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Abstract

Large language models (LLMs) are proficient001
at generating fluent text with minimal task-002
specific supervision. However, their ability003
to generate rationales for knowledge-intensive004
tasks (KITs) remains under-explored. Gen-005
erating rationales for KIT solutions, such as006
commonsense multiple-choice QA, requires ex-007
ternal knowledge to support predictions and008
refute alternate options. In this work, we con-009
sider the task of generating retrieval-augmented010
rationalization of KIT model predictions via011
external knowledge-guidance within a few-012
shot setting. Surprisingly, crowd-workers pre-013
ferred LLM-generated rationales over exist-014
ing crowd-sourced rationales, generated in a015
similar knowledge-guided setting, on aspects016
such as factuality, sufficiency, and convincing-017
ness. However, follow-up fine-grained evalua-018
tion of such rationales highlight the need for fur-019
ther improvements in conciseness, novelty, and020
domain invariance. Additionally, through an021
expert-sourced study evaluating the reliability022
of the rationales, we demonstrate that humans’023
trust in LLM-generated rationales erode when024
communicated faithfully, i.e., without taking025
model prediction accuracy into account. We026
find that even instrumenting simple guardrails027
can be an effective for reliable rationalization.028

1 Introduction029

In recent years, generating rationales (i.e., free-030

text explanations) of natural language understand-031

ing tasks has been increasingly explored in the032

field of explainable NLP. Such rationales — while033

less functionally grounded, i.e., they may not en-034

tirely reflect the model’s behavior — provide an035

effective interface to interpretably communicate036

model decisions to end-users (Hendricks et al.,037

2016; Camburu et al., 2018; Madsen et al., 2022;038

Gurrapu et al., 2023). Generating these ratio-039

nales via direct supervision (Ehsan et al., 2018;040

Narang et al., 2020) or fine-tuning (Aggarwal et al.,041

Figure 1: a) A commonsense question with multiple
choices and knowledge extracted from ConceptNet and
b) proposed LLM-generated rationale corroborating the
selected answer and refuting the other choices.

2021; Rei et al., 2022) requires the collection of 042

high-quality human-authored rationales. Collect- 043

ing such rationales via crowd-sourcing is expen- 044

sive, difficult to standardize, and lacks generaliz- 045

ability to different domains (Wiegreffe and Maraso- 046

vić, 2021; Tan, 2021). Recent work (Wiegreffe 047

et al., 2022) showcases that large language model 048

(LLM) generated rationales, obtained via few-shot 049

in-context learning (Radford et al., 2019; Brown 050

et al., 2020; Huang et al., 2023), alleviate these 051

challenges while showcasing surprising effective- 052

ness over crowdsourced rationales on dimensions 053

such as human preference. However, character- 054

izing the suitability of LLMs as rationalizers of 055

knowledge-intensive task (KIT) decisions such as 056

commonsense question answering (CSQA (Talmor 057

et al., 2019)) and open book question answering 058

(OBQA (Mihaylov et al., 2018)) requires further 059

investigation due to the difference in scope and 060

setting from prior work (Wiegreffe et al., 2022). 061

Firstly, KITs such as CSQA and OBQA are 062

framed as multiple-choice questions, requiring 063

models to select one answer from several choices 064

(see Figure 1a). Therefore, a corresponding well- 065

formed rationale is required to be (a) comprehen- 066

sive, i.e., state facts that are not present in the ques- 067

tion but are essential for rationalization, and (b) 068

refutation complete, i.e., rationalize why the rest 069

of the choices are incorrect or not best suited as 070
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the answer (Aggarwal et al., 2021). We show an071

example of such a rationale in Figure 1b. However,072

LLM-generated rationales in prior work (Wiegreffe073

et al., 2022) have only been evaluated on their cor-074

roboration capabilities. Secondly, LLM-generated075

rationales in prior work are abstractive (Gurrapu076

et al., 2023), lacking grounding on external knowl-077

edge sources crucial for accomplishing the task —078

KIT models designed for CSQA and OBQA (Feng079

et al., 2020; Yasunaga et al., 2021, 2022) refer to080

external sources such as ConceptNet (Speer et al.,081

2017) (see Figure 1a). Finally, KIT models may082

predict incorrectly — faithfully rationalizing such083

mistakes may erode the end-user’s trust in the gen-084

erated rationales. Existing approaches in explain-085

able NLP omit the incorrect prediction confounder086

and evaluate only rationales of correct predictions.087

However, with LLM-generated rationales being in-088

creasingly adopted in real-world scenarios, such089

as rationalizing why a candidate is suitable for an090

advertised job1, it is important to scrutinize the091

practical implications of such deployments and in-092

form guidelines for safe and responsible adoption.093

Given the setting of generating corroborating094

and refutation complete rationales of KIT model095

decisions, we explore the suitability of retrieval-096

augmented rationale generation using LLMs. We097

enrich the prompt to LLMs with relevant knowl-098

edge retrieved from external sources to condition099

the rationale generation on facts. More specifically,100

we generate knowledge-guided rationales contain-101

ing corroboration and refutation components —102

similar to Figure 1b — via few-shot prompting103

of LLMs. We conducted three human subject stud-104

ies to evaluate the effectiveness of such rationales105

in communicating KIT model decisions. The ob-106

servations from these studies enable coarse- and107

fine-grained characterization of the strengths and108

weaknesses of LLM-generated knowledge-guided109

rationalization of KIT model decisions.110

More specificlly, we conduct two studies via111

crowdsourcing to evaluate the preferability and ac-112

ceptability of such rationales to crowd-workers. In113

another study involving experts — motivated by ex-114

isting literature on trust in explainable AI (Hoffman115

et al., 2018; Stites et al., 2021) — we explore the116

implications of faithfully rationalizing KIT model117

decisions irrespective of their correctness. The118

crowd-sourced studies demonstrate that, more of-119

1https://www.businessinsider.com/sc/
indeed-is-embracing-ai-to-power-the-future-of-work

ten than not, crowdworkers prefer LLM-generated 120

rationales to crowdsourced rationales in existing 121

datasets, citing their factuality, sufficiency, and con- 122

vincing refutation. Follow-up fine-grained analysis 123

reveals that LLM-generated rationales still have sig- 124

nificant room for improvement along dimensions 125

such as insightfulness (i.e., providing new infor- 126

mation), redundancy (i.e., avoiding repetitive text), 127

and generalizability (i.e., domain invariance.) The 128

expert-sourced study confirms that faithful rational- 129

ization of incorrect model predictions degrades hu- 130

mans’ trust in the generated rationales. We further 131

explore the utility of instrumenting mechanisms 132

to intervene the incorrect predictions via a review- 133

then-rationalize pipeline instead of faithfully ratio- 134

nalizing and find that even simple strategies may 135

help intervene up to 71% of the incorrect predic- 136

tions. We will publicly release the code and data. 137

2 Knowledge-enhanced Rationalization 138

KIT models such as MHGRN (Feng et al., 2020), 139

QAGNN (Yasunaga et al., 2021), and Dragon (Ya- 140

sunaga et al., 2022) combine language model and 141

knowledge graph representations to solve complex 142

tasks such as commonsense QA (Talmor et al., 143

2019). We aim to generate rationales that corrobo- 144

rate the KIT model’s prediction with additional rel- 145

evant facts while refuting the other choices (see Fig- 146

ure 1.) Our approach is similar to existing retrieval- 147

augmented generation strategies with LLMs (Peng 148

et al., 2023; Lazaridou et al., 2022; Zhao et al., 149

2023; Mei et al., 2023). To guide the generation 150

of these rationale components, i.e., corroboration 151

and refutation, we retrieve facts concerning the 152

knowledge-intensive task — e.g., questions and 153

choices in CSQA and OBQA — from a knowledge 154

graph such as ConceptNet (Speer et al., 2017). We 155

then prompt an LLM to rationalize the prediction 156

via conditioning on the provided knowledge. Fig- 157

ure 2 outlines the rationalization process given an 158

input, i.e., question, choices, and model prediction. 159

Given an external knowledge-graph such as Con- 160

ceptNet (Speer et al., 2017), we employ the knowl- 161

edge extraction strategy used in QAGNN (Ya- 162

sunaga et al., 2021) to first retrieve the facts rel- 163

evant to a question and then select top-k (k = 5) 164

facts based on their RoBERTa (Liu et al., 2019) 165

score given the question and a choice. Such selec- 166

tion enables us to fit the knowledge facts within the 167

token limits of an LLM prompt. We employ greedy 168

decoding-based few-shot prompting to query an 169
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Figure 2: Given an Input (i.e., QA and model predic-
tion), an LLM is prompted to generate a rationale with
few-shot examples sampled from an expert-written pool.

LLM for rationalization. Each example in the170

prompt contains a QA task, the corresponding KIT171

model prediction, facts retrieved from Concept-172

Net, and expert written rationale corrborating the173

prediction and refuting other choices. We opted174

for expert-authored rationales due to their reported175

effectiveness over crowdsourced rationales (Wiegr-176

effe et al., 2022). The paper’s authors collabora-177

tively crafted high-quality rationales to compile the178

expert-written pool. We provide a detailed descrip-179

tion of the prompt design in Appendix A (Table 4.)180

Give a new multiple-choice question; we combine181

the question, the model prediction, and the corre-182

sponding extracted facts with the few-shot exam-183

ples sampled from the expert-pool to formulate the184

final prompt (see Figure 2.)185

3 Evaluation of Rationales186

Due to a lack of suitable automated methods for187

evaluating the rationale quality (Clinciu et al., 2021;188

Kayser et al., 2021) and credibility, we conducted189

three studies to address the following questions:190

RQ1. How effective are the LLM-generated ra-191

tionales in communicating KIT model decisions192

compared to crowdsourced rationales? (§ 4)193

RQ2. To what degree do the fine-grained rationale194

characteristics influence its effectiveness and how195

generalizable are these observations? (§ 5)196

RQ3. How does faithful rationalization of model197

predictions impact humans’ trust in the LLM-198

generated rationales? (§ 6)199

Datasets and Prompts. We select QAGNN (Ya-200

sunaga et al., 2021) as the KIT model due to its201

well-documented code repository and availability202

of pre-trained model weights. We consider two203

datasets of multiple-choice QA tasks related to204

commonsense knowledge, CSQA (Talmor et al.,205

2019), and elementary-level science, OBQA (Mi-206

haylov et al., 2018). Following the existing KIT207

models, we use ConceptNet (Speer et al., 2017) as208

our external knowledge source. For both datasets, 209

we report results on a fixed, randomly-sampled 250- 210

instance test set. We sample these instances from 211

the test set prepared for these datasets (Feng et al., 212

2020). We employed GPT-3.5 text-davinci-003 213

(temperature = 0) as the LLM rationalizer. We 214

randomly selected 40 instances from each of the 215

CSQA and OBQA datasets — different from the 216

250 test instances — to be included in the expert- 217

written example pool. See Appendix A for details. 218

Faithful Rationalization Studies. We conducted 219

two crowdsourced studies aimed at addressing RQ1 220

and RQ2. For both studies, we only consider ra- 221

tionalization of correct KIT model predictions, i.e., 222

faithful rationalization. The approach is similar 223

to prior work (Aggarwal et al., 2021; Wiegreffe 224

et al., 2022; Marasovic et al., 2022; Kayser et al., 225

2021) that also removed the confounder, i.e., ratio- 226

nalization of incorrect model prediction, by only 227

considering rationales for correctly predicted in- 228

stances. We used Amazon Mechanical Turk for 229

crowdsourcing evaluation. For HITs in both stud- 230

ies, we asked targeted questions to obtain coarse- 231

and fine-grained feedback on the rationales of a 232

KIT model decision. We detail these evaluation 233

metrics in the respective sections discussing the 234

studies. Due to the subjectivity of some of the 235

instances of the CSQA dataset, following Wiegr- 236

effe (Wiegreffe et al., 2022), we instruct workers 237

for both the studies to consider the KIT model pre- 238

diction to be correct even if they disagree with 239

it. We undertook several quality control measures 240

from vetting and recruitment of crowdworkers to 241

accounting for order effect of tasks and individual 242

annotator bias. Besides detailing these measures, 243

we include the study interface design and additional 244

statistical information in Appendices B and E. 245

Credible Rationalization Study. To address RQ3, 246

inspired by existing work on trust in explainable 247

AI (Hoffman et al., 2018; Stites et al., 2021; Smith- 248

Renner et al., 2020), we conducted a confirma- 249

tory study in the context of explainable NLP (i.e., 250

LLM-generated rationalization) to explore credi- 251

bility of rationales on aspects such as agreement, 252

confidence, reliability, and user satisfaction, among 253

others. In this study, we consider rationales gener- 254

ated on both correct and incorrect KIT model pre- 255

dictions. The study was conducted via a Slack cam- 256

paign within Company X, an industrial research lab, 257

with NLP, data management, and machine learning 258

as the primary research areas. 259
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4 LLMs vs Humans as Rationalizers260

We first compare LLM-generated rationales of261

the CSQA (Talmor et al., 2019) tasks with cor-262

responding crowdsourced rationales from ECQA263

dataset (Aggarwal et al., 2021). The ECQA ratio-264

nales are similar in construct to our setting contain-265

ing corroboration and refutation of CSQA tasks.266

We exclude CoS-E (Rajani et al., 2019), another267

crowdsourced free-text rationales dataset, as those268

rationales are not refutation complete. Moreover,269

ECQA rationales are reported to be overall better270

than CoS-E in rationalizing KIT decisions (Aggar-271

wal et al., 2021; Sun et al., 2022). We explain272

the dataset selection criteria in further detail in273

Appendix A. Following are the key study take-274

aways:275

• knowledge-guided rationales are preferable276

(67.2%) to crowdworkers compared to crowd-277

written rationales, while showcasing substan-278

tial increase in preference (45.7%) than prior279

work (Wiegreffe et al., 2022).280

• fine-grained aspects of a rationale such as sup-281

portiveness, sufficiency, and convincingness282

weakly predict such preferences.283

4.1 Study Setting284

In each of the 250 HITs (three different crowd-285

workers per HIT), a crowd-worker was presented286

with a question with choices, the corresponding pre-287

diction of the KIT model, and two rationales: LLM-288

generated (from our pipeline) and crowdworker-289

written. We then ask them to make a preferen-290

tial selection among the two rationales (see inter-291

face details in Appendix E.1.) We find low-to-292

moderate annotator agreement – Krippendorff’s293

α = 0.13 (Krippendorff, 2011) — for this study,294

indicating the subjective nature of the task. Related295

work (Wiegreffe et al., 2022) reported similar agree-296

ment statistics (α ∈ [0.05, 0.20]) on comparison297

between LLM-generated and ECQA rationales.298

Fine-grained comparison. Besides head-to-head299

comparison, we ask several 7-point Likert scale300

questions — adapted from prior work (Aggarwal301

et al., 2021; Wiegreffe et al., 2022) — targeted302

at comparing fine-grained aspects of both ratio-303

nales. These aspects include: sufficiency in justi-304

fying the model’s choice; conciseness (i.e., degree305

of redundancy); understandability; factuality (i.e.,306

factual correctnes); supportiveness (i.e., the degree307

to which the model prediction is supported); refu-308

tation convincingness (i.e., the degree to which the309

factuality insightfulness conciseness convincingness0

2

4

6

8

Ra
tin

gs

sufficiency supportiveness understandability0
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6

8
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tin

gs

ECQA LLM

Figure 3: Distribution of fine-grained metrics between
crowdworker (ECQA) and LLM-generated rationales —
LLM-generated rationales were preferred over ECQA
on majority of the metrics except conciseness.

unselected choices are convincingly refuted); in- 310

sightfulness (i.e., how much new information is 311

captured.) New information can be new facts or 312

reasoning not stated in the question and answer 313

choices and potentially grounded on the knowl- 314

edge evidence. We report the agreement statistics 315

on individual aspects in the Appendix B.2. 316

4.2 Higher Preference of LLM Generations 317

Surprisingly, LLM-generated rationales were 318

more frequently preferred (67.2% times) over 319

crowdworker-written rationales (37.8% times.) 320

The result showcases an improvement over previ- 321

ous work on generating corroboration only (no refu- 322

tation) rationales (Wiegreffe et al., 2022) — 45.7% 323

preference to LLM generations. The crowdworker- 324

written ECQA rationales potentially outperformed 325

those corroboration rationales on dimensions such 326

as refutation convincingness, sufficiency, and sup- 327

portiveness. Moreover, our pipeline enabled 328

knowledge-guided rationale generation, whereas 329

prior LLM-generated rationales (Wiegreffe et al., 330

2022) lacked such grounding and were abstractive. 331

However, the LLMs in both studies differed, with 332

our study employing a newer version (GPT-3.5) 333

than the GPT-3 model used in their work. While 334

some of the performance gain can be attributed 335

to such model upgrades, we demonstrate via fine- 336

grained analysis how aspects of our rationale con- 337

struct are correlated with crowd-worker preference. 338

4.3 Fine-grained Comparison 339

As shown in Figure 3, overall, crowd workers ex- 340

hibited more preference for LLM-generated ratio- 341

nales over crowdworker-written ones on aspects 342

such as insightfulness (i.e., new information), refu- 343

tation convincingness, and sufficiency. In fact, 344
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up to 80.4% of the LLM-generated rationales pre-345

sented to the crowdworkers contained at least one346

statement grounded on external knowledge, thereby347

contributing to insightfulness (see Appendix D.1348

for details.) Moreover, the refutation argument349

anchored on the topic of the question enabled a350

more convincing refutation. Therefore, the result-351

ing LLM-generated rationales were sufficient to352

justify the model’s choice for the QA task.353

The preference for LLM-generated and354

crowdworker-written rationales was comparable355

for other aspects such as factuality, supportiveness,356

and understandability. However, crowd-workers357

rated LLM-generated rationales as more redundant358

which is unsurprising, given the tendency of the359

LLMs to generate verbose text.360

Metrics LLM-generated Crowdworker-written
Preferred Preferred

Factuality 0.29 0.04
Insightfulness 0.21 0.12
Conciseness 0.08 0.02

Convincingness 0.29 0.17
Sufficiency 0.28 0.14

Supportiveness 0.27 0.03
Understandability 0.27 0.01

Table 1: Spearman correlation between crowdworker
preference of rationales — weak correlations are ob-
served with p < 0.01 (strong statistical significance.)

Correlation to rationale preference. To under-361

stand what factors are important for the prefer-362

ence judgment, we compute Spearman correla-363

tion (Spearman, 1987) between the binary pref-364

erence of both rationale types — i.e., LLM-365

generated and crowdworker-written — and the fine-366

grained aspects (see Table 1.) The conciseness as-367

pect lacked any correlation with either rationale368

type. Surprisingly, crowd-workers’ preference for369

crowdworker-written rationales lacked any correla-370

tion with several other aspects, such as factuality,371

supportiveness, and understandability, while show-372

casing a very weak correlation with the rest. How-373

ever, these fine-grained aspects exhibited a compar-374

atively stronger positive correlation with the LLM-375

generated rationales. Further analysis showcases376

that even when crowd-workers preferred ECQA377

rationales in a head-to-head comparison, LLM-378

generated and crowdworker-written rationales ex-379

hibited almost similar ratings in the majority of the380

fine-grained aspects (see Appendix D.2.) Overall,381

the results indicate that human preference for LLM-382

generated rationale can be captured by factoring383

in different fine-grained aspects, which can inform384

the design of automated mechanisms for estimating385

the suitability of a rationale for end-users.386

5 Acceptability of LLM Rationalization 387

While pairwise evaluations of preferences provided 388

perspective on the relative quality of the rationales, 389

we conducted another study to independently mea- 390

sure the acceptability of the LLM-generated ratio- 391

nales and collect absolute crowd-worker judgments 392

across several aspects related to rationale quality. 393

We evaluated rationales for both CSQA and OBQA 394

dataset task to understand how generalizable these 395

observations are. The key takeaways from the study 396

are as follows: 397

• the overall acceptability of the rationales re- 398

mained high similar to the comparative study. 399

• however, task and domain variation impacted 400

the quality of the generated rationales. 401

5.1 Study Setting 402

In each of the 250 HITs per dataset (three differ- 403

ent judges per HIT), a crowd-worker was presented 404

with a question with choices, the corresponding pre- 405

diction of the KIT model, and an LLM-generated 406

rationale. Besides asking 7-point Likert scale ques- 407

tions on fine-grained aspects of a rationale — simi- 408

lar to the first study in Section 4 — we include two 409

additional surface-level aspects: readability, i.e., 410

the clarity of the provided justifications and gram- 411

maticality, adherence to grammatical rules. Finally, 412

we ask for an overall judgment on quality, i.e., the 413

overall acceptability of a rationale (see interface 414

details in Appendix E.1.) We again find low-to- 415

moderate agreement – Krippendorff’s α = 0.12 416

for CSQA and 0.15 for OBQA dataset. Related 417

work (Wiegreffe et al., 2022) reported slightly bet- 418

ter agreement statistics (α = 0.28) on the CSQA 419

dataset (see Appendix B.2 for details.) 420

5.2 Favorability Towards LLM generations 421

On the overall acceptability metric, the LLM- 422

generated rationales received a notably positive 423

rating from the participants for both CSQA (µ = 424

5.83, σ = 1.27) and OBQA (µ = 5.89, σ = 1.50). 425

These independent observations reaffirm earlier 426

takeaways (§ 4) and underscore that the LLM- 427

generated rationales of KIT models were viewed 428

favorably by crowd-workers. 429

Fine-grained observations. As shown in Figure 4, 430

for the newly introduced surface-level metric, read- 431

ability, and grammaticality, the LLM-generated 432

rationales received higher ratings in keeping with 433

the previous work. In fact, for both datasets, for 434

all of the richer aspects except insightfulness and 435
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Figure 4: Crowdworkers’ ratings showed similar distrbu-
tion for all metrics except insightfulness and concisenes.
These metrics were rated lower for the more subjective
CSQA dataset compared to the objective and scientific
OBQA dataset.

conciseness, the ratings received were similar, i.e.,436

more positively rated. While the insightfulness met-437

ric was rated positively for OBQA, the rating was438

neutral to slightly negative for CSQA. Surprisingly,439

conciseness (i.e., less redundancy) was rated posi-440

tively for OBQA, whereas CSQA rationales were441

deemed more redundant, similar to the previous442

study. A plausible explanation for this discrep-443

ancy is the inherent subjectivity in CSQA (Wiegr-444

effe et al., 2022), which can result in varying ex-445

pectations regarding the information provided in446

the rationales. In contrast, the OBQA dataset is447

grounded in objective scientific facts, eliminating448

such subjectivity and leading to more consistent449

expectations among crowd-workers.450

Metrics Correlation CSQA Correlation OBQA
Factuality 0.65 0.73

Insightfulness 0.38 0.67
Conciseness 0.09 0.6

Convincingness 0.70 0.80
Sufficiency 0.76 0.80

Supportiveness 0.54 0.76
Understandability 0.63 0.71

Readability 0.5 0.74
Grammar 0.33 0.62

Table 2: Spearman correlation between acceptability
and the fine-grained aspects of a rationale — moderate
to fairly strong correlation were observed with strong
statistical significance ( p < 0.01).

Correlation to overall acceptability. To under-451

stand what factors are important for the overall452

acceptability judgement, we compute Spearman453

correlation (Spearman, 1987) between acceptabil-454

ity and the fine-grained aspects (see Table 2.) For455

both the datasets, all aspects except conciseness456

show similar patterns — moderate to fairly strong457

positive correlation with acceptability. However,458

the rationales for the CSQA dataset (more sub-459

jective) exhibited a weaker correlation than the 460

OBQA dataset rationales (more objective) in sev- 461

eral aspects, such as conciseness, insightfulness, 462

readability, and grammaticality. Overall, the re- 463

sults indicate that human preference for rationale 464

is more nuanced and can only be holistically cap- 465

tured by considering different fine-grained aspects. 466

However, the quality of the generated rationale 467

may vary depending on the task and domain and, 468

consequently, impact human-preference judgment. 469

Therefore, there is room for improvement in making 470

generated rationales invariant to task and domain. 471

6 Towards Credible Rationalization 472

In the earlier studies, similar to existing work (Ag- 473

garwal et al., 2021; Wiegreffe et al., 2022; Maraso- 474

vic et al., 2022; Kayser et al., 2021), we evaluate 475

LLM-generated rationales for cases where model 476

prediction matches the ground truth. We now inves- 477

tigate the implications of rationalization without 478

accounting for model errors, i.e., faithful rational- 479

ization, and potential intervention strategies. Fol- 480

lowing are the key highlights of the study: 481

• rationalizing incorrect predictions drastically 482

reduces human’s trust in the LLM rationalizer. 483

• even lightweight guardrails can help intervene 484

more than half of the incorrect predictions. 485

6.1 Trustworthiness of Generated Rationales 486

The reported accuracy of KIT models widely vary 487

— 64%-89.4% for CSQA2 and 60.4%-89.6% for 488

OBQA 3. The reported human accuracy for the 489

CSQA and OBQA datasets are 88.9% and 91.7%, 490

respectively. Even as humans rationalize, the cred- 491

ibility of the rationalizer may diminish if they 492

attempt to justify any incorrect decisions. Ex- 493

isting work on trust in explainable AI (XAI) lit- 494

erature (Hoff and Bashir, 2015; Schaefer et al., 495

2016; Stites et al., 2021; Smith-Renner et al., 2020) 496

demonstrates that end-users’ trust in a system de- 497

grades when encountering errors they can easily 498

recognize due to familiarity and prior experience 499

in a domain. Since the knowledge source for the 500

CSQA and OBQA datasets is ConceptNet (Speer 501

et al., 2017), a commonsense knowledge graph, hu- 502

mans are expected to have higher confidence about 503

their knowledge in the domain. However, existing 504

explainable NLP literature lack studies that investi- 505

gate the relationship between model accuracy and 506

2https://www.tau-nlp.sites.tau.ac.il/
3https://leaderboard.allenai.org/open_book_qa/
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humans’ degree of trust in the context of free-text507

rationales. Therefore, we replicate the study de-508

sign of exploring trust in explanations for classifica-509

tion models (Stites et al., 2021) to confirm whether510

the observations hold for knowledge-intensive QA511

tasks in the commonsense domain.512

Study design. We conducted a between-subject513

study involving 22 participants (15 male and 7 fe-514

male) exploring two conditions: 66% (11 partici-515

pants) and 90% (11 participants) model accuracy.516

The accuracy conditions reflect the two extremities517

of existing knowledge-intensive task models (Ya-518

sunaga et al., 2021; Feng et al., 2020; Yasunaga519

et al., 2022). The study consisted of three phases:520

an introduction to the study, a quiz phase, and a521

follow-up survey. In the quiz phase, the partici-522

pants answered 15 QA tasks. The 15 tasks were523

randomly selected from the CSQA (8 QAs) and524

OBQA (7 QAs) datasets. Depending on the study525

conditions, for X% of those N questions, where526

X ∈ {66, 90}, the KIT model made accurate pre-527

dictions, and the rest of the predictions were in-528

accurate. The KIT model prediction and LLM-529

generated rationale of a QA task were revealed af-530

ter a participant submitted their response to avoid531

bias. Then, the participants were asked whether532

they agreed with the model prediction and had to533

rate their impression of the rationale on a scale of534

1 to 7 (1 = actively misleading and 7 = helpful.)535

After the quiz phase, the participants completed a536

survey adapted from the Trust Scale recommended537

for XAI (Hoffman et al., 2018). The survey con-538

tained questions that asked participants to rate sev-539

eral aspects related to the quiz phase tasks, such as540

the agreement with rationales and the participants’541

trust and reliance on the LLM-generated rationale.542

All of these required participants to work slowly543

enough to be able to read all the items, thereby544

making the studies long-running and rather un-545

suitable for crowd platforms according to existing546

work (Douglas et al., 2023). Therefore, we opted547

for internal recruitment as an additional quality con-548

trol mechanism, inviting participants internally via549

a Slack campaign at Company X. None of the par-550

ticipants are authors of the paper (see Appendix C.)551

6.2 Confirmatory Study Results552

The agreement statistics of the participants reflect553

both the study conditions — 67.27% and 86.07%554

for lower and higher accuracy models, respectively.555

Figure 5a summarizes the participants’ impression556
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(b) XAI Trust Scale feedback

Figure 5: (a) Irrespective of agreement or disagreement
with the KIT model prediction, participants indicated a
more negative impression about the rationalization of
the lower confidence model prediction. (b) Participant
feedback on trust scale indicates lower confidence for
lower accuracy model rationalization.

of a rationale immediately after viewing the model 557

prediction. When the participants disagreed with 558

the model prediction, they exhibited a stronger neg- 559

ative impression about the rationales for the 66% 560

accuracy condition compared to the 90% accuracy 561

condition. Even when participants agreed with the 562

model prediction, their impression of the rationales 563

remained more negative. Our intuition is that the 564

higher disagreement with the model coupled with 565

observing the faithful rationalization of the incor- 566

rect prediction negatively impacted participants’ 567

perception of the reliability of the rationales. We 568

confirm these observations by analyzing the results 569

of the follow-up survey (see Figure 5b.) Unsurpris- 570

ingly, participants for the 66% accuracy condition 571

rated their confidence in the generated rationales 572

and the reliability of the rationalizer significantly 573

lower compared to the 90% accuracy condition. 574

The trends in Figure 5 are observed with strong sta- 575

tistical significance, except for participant feedback 576

on satisfaction with rationale (see Appendix C.2.) 577

6.3 A Review-then-Rationalize Framework 578

Motivated by the observations from the prelim- 579

inary study, we create a two-stage review-then- 580

rationalize (see Figure 6) pipeline to evaluate the 581

impact of intervening incorrect model predictions 582

before rationalization. The pipeline instruments a 583

reviewer module that employs another model (GPT- 584

3.5 text-davinci-003 (temperature = 0)) to evaluate 585

the correctness of the knowledge-intensive task 586

model and refrain from rationalizing potentially 587

incorrect decisions. 588

We opted for LLMs as reviewers due to their re- 589

ported proficiency in natural language understand- 590

ing. Depending on the task and data domain, the 591

suitability of the reviewer model may vary. Given 592

7



Figure 6: Self-consistency-based Reviewer—intervene
for any disagreement with the KIT model prediction.

the complexity of knowledge-intensive tasks, we593

employ a self-consistency-based decoding strat-594

egy (Wang et al., 2022) as opposed to greedy-595

decoding to ensure robustness. More specifically,596

we independently pose the same QA task N (=5)597

times to the reviewer and select the final response598

via majority voting. The reviewer then compares599

the model’s prediction with its prediction and acti-600

vates the rationalizer only when both models agree.601

A cookie-cutter rationale or no rationale may be602

communicated to the end-user in a disagreement.603

Dataset Prediction Errors Errors Intervened
(Test Set) Greedy Decoding Self-consistency

CSQA 321 166 (51.71%) 187 (58.26%)
OBQA 155 102 (65.81%) 110 (70.97%)

Table 3: The review-then-rationalize pipeline helps in-
tervene incorrect predictions of a knowledge-intensive
task model. The self-consistency-based reviewer outper-
forms the greedy decoding-based reviewer.

As shown in Table 3, for knowledge-intensive604

tasks such as CSQA and OBQA, the proposed605

pipeline helps intervene up to 58% and 71% of606

the incorrect predictions. Unsurprisingly, the self-607

consistency-based reviewer outperforms the greedy608

decoding-based reviewer. Overall, the results draw609

attention to the importance of responsibly commu-610

nicating LLM-generated rationales to humans and611

consequently, instrumenting guardrails as an effec-612

tive intervention strategy.613

7 Related Work614

Free-text Rationale Generation. Existing works615

highlight the effectiveness of free-text rationales616

in justifying a model’s decision to humans in vi-617

sion (Hendricks et al., 2016; Park et al., 2018) and618

text domains (Camburu et al., 2018; Ehsan et al.,619

2018; Narang et al., 2020). Due to cost and general-620

izability implications of supervised rationale gener-621

ation, we employ few-shot prompting to elicit ratio-622

nales from LLMs following existing work (Wiegr-623

effe et al., 2022; Marasović et al., 2021). Both624

these approaches generate abstractive, corrobora-625

tive, and faithful rationales. In contrast, we explore626

the generation of knowledge-guided, corroborative627

and refutation complete, and credible rationales.628

Guided text generation. Developing approaches 629

to avoid hallucinations and factual inaccuracies 630

in LLM-generated text is a new area of research. 631

Retrieval augmented generation (RAG) infuses ex- 632

ternal knowledge (Peng et al., 2023; Lazaridou 633

et al., 2022), such as knowledge-bases and web 634

documents, while prompting LLMs to help gener- 635

ate responses. We employ a similar strategy during 636

rationalization by conditioning the LLM generation 637

on the retrieved evidence for a given task. 638

Credible text generation. Studies in explainable 639

AI literature (Smith-Renner et al., 2020; Hoff and 640

Bashir, 2015; Schaefer et al., 2016; Stites et al., 641

2021) demonstrate that for low-quality models, pro- 642

viding faithful explanations further degraded user’s 643

trust. Unlike existing work on free-text explana- 644

tion (Wiegreffe et al., 2022; Marasović et al., 2021), 645

we explore how end-users’ trust may be impacted 646

by faithful rationalization of varying degrees of 647

incorrect model predictions. ReXC (Majumder 648

et al., 2021) augments rationales — generated in a 649

self-rationalization framework — with background 650

knowledge to improve a model’s task performance, 651

such as natural language inference and visual com- 652

monsense reasoning. To rectify incorrect LLM 653

responses, identified via a self-consistency-based 654

intervention approach, the Verify-then-Edit frame- 655

work (Zhao et al., 2023) leverages external knowl- 656

edge to repair reasoning chains of the correspond- 657

ing chain-of-thought prompts. FARM (Mei et al., 658

2023) utilizes trustworthy external sources within 659

a predict-then-generate framework that aims to in- 660

tervene in harmful content generation using LLMs. 661

To credibly rationalize KIT model predictions, we 662

explore a review-then-rationalize framework where 663

a self-consistency-based reviewing approach iden- 664

tifies potential prediction inaccuracies and ensures 665

credible rationale generation. 666

8 Conclusion 667

We evaluate LLMs’ capacity to generate effective 668

rationales for knowledge-intensive tasks in a few- 669

shot knowledge-guided setting. We additionally 670

investigate the implications of employing LLMs as 671

rationalizers of an imperfect model and highlight 672

the negative impact on users’ trust. Observations 673

from our studies highlight room for improvement 674

in aspects such as task and domain invariant ra- 675

tionalization and robust intervention strategies for 676

real-world usage. 677

8



9 Limitations678

Scrutinizing LLM-generated rationales. While679

external knowledge-guided generation offers680

promise (Peng et al., 2023; Mallen et al., 2023),681

LLM-generated rationales may still suffer from682

hallucinations. Our experiments highlight that the683

LLM-generated rationale is not entirely grounded684

on retrieved knowledge. Even though crowd-685

workers positively rated the factuality and in-686

sightfulness of the generated rationales, additional687

scrutiny is required before deploying such ratio-688

nalizers in mission-critical tasks. To this end,689

the review-then-rationalize framework may be ex-690

panded to further scrutinize the rationales by adopt-691

ing recent work on an LLM’s factual knowledge692

measurement (Pezeshkpour, 2023; Dong et al.,693

2023) and hallucination identification (Manakul694

et al., 2023; Elaraby et al., 2023; Mündler et al.,695

2023) and reduction (Zhao et al., 2023; Mei et al.,696

2023), and explainable evaluation (Xu et al., 2023).697

Fairwashing vs. credible rationalization. The698

accuracy of our self-consistency-based reviewer699

can be further improved to intervene in a higher700

proportion of incorrect KIT model predictions.701

However, critiques of XAI tools have raised con-702

cerns about fairwashing, i.e., misleading users into703

trusting biased or incorrect models (Alikhademi704

et al., 2021). For example, simply averting po-705

tential faithful yet incorrect rationalization, identi-706

fied by the reviewer, may increase end-users’ trust707

due to an illusion of a highly performant ratio-708

nalizer (Aïvodji et al., 2019). Such fairwashing709

may have catastrophic consequences if employed710

in real-world applications such as in the medical do-711

main, hiring platforms, and credit agencies. Recent712

work (Alikhademi et al., 2021) proposes a frame-713

work for evaluating XAI tools with respect to their714

capabilities for detecting and addressing issues of715

bias and fairness as well as their capacity to com-716

municate these results to their users clearly. There-717

fore, future implementations of the credible ratio-718

nale should adopt similar strategies to safeguard719

against such issue. Future work may explore dif-720

ferent communication strategies during prediction721

errors, such as communicating the disagreement to722

the experts-in-the-loop, providing rationales with723

a disclaimer, and employing stronger reviewers to724

repair the prediction on the fly and then rationalize,725

among others.726

Scaling responsibly. An often overlooked aspect727

of the recent popularity of LLMs has been Green728

AI (Schwartz et al., 2020). When the ML de- 729

ployment pipeline is considered as a whole, infer- 730

ence consumes most compute resources, account- 731

ing for anything between 70% to 90% (Weng et al., 732

2022; Wu et al., 2022). Knowledge distillation 733

approaches can be adopted to avoid costly pre- 734

training (Wang et al., 2023). Furthermore, material- 735

ization of rationales to avoid repeating rationalizing 736

the same task can be possible approaches to handle 737

such issues. 738

Crowdsourcing study constraints. As we con- 739

ducted the crowdsourced study on Amazon Me- 740

chanical Turk, our findings may not generalize to 741

other platforms and feedback provided in in-person 742

lab-based studies. Moreover, we observed low 743

agreement among the annotators — similar to prior 744

work (Wiegreffe et al., 2022) — due to the subjec- 745

tivity of the QA tasks. Future work may explore 746

conducting large-scale studies with better quality 747

control mechanisms (such as hiring private firms 748

with dedicated teams similar to (Aggarwal et al., 749

2021) and conducting in-house studies with experts. 750

Such a setting also makes to possible to collect ad- 751

ditional insights into the thought process of the 752

participants. However, conducting such large-scale 753

studies in an in-person setup introduces time and lo- 754

gistics constraints. To this end, recent LLM-based 755

reference-free approaches (Liu et al., 2023) to 756

scale-up evaluation offers promise. Although, it is 757

unclear whether such evaluation strategies apply 758

to subjective metrics of rationale quality studied in 759

our work. Therefore, future studies may explore 760

how such reference-free judgements align with hu- 761

man judgements similar to (Pezeshkpour, 2023). 762
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A Prompts and Rationales1115

In this section, we provide additional details regard-1116

ing the prompts corresponding to the faithful and1117

credible rationalization workflows.1118

A.1 Faithful Rationalization1119

Figure 7 outlines the few-shot prompt structure.1120

Table 4 elaborates on the prompt design shown1121

in (Figure 2 and Figure 7). Each example in the1122

few shot prompt includes the question and answer1123

choices, the KIT model selected answer, the knowl-1124

edge facts extracted from ConceptNet for each1125

choice, and the expert-written question topic and1126

rationale that act as input to GPT-3.5 text davinci1127

003. While we show only two few-shot examples,1128

in practice, we use five examples per prompt. As1129

explained in the Section 2, due the token limit im-1130

posed by the GPT-3.5 API, we can include from1131

5-8 examples depending on the length of the knowl-1132

edge facts. Given the prompt, i.e., examples fol-1133

lowed by an unseen question and answer choices,1134

KIT model selected answer, and extracted knowl-1135

edge, the LLM greedily generates the question1136

topic and the rationale for the model prediction.1137

Figure 7: An example in the few-shot prompt: the QA
and External Knowledge components are retrieved and
the topic and the rationale are expert authored.

To design the initial prompt, we take inspiration1138

from existing work (Wiegreffe et al., 2022; Peng1139

et al., 2023; Lazaridou et al., 2022; Zhao et al.,1140

2023) to experiment with the prompt layout. We 1141

experimented with approximately 6 different lay- 1142

outs in the OpenAI playground 4 using 10 train- 1143

ing examples on the CSQA and OBQA datasets. 1144

In deciding the number of few-shot examples, we 1145

considered the maximum context window size of 1146

GPT-3.5 text-davinci-003, which is 4097 tokens. 1147

We observed that depending on the datasets and the 1148

length of the factual statements retrieved from Con- 1149

ceptNet, five to eight few-shot examples fit into the 1150

token constraints. After finalizing the prompt lay- 1151

out, we developed a pool of 40 expert-written (i.e., 1152

authors of these papers) examples. We randomly 1153

selected 5 expert-written examples for each test 1154

instance to ensure uniformity across datasets and 1155

instances. Similar to prior work (Wiegreffe et al., 1156

2022), we focused on developing a general few- 1157

shot prompting strategy for generating knowledge- 1158

enhanced and refutation complete rationale that 1159

could be successful when no additional (large) val- 1160

idation set for parameter tuning is available. We 1161

prompt the LLM to generate a topic of the question 1162

and a rationale similar to the provided few-shot 1163

examples. Therefore, our approach explicitly con- 1164

ditions the rationale generation on the question 1165

topic and the knowledge facts. FARM (Mei et al., 1166

2023) employs a similar topic-focused generation 1167

for question answering. Given a question, the LLM 1168

is initially prompted to generate a question con- 1169

text — augmented with information retrieved from 1170

trustworthy sources — to generate a safe response. 1171

Such strategies have been shown to be very effec- 1172

tive (Radford et al., 2019; Brown et al., 2020; Shin 1173

et al., 2020; Schick and Schütze, 2020), even in 1174

complex generation tasks (Reif et al., 2021). 1175

Relevance to ECQA rationales. The pipeline for 1176

ECQA (Aggarwal et al., 2021) rationale generation 1177

and the knowledge-guided LLM rationalization 1178

have several similarities. As shown in Table 4, the 1179

rationalization pipeline provides conceptnet asser- 1180

tions corresponding to the selected answer and re- 1181

jected choices as context within the prompt. ECQA 1182

crowdsourcing pipeline also prompted crowdwork- 1183

ers to use the positive facts about the selected an- 1184

swer and negative facts about the other choices as 1185

guides to craft the eventual free-flow explanation. 1186

Therefore, in both cases, the rationalizer pipeline, 1187

be it crowdworker or LLMs, were knowledge- 1188

guided. However, in case of LLMs the source 1189

of knowledge guidance is external, i.e., Concept- 1190

4https://platform.openai.com/playground
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Question: At the end of your meal what will a waiter do?
Choices: A. serve food B. eat C. set table D. serve meal E. present bill
Selected answer: E. present bill

Knowledge for present bill: [waiter can typically do present bill, bill is generally created by waiter, restaurant generally causes bill, . . .]
Knowledge for set table: [waiter can typically do set table, . . .]
Knowledge for serve food: [waiter can typically do serve food, . . .]
Knowledge for serve meal: [waiter can typically do serve meal, . . .]
Knowledge for eat: [cook generally causes meal, . . .]

The topic of the question and the corresponding explanation for the selected answer “present bill” are as follows:
Topic: Restaurant Service after meal
Why? Commonsense suggests that a waiter, who is generally located in a restaurant, typically presents a bill. Therefore, the answer is “present bill”
because this is a common practice at the end of a meal in a restaurant.
Why not other options? While a waiter can serve food, set the table, and serve a meal, these actions typically occur before or during the meal, not at
the end. The option ’eat’ is not suitable as it is not a typical duty of a waiter during their service.
=======================================================================
Question: He waited for his friend at the squash court, but he was worried his friend thought he meant the at the other end of the public what?
Choices: A. country club B. rich person’s house C. pool D. park E. fitness center Selected Answer: D. park

Knowledge for park :[squash court is generally located in park, play is generally located in squash court, . . .]
Knowledge for fitness center :[squash court is generally located in fitness center, . . .]
Knowledge for country club :[squash court is generally located in country club, . . .]
Knowledge for pool :[. . .]
Knowledge for rich person’s house :[. . .]

The topic of the question and the corresponding explanation for the selected answer “park” are as follows:
topic: Public Spaces and Miscommunication
Why? The answer is park because commonsense suggests that a squash court is generally located in a park. This implies that there could be another
squash court at the other end of the park, leading to the friend’s confusion.
Why not other options? While a squash court can also be located in a fitness center or country club, these locations are not typically public spaces
with multiple ends. A pool or a rich person’s house are less likely to have multiple squash courts, making them less likely to be the source of the
friend’s confusion.
======================================================================
Question: What should the bean bag chair sit on?
Choices: A. house B. den C. family room D. wood E. floor
Selected Answer: E. floor

Knowledge for present floor: [. . .]
Knowledge for house: [. . .]
Knowledge for den: [. . .]
Knowledge for family room: [. . .]
Knowledge for wood: [. . .]

The topic of the question and the corresponding explanation for the selected answer “present bill” are as follows:

Table 4: Example of a prompt with two training examples for CSQA and an unseen question for which the LLM
generated a rationale. In practice, we provide five examples.

Net (Speer et al., 2017), whereas for ECQA, the1191

crowdworkers themselves crafted the supporting1192

facts before rationalizing.1193

A.2 Credible Rationalization1194

Table 5 showcases the prompt design for the1195

Reviewer model within the credible rationalizer1196

pipeline (Figure 6. Each of the five examples in the1197

few shot prompt includes the question and answer1198

choices that act as input to GPT-3.5 text davinci1199

003. In practice, we use five examples per prompt.1200

Given the prompt, i.e., examples followed by an un-1201

seen question and answer choices, the LLM greed-1202

ily generates a response, i.e., predicts an answer1203

from the choices. We repeat the process five times1204

and select a response based on majority voting. We1205

randomly sample five questions from the 40 expert-1206

written rationale pool as few-shot examples.1207

Question: At the end of your meal what will a waiter do?
Choices: A. serve food B. eat C. set table D. serve meal E. present bill
Selected answer: E. present bill
==================================
Question: He waited for his friend at the squash court, but he was worried
his friend thought he meant the at the other end of the public what?
Choices: A. country club B. rich person’s house C. pool D. park E. fitness
center Selected Answer: D. park
==================================
Question: What should the bean bag chair sit on?
Choices: A. house B. den C. family room D. wood E. floor
Selected Answer:

Table 5: A prompt with two training examples for CSQA
and an unseen question for the Reviewer to answer.

A.3 LLM-generated Rationales 1208

Table 6 a few non-cherry picked examples of LLM- 1209

generated rationales. We show examples of ra- 1210

tionales for CSQA dataset questions generated by 1211

both LLM and humans, i.e., crowdworkers in the 1212

ECQA dataset. Since there is no crowdsourced 1213

dataset of OBQA rationales, we only show LLM- 1214

generated rationales. Note that the LLM greedily 1215
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generates a topic of the question and a rationale1216

with corroboration (“Why?”) and refutation (“Why1217

Not”) components. However, as shown in Figure 2,1218

the these two components are extracted from the1219

generated output to construct the eventual ratio-1220

nales (i.e., the formatting step at the end.)1221

==================================
CSQA Dataset
==================================
Question: What should the bean bag chair sit on?
Choices: A. house B. den C. family room D. wood E. floor
Selected Answer: E. floor

LLM-generated rationale: The answer is floor because the common-
sense knowledge clearly indicates that a bean bag chair is generally located
in a floor.
While a bean bag chair can be placed in a house, den, family room, or
on wood, the floor is the most common place for a bean bag chair to be
located.

ECQA rationale: Bean bag chair is a seat people sit on which is generally
put on a floor. A bean bag chair should sit on a floor and not on anything
else from the other options.
==================================
OBQA Dataset
==================================
Question: Rainbows are always found after what?
Choices: A. A fire B. A tornado C. Rainfall D. Cereal
Selected Answer: C. Rainfall

LLM-generated rationale: The answer is Rainfall because rainbows are
always found after rain. This is because the sunlight is refracted by the
raindrops in the air, creating the rainbow. A fire, a tornado, and cereal do
not have any relation to rainbows.

Table 6: Rationales for CSQA generated by LLM and
humans (ECQA) and for OBQA generated by LLM.

B Crowd Study Details1222

We provide more details regarding both crowd-1223

worker studies such as additional statistics related1224

to the crowd study and quality control mechanisms.1225

B.1 Quality Control and Payment1226

In order to enforce quality throughout evaluation,1227

we use a hidden built-in Javascript function to com-1228

pute time per HIT spent and perform attention1229

checks by inserting questions with specific instruc-1230

tions randomly within a HIT. We filter out any an-1231

notator who completed the tasks in an unreasonably1232

low time, or failed their attention checks. To miti-1233

gate individual annotator bias, we also ensure that1234

each experiment in a study has a substantial num-1235

ber of distinct crowdworkers. See Tables 7 and 81236

for details regarding the inter-annotaror agreement1237

for the comparison study. For both studies, we used1238

a pay rate of USD 12.00/hr. We performed periodic1239

check to ensure that the median HIT completion1240

time remains commensurate to approximately the1241

pay rate. Median times reported for the compara-1242

tive study was 208 seconds (paid at 80 cents each)1243

the acceptability study was 110 seconds (paid at1244

Approach LLM-generated ECQA
Factuality 0.07 0.05
Insightfulness 0.15 0.03
Conciseness -0.04 -0.01
Convincingness 0.09 0.03
Sufficiency 0.08 0.07
Support 0.08 -0.01
Understandability 0.09 0.06
Preference 0.13 0.13

Table 7: Inter annotator agreement (Krippendorff’s α) of
crowdworkers on the fine-grained aspects of a rationale
evaluated in the head-to-head comparison study.

40 cents each.) To ensure the quality of responses, 1245

we require annotators in Australia, New Zealand, 1246

United Kingdom, United States, and Canada as a 1247

proxy for English competency. We only selected 1248

workers with a past approval rate > 98% and who 1249

have completed over 5000 HITs. We documented a 1250

worker’s HIT submission time and performed atten- 1251

tion checks within each HIT to enforce quality con- 1252

trol. Note that each crowd worker was presented 1253

with detailed instructions about the study interface 1254

and performed an example task as a warm-up. 1255

Dataset CSQA OBQA
Factual 0.02 0.03
Insightful -0.06 -0.04
Concise -0.15 -0.17
Convincing 0.08 0.13
Sufficient 0.07 0.08
Support -0.012 -0.002
Understandable 0.02 0.04
Readability -0.05 -0.02
Grammar -0.15 -0.16
Acceptability 0.12 0.15

Table 8: Inter annotator agreement (Krippendorff’s α) of
crowdworkers on all the coarse- and fine-grained aspects
of a rationale evaluated in the acceptability study.

B.2 Annotator Statistics 1256

We now report the number of distinct crowd anno- 1257

tators and the median and mean number of HITs 1258

completed for each experiment. For the head-to- 1259

head comparison study, there were 750 HITs in to- 1260

tal. There were 29 unique annotators with a median 1261

of 10 (mean = 21.86) HITs completed by an anno- 1262

tator. For the acceptability study, there 750 HITs 1263

for each of the two datasets CSQA and OBQA. For 1264

the CSQA dataset, there were 25 unique annotators 1265

with a median of 7 (mean = 28.80) HITs completed 1266

by an annotator. For the OBQA dataset, there were 1267

30 unique annotators with a median of 7 (mean 1268

= 25.00) HITs completed by an annotator. More 1269

detailed breakdowns of inter-annotator agreement 1270

for both studies are reported in Tables 7 and 8. 1271
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C Credible Rationalization Study1272

We now provide relevant information complement-1273

ing the observations obtained in the preliminary1274

study regarding credible rationalization.1275

C.1 Study Details1276

Participants. The participants of the preliminary1277

study were all from Company X. However, we1278

still performed attention checks in the preliminary1279

study. The participants were unaware of the hypoth-1280

esis and evaluation objective of the study. None1281

of the participants are authors of the paper. Out1282

of the 20 participants in the study, 15 were male1283

and 5 were female. The representation of the fe-1284

male participants (25%) compares favorably with1285

recent estimates of 15% women in tenure-track1286

faculty in computing (Way et al., 2016) and 20%1287

women in data science positions worldwide (King1288

and Magoulas, 2015). One-fourth of the partici-1289

pants held a Bachelor degree and the rest completed1290

graduate school or higher. Due to the complexity1291

and longer duration of this study, we wanted to en-1292

sure the participation of higher quality participants1293

by such selective recruitment.1294

Phases. We first collected participants’ demo-1295

graphic information and then provided detailed1296

instructions about the subsequent phases: a quiz1297

phase consisting of a collection of tasks and a1298

follow-up survey. The survey is adapted from the1299

Trust Scale recommended for XAI (Hoffman et al.,1300

2018). We opted for a follow-up survey rather than1301

after each task completion following Hoffman et1302

al. (Hoffman et al., 2018) — “the questions are1303

appropriate for scaling after a period of use, rather1304

than immediately after a rationale has been given.”1305

Besides questions related to the trust scale, we also1306

asked participants to rate their overall acceptability1307

of the rationales on a scale of 1 to 5. Note that1308

the acceptability rating scale is different from the1309

earlier studies in Section 5 and 4 to conform with1310

the Trust Scale ratings (Hoffman et al., 2018).1311

C.2 Feedback Statistics1312

We conducted Mann-Whitney U test to measure the1313

statistical significance of the differences between1314

the 66% and 90% accurate model conditions, along1315

various credibility metrics proposed in Section 6.1316

The Mann-Whitney U test is a non-parametric test1317

to measure the significance of difference in distri-1318

bution of two independent sample, i.e., accuracy1319

conditions in this study.1320

As shown in Table 9, participant feedback on in- 1321

dividual task indicates a higher disagreement with 1322

lower confidence model prediction and a more neg- 1323

ative impression regarding the corresponding ratio- 1324

nale. The differences is significant both cases i.e., 1325

when participants either agreed or disagree with the 1326

KIT model prediction. Table 10 reports the sum- 1327

mary of participant feedback during the post-quiz 1328

survey — participants exhibited a more negative 1329

impression regarding the corresponding rationale. 1330

For all of the aspects except statisfaction, the differ- 1331

ence in participant feedback between the accuracy 1332

conditions were statistically significant. 1333

Table 11 summarizes the observations from the 1334

quiz phase, i.e., participant agreement statistics 1335

with the model prediction and participants’ impres- 1336

sion of the corresponding rationale. The agreement 1337

statistics (overall = 76.67%) of the participants 1338

reflect both the study conditions — 67.27% and 1339

86.07%, respectively. Due to the subjective nature 1340

of the tasks, especially in the CSQA dataset, a few 1341

participants were unsure whether to agree or dis- 1342

agree with the model predictions, further reflecting 1343

the difficulty of the tasks. 1344

D Additional Experiments and Analysis 1345

We now present details of various user study obser- 1346

vations, discussed briefly in earlier sections. 1347

D.1 Degree of Knowledge Grounding 1348

While our proposed knowledge-graph-based re- 1349

trieval augmented LLM-generated rationales were 1350

positively rated by crowdworkers, questions re- 1351

main regarding the effectiveness of such knowledge 1352

grounding. To evaluate whether any fragments of 1353

the rationales generated using our proposed ap- 1354

proach were grounded on the retrieved knowledge 1355

facts, we conducted an experiment. We primarily 1356

focus on the corroboration component as there is a 1357

higher probability of the knowledge graph contain- 1358

ing facts about the correct answer choice. 1359

We measure the existence of knowledge- 1360

grounding as follows: consider the retrieved knowl- 1361

edge corresponding to the correct choice j for 1362

question qi in dataset D, Gij , and the corrob- 1363

oration component of the corresponding LLM- 1364

generated rationale, RCi. We first measure the 1365

BERTScore (Zhang et al., 2019) similarity between 1366

a fact f ∈ Gij , expressed in natural language and a 1367

sentence s ∈ RCi. We then select the fact-sentence 1368

pair, (f, s), with the highest BERTScore as a po- 1369
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Agreement = yes (†) Agreement = no (*) Agreement = unsure
Accuracy 66% Accuracy 90% Stat. Sig. Accuracy 66% Accuracy 90% Stat. Sig. Accuracy 66% Accuracy 90% Stat. Sig.
η = 6.00 η = 7.00 η = 2.00 η = 3.00 η = 4.00 η = 5.00
µ = 5.89 µ = 6.29 p < 0.01 µ = 2.23 µ = 3.13 p < 0.05 µ = 4.00 µ = 5.25 p > 0.05
σ = 1.62 σ = 1.33 σ = 1.29 σ = 1.64 σ = 1.41 σ = 1.03

Table 9: Participant feedback on individual task indicates a more negative impression — rated on a scale between
1 (misleading) to 7 (helpful) — regarding the corresponding rationale. (†) indicates statistical significance with
pa < 0.01 and (*) indicates statistical significance with p < 0.05.

Metric Confidence (†) Reliability (†) Safety (†) Satisfaction Acceptability (†)
Accuracy 66% 90% 66% 90% 66% 90% 66% 90% 66% 90%
Median 3.00 4.00 2.00 4.00 3.00 4.00 3.00 5.00 3.00 4.0
Mean 2.91 4.09 1.82 3.64 2.45 3.72 3.45 4.55 3.09 4.27

Std. Dev. 1.14 0.54 0.87 1.03 1.13 0.79 1.44 0.52 1.04 0.65

Table 10: Participant feedback on individual task indicates a more negative impression regarding the corresponding
rationale. (†) indicates statistical significance with p < 0.01.

Metric Agreement %
Overall Accuracy 66% Accuracy 90%

Agreement = yes 76.67% 67.27% 86.07%
Agreement = no 20.30% 31.52% 9.09%

Agreement = unsure 3.03% 1.21% 4.85%

Table 11: Participant feedback on individual task in-
dicates a higher disagreement with lower confidence
model prediction.

Dataset Pairwise Max BERTScore Percentage of Entailment
CSQA µ = 0.5823, σ = 0.0650 80.4%
OBQA µ = 0.5173, σ = 0.0803 38%

Table 12: Degree of knowledge grounding observed in
the LLM-generated rationales.

tential candidate for evaluating whether the fact f1370

entails the sentence s within the rationale. Such1371

entailment is an indicator of whether a fragment1372

of a rationale being grounded on retrieved knowl-1373

edge facts. Similar approach has been adopted in1374

existing work (Wu et al., 2023) to extract candi-1375

date sentences from long documents and evaluate1376

the degree to which the corresponding summary1377

is grounded on the source document. Following1378

their approach, we employ NLI models (Reimers1379

and Gurevych, 2019), i.e., DeBERTa-base model1380

fine-tuned on SNLI (Bowman et al., 2015) and1381

MNLI (Williams et al., 2018), to evaluate entail-1382

ment. For the BERTScore, we used DeBERTa-1383

Large model (He et al., 2020) fine-tuned on MNLI.1384

We measure the knowledge-grounding statistics1385

of the CSQA and OBQA dataset rationales evalu-1386

ated in the acceptability crowd study in Section 5.1387

As shown in Table 12, on average, at least one1388

fact-sentence pair achieved BERTScore of 0.58231389

and 0.5173 for CSQA and OBQA datasets, respec-1390

tively. While a higher percentage of those pairs1391

were classified as entailment (80.4%) for CSQA,1392

the entailment statistics was a bit lower for OBQA.1393

On reflection, the lower value seems reasonable 1394

since we used ConceptNet, a commonsense knowl- 1395

ege graph, as the external source for OBQA, a 1396

dataset on elementary science question answering. 1397

The initial observations highlight the promise of 1398

knowledge-guided rationalization in ensuring factu- 1399

ality of LLM-generated rationales. However, more 1400

in-depth analysis with a stronger metric that takes 1401

into account multiple fact-sentence pair candidates 1402

across corroboration and refutation components is 1403

required to reliably capture the degree of knowl- 1404

edge. Such fine-grained analysis is beyond the 1405

scope of our study and can be explored in future. 1406

D.2 A Deeper Dive into LLM vs ECQA 1407

To better understand, we further analyze the crowd 1408

worker feedback based on their preference of ra- 1409

tionales. Cases where workers preferred LLM- 1410

generated rationales over humans (i.e., the 61.8% 1411

cases) — LLM-generated rationales were rated sub- 1412

stantially higher than human-written rationales, ex- 1413

cept conciseness (see Figure 8.) Even the con- 1414

ciseness rating for both types of rationales was 1415

almost the same, with human-written rationales far- 1416

ing slightly better. On the other hand, for cases 1417

where workers preferred human-written rationales 1418

over LLMs (i.e., the 38.2% cases) — surprisingly, 1419

apart from conciseness, human-written rationales 1420

were rated significantly higher only on two aspects: 1421

factuality and convincingness. For the rest of the 1422

aspects, the differences between ratings of both 1423

rationale types were marginal. 1424

E Study Interfaces 1425

In this section, we provide screenshots of the im- 1426

portant aspects of the three studies. 1427
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Figure 8: (a) LLM-generated rationales preferred over human-written (ECQA) rationales. LLM-generated rationales
were rated substantially higher than human-written rationales, with the exception of conciseness. (b) ECQA
rationales preferred over LLM-generated rationales. Surprisingly, human-written rationales were rated significantly
higher only on three aspects: conciseness, factuality and convincingness.

E.1 Faithful Rationalization Interface Details1428

Both studies were conducted in the Amazon1429

Mehcanical Turk. We mentioned the worker inclu-1430

sion criteria in Section 3. Each study was launched1431

in separate batches and were not conducted simul-1432

taneously. Due to the complexity of HITs in each1433

of the studies, we designed the study interfaces1434

from scratch using HTML and JavaScript. These1435

interfaces were uploaded in the platform as a new1436

project to launch the corresponding study.1437

Figure 9 shows a screen shot of the HIT inter- 1438

face of the first study — head-to-head comparison 1439

between LLM-generated and ECQA (crowdworker- 1440

written) rationales. The HIT contains a question 1441

and the choices, a selected answer, and two ratio- 1442

nales, order of which the are determined at random 1443

on-the-fly. Figure 10 shows a screen shot of the 1444

HIT interface of the acceptability crowd study with 1445

a question and the choices, a selected answer, and 1446

an LLM-generated rationales. For both the studies, 1447

the workers were asked several rating questions de- 1448
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signed to collect feedback on both coarse-grained1449

and fine-grained aspects of a rationale outlined in1450

Section 4 and Section 5. Workers were asked to1451

rate the rationale(s) using a sliding scale ([1, 7]).1452

We opted for Likert scale-based rating rather1453

than choice questions to get a more fine-grained1454

feedback. Given a choice questions, each choice1455

may not exactly capture the participants interpreta-1456

tion of how much a rationale observed the property1457

being evaluated. For example, as shown in Figure 9,1458

we ask the crowdworker to “rate how understand-1459

able each rationale is ”. To assist the participants,1460

we suggest how to use the scale — provide inter-1461

pretation of three points in the scale, i.e., 1 = Not1462

understandable, 4 = Somewhat understandable, and1463

7 = Completely understandable.1464

Additional quality control measures. Note that1465

some instances in CSQA have multiple correct or1466

very similar answer choices, due to noise in the1467

dataset and the fact that the wrong answer choices1468

were deliberately collected to make the task chal-1469

lenging. To remove this possible confounder, fol-1470

lowing related work (Wiegreffe et al., 2022), in1471

both the crowd studies we instruct crowdworkers1472

to treat the selected answer as correct even if they1473

disagree with it, and then rate the fine-grained as-1474

pects of the rationales. To minimize bias, we ran-1475

domized the order in which rationales were dis-1476

played side-by-side across workers of each HIT.1477

We also randomized randomized the order of the1478

rating questions on the fine-grained aspects pre-1479

sented across workers of each HIT. Three different1480

workers completed each HIT. The workers who par-1481

ticipated in the comparative study were excluded1482

from the acceptability study. Furthermore, for the1483

acceptability study, we launched the OBQA dataset1484

HITs after the conclusion of the CSQA HITs and1485

excluded workers participating in the CSQA HITs.1486

E.2 Credible Rationalization Interface Details1487

As shown in Figure 11, participants are first asked1488

to answer a multiple choice question sampled ran-1489

domly from the CSQA and OBQA datasets. We1490

ensure the accurate distribution of questions with1491

correct and incorrect KIT model prediction for1492

each study condition by grouping questions in each1493

dataset by prediction accuracy. Once the partic-1494

ipant selects an answer, they are shown the KIT1495

model prediction and the LLM-generated rationale1496

(Figure 12). At this point, the QA component is1497

disabled so the the participants cannot change their1498

options. Finally, participants are provided two fol- 1499

low up questions to collect immediate feedback 1500

regarding the task (Figure 13). Finally, participant 1501

conclude the study by completing a survey with 1502

questions adapted from the XAI trust scale (Hoff 1503

and Bashir, 2015) (see Figrue 14.) 1504
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Figure 9: A partial screenshot of the head-to-head comparison interface.

Figure 10: A partial screenshot of the acceptability task interface.

Figure 11: For each task, participants are first asked to answer a multiple choice question.
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Figure 12: Once the participant selects an answer, they are shown the KIT model prediction and the LLM-generated
rationale.

Figure 13: Collecting immediate participant feedback for a task.
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Figure 14: Trust scale-based survey of participant experience.
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