prediction tasks. All are WSI-level predic-
tion tasks. BA: balanced accuracy, AUC: area under the receiver operating characteristic curve.

k=All Splits

Datasource Subtyping Task Organ Unit # Patients # WSIs # Classes Metric Train:Test Official? # Folds

MGB-BRCA IDC vs. ILC Breast WSI 1264 1264 2 AUC 1011:253 No 5
MGB-Lung LUAD vs. LUSC Lung WSI 1939 1939 2 AUC 1551:388 No 5
EBRAINS Coarse Brain WSI 2147 2319 12 BA 1746:573 Yes 1
EBRAINS Fine Brain WSI 2147 2319 30 BA 1746:573 Yes 1
BRACS Coarse Breast WSI 189 547 3 BA 396:151 No 5
BRACS Fine Breast WSI 189 547 7 BA 396:151 No 5

Extended Data Table 3: Summary of tumor grading prediction tasks. Both are WSI-level prediction tasks.
QWK: quadratic weighted kappa.

k=All Splits

Datasource Organ Unit # Patients # WSIs # Classes Metric Train:Test Official? # Folds

PANDA Prostate WSI 9555 9555 6 QWK 7647:954 Yes 1
IMP Colon WSI 5333 5333 3 QWK 4433:900 Yes 1

Extended Data Table 4: Summary of molecular subtyping tasks. All are patient-level prediction tasks.
% Positive refers to percentage of samples with positive marker. AUC: area under the receiver operating
characteristic curve.

k=All Splits

Datasource Marker Organ Unit # Patients # WSIs % Positive Metric Train:Test Official? # Folds

MGB-BRCA ER Breast Patient 874 874 70.1% AUC 699:175 No 5
MGB-BRCA PR Breast Patient 874 874 57.7% AUC 699:175 No 5
MGB-BRCA HER2 Breast Patient 816 816 18.5% AUC 652:164 No 5
BCNB ER Breast Patient 1058 1058 78.5% AUC 846:212 No 5
BCNB PR Breast Patient 1058 1058 74.7% AUC 846:212 No 5
BCNB HER2 Breast Patient 1058 1058 26.2% AUC 846:212 No 5
MGB-Lung TTF-1 Lung Patient 488 488 67.0% AUC 390:98 No 5
MGB-Lung P40 Lung Patient 185 185 38.9% AUC 148:37 No 5
MGB-Lung P63 Lung Patient 153 153 52.9% AUC 122:31 No 5
MGB-Lung Napsin A Lung Patient 126 126 52.4% AUC 100:26 No 5
MGB-Lung CDX-2 Lung Patient 79 79 30.4% AUC 63:16 No 5
MGB-Lung CK5/6 Lung Patient 58 58 50.0% AUC 46:12 No 5
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Extended Data Table 5: Summary of mutation prediction tasks. All are patient-level prediction tasks. AUC:
area under the receiver operating characteristic curve.

k=All Splits

Datasource Gene Organ Unit # Patients # WSIs % Mutated Metric Train:Test Official? # Folds

CPTAC-BRCA PIK3CA Breast Patient 103 112 35.9% AUC 83:20 No 50
CPTAC-BRCA TP53 Breast Patient 103 112 40.8% AUC 83:20 No 50
CPTAC-CCRCC BAP1 Kidney Patient 103 245 16.5% AUC 83:20 No 50
CPTAC-CCRCC PBRM1 Kidney Patient 103 245 45.6% AUC 83:20 No 50
CPTAC-COAD KRAS Colon Patient 94 98 38.3% AUC 76:18 No 50
CPTAC-COAD TP53 Colon Patient 94 98 66.0% AUC 76:18 No 50
CPTAC-GBM EGFR Brain Patient 99 243 24.2% AUC 80:19 No 50
CPTAC-GBM TP53 Brain Patient 99 243 32.3% AUC 80:19 No 50
CPTAC-HNSC CASP8 Head & Neck Patient 107 256 10.3% AUC 86:21 No 50
CPTAC-LSCC KEAP1 Lung Patient 108 304 12.0% AUC 87:21 No 50
CPTAC-LSCC ARID1A Lung Patient 108 304 12.0% AUC 87:21 No 50
CPTAC-LUAD EGFR Lung Patient 108 324 36.1% AUC 87:21 No 50
CPTAC-LUAD STK11 Lung Patient 108 324 16.7% AUC 87:21 No 50
CPTAC-LUAD TP53 Lung Patient 108 324 59.3% AUC 87:21 No 50
CPTAC-PDAC SMAD4 Pancreas Patient 105 242 19.0% AUC 84:21 No 50
MUT-HET-RCC BAP1 Kidney Patient 1291 1291 12.5% AUC 1032:259 No 5
MUT-HET-RCC PBRM1 Kidney Patient 1291 1291 51.8% AUC 1032:259 No 5
MUT-HET-RCC SETD2 Kidney Patient 1291 1291 27.0% AUC 1032:259 No 5
SURGEN BRAF Colon Patient 388 388 10.8% AUC 310:78 No 5
SURGEN RAS Colon Patient 389 389 35.5% AUC 311:78 No 5
SURGEN MMR Colon Patient 389 389 7.7% AUC 311:78 No 5

Extended Data Table 6: Summary of treatment response and assessment tasks. Unit refers to whether a
task is a patient-level or WSI-level prediction task. % Positive refers to the fraction of cases either exhibiting
positive (favorable) response or the criterion specified. Type refers to whether slides are resections, biopsies,
or both. AUC: area under the receiver operating characteristic curve.

k=All Splits

Datasource Criterion Organ Type Unit # Patients # WSIs % Positive Metric Train:Test Official? # Folds

NADT-Prostate Radiological response Prostate Resection Patient 36 449 41.7% AUC 29:7 No 50
OV-Bevacizumab Biomarker response Ovary Resection Patient 36 85 83.3% AUC 29:7 No 50
GBM-Treatment Clinical outcome Brain Biopsy Patient 93 347 73.1% AUC 75:18 No 50
POST-NAT-BRCA Lymphovascular invasion Breast Resection WSI 50 53 30.2% AUC 43:10 No 50
MBC Recist Breast Both Patient 76 97 46.1% QWK 61:15 No 50
BOEHMK PFS Ovary Both Patient 183 183 – C-Index 146:37 No 5
MBC OS Ovary Biopsy Patient 75 96 – C-Index 60:15 No 5

Extended Data Table 7: Summary of survival prediction tasks. All tasks are patient-level tasks. Censorship
refers to incomplete observations due to end of study period or loss of follow-up. OS: duration of overall
survival, C-Index: concordance index.

k=All Splits

Datasource Task Organ Unit # Patients # WSIs % Censored Survival (days) Metric Train:Test Official? # Folds

CPTAC-CCRCC OS Kidney Patient 94 218 78.7% 1064 ± 634 C-Index 75:19 No 5
CPTAC-HNSC OS Head & Neck Patient 102 243 67.6% 833 ± 423 C-Index 81:21 No 5
CPTAC-LUAD OS Lung Patient 105 313 78.1% 753 ± 540 C-Index 84:21 No 5
CPTAC-PDA OS Pancreas Patient 97 227 26.8% 561 ± 379 C-Index 77:20 No 5
SURGEN OS Colon Patient 144 144 0.0% 854 ± 566 C-Index 115:29 No 5
SURGEN Died within 5 years Colon Patient 387 387 – – AUC 309:78 No 5
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Extended Data Table 8: Publicly available datasets used for THREADS evaluation.

Dataset Link

EBRAINS27 https://doi.org/10.25493/WQ48-ZGX
BRACS28 https://www.bracs.icar.cnr.it/
PANDA3 https://panda.grand-challenge.org/data/
IMP36 https://rdm.inesctec.pt/dataset/nis-2023-008
BCNB29 https://bupt-ai-cz.github.io/BCNB/
CPTAC-BRCA38 https://www.cancerimagingarchive.net/collection/cptac-brca/
CPTAC-CCRCC38 https://www.cancerimagingarchive.net/collection/cptac-ccrcc/
CPTAC-COAD38 https://www.cancerimagingarchive.net/collection/cptac-coad/
CPTAC-GBM38 https://www.cancerimagingarchive.net/collection/cptac-gbm/
CPTAC-HNSC38 https://www.cancerimagingarchive.net/collection/cptac-hnsc/
CPTAC-LSCC38 https://www.cancerimagingarchive.net/collection/cptac-lscc/
CPTAC-LUAD38 https://www.cancerimagingarchive.net/collection/cptac-luad/
CPTAC-PDAC38 https://www.cancerimagingarchive.net/collection/cptac-pda/
MUT-HET-RCC https://doi.org/10.25452/figshare.plus.c.5983795
OV-Bevacizumab41 https://www.nature.com/articles/s41597-022-01127-6
NADT-Prostate42 https://www.medrxiv.org/content/10.1101/2020.09.29.20199711v1.full
POST-NAT-BRCA https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23244
BOEHMK https://www.synapse.org/Synapse:syn25946117/wiki/611576
MBC https://www.synapse.org/Synapse:syn59490671/wiki/628046
SURGEN https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1285

Extended Data Table 9: Performance comparison between THREADS and baselines on MGB Breast tasks.
Best in bold, second best is underlined. Subtype: This is a slide-level classification task evaluated using AU-
ROC, mean and standard error reported over 5-fold cross-validation. ER: This is a patient-level classification
task evaluated using AUROC, mean and standard error reported over 5-fold cross-validation. PR: This is a
patient-level classification task evaluated using AUROC, mean and standard error reported over 5-fold cross-
validation. HER2: This is a patient-level classification task evaluated using AUROC, mean and standard error
reported over 5-fold cross-validation.

Model
Tasks

Subtype (↑) (n=1264) ER (↑) (n=874) PR (↑) (n=874) HER2 (↑) (n=816)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.971 ± 0.003 0.705 ± 0.016 0.672 ± 0.012 0.599 ± 0.020
GIGAPATH 6 MEAN POOLING 0.979 ± 0.002 0.711 ± 0.012 0.682 ± 0.018 0.575 ± 0.014
CHIEF 11 MEAN POOLING 0.955 ± 0.008 0.713 ± 0.024 0.721 ± 0.016 0.637 ± 0.019
CONCHV1.5 MEAN POOLING 0.973 ± 0.005 0.728 ± 0.026 0.720 ± 0.012 0.656 ± 0.042
PRISM 13 0.985 ± 0.002 0.727 ± 0.022 0.639 ± 0.001 0.710 ± 0.021
GIGAPATH 6 0.975 ± 0.003 0.708 ± 0.014 0.689 ± 0.020 0.597 ± 0.010
CHIEF 11 0.978 ± 0.004 0.749 ± 0.026 0.732 ± 0.020 0.696 ± 0.018
THREADS 0.983 ± 0.004 0.784 ± 0.016 0.748 ± 0.021 0.694 ± 0.031

Su
pe

rv
is

ed

ABMIL 0.983 ± 0.003 0.700 ± 0.024 0.694 ± 0.005 0.648 ± 0.016
GIGAPATH 6 0.989 ± 0.001 0.747 ± 0.018 0.730 ± 0.016 0.663 ± 0.019
CHIEF 11 0.951 ± 0.005 0.696 ± 0.019 0.675 ± 0.017 0.567 ± 0.019
THREADS Random Init 0.986 ± 0.003 0.771 ± 0.021 0.740 ± 0.014 0.685 ± 0.041
THREADS 0.986 ± 0.002 0.771 ± 0.025 0.739 ± 0.022 0.719 ± 0.030
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Extended Data Table 10: Performance comparison between THREADS and baselines on MGB Lung tasks.
Best in bold, second best is underlined. Subtype: This is a slide-level classification task evaluated using AU-
ROC, mean and standard error reported over 5-fold cross-validation. TTF-1: This is a patient-level classifica-
tion task evaluated using AUROC, mean and standard error reported over 5-fold cross-validation. P40: This
is a patient-level classification task evaluated using AUROC, mean and standard error reported over 5-fold
cross-validation. P63: This is a patient-level classification task evaluated using AUROC, mean and standard
error reported over 5-fold cross-validation. Napsina: This is a patient-level classification task evaluated using
AUROC, mean and standard error reported over 5-fold cross-validation. CDX-2: This is a patient-level classi-
fication task evaluated using AUROC, mean and standard error reported over 5-fold cross-validation. CK5-6:
This is a patient-level classification task evaluated using AUROC, mean and standard error reported over 5-fold
cross-validation.

Model
Tasks

Subtype (↑) (n=1939) TTF-1 (↑) (n=488) P40 (↑) (n=185) P63 (↑) (n=153) Napsina (↑) (n=126) CDX-2 (↑) (n=79) CK5-6 (↑) (n=58)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.960 ± 0.002 0.837 ± 0.017 0.750 ± 0.033 0.640 ± 0.036 0.678 ± 0.050 0.529 ± 0.050 0.742 ± 0.051
GIGAPATH 6 MEAN POOLING 0.969 ± 0.002 0.866 ± 0.008 0.739 ± 0.019 0.681 ± 0.027 0.693 ± 0.031 0.506 ± 0.092 0.697 ± 0.050
CHIEF 11 MEAN POOLING 0.950 ± 0.002 0.750 ± 0.018 0.627 ± 0.013 0.642 ± 0.029 0.593 ± 0.024 0.487 ± 0.074 0.634 ± 0.087
CONCHV1.5 MEAN POOLING 0.969 ± 0.003 0.836 ± 0.009 0.867 ± 0.015 0.748 ± 0.034 0.773 ± 0.044 0.588 ± 0.073 0.884 ± 0.047
PRISM 13 0.978 ± 0.005 0.858 ± 0.014 0.863 ± 0.017 0.809 ± 0.013 0.704 ± 0.015 0.738 ± 0.032 0.877 ± 0.022
GIGAPATH 6 0.957 ± 0.003 0.839 ± 0.013 0.696 ± 0.022 0.653 ± 0.034 0.634 ± 0.041 0.485 ± 0.093 0.670 ± 0.065
CHIEF 11 0.979 ± 0.003 0.822 ± 0.020 0.809 ± 0.039 0.792 ± 0.026 0.662 ± 0.022 0.558 ± 0.051 0.791 ± 0.049
THREADS 0.982 ± 0.004 0.895 ± 0.011 0.898 ± 0.027 0.879 ± 0.020 0.817 ± 0.033 0.725 ± 0.062 0.933 ± 0.026

Su
pe

rv
is

ed

ABMIL 0.980 ± 0.002 0.866 ± 0.016 0.860 ± 0.027 0.811 ± 0.023 0.851 ± 0.013 0.599 ± 0.047 0.813 ± 0.047
GIGAPATH 6 0.988 ± 0.002 0.863 ± 0.014 0.642 ± 0.042 0.664 ± 0.031 0.624 ± 0.036 0.475 ± 0.041 0.676 ± 0.088
CHIEF 11 0.951 ± 0.009 0.682 ± 0.018 0.632 ± 0.049 0.525 ± 0.031 0.510 ± 0.074 0.498 ± 0.090 0.693 ± 0.068
THREADS Random Init 0.987 ± 0.002 0.882 ± 0.008 0.870 ± 0.023 0.796 ± 0.046 0.798 ± 0.020 0.610 ± 0.072 0.803 ± 0.061
THREADS 0.985 ± 0.001 0.887 ± 0.010 0.903 ± 0.025 0.859 ± 0.026 0.825 ± 0.018 0.672 ± 0.031 0.880 ± 0.031

Extended Data Table 11: Performance comparison between THREADS and baselines on BCNB29 tasks.
Best in bold, second best is underlined. ER: This is a patient-level classification task evaluated using AUROC,
mean and standard error reported over 5-fold cross-validation. PR: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 5-fold cross-validation. HER2: This is a
patient-level classification task evaluated using AUROC, mean and standard error reported over 5-fold cross-
validation.

Model
Tasks

ER (↑) (n=1058) PR (↑) (n=1058) HER2 (↑) (n=1058)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.888 ± 0.007 0.813 ± 0.010 0.707 ± 0.011
GIGAPATH 6 MEAN POOLING 0.901 ± 0.013 0.828 ± 0.014 0.719 ± 0.015
CHIEF 11 MEAN POOLING 0.852 ± 0.014 0.799 ± 0.021 0.703 ± 0.016
CONCHV1.5 MEAN POOLING 0.889 ± 0.010 0.810 ± 0.022 0.737 ± 0.013
PRISM 13 0.892 ± 0.014 0.815 ± 0.019 0.711 ± 0.010
GIGAPATH 6 0.886 ± 0.016 0.811 ± 0.013 0.702 ± 0.016
CHIEF 11 0.883 ± 0.014 0.818 ± 0.017 0.719 ± 0.021
THREADS 0.921 ± 0.009 0.837 ± 0.020 0.765 ± 0.008

Su
pe

rv
is

ed

ABMIL 0.877 ± 0.009 0.804 ± 0.017 0.737 ± 0.011
GIGAPATH 6 0.925 ± 0.012 0.856 ± 0.016 0.766 ± 0.016
CHIEF 11 0.786 ± 0.007 0.753 ± 0.013 0.658 ± 0.029
THREADS Random Init 0.926 ± 0.010 0.859 ± 0.019 0.780 ± 0.008
THREADS 0.919 ± 0.011 0.848 ± 0.016 0.786 ± 0.007
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Extended Data Table 12: Performance comparison between THREADS and baselines on MUT-HET-RCC
tasks. Best in bold, second best is underlined. BAP1 Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 5-fold cross-validation. PBRM1 Mutation:
This is a slide-level classification task evaluated using AUROC, mean and standard error reported over 5-fold
cross-validation. SETD2 Mutation: This is a slide-level classification task evaluated using AUROC, mean
and standard error reported over 5-fold cross-validation.

Model
Tasks

BAP1 Mutation (↑) (n=1291) PBRM1 Mutation (↑) (n=1291) SETD2 Mutation (↑) (n=1291)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.879 ± 0.003 0.810 ± 0.008 0.712 ± 0.012
GIGAPATH 6 MEAN POOLING 0.880 ± 0.007 0.806 ± 0.007 0.701 ± 0.012
CHIEF 11 MEAN POOLING 0.850 ± 0.015 0.746 ± 0.003 0.722 ± 0.007
CONCHV1.5 MEAN POOLING 0.846 ± 0.011 0.782 ± 0.005 0.728 ± 0.011
PRISM 13 0.848 ± 0.017 0.797 ± 0.008 0.734 ± 0.009
GIGAPATH 6 0.857 ± 0.007 0.799 ± 0.003 0.708 ± 0.013
CHIEF 11 0.852 ± 0.013 0.781 ± 0.011 0.743 ± 0.012
THREADS 0.873 ± 0.006 0.826 ± 0.003 0.756 ± 0.009

Su
pe

rv
is

ed

ABMIL 0.858 ± 0.015 0.778 ± 0.011 0.717 ± 0.008
GIGAPATH 6 0.885 ± 0.005 0.816 ± 0.011 0.727 ± 0.009
CHIEF 11 0.802 ± 0.025 0.697 ± 0.005 0.669 ± 0.019
THREADS Random Init 0.868 ± 0.015 0.779 ± 0.005 0.729 ± 0.006
THREADS 0.898 ± 0.005 0.807 ± 0.011 0.738 ± 0.007

Extended Data Table 13: Performance comparison between THREADS and baselines on IMP36 tasks. Best
in bold, second best is underlined. Grade: This is a slide-level classification task evaluated using quadratic
weighted kappa, mean and 95% CI reported over 100 bootstraps of a single fold.

Model
Tasks

Grade (↑) (n=5333)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.913 (0.894-0.929)
GIGAPATH 6 MEAN POOLING 0.903 (0.884-0.921)
CHIEF 11 MEAN POOLING 0.877 (0.847-0.908)
CONCHV1.5 MEAN POOLING 0.889 (0.862-0.912)
PRISM 13 0.935 (0.919-0.951)
GIGAPATH 6 0.903 (0.880-0.925)
CHIEF 11 0.914 (0.893-0.937)
THREADS 0.919 (0.896-0.937)

Su
pe

rv
is

ed

ABMIL 0.942 (0.926-0.957)
GIGAPATH 6 0.956 (0.941-0.968)
CHIEF 11 0.917 (0.893-0.937)
THREADS Random Init 0.944 (0.922-0.964)
THREADS 0.946 (0.929-0.963)
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Extended Data Table 14: Performance comparison between THREADS and baselines on PANDA3 tasks.
Best in bold, second best is underlined. ISUP Grade: This is a slide-level classification task evaluated using
quadratic weighted kappa, mean and 95% CI reported over 100 bootstraps of a single fold.

Model
Tasks

ISUP Grade (↑) (n=9555)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.895 (0.875-0.913)
GIGAPATH 6 MEAN POOLING 0.894 (0.871-0.915)
CHIEF 11 MEAN POOLING 0.799 (0.765-0.827)
CONCHV1.5 MEAN POOLING 0.845 (0.814-0.864)
PRISM 13 0.919 (0.901-0.935)
GIGAPATH 6 0.873 (0.850-0.895)
CHIEF 11 0.898 (0.878-0.918)
THREADS 0.915 (0.899-0.929)

Su
pe

rv
is

ed

ABMIL 0.932 (0.919-0.944)
GIGAPATH 6 0.959 (0.951-0.967)
CHIEF 11 0.798 (0.765-0.830)
THREADS Random Init 0.926 (0.913-0.938)
THREADS 0.930 (0.917-0.943)

Extended Data Table 15: Performance comparison between THREADS and baselines on CPTAC-BRCA38

tasks. Best in bold, second best is underlined. PIK3CA Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo. TP53 Mutation: This
is a patient-level classification task evaluated using AUROC, mean and standard error reported over 50-fold
Monte Carlo.

Model
Tasks

PIK3CA Mutation (↑) (n=103) TP53 Mutation (↑) (n=103)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.569 ± 0.015 0.766 ± 0.012
GIGAPATH 6 MEAN POOLING 0.554 ± 0.016 0.754 ± 0.012
CHIEF 11 MEAN POOLING 0.615 ± 0.015 0.786 ± 0.012
CONCHV1.5 MEAN POOLING 0.513 ± 0.017 0.796 ± 0.011
PRISM 13 0.575 ± 0.014 0.787 ± 0.013
GIGAPATH 6 0.531 ± 0.017 0.749 ± 0.012
CHIEF 11 0.647 ± 0.013 0.832 ± 0.012
THREADS 0.571 ± 0.017 0.876 ± 0.012

Su
pe

rv
is

ed

ABMIL 0.531 ± 0.017 0.791 ± 0.012
GIGAPATH 6 0.570 ± 0.016 0.775 ± 0.014
CHIEF 11 0.504 ± 0.023 0.620 ± 0.020
THREADS Random Init 0.578 ± 0.016 0.833 ± 0.012
THREADS 0.611 ± 0.015 0.846 ± 0.012
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Extended Data Table 16: Performance comparison between THREADS and baselines on CPTAC-
CCRCC38 tasks. Best in bold, second best is underlined. BAP1 Mutation: This is a patient-level classi-
fication task evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo. PBRM1
Mutation: This is a patient-level classification task evaluated using AUROC, mean and standard error reported
over 50-fold Monte Carlo.

Model
Tasks

BAP1 Mutation (↑) (n=103) PBRM1 Mutation (↑) (n=103)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.624 ± 0.022 0.501 ± 0.016
GIGAPATH 6 MEAN POOLING 0.688 ± 0.023 0.482 ± 0.015
CHIEF 11 MEAN POOLING 0.717 ± 0.018 0.457 ± 0.016
CONCHV1.5 MEAN POOLING 0.655 ± 0.016 0.518 ± 0.015
PRISM 13 0.664 ± 0.022 0.598 ± 0.019
GIGAPATH 6 0.670 ± 0.023 0.466 ± 0.016
CHIEF 11 0.745 ± 0.019 0.522 ± 0.015
THREADS 0.809 ± 0.014 0.668 ± 0.016

Su
pe

rv
is

ed

ABMIL 0.729 ± 0.020 0.576 ± 0.018
GIGAPATH 6 0.691 ± 0.020 0.512 ± 0.017
CHIEF 11 0.641 ± 0.024 0.514 ± 0.018
THREADS Random Init 0.772 ± 0.015 0.595 ± 0.018
THREADS 0.802 ± 0.015 0.629 ± 0.017

Extended Data Table 17: Performance comparison between THREADS and baselines on CPTAC-COAD38

tasks. Best in bold, second best is underlined. KRAS Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo. TP53 Mutation: This
is a patient-level classification task evaluated using AUROC, mean and standard error reported over 50-fold
Monte Carlo.

Model
Tasks

KRAS Mutation (↑) (n=94) TP53 Mutation (↑) (n=94)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.661 ± 0.015 0.684 ± 0.017
GIGAPATH 6 MEAN POOLING 0.642 ± 0.015 0.656 ± 0.018
CHIEF 11 MEAN POOLING 0.652 ± 0.015 0.649 ± 0.019
CONCHV1.5 MEAN POOLING 0.742 ± 0.016 0.690 ± 0.018
PRISM 13 0.554 ± 0.015 0.578 ± 0.019
GIGAPATH 6 0.654 ± 0.013 0.642 ± 0.016
CHIEF 11 0.649 ± 0.016 0.659 ± 0.018
THREADS 0.704 ± 0.014 0.742 ± 0.016

Su
pe

rv
is

ed

ABMIL 0.623 ± 0.017 0.730 ± 0.016
GIGAPATH 6 0.622 ± 0.015 0.648 ± 0.017
CHIEF 11 0.531 ± 0.017 0.526 ± 0.019
THREADS Random Init 0.696 ± 0.015 0.698 ± 0.018
THREADS 0.670 ± 0.016 0.785 ± 0.014
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Extended Data Table 18: Performance comparison between THREADS and baselines on CPTAC-GBM38

tasks. Best in bold, second best is underlined. EGFR Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo. TP53 Mutation: This
is a patient-level classification task evaluated using AUROC, mean and standard error reported over 50-fold
Monte Carlo.

Model
Tasks

EGFR Mutation (↑) (n=99) TP53 Mutation (↑) (n=99)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.509 ± 0.017 0.816 ± 0.012
GIGAPATH 6 MEAN POOLING 0.623 ± 0.016 0.805 ± 0.012
CHIEF 11 MEAN POOLING 0.662 ± 0.015 0.849 ± 0.011
CONCHV1.5 MEAN POOLING 0.639 ± 0.014 0.828 ± 0.014
PRISM 13 0.619 ± 0.015 0.858 ± 0.015
GIGAPATH 6 0.634 ± 0.016 0.785 ± 0.014
CHIEF 11 0.743 ± 0.015 0.862 ± 0.010
THREADS 0.782 ± 0.011 0.842 ± 0.013

Su
pe

rv
is

ed

ABMIL 0.713 ± 0.016 0.836 ± 0.013
GIGAPATH 6 0.624 ± 0.014 0.698 ± 0.015
CHIEF 11 0.480 ± 0.020 0.519 ± 0.021
THREADS Random Init 0.674 ± 0.012 0.832 ± 0.016
THREADS 0.791 ± 0.010 0.864 ± 0.012

Extended Data Table 19: Performance comparison between THREADS and baselines on CPTAC-HNSC38

tasks. Best in bold, second best is underlined. CASP8 Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo.

Model
Tasks

CASP8 Mutation (↑) (n=107)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.397 ± 0.025
GIGAPATH 6 MEAN POOLING 0.497 ± 0.028
CHIEF 11 MEAN POOLING 0.482 ± 0.025
CONCHV1.5 MEAN POOLING 0.614 ± 0.028
PRISM 13 0.601 ± 0.027
GIGAPATH 6 0.474 ± 0.025
CHIEF 11 0.493 ± 0.027
THREADS 0.754 ± 0.019

Su
pe

rv
is

ed

ABMIL 0.681 ± 0.029
GIGAPATH 6 0.619 ± 0.029
CHIEF 11 0.558 ± 0.035
THREADS Random Init 0.673 ± 0.022
THREADS 0.736 ± 0.023
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Extended Data Table 20: Performance comparison between THREADS and baselines on CPTAC-LSCC38

tasks. Best in bold, second best is underlined. KEAP1 Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo. ARID1A Mutation:
This is a patient-level classification task evaluated using AUROC, mean and standard error reported over 50-
fold Monte Carlo.

Model
Tasks

KEAP1 Mutation (↑) (n=108) ARID1A Mutation (↑) (n=108)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.671 ± 0.020 0.417 ± 0.020
GIGAPATH 6 MEAN POOLING 0.640 ± 0.017 0.437 ± 0.019
CHIEF 11 MEAN POOLING 0.676 ± 0.016 0.524 ± 0.022
CONCHV1.5 MEAN POOLING 0.574 ± 0.018 0.411 ± 0.020
PRISM 13 0.492 ± 0.018 0.449 ± 0.020
GIGAPATH 6 0.663 ± 0.018 0.465 ± 0.016
CHIEF 11 0.656 ± 0.016 0.535 ± 0.024
THREADS 0.685 ± 0.019 0.658 ± 0.023

Su
pe

rv
is

ed

ABMIL 0.459 ± 0.023 0.432 ± 0.023
GIGAPATH 6 0.614 ± 0.022 0.539 ± 0.022
CHIEF 11 0.446 ± 0.026 0.467 ± 0.024
THREADS Random Init 0.629 ± 0.018 0.487 ± 0.020
THREADS 0.608 ± 0.017 0.514 ± 0.022

Extended Data Table 21: Performance comparison between THREADS and baselines on CPTAC-LUAD38

tasks. Best in bold, second best is underlined. EGFR Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo. STK11 Mutation: This
is a patient-level classification task evaluated using AUROC, mean and standard error reported over 50-fold
Monte Carlo. TP53 Mutation: This is a patient-level classification task evaluated using AUROC, mean and
standard error reported over 50-fold Monte Carlo.

Model
Tasks

EGFR Mutation (↑) (n=108) STK11 Mutation (↑) (n=108) TP53 Mutation (↑) (n=108)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.791 ± 0.015 0.864 ± 0.013 0.734 ± 0.014
GIGAPATH 6 MEAN POOLING 0.782 ± 0.014 0.852 ± 0.013 0.715 ± 0.014
CHIEF 11 MEAN POOLING 0.722 ± 0.017 0.765 ± 0.019 0.663 ± 0.014
CONCHV1.5 MEAN POOLING 0.789 ± 0.014 0.824 ± 0.018 0.682 ± 0.015
PRISM 13 0.809 ± 0.013 0.854 ± 0.015 0.755 ± 0.013
GIGAPATH 6 0.791 ± 0.014 0.822 ± 0.015 0.737 ± 0.013
CHIEF 11 0.717 ± 0.017 0.824 ± 0.015 0.704 ± 0.014
THREADS 0.822 ± 0.011 0.889 ± 0.015 0.752 ± 0.014

Su
pe

rv
is

ed

ABMIL 0.748 ± 0.014 0.856 ± 0.017 0.686 ± 0.015
GIGAPATH 6 0.749 ± 0.017 0.791 ± 0.019 0.699 ± 0.015
CHIEF 11 0.495 ± 0.025 0.517 ± 0.024 0.524 ± 0.017
THREADS Random Init 0.805 ± 0.015 0.862 ± 0.016 0.704 ± 0.015
THREADS 0.798 ± 0.014 0.891 ± 0.011 0.752 ± 0.014
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Extended Data Table 22: Performance comparison between THREADS and baselines on CPTAC-PDAC38

tasks. Best in bold, second best is underlined. SMAD4 Mutation: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo.

Model
Tasks

SMAD4 Mutation (↑) (n=105)

L
in

ea
r

Pr
ob

e
VIRCHOW 7 MEAN POOLING 0.488 ± 0.020
GIGAPATH 6 MEAN POOLING 0.418 ± 0.020
CHIEF 11 MEAN POOLING 0.439 ± 0.018
CONCHV1.5 MEAN POOLING 0.576 ± 0.019
PRISM 13 0.523 ± 0.022
GIGAPATH 6 0.423 ± 0.021
CHIEF 11 0.393 ± 0.018
THREADS 0.578 ± 0.024

Su
pe

rv
is

ed

ABMIL 0.512 ± 0.019
GIGAPATH 6 0.340 ± 0.018
CHIEF 11 0.478 ± 0.022
THREADS Random Init 0.598 ± 0.020
THREADS 0.576 ± 0.022

Extended Data Table 23: Performance comparison between THREADS and baselines on BRACS28 tasks.
Best in bold, second best is underlined. Fine Subtype: This is a slide-level classification task evaluated using
balanced accuracy, mean and standard error reported over 5-fold cross-validation. Coarse Subtype: This is a
slide-level classification task evaluated using balanced accuracy, mean and standard error reported over 5-fold
cross-validation.

Model
Tasks

Fine Subtype (↑) (n=547) Coarse Subtype (↑) (n=547)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.348 ± 0.015 0.618 ± 0.028
GIGAPATH 6 MEAN POOLING 0.318 ± 0.016 0.569 ± 0.031
CHIEF 11 MEAN POOLING 0.350 ± 0.029 0.621 ± 0.030
CONCHV1.5 MEAN POOLING 0.378 ± 0.036 0.620 ± 0.036
PRISM 13 0.419 ± 0.014 0.659 ± 0.019
GIGAPATH 6 0.342 ± 0.019 0.606 ± 0.037
CHIEF 11 0.452 ± 0.015 0.704 ± 0.023
THREADS 0.481 ± 0.015 0.716 ± 0.019

Su
pe

rv
is

ed

ABMIL 0.478 ± 0.038 0.740 ± 0.023
GIGAPATH 6 0.444 ± 0.020 0.678 ± 0.018
CHIEF 11 0.228 ± 0.007 0.495 ± 0.039
THREADS Random Init 0.456 ± 0.020 0.715 ± 0.020
THREADS 0.492 ± 0.013 0.731 ± 0.012
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Extended Data Table 24: Performance comparison between THREADS and baselines on EBRAINS27 tasks.
Best in bold, second best is underlined. Fine Subtype: This is a slide-level classification task evaluated using
balanced accuracy, mean and 95% CI reported over 100 bootstraps of a single fold. Coarse Subtype: This
is a slide-level classification task evaluated using balanced accuracy, mean and 95% CI reported over 100
bootstraps of a single fold.

Model
Tasks

Fine Subtype (↑) (n=2319) Coarse Subtype (↑) (n=2319)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.708 (0.666-0.756) 0.873 (0.841-0.913)
GIGAPATH 6 MEAN POOLING 0.740 (0.700-0.776) 0.903 (0.871-0.941)
CHIEF 11 MEAN POOLING 0.637 (0.594-0.671) 0.785 (0.730-0.832)
CONCHV1.5 MEAN POOLING 0.693 (0.646-0.733) 0.870 (0.836-0.910)
PRISM 13 0.721 (0.686-0.766) 0.871 (0.823-0.908)
GIGAPATH 6 0.722 (0.679-0.757) 0.887 (0.849-0.928)
CHIEF 11 0.660 (0.621-0.704) 0.840 (0.793-0.893)
THREADS 0.742 (0.707-0.775) 0.916 (0.873-0.951)

Su
pe

rv
is

ed

ABMIL 0.720 (0.684-0.758) 0.900 (0.865-0.929)
GIGAPATH 6 0.751 (0.708-0.787) 0.890 (0.856-0.923)
CHIEF 11 0.033 (0.033-0.033) 0.156 (0.150-0.163)
THREADS Random Init 0.737 (0.697-0.774) 0.898 (0.858-0.933)
THREADS 0.734 (0.692-0.769) 0.881 (0.838-0.920)

Extended Data Table 25: Performance comparison between THREADS and baselines on OV-
Bevacizumab41 tasks. Best in bold, second best is underlined. Response: This is a patient-level classification
task evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo.

Model
Tasks

Response (↑) (n=36)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.607 ± 0.033
GIGAPATH 6 MEAN POOLING 0.523 ± 0.034
CHIEF 11 MEAN POOLING 0.667 ± 0.035
CONCHV1.5 MEAN POOLING 0.623 ± 0.030
PRISM 13 0.433 ± 0.034
GIGAPATH 6 0.613 ± 0.040
CHIEF 11 0.620 ± 0.041
THREADS 0.863 ± 0.021

Su
pe

rv
is

ed

ABMIL 0.553 ± 0.034
GIGAPATH 6 0.593 ± 0.043
CHIEF 11 0.453 ± 0.042
THREADS Random Init 0.757 ± 0.027
THREADS 0.793 ± 0.029
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Extended Data Table 26: Performance comparison between THREADS and baselines on NADT Prostate42

tasks. Best in bold, second best is underlined. Response: This is a patient-level classification task evaluated
using AUROC, mean and standard error reported over 50-fold Monte Carlo.

Model
Tasks

Response (↑) (n=36)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.612 ± 0.027
GIGAPATH 6 MEAN POOLING 0.585 ± 0.028
CHIEF 11 MEAN POOLING 0.643 ± 0.024
CONCHV1.5 MEAN POOLING 0.620 ± 0.025
PRISM 13 0.723 ± 0.022
GIGAPATH 6 0.552 ± 0.024
CHIEF 11 0.685 ± 0.033
THREADS 0.730 ± 0.022

Su
pe

rv
is

ed

ABMIL 0.577 ± 0.029
GIGAPATH 6 0.450 ± 0.036
CHIEF 11 0.540 ± 0.031
THREADS Random Init 0.702 ± 0.022
THREADS 0.695 ± 0.023

Extended Data Table 27: Performance comparison between THREADS and baselines on GBM-Treatment
tasks. Best in bold, second best is underlined. Response: This is a patient-level classification task evaluated
using AUROC, mean and standard error reported over 50-fold Monte Carlo.

Model
Tasks

Response (↑) (n=93)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.580 ± 0.018
GIGAPATH 6 MEAN POOLING 0.605 ± 0.017
CHIEF 11 MEAN POOLING 0.570 ± 0.017
CONCHV1.5 MEAN POOLING 0.703 ± 0.018
PRISM 13 0.622 ± 0.022
GIGAPATH 6 0.642 ± 0.014
CHIEF 11 0.575 ± 0.019
THREADS 0.741 ± 0.016

Su
pe

rv
is

ed

ABMIL 0.677 ± 0.016
GIGAPATH 6 0.680 ± 0.018
CHIEF 11 0.550 ± 0.021
THREADS Random Init 0.655 ± 0.017
THREADS 0.705 ± 0.015

Extended Data Table 28: Performance comparison between THREADS and baselines on Post-NAT-BRCA
tasks. Best in bold, second best is underlined. Lymphovascular Invasion: This is a slide-level classification
task evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo.

Model
Tasks

Lymphovascular Invasion (↑) (n=53)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.612 ± 0.028
GIGAPATH 6 MEAN POOLING 0.603 ± 0.025
CHIEF 11 MEAN POOLING 0.497 ± 0.023
CONCHV1.5 MEAN POOLING 0.654 ± 0.022
PRISM 13 0.540 ± 0.029
GIGAPATH 6 0.582 ± 0.024
CHIEF 11 0.542 ± 0.030
THREADS 0.701 ± 0.027

Su
pe

rv
is

ed

ABMIL 0.530 ± 0.029
GIGAPATH 6 0.607 ± 0.023
CHIEF 11 0.495 ± 0.028
THREADS Random Init 0.600 ± 0.025
THREADS 0.662 ± 0.024
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Extended Data Table 29: Performance comparison between THREADS and baselines on SURGEN tasks.
Best in bold, second best is underlined. BRAF Mutation: This is a patient-level classification task evalu-
ated using AUROC, mean and standard error reported over 5-fold cross-validation. RAS Mutation: This is a
patient-level classification task evaluated using AUROC, mean and standard error reported over 5-fold cross-
validation. MMR Loss: This is a patient-level classification task evaluated using AUROC, mean and standard
error reported over 5-fold cross-validation. Death in 5 Years: This is a patient-level classification task evalu-
ated using AUROC, mean and standard error reported over 5-fold cross-validation.

Model
Tasks

BRAF Mutation (↑) (n=388) RAS Mutation (↑) (n=389) MMR Loss (↑) (n=389) Death in 5 Years (↑) (n=387)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.693 ± 0.037 0.586 ± 0.030 0.880 ± 0.017 0.642 ± 0.021
GIGAPATH 6 MEAN POOLING 0.694 ± 0.033 0.605 ± 0.015 0.877 ± 0.017 0.663 ± 0.016
CHIEF 11 MEAN POOLING 0.670 ± 0.033 0.627 ± 0.036 0.840 ± 0.020 0.671 ± 0.012
CONCHV1.5 MEAN POOLING 0.650 ± 0.025 0.629 ± 0.028 0.796 ± 0.037 0.662 ± 0.023
PRISM 13 0.740 ± 0.034 0.632 ± 0.014 0.883 ± 0.010 0.635 ± 0.023
GIGAPATH 6 0.680 ± 0.026 0.622 ± 0.022 0.860 ± 0.015 0.632 ± 0.013
CHIEF 11 0.736 ± 0.043 0.652 ± 0.018 0.830 ± 0.031 0.683 ± 0.020
THREADS 0.727 ± 0.042 0.633 ± 0.027 0.910 ± 0.023 0.685 ± 0.017

Su
pe

rv
is

ed

ABMIL 0.692 ± 0.039 0.629 ± 0.021 0.893 ± 0.028 0.698 ± 0.024
GIGAPATH 6 0.665 ± 0.020 0.634 ± 0.015 0.779 ± 0.027 0.668 ± 0.022
CHIEF 11 0.725 ± 0.013 0.540 ± 0.024 0.749 ± 0.050 0.612 ± 0.013
THREADS Random Init 0.697 ± 0.023 0.629 ± 0.022 0.896 ± 0.016 0.687 ± 0.028
THREADS 0.754 ± 0.037 0.676 ± 0.026 0.885 ± 0.032 0.715 ± 0.024

Extended Data Table 30: Performance comparison between THREADS and baselines on MBC tasks. Best
in bold, second best is underlined. Recist: This is a patient-level classification task evaluated using quadratic
weighted kappa, mean and standard error reported over 50-fold Monte Carlo.

Model
Tasks

Recist (↑) (n=76)

L
in

ea
r

Pr
ob

e

VIRCHOW 7 MEAN POOLING 0.051 ± 0.028
GIGAPATH 6 MEAN POOLING 0.131 ± 0.034
CHIEF 11 MEAN POOLING 0.204 ± 0.038
CONCHV1.5 MEAN POOLING 0.253 ± 0.038
PRISM 13 0.206 ± 0.034
GIGAPATH 6 0.016 ± 0.032
CHIEF 11 0.230 ± 0.033
THREADS 0.258 ± 0.037

Su
pe

rv
is

ed

ABMIL 0.268 ± 0.036
GIGAPATH 6 0.111 ± 0.032
CHIEF 11 0.015 ± 0.027
THREADS Random Init 0.209 ± 0.027
THREADS 0.326 ± 0.030
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Extended Data Table 31: Survival prediction on CPTAC-PDAC38. Best in bold, second best is underlined. α
is the cost parameter for CoxNet, set empirically to allow for convergence. Overall Survival: This is a patient-
level survival task evaluated using C-index, mean and standard error reported over 5-fold cross-validation.

Model α
Tasks

Overall Survival (↑) (n=97)

C
ox

N
et

VIRCHOW 7 MEAN POOLING 0.07 0.502 ± 0.051
GIGAPATH 6 MEAN POOLING 0.07 0.510 ± 0.043
CHIEF 11 MEAN POOLING 0.07 0.508 ± 0.042
CONCHV1.5 MEAN POOLING 0.07 0.569 ± 0.018
PRISM 13 0.07 0.554 ± 0.027
GIGAPATH 6 0.07 0.426 ± 0.032
CHIEF 11 0.07 0.517 ± 0.032
THREADS 0.07 0.616 ± 0.031

Su
pe

rv
is

ed

ABMIL – 0.611 ± 0.042
GIGAPATH 6 – 0.410 ± 0.013
CHIEF 11 – 0.489 ± 0.046
THREADS Random Init – 0.582 ± 0.037
THREADS – 0.577 ± 0.043

Extended Data Table 32: Survival prediction on CPTAC-LUAD38. Best in bold, second best is underlined. α
is the cost parameter for CoxNet, set empirically to allow for convergence. Overall Survival: This is a patient-
level survival task evaluated using C-index, mean and standard error reported over 5-fold cross-validation.

Model α
Tasks

Overall Survival (↑) (n=105)

C
ox

N
et

VIRCHOW 7 MEAN POOLING 0.07 0.443 ± 0.072
GIGAPATH 6 MEAN POOLING 0.07 0.363 ± 0.041
CHIEF 11 MEAN POOLING 0.07 0.483 ± 0.009
CONCHV1.5 MEAN POOLING 0.07 0.579 ± 0.060
PRISM 13 0.07 0.614 ± 0.032
GIGAPATH 6 0.07 0.469 ± 0.010
CHIEF 11 0.07 0.462 ± 0.030
THREADS 0.07 0.613 ± 0.054

Su
pe

rv
is

ed

ABMIL – 0.524 ± 0.069
GIGAPATH 6 – 0.462 ± 0.062
CHIEF 11 – 0.518 ± 0.050
THREADS Random Init – 0.576 ± 0.046
THREADS – 0.535 ± 0.074

Extended Data Table 33: Survival prediction on CPTAC-CCRCC38. Best in bold, second best is underlined.
α is the cost parameter for CoxNet, set empirically to allow for convergence. Overall Survival: This is
a patient-level survival task evaluated using C-index, mean and standard error reported over 5-fold cross-
validation.

Model α
Tasks

Overall Survival (↑) (n=94)

C
ox

N
et

VIRCHOW 7 MEAN POOLING 0.07 0.554 ± 0.093
GIGAPATH 6 MEAN POOLING 0.07 0.675 ± 0.063
CHIEF 11 MEAN POOLING 0.07 0.463 ± 0.034
CONCHV1.5 MEAN POOLING 0.07 0.555 ± 0.091
PRISM 13 0.07 0.567 ± 0.048
GIGAPATH 6 0.07 0.550 ± 0.048
CHIEF 11 0.01 0.626 ± 0.076
THREADS 0.07 0.673 ± 0.075

Su
pe

rv
is

ed

ABMIL – 0.693 ± 0.043
GIGAPATH 6 – 0.527 ± 0.079
CHIEF 11 – 0.369 ± 0.039
THREADS Random Init – 0.529 ± 0.101
THREADS – 0.495 ± 0.090
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Extended Data Table 34: Survival prediction on CPTAC-HNSC38. Best in bold, second best is underlined. α
is the cost parameter for CoxNet, set empirically to allow for convergence. Overall Survival: This is a patient-
level survival task evaluated using C-index, mean and standard error reported over 5-fold cross-validation.

Model α
Tasks

Overall Survival (↑) (n=102)

C
ox

N
et

VIRCHOW 7 MEAN POOLING 0.07 0.569 ± 0.049
GIGAPATH 6 MEAN POOLING 0.07 0.590 ± 0.056
CHIEF 11 MEAN POOLING 0.07 0.480 ± 0.021
CONCHV1.5 MEAN POOLING 0.07 0.568 ± 0.053
PRISM 13 0.07 0.587 ± 0.066
GIGAPATH 6 0.07 0.562 ± 0.063
CHIEF 11 0.07 0.474 ± 0.011
THREADS 0.07 0.631 ± 0.076

Su
pe

rv
is

ed

ABMIL – 0.495 ± 0.024
GIGAPATH 6 – 0.531 ± 0.064
CHIEF 11 – 0.489 ± 0.047
THREADS Random Init – 0.550 ± 0.014
THREADS – 0.514 ± 0.011

Extended Data Table 35: Survival prediction on SURGEN. Best in bold, second best is underlined. α is the
cost parameter for CoxNet, set empirically to allow for convergence. Overall Survival: This is a patient-level
survival task evaluated using C-index, mean and standard error reported over 5-fold cross-validation.

Model α
Tasks

Overall Survival (↑) (n=144)

C
ox

N
et

VIRCHOW 7 MEAN POOLING 0.07 0.593 ± 0.025
GIGAPATH 6 MEAN POOLING 0.07 0.606 ± 0.027
CHIEF 11 MEAN POOLING 0.07 0.606 ± 0.023
CONCHV1.5 MEAN POOLING 0.07 0.625 ± 0.022
PRISM 13 0.07 0.578 ± 0.026
GIGAPATH 6 0.07 0.611 ± 0.025
CHIEF 11 0.07 0.600 ± 0.026
THREADS 0.07 0.638 ± 0.014

Su
pe

rv
is

ed

ABMIL – 0.587 ± 0.026
GIGAPATH 6 – 0.612 ± 0.022
CHIEF 11 – 0.531 ± 0.037
THREADS Random Init – 0.632 ± 0.022
THREADS – 0.613 ± 0.034

Extended Data Table 36: Survival prediction on MBC. Best in bold, second best is underlined. α is the
cost parameter for CoxNet, set empirically to allow for convergence. Overall Survival: This is a patient-level
survival task evaluated using C-index, mean and standard error reported over 5-fold cross-validation.

Model α
Tasks

Overall Survival (↑) (n=75)

C
ox

N
et

VIRCHOW 7 MEAN POOLING 0.07 0.517 ± 0.031
GIGAPATH 6 MEAN POOLING 0.07 0.472 ± 0.024
CHIEF 11 MEAN POOLING 0.07 0.441 ± 0.040
CONCHV1.5 MEAN POOLING 0.07 0.510 ± 0.052
PRISM 13 0.07 0.511 ± 0.038
GIGAPATH 6 0.07 0.440 ± 0.030
CHIEF 11 0.07 0.460 ± 0.046
THREADS 0.07 0.550 ± 0.027

Su
pe

rv
is

ed

ABMIL – 0.519 ± 0.043
GIGAPATH 6 – 0.433 ± 0.014
CHIEF 11 – 0.529 ± 0.064
THREADS Random Init – 0.512 ± 0.034
THREADS – 0.608 ± 0.030
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Extended Data Table 37: Survival prediction on BOEHMK. Best in bold, second best is underlined. α is
the cost parameter for CoxNet, set empirically to allow for convergence. GIGAPATH-supervised could not be
evaluated due to a bug in PyTorch autocast (https://github.com/pytorch/pytorch/issues/81876). Progression
Free Survival: This is a patient-level survival task evaluated using C-index, mean and standard error reported
over 5-fold cross-validation.

Model α
Tasks

Progression Free Survival (↑) (n=183)

C
ox

N
et

VIRCHOW 7 MEAN POOLING 0.01 0.513 ± 0.017
GIGAPATH 6 MEAN POOLING 0.01 0.487 ± 0.016
CHIEF 11 MEAN POOLING 0.01 0.480 ± 0.031
CONCHV1.5 MEAN POOLING 0.01 0.536 ± 0.019
PRISM 13 0.02 0.500 ± 0.019
GIGAPATH 6 0.01 0.536 ± 0.043
CHIEF 11 0.01 0.520 ± 0.031
THREADS 0.01 0.541 ± 0.013

Su
pe

rv
is

ed

ABMIL – 0.523 ± 0.036
GIGAPATH 6 – —
CHIEF 11 – 0.517 ± 0.033
THREADS Random Init – 0.553 ± 0.058
THREADS – 0.575 ± 0.049
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Extended Data Table 38: Effect of increasing linear probe cost on our benchmark. Lower cost corresponds
to stronger regularization. Adaptive cost64 is computed as embedding dim×num classes

100
.

Model Cost Benchmark (without survival)

VIRCHOW 7 MEAN POOLING

0.001

0.653
GIGAPATH 6 MEAN POOLING 0.663
CHIEF 11 MEAN POOLING 0.592
CONCHV1.5 MEAN POOLING 0.690
PRISM 13 0.719
GIGAPATH 6 0.651
CHIEF 11 0.648
THREADS 0.758

VIRCHOW 7 MEAN POOLING

0.01

0.682
GIGAPATH 6 MEAN POOLING 0.691
CHIEF 11 MEAN POOLING 0.616
CONCHV1.5 MEAN POOLING 0.716
PRISM 13 0.729
GIGAPATH 6 0.679
CHIEF 11 0.668
THREADS 0.772

VIRCHOW 7 MEAN POOLING

0.1

0.690
GIGAPATH 6 MEAN POOLING 0.691
CHIEF 11 MEAN POOLING 0.652
CONCHV1.5 MEAN POOLING 0.717
PRISM 13 0.720
GIGAPATH 6 0.685
CHIEF 11 0.698
THREADS 0.779

VIRCHOW 7 MEAN POOLING

0.5

0.681
GIGAPATH 6 MEAN POOLING 0.683
CHIEF 11 MEAN POOLING 0.670
CONCHV1.5 MEAN POOLING 0.708
PRISM 13 0.709
GIGAPATH 6 0.675
CHIEF 11 0.710
THREADS 0.774

VIRCHOW 7 MEAN POOLING

1.0

0.676
GIGAPATH 6 MEAN POOLING 0.679
CHIEF 11 MEAN POOLING 0.671
CONCHV1.5 MEAN POOLING 0.703
PRISM 13 0.704
GIGAPATH 6 0.669
CHIEF 11 0.711
THREADS 0.769

VIRCHOW 7 MEAN POOLING

10.0

0.665
GIGAPATH 6 MEAN POOLING 0.670
CHIEF 11 MEAN POOLING 0.663
CONCHV1.5 MEAN POOLING 0.691
PRISM 13 0.694
GIGAPATH 6 0.659
CHIEF 11 0.694
THREADS 0.751

VIRCHOW 7 MEAN POOLING

Adaptive

0.662
GIGAPATH 6 MEAN POOLING 0.668
CHIEF 11 MEAN POOLING 0.659
CONCHV1.5 MEAN POOLING 0.688
PRISM 13 0.691
GIGAPATH 6 0.657
CHIEF 11 0.690
THREADS 0.746
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Extended Data Table 39: Generalizability experiments using linear probe (for classification) and CoxNet
(for survival). All samples from the train dataset are used for training, and all samples from the test dataset
are used for testing. All tasks are binary classification. CI: 95% confidence interval over 100 bootstraps.

Train Dataset Test Dataset Task Method Mean AUC (CI)

CPTAC-CCRCC38 MUT-HET-RCC

BAP1 Mutation

PRISM 0.776 (0.745-0.809)
GIGAPATH 0.793 (0.765-0.824)

CHIEF 0.813 (0.788-0.840)
THREADS 0.840 (0.809-0.866)

PBRM1 Mutation

PRISM 0.665 (0.636-0.695)
GIGAPATH 0.577 (0.548-0.603)

CHIEF 0.681 (0.654-0.710)
THREADS 0.701 (0.676-0.729)

TCGA-BRCA BCNB29

ER

PRISM 0.627 (0.590-0.663)
GIGAPATH 0.731 (0.698-0.770)

CHIEF 0.835 (0.804-0.864)
THREADS 0.885 (0.859-0.906)

PR

PRISM 0.677 (0.638-0.708)
GIGAPATH 0.688 (0.654-0.716)

CHIEF 0.787 (0.760-0.813)
THREADS 0.794 (0.767-0.822)

TCGA-GBMLGG EBRAINS27 IDH Status

PRISM 0.931 (0.909-0.947)
GIGAPATH 0.904 (0.882-0.926)

CHIEF 0.935 (0.913-0.954)
THREADS 0.961 (0.947-0.975)

TCGA-NSCLC MGB Lung Subtype

PRISM 0.969 (0.957-0.981)
GIGAPATH 0.890 (0.871-0.905)

CHIEF 0.951 (0.937-0.962)
THREADS 0.984 (0.978-0.989)

TCGA-BRCA MGB Breast Subtype

PRISM 0.963 (0.950-0.973)
GIGAPATH 0.919 (0.905-0.934)

CHIEF 0.970 (0.962-0.978)
THREADS 0.965 (0.956-0.973)

TCGA-LUAD CPTAC-LUAD38 Overall Survival

PRISM 0.545 (0.407-0.681)
GIGAPATH 0.561 (0.413-0.685)

CHIEF 0.495 (0.369-0.607)
THREADS 0.654 (0.511-0.748)

TCGA-PDAC CPTAC-PDAC38 Overall Survival

PRISM 0.505 (0.432-0.587)
GIGAPATH 0.571 (0.493-0.642)

CHIEF 0.505 (0.419-0.592)
THREADS 0.613 (0.546-0.696)
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Extended Data Table 40: Performance comparison between THREADS and baselines on BCNB29 tasks
in a few-shot setting. Best in bold, second best is underlined. ER: This is a patient-level classification task
evaluated using AUROC, mean and standard error reported over 5-fold cross-validation. PR: This is a patient-
level classification task evaluated using AUROC, mean and standard error reported over 5-fold cross-validation.
HER2: This is a patient-level classification task evaluated using AUROC, mean and standard error reported
over 5-fold cross-validation.

Model # Shots
Tasks

ER (n=1058) PR (n=1058) HER2 (n=1058)

VIRCHOW 7 MEAN POOLING 1 0.520 ± 0.025 0.555 ± 0.012 0.540 ± 0.011
GIGAPATH 6 MEAN POOLING 1 0.505 ± 0.014 0.576 ± 0.018 0.542 ± 0.012
CHIEF 11 MEAN POOLING 1 0.485 ± 0.016 0.569 ± 0.010 0.493 ± 0.017
CONCHV1.5 MEAN POOLING 1 0.520 ± 0.082 0.627 ± 0.035 0.568 ± 0.031
PRISM 13 1 0.574 ± 0.055 0.560 ± 0.051 0.624 ± 0.023
GIGAPATH 6 1 0.514 ± 0.024 0.574 ± 0.021 0.523 ± 0.010
CHIEF 11 1 0.566 ± 0.031 0.603 ± 0.018 0.488 ± 0.020
THREADS 1 0.671 ± 0.054 0.678 ± 0.091 0.543 ± 0.062

VIRCHOW 7 MEAN POOLING 2 0.512 ± 0.035 0.546 ± 0.023 0.541 ± 0.011
GIGAPATH 6 MEAN POOLING 2 0.583 ± 0.046 0.594 ± 0.031 0.531 ± 0.019
CHIEF 11 MEAN POOLING 2 0.560 ± 0.038 0.557 ± 0.026 0.487 ± 0.046
CONCHV1.5 MEAN POOLING 2 0.602 ± 0.073 0.675 ± 0.020 0.574 ± 0.020
PRISM 13 2 0.687 ± 0.043 0.627 ± 0.050 0.580 ± 0.039
GIGAPATH 6 2 0.573 ± 0.042 0.572 ± 0.032 0.525 ± 0.027
CHIEF 11 2 0.657 ± 0.032 0.614 ± 0.016 0.497 ± 0.030
THREADS 2 0.783 ± 0.055 0.770 ± 0.030 0.580 ± 0.037

VIRCHOW 7 MEAN POOLING 4 0.568 ± 0.044 0.587 ± 0.035 0.523 ± 0.012
GIGAPATH 6 MEAN POOLING 4 0.668 ± 0.051 0.629 ± 0.039 0.545 ± 0.031
CHIEF 11 MEAN POOLING 4 0.585 ± 0.036 0.599 ± 0.039 0.524 ± 0.023
CONCHV1.5 MEAN POOLING 4 0.696 ± 0.068 0.713 ± 0.040 0.565 ± 0.034
PRISM 13 4 0.734 ± 0.039 0.657 ± 0.040 0.643 ± 0.019
GIGAPATH 6 4 0.638 ± 0.050 0.611 ± 0.042 0.526 ± 0.019
CHIEF 11 4 0.724 ± 0.036 0.666 ± 0.028 0.578 ± 0.017
THREADS 4 0.838 ± 0.021 0.725 ± 0.061 0.651 ± 0.024

VIRCHOW 7 MEAN POOLING 8 0.601 ± 0.036 0.592 ± 0.024 0.555 ± 0.022
GIGAPATH 6 MEAN POOLING 8 0.686 ± 0.046 0.651 ± 0.023 0.594 ± 0.032
CHIEF 11 MEAN POOLING 8 0.623 ± 0.034 0.618 ± 0.023 0.540 ± 0.023
CONCHV1.5 MEAN POOLING 8 0.716 ± 0.060 0.721 ± 0.037 0.608 ± 0.033
PRISM 13 8 0.764 ± 0.027 0.695 ± 0.027 0.655 ± 0.017
GIGAPATH 6 8 0.663 ± 0.042 0.619 ± 0.028 0.567 ± 0.027
CHIEF 11 8 0.756 ± 0.027 0.687 ± 0.028 0.606 ± 0.026
THREADS 8 0.836 ± 0.028 0.756 ± 0.034 0.666 ± 0.012

VIRCHOW 7 MEAN POOLING 16 0.683 ± 0.030 0.641 ± 0.019 0.591 ± 0.024
GIGAPATH 6 MEAN POOLING 16 0.762 ± 0.021 0.698 ± 0.015 0.605 ± 0.029
CHIEF 11 MEAN POOLING 16 0.678 ± 0.021 0.635 ± 0.019 0.561 ± 0.026
CONCHV1.5 MEAN POOLING 16 0.786 ± 0.032 0.723 ± 0.025 0.626 ± 0.030
PRISM 13 16 0.828 ± 0.017 0.744 ± 0.019 0.656 ± 0.030
GIGAPATH 6 16 0.731 ± 0.034 0.643 ± 0.014 0.599 ± 0.026
CHIEF 11 16 0.801 ± 0.015 0.713 ± 0.020 0.645 ± 0.026
THREADS 16 0.874 ± 0.018 0.786 ± 0.019 0.684 ± 0.023

VIRCHOW 7 MEAN POOLING 32 0.757 ± 0.031 0.688 ± 0.023 0.614 ± 0.020
GIGAPATH 6 MEAN POOLING 32 0.787 ± 0.021 0.728 ± 0.025 0.612 ± 0.024
CHIEF 11 MEAN POOLING 32 0.720 ± 0.023 0.667 ± 0.024 0.598 ± 0.029
CONCHV1.5 MEAN POOLING 32 0.810 ± 0.024 0.744 ± 0.021 0.632 ± 0.019
PRISM 13 32 0.822 ± 0.023 0.752 ± 0.025 0.654 ± 0.017
GIGAPATH 6 32 0.769 ± 0.022 0.692 ± 0.020 0.619 ± 0.023
CHIEF 11 32 0.809 ± 0.016 0.734 ± 0.022 0.646 ± 0.026
THREADS 32 0.882 ± 0.014 0.798 ± 0.026 0.694 ± 0.020
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Extended Data Table 41: Performance comparison between THREADS and baselines on BRACS28 tasks in
a few-shot setting. Best in bold, second best is underlined. Fine Subtype: This is a slide-level classification
task evaluated using balanced accuracy, mean and standard error reported over 5-fold cross-validation. Coarse
Subtype: This is a slide-level classification task evaluated using balanced accuracy, mean and standard error
reported over 5-fold cross-validation.

Model # Shots
Tasks

Fine Subtype (n=547) Coarse Subtype (n=547)

VIRCHOW 7 MEAN POOLING 1 0.229 ± 0.024 0.335 ± 0.020
GIGAPATH 6 MEAN POOLING 1 0.201 ± 0.014 0.328 ± 0.021
CHIEF 11 MEAN POOLING 1 0.216 ± 0.021 0.333 ± 0.024
CONCHV1.5 MEAN POOLING 1 0.241 ± 0.024 0.308 ± 0.024
PRISM 13 1 0.334 ± 0.057 0.462 ± 0.055
GIGAPATH 6 1 0.198 ± 0.021 0.309 ± 0.017
CHIEF 11 1 0.291 ± 0.040 0.373 ± 0.019
THREADS 1 0.291 ± 0.032 0.402 ± 0.050

VIRCHOW 7 MEAN POOLING 2 0.204 ± 0.023 0.369 ± 0.017
GIGAPATH 6 MEAN POOLING 2 0.227 ± 0.022 0.369 ± 0.015
CHIEF 11 MEAN POOLING 2 0.254 ± 0.023 0.350 ± 0.017
CONCHV1.5 MEAN POOLING 2 0.231 ± 0.015 0.398 ± 0.022
PRISM 13 2 0.361 ± 0.041 0.549 ± 0.031
GIGAPATH 6 2 0.196 ± 0.016 0.369 ± 0.014
CHIEF 11 2 0.319 ± 0.029 0.482 ± 0.045
THREADS 2 0.346 ± 0.033 0.521 ± 0.031

VIRCHOW 7 MEAN POOLING 4 0.258 ± 0.023 0.430 ± 0.021
GIGAPATH 6 MEAN POOLING 4 0.234 ± 0.018 0.413 ± 0.023
CHIEF 11 MEAN POOLING 4 0.255 ± 0.027 0.410 ± 0.022
CONCHV1.5 MEAN POOLING 4 0.259 ± 0.026 0.492 ± 0.018
PRISM 13 4 0.363 ± 0.019 0.551 ± 0.027
GIGAPATH 6 4 0.237 ± 0.015 0.402 ± 0.028
CHIEF 11 4 0.351 ± 0.041 0.547 ± 0.041
THREADS 4 0.387 ± 0.022 0.588 ± 0.025

VIRCHOW 7 MEAN POOLING 8 0.315 ± 0.033 0.459 ± 0.015
GIGAPATH 6 MEAN POOLING 8 0.285 ± 0.020 0.473 ± 0.024
CHIEF 11 MEAN POOLING 8 0.276 ± 0.021 0.450 ± 0.022
CONCHV1.5 MEAN POOLING 8 0.290 ± 0.022 0.523 ± 0.051
PRISM 13 8 0.416 ± 0.026 0.551 ± 0.033
GIGAPATH 6 8 0.281 ± 0.015 0.461 ± 0.028
CHIEF 11 8 0.411 ± 0.027 0.567 ± 0.031
THREADS 8 0.394 ± 0.014 0.602 ± 0.038

VIRCHOW 7 MEAN POOLING 16 0.368 ± 0.036 0.480 ± 0.017
GIGAPATH 6 MEAN POOLING 16 0.314 ± 0.033 0.494 ± 0.038
CHIEF 11 MEAN POOLING 16 0.343 ± 0.033 0.526 ± 0.011
CONCHV1.5 MEAN POOLING 16 0.318 ± 0.041 0.539 ± 0.038
PRISM 13 16 0.418 ± 0.014 0.635 ± 0.015
GIGAPATH 6 16 0.314 ± 0.033 0.512 ± 0.036
CHIEF 11 16 0.434 ± 0.024 0.618 ± 0.017
THREADS 16 0.425 ± 0.015 0.701 ± 0.027

VIRCHOW 7 MEAN POOLING 32 0.349 ± 0.020 0.527 ± 0.009
GIGAPATH 6 MEAN POOLING 32 0.353 ± 0.025 0.505 ± 0.032
CHIEF 11 MEAN POOLING 32 0.335 ± 0.041 0.544 ± 0.019
CONCHV1.5 MEAN POOLING 32 0.361 ± 0.042 0.607 ± 0.045
PRISM 13 32 0.435 ± 0.030 0.632 ± 0.023
GIGAPATH 6 32 0.362 ± 0.031 0.535 ± 0.037
CHIEF 11 32 0.417 ± 0.021 0.649 ± 0.023
THREADS 32 0.502 ± 0.028 0.726 ± 0.021
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Extended Data Table 42: Performance comparison between THREADS and baselines on EBRAINS27 tasks
in a few-shot setting. Best in bold, second best is underlined. Fine Subtype: This is a slide-level classification
task evaluated using balanced accuracy, mean and 95% CI reported over 5 bootstraps of the official train split.
Coarse Subtype: This is a slide-level classification task evaluated using balanced accuracy, mean and 95% CI
reported over 5 bootstraps of the official train split.

Model # Shots
Tasks

Fine Subtype (n=2319) Coarse Subtype (n=2319)

VIRCHOW 7 MEAN POOLING 1 0.303 ± 0.017 0.368 ± 0.013
GIGAPATH 6 MEAN POOLING 1 0.304 ± 0.016 0.347 ± 0.015
CHIEF 11 MEAN POOLING 1 0.215 ± 0.006 0.273 ± 0.008
CONCHV1.5 MEAN POOLING 1 0.361 ± 0.012 0.414 ± 0.021
PRISM 13 1 0.406 ± 0.017 0.463 ± 0.018
GIGAPATH 6 1 0.293 ± 0.012 0.331 ± 0.015
CHIEF 11 1 0.234 ± 0.016 0.262 ± 0.020
THREADS 1 0.503 ± 0.008 0.595 ± 0.028

VIRCHOW 7 MEAN POOLING 2 0.380 ± 0.010 0.472 ± 0.016
GIGAPATH 6 MEAN POOLING 2 0.413 ± 0.005 0.490 ± 0.020
CHIEF 11 MEAN POOLING 2 0.282 ± 0.007 0.373 ± 0.015
CONCHV1.5 MEAN POOLING 2 0.449 ± 0.015 0.537 ± 0.008
PRISM 13 2 0.505 ± 0.008 0.614 ± 0.018
GIGAPATH 6 2 0.395 ± 0.006 0.460 ± 0.013
CHIEF 11 2 0.311 ± 0.020 0.369 ± 0.030
THREADS 2 0.570 ± 0.004 0.736 ± 0.022

VIRCHOW 7 MEAN POOLING 4 0.489 ± 0.006 0.612 ± 0.009
GIGAPATH 6 MEAN POOLING 4 0.522 ± 0.009 0.625 ± 0.009
CHIEF 11 MEAN POOLING 4 0.371 ± 0.009 0.450 ± 0.014
CONCHV1.5 MEAN POOLING 4 0.525 ± 0.009 0.631 ± 0.020
PRISM 13 4 0.565 ± 0.009 0.693 ± 0.010
GIGAPATH 6 4 0.490 ± 0.008 0.590 ± 0.010
CHIEF 11 4 0.402 ± 0.012 0.456 ± 0.012
THREADS 4 0.635 ± 0.007 0.802 ± 0.012

VIRCHOW 7 MEAN POOLING 8 0.593 ± 0.013 0.703 ± 0.010
GIGAPATH 6 MEAN POOLING 8 0.598 ± 0.008 0.719 ± 0.010
CHIEF 11 MEAN POOLING 8 0.457 ± 0.006 0.544 ± 0.014
CONCHV1.5 MEAN POOLING 8 0.592 ± 0.004 0.748 ± 0.010
PRISM 13 8 0.603 ± 0.006 0.782 ± 0.004
GIGAPATH 6 8 0.592 ± 0.007 0.689 ± 0.012
CHIEF 11 8 0.494 ± 0.007 0.590 ± 0.012
THREADS 8 0.683 ± 0.008 0.859 ± 0.004

VIRCHOW 7 MEAN POOLING 16 0.644 ± 0.005 0.793 ± 0.005
GIGAPATH 6 MEAN POOLING 16 0.674 ± 0.007 0.800 ± 0.006
CHIEF 11 MEAN POOLING 16 0.541 ± 0.007 0.618 ± 0.007
CONCHV1.5 MEAN POOLING 16 0.641 ± 0.006 0.801 ± 0.004
PRISM 13 16 0.643 ± 0.008 0.809 ± 0.005
GIGAPATH 6 16 0.661 ± 0.007 0.777 ± 0.007
CHIEF 11 16 0.566 ± 0.006 0.692 ± 0.010
THREADS 16 0.712 ± 0.004 0.882 ± 0.002

VIRCHOW 7 MEAN POOLING 32 — 0.841 ± 0.005
GIGAPATH 6 MEAN POOLING 32 — 0.866 ± 0.005
CHIEF 11 MEAN POOLING 32 — 0.700 ± 0.006
CONCHV1.5 MEAN POOLING 32 — 0.832 ± 0.004
PRISM 13 32 — 0.826 ± 0.005
GIGAPATH 6 32 — 0.847 ± 0.007
CHIEF 11 32 — 0.751 ± 0.003
THREADS 32 — 0.905 ± 0.002
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Extended Data Table 43: Performance comparison between THREADS and baselines on GBM-Treatment
tasks in a few-shot setting. Best in bold, second best is underlined. Response: This is a patient-level classi-
fication task evaluated using AUROC, mean and standard error reported over 50-fold Monte Carlo.

Model # Shots
Tasks

Response (n=93)

VIRCHOW 7 MEAN POOLING 1 0.583 ± 0.021
GIGAPATH 6 MEAN POOLING 1 0.519 ± 0.020
CHIEF 11 MEAN POOLING 1 0.526 ± 0.022
CONCHV1.5 MEAN POOLING 1 0.578 ± 0.021
PRISM 13 1 0.573 ± 0.023
GIGAPATH 6 1 0.550 ± 0.022
CHIEF 11 1 0.525 ± 0.019
THREADS 1 0.551 ± 0.021

VIRCHOW 7 MEAN POOLING 2 0.555 ± 0.026
GIGAPATH 6 MEAN POOLING 2 0.530 ± 0.023
CHIEF 11 MEAN POOLING 2 0.542 ± 0.022
CONCHV1.5 MEAN POOLING 2 0.554 ± 0.021
PRISM 13 2 0.558 ± 0.022
GIGAPATH 6 2 0.551 ± 0.025
CHIEF 11 2 0.509 ± 0.019
THREADS 2 0.548 ± 0.020

VIRCHOW 7 MEAN POOLING 4 0.556 ± 0.020
GIGAPATH 6 MEAN POOLING 4 0.539 ± 0.022
CHIEF 11 MEAN POOLING 4 0.528 ± 0.019
CONCHV1.5 MEAN POOLING 4 0.606 ± 0.019
PRISM 13 4 0.554 ± 0.023
GIGAPATH 6 4 0.553 ± 0.025
CHIEF 11 4 0.489 ± 0.023
THREADS 4 0.566 ± 0.020

VIRCHOW 7 MEAN POOLING 8 0.591 ± 0.020
GIGAPATH 6 MEAN POOLING 8 0.581 ± 0.023
CHIEF 11 MEAN POOLING 8 0.534 ± 0.022
CONCHV1.5 MEAN POOLING 8 0.634 ± 0.019
PRISM 13 8 0.574 ± 0.026
GIGAPATH 6 8 0.613 ± 0.024
CHIEF 11 8 0.511 ± 0.023
THREADS 8 0.618 ± 0.022

VIRCHOW 7 MEAN POOLING 16 0.572 ± 0.017
GIGAPATH 6 MEAN POOLING 16 0.572 ± 0.019
CHIEF 11 MEAN POOLING 16 0.527 ± 0.019
CONCHV1.5 MEAN POOLING 16 0.638 ± 0.020
PRISM 13 16 0.630 ± 0.021
GIGAPATH 6 16 0.608 ± 0.017
CHIEF 11 16 0.503 ± 0.021
THREADS 16 0.676 ± 0.017
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Extended Data Table 44: Retrieval performance on EBRAINS fine (30 classes) and coarse (12 classes)
subtyping. Best in bold, second best is underlined. mAP@K: mean average precision using top-k retrieved
examples. CI: 95% confidence interval.

Model Subtyping Task mAP@1 (CI) mAP@5 (CI) mAP@10 (CI)

VIRCHOW 7 MEAN POOLING Fine 0.593 (0.555-0.627) 0.453 (0.425-0.480) 0.393 (0.366-0.417)
GIGAPATH 6 MEAN POOLING Fine 0.581 (0.536-0.626) 0.456 (0.427-0.490) 0.395 (0.367-0.425)
CHIEF 11 MEAN POOLING Fine 0.463 (0.425-0.504) 0.317 (0.288-0.340) 0.260 (0.235-0.279)
CONCHV1.5 MEAN POOLING Fine 0.645 (0.610-0.675) 0.514 (0.488-0.540) 0.463 (0.438-0.487)

PRISM 13 Fine 0.648 (0.615-0.686) 0.534 (0.506-0.560) 0.488 (0.463-0.514)
GIGAPATH 6 Fine 0.607 (0.572-0.640) 0.454 (0.426-0.482) 0.383 (0.355-0.411)
CHIEF 11 Fine 0.502 (0.469-0.541) 0.359 (0.333-0.387) 0.297 (0.272-0.320)

THREADS Fine 0.706 (0.667-0.739) 0.606 (0.573-0.633) 0.568 (0.538-0.597)

VIRCHOW 7 MEAN POOLING Coarse 0.797 (0.759-0.830) 0.702 (0.670-0.726) 0.648 (0.618-0.670)
GIGAPATH 6 MEAN POOLING Coarse 0.782 (0.741-0.820) 0.698 (0.665-0.724) 0.642 (0.611-0.670)
CHIEF 11 MEAN POOLING Coarse 0.659 (0.619-0.696) 0.534 (0.502-0.563) 0.483 (0.455-0.511)
CONCHV1.5 MEAN POOLING Coarse 0.857 (0.829-0.880) 0.774 (0.746-0.796) 0.731 (0.704-0.753)

PRISM 13 Coarse 0.845 (0.818-0.874) 0.772 (0.746-0.793) 0.738 (0.713-0.760)
GIGAPATH 6 Coarse 0.798 (0.763-0.828) 0.696 (0.667-0.720) 0.635 (0.608-0.659)
CHIEF 11 Coarse 0.697 (0.661-0.740) 0.582 (0.551-0.613) 0.526 (0.497-0.555)

THREADS Coarse 0.904 (0.883-0.928) 0.854 (0.834-0.873) 0.831 (0.809-0.849)

Extended Data Table 45: Tissue type retrieval (10 classes) performance using CPTAC. Best in bold, second
best is underlined. mAP@K: mean average precision using top-k retrieved examples. CI: 95% confidence
interval.

Model mAP@1 (CI) mAP@5 (CI) mAP@10 (CI)

VIRCHOW MEAN POOLING 0.935 ± 0.004 0.818 ± 0.003 0.754 ± 0.004
GIGAPATH MEAN POOLING 0.943 ± 0.005 0.831 ± 0.007 0.753 ± 0.005
CHIEF MEAN POOLING 0.910 ± 0.003 0.778 ± 0.002 0.698 ± 0.003
CONCHV1.5 MEAN POOLING 0.955 ± 0.002 0.890 ± 0.004 0.848 ± 0.004

PRISM 0.944 ± 0.003 0.883 ± 0.004 0.850 ± 0.005
GIGAPATH 0.943 ± 0.006 0.830 ± 0.006 0.749 ± 0.005
CHIEF 0.916 ± 0.002 0.801 ± 0.006 0.734 ± 0.007

THREADS 0.967 ± 0.003 0.900 ± 0.004 0.861 ± 0.006
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Extended Data Table 46: Prompting experiments. All samples from the train dataset are used for training,
and all samples from the test dataset are used for testing. Best in bold, second best is underlined. CI: 95%
confidence interval.

Train Dataset Test Dataset Task Method Mean AUC (CI)

TCGA-BRCA MGB Breast

ER
CONCHV1.5MEAN POOLING 0.702 (0.673-0.744)

THREADS Molecular 0.779 (0.747-0.810)

HER2
CONCHV1.5MEAN POOLING 0.580 (0.522-0.623)

THREADS Molecular 0.713 (0.668-0.764)

PR
CONCHV1.5MEAN POOLING 0.662 (0.620-0.694)

THREADS Molecular 0.736 (0.698-0.771)

Subtype
CONCHV1.5MEAN POOLING 0.916 (0.901-0.934)

THREADS Molecular 0.882 (0.858-0.905)

TCGA-GBMLGG EBRAINS27 IDH Status
CONCHV1.5MEAN POOLING 0.910 (0.892-0.927)

THREADS Molecular 0.960 (0.947-0.972)

TCGA-NSCLC MGB Lung Subtype
CONCHV1.5MEAN POOLING 0.889 (0.870-0.905)

THREADS Molecular 0.984 (0.974-0.990)

TCGA-CCRCC CPTAC-CCRCC38 Overall Survival
CONCHV1.5MEAN POOLING 0.581 (0.497-0.653)

THREADS Molecular 0.687 (0.591-0.762)

TCGA-PDAC CPTAC-PDAC38 Overall Survival
CONCHV1.5MEAN POOLING 0.531 (0.481-0.584)

THREADS Molecular 0.589 (0.543-0.635)

Extended Data Table 47: Impact of pretraining size on performance. We train THREADS on pretraining
datasets of increasing size and report the average linear probe performance of each family of tasks (Table 2, 3,
4, 5, 6, 7). Full benchmark refers to our proposed pan-tissue benchmark.

% of pretraining data Clinical subtyping IHC Mutation Treatment response and Full benchmark
(number of WSIs) and grading prediction prediction survival prediction performance

CONCHV1.5 MEAN POOLING 0.779 0.770 0.680 0.574 0.689

1 (470) 0.806 0.791 0.716 0.583 0.714
5 (2356) 0.829 0.804 0.727 0.585 0.725

25 (11791) 0.836 0.802 0.727 0.613 0.732
50 (23584) 0.836 0.814 0.737 0.614 0.739
75 (35377) 0.828 0.815 0.752 0.629 0.747

100 (47171) 0.832 0.825 0.755 0.635 0.753

57



Extended Data Table 48: Impact of model size on performance. Number of pretraining heads in THREADS

(1, 2, 4 heads) compared against PRISM and GIGAPATH. Evaluations done using linear probing on Full
benchmark. RESNET50-IN MEAN POOLING is ResNet50 model pretrained on ImageNet (IN)

Model Number of parameters Full benchmark
name in WSI encoder (million) performance

CONCHV1.5 MEAN POOLING N/A 0.689
VIRCHOW 7 MEAN POOLING N/A 0.662
GIGAPATH 6 MEAN POOLING N/A 0.663
CHIEF 11 (Patch) MEAN POOLING N/A 0.651
RESNET50-IN 65 MEAN POOLING N/A 0.560

THREADS (1 head) 5.0 0.734
THREADS (2 heads) 11.3 0.753
THREADS (4 heads) 19.7 0.743
THREADS (6 heads) 28.1 0.743
THREADS (ViT) 16.1 0.690

PRISM 13 45.0 0.690
GIGAPATH 6 85.1 0.654
CHIEF 11 (Slide) 1.2 0.686

Extended Data Table 49: CONCHV1.5 hyperparameters. CONCHV1.5 was initialized with UNI (Vision
Transformer Large). Batch size refers to the total batch size across GPUs. Effective batch size used for
optimization is batch size × gradient accumulation steps. Learning rate is increased from zero linearly to
the peak learning rate over the course of warmup steps and decays back to zero following the learning rate
scheduler. The model was trained for 20 epochs with 1.26 million image / caption pairs where the maximum
sequence length for captions is set to 128. Non-squared images are first padded to square and then resized to
448 × 448.

Hyperparameter Values

Image size 448 × 448
Automatic mixed precision FP16
Batch size 256
Gradient accumulation steps 3
Learning rate scheduler Cosine
Warmup steps 250
Peak learning rate 1e-4
AdamW β (0.9, 0.999)
AdamW ϵ 1e-8
Weight decay 0.2
Softmax temperature Learned
Epochs 20
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Extended Data Table 50: CLIP hyperparameters in THREADS pretraining.
Hyperparameter Value

GPU 4× 80GB A100
Batch size per GPU 300
Patches sampled during training 512
AdamW β (0.9, 0.999)
WSI embedder learning rate 0.00005
RNA embedder learning rate 0.00005
DNA embedder learning rate 0.00005
WSI embedder weight decay 0.0001
RNA embedder weight decay 0.0001
DNA embedder weight decay 0.0001
Learning rate schedule Cosine
Learning rate (start) 0
Learning rate (post warmup) 1e-5
Learning rate (final) 1e-8
Warmup epochs 5
Max epochs 101
INFONCE Temperature 0.07
Automatic mixed precision bfloaft16
Distributed Data Parallel Backend GLOO
Early stopping criteria SmoothRank 56

Extended Data Table 51: THREADS architectural hyperparameters. WSI: wsi encoder; RNA: scGPT RNA
encoder; DNA: DNA encoder

Hyperparameter Value

W
SI

Pre-attention hidden dimension 1024
Pre-attention hidden layers 2
Pre-attention droput 0.1
Attention heads 2
Head activation GeLU
Head dropout 0.1
Patch embedding dimension 768

R
N

A

Encoder scGPT 18

Normalization log2(Transcripts per million)
scGPT data binning None
scGPT pretrained weights Pancancer
scGPT number of genes to sample 1199
scGPT hidden dim 512

D
N

A

Encoder MLP
Hidden layers 2
Hidden dimension 1024
Activation ReLU
Dropout 0.2
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Extended Data Table 52: Label breakdown for the MGB-BRCA morphological subtyping task. Each
sample corresponds to a WSI.

Grade # Samples

Invasive ductal carcinoma (IDC) 981
Invasive lobular carcinoma (ILC) 283
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Extended Data Table 53: Label breakdown for the MGB-Lung morphological subtyping task. Each sample
corresponds to a WSI.

Grade # Samples

Lung adenocarcinoma (LUAD) 1616
Lung squamous cell carcinoma (LUSC) 325

Extended Data Table 54: Label breakdown for the IMP tumor grading task. Each sample corresponds to a
WSI.

Grade # Samples

0 (non-neoplastic) 847
1 (low-grade) 2847
2 (high-grade) 1639

Extended Data Table 55: Label breakdown for the PANDA tumor grading task. Each sample corresponds
to a WSI.

ISUP Grade # Samples

0 2603
1 2399
2 1209
4 1124
3 1118
5 1102

Extended Data Table 56: Label breakdown for the BRACS coarse-grained morphological subtyping task.
Each sample corresponds to a WSI.

Label # Samples

Benign tumor 265
Malignant tumor 193
Atypical tumor 89
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Extended Data Table 57: Label breakdown for the BRACS fine-grained morphological subtyping task.
Each sample corresponds to a WSI.

Label # Samples

Pathological benign 147
Invasive carcinoma 132
Usual ductal hyperplasia 74
Ductal carcinoma in situ 61
Atypical ductal hyperplasia 48
Normal 44
Flat epithelial atypia 41

Extended Data Table 58: Label breakdown for the EBRAINS coarse-grained diagnosis task. Each sample
corresponds to a WSI.

Label # Samples

Adult-type diffuse gliomas 837
Meningiomas 430
Mesenchymal, non-meningothelial tumours involving the CNS 190
Tumours of the sellar region 184
Circumscribed astrocytic gliomas 173
Ependymal Tumours 96
Haematolymphoid tumours involving the CNS 91
Glioneuronal and neuronal tumours 88
Cranial and paraspinal nerve tumours 81
Paediatric-type diffuse low-grade gliomas 70
Metastatic tumours 47
Embryonal Tumors 32
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Extended Data Table 59: Label breakdown for the EBRAINS fine-grained diagnosis task. Each sample
corresponds to a WSI.

Label # Samples

Glioblastoma, IDH-wildtype 474
Pilocytic astrocytoma 173
Meningothelial meningioma 104
Pituitary adenoma 99
Anaplastic oligodendroglioma, IDH-mutant and 1p/19q codeleted 91
Ganglioglioma 88
Haemangioblastoma 88
Adamantinomatous craniopharyngioma 85
Oligodendroglioma, IDH-mutant and 1p/19q codeleted 85
Atypical meningioma 83
Schwannoma 81
Diffuse astrocytoma, IDH-mutant 70
Transitional meningioma 68
Diffuse large B-cell lymphoma of the CNS 59
Gliosarcoma 59
Fibrous meningioma 57
Anaplastic ependymoma 50
Anaplastic astrocytoma, IDH-wildtype 47
Metastatic tumours 47
Anaplastic astrocytoma, IDH-mutant 47
Ependymoma 46
Anaplastic meningioma 46
Secretory meningioma 41
Lipoma 38
Haemangiopericytoma 34
Glioblastoma, IDH-mutant 34
Medulloblastoma, non-WNT/non-SHH 32
Langerhans cell histiocytosis 32
Angiomatous meningioma 31
Haemangioma 30
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