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Abstract

The popularity of conversational digital assis-
tants has resulted in efforts to improve user
experience by extracting insights from the logs.
These approaches utilize distance based metrics
to identify similarities between user conversa-
tions. These metrics are typically designed to
compare text snippets and do not take advan-
tage of the unique conversational features in
dialogues that are absent from other textual
sources. To address this gap, in this work, we
present TaskSim, a novel conversational similar-
ity metric that utilizes different dialogue com-
ponents (e.g.utterances, intents, and slots) with
optimal transport. Extensive experimental eval-
uation of the TaskSim metric on a benchmark
dataset demonstrate its superior performance
over other traditional similarity approaches.

1 Introduction

Task-oriented conversational assistants have be-
come increasingly popular in multiple industries
enabling users to perform tasks such as travel reser-
vations, banking transactions, online shopping, etc.,
through multi-turn conversations. These assistants
support pre-defined sets of tasks that are executed
based on user objectives or intents, and their as-
sociated task parameters or slots provided in the
conversation (c.f. Figure 1).

The increased use of these assistants has led to
the availability of valuable user-assistant conversa-
tion logs (Budzianowski et al., 2018; Andreas et al.,
2020), prompting efforts to extract insights to im-
prove the user-experience including personalized
response generation, next-action recommendations,
and information retrieval (Yaeli et al., 2022; Gao
et al., 2020; Li et al., 2022). A key aspect of such
conversational analytics is identifying similarities
and dissimilarities between conversations.

Measuring semantic textual similarity is the ba-
sis of many natural language and text processing
tasks, such as question answering, sentiment analy-
sis, and information extraction (Zhou et al., 2015;
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Figure 1: Sample task-oriented conversation depicting
user intents, slot parameters, and their respective values.

Book me an economy seat on
AA 368.Ialso require a hotel
room for 3 days.

Ye et al., 2016; Poria et al., 2016); it has been exten-
sively studied for textual sources like documents,
social media, transcripts, etc. However, there has
been limited prior work studying similarity in task-
oriented conversation settings (Appel et al., 2018;
Lavi et al., 2021). Most approaches leverage pop-
ular word embeddings like Word2Vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014)
to obtain higher-dimension semantic vector repre-
sentations of words, and then use distance-based
approaches such as cosine and edit-distance to com-
pute the similarity between text snippets.

While such approaches can identify semantic
relationships between texts, task-oriented conver-
sations present several challenges that limit their
effectiveness. Firstly, they consist of distinct com-
ponents — intents, slots, and utterances — that impact
the similarity and overlap between conversations.
For instance, users can have different objectives
(e.g., booking travel vs. product returns), or even
have the same intents but provide different lev-
els of slot information (Ruane et al., 2018). Ad-
ditionally, information is typically provided over
multiple conversation turns, and each turn could
involve multiple user intents and slots. Finally, the
same set of tasks can be expressed using numerous
possible utterances by users, depending on their



choice of phrasing, order of sentences, use of collo-
quialisms, introducing digressions, etc. (Guichard
et al., 2019). Hence, relying solely on distance
based similarity of word-embeddings would ad-
versely impact performance.

In this work, we present TaskSim, a novel sim-
ilarity metric designed for task-oriented conver-
sations to address the above challenges. TaskSim
represents the structure of conversations as distribu-
tions over the different task-oriented components
and combines the geometry of the distributions
with optimal transport to measure the similarity be-
tween conversations. Our approach is inspired by
prior work in topic modelling (Kusner et al., 2015;
Yurochkin et al., 2019) that have shown the effec-
tiveness of comparing the structure of distributions,
albeit for different settings. We evaluate TaskSim
on a benchmark task-oriented conversation dataset
and demonstrate its effectiveness while present de-
tailed use-cases illustrating its improvement over
existing approaches.

2 Illustrative Example

Conversations often constitute multiple instructions
executed in different orders by different users. Fig-
ure 2 shows users 1 and 2 having similar conver-
sation about making bookings for a trip but with
re-ordered tasks. An ideal metric to measure con-
versational similarity should be able to identify that
the overall goal of these conversations is the same.

3 Similarity Metric for Task-Oriented
Conversations

3.1 Definition

A task-oriented conversational system supports a
pre-defined set of user intents Z and their corre-
sponding slots or parameters S. Each conversation
C; consists of a multi-turn sequence of utterances
U; between the user and the system or agent, a
subset of active intents, and slot-value information
provided by the user (i.e.) I; C Zand S; C S
(Figure 1). Our objective is to compute the simi-
larity between task-oriented conversations, given
their components (i.e.) utterances, intents, and slot
information.

3.2 Approach

The key to TaskSim is to measure similarity be-
tween task-oriented conversations as a function of
the distance between their component-wise distri-
butions. For each component, our goal is to repre-

sent its distribution over every conversation and to
then determine the cost of transforming or trans-
porting the cumulative component-wise distribu-
tions of one conversation to another.

Intuitively, conversations with similar intents,
slot information, and analogous language would
reflect similar distributions, and hence a lower cost
of transportation (i.e.) higher similarity. However,
any differences in their components would incur a
larger cost, and hence reflect a lower similarity.

We begin by generating embeddings for all the
intents and slots within the ontology. We do so on
the masked conversations: the slot values in every
conversation are masked with their corresponding
slot name from the ontology. This is to ensure that
entities representing slot values do not incorrectly
bias or ambiguate the similarity of the embeddings
(Gladkova and Drozd, 2016; Shi et al., 2018). For
instance, the embedding similarity between the un-
related utterances - "I want a ticket to the Big Ap-
ple" and "I want a ticket to the Apple conference”,
could be unduly influenced by the word ‘Apple’,
but masking with their appropriate slot names (e.g.,
<arrival_city> and <product_name>), resolves this
possibility. We denote AlU as the simplex of utter-
ance embeddings of a conversation.

We then compute probability simplexes A7, A%
for each conversation over the set of intents Z and
slots § —

h={pi €R"™ ) pi=1,p; >0Vie|K|}
=0

where each p; reflects the frequency of occurrence
of intents and slots over the utterances. For exam-
ple, A% for conversation C; represents the proba-
bility of all n intents within C;. We then compute
a cost matrix M; ; for each component, that rep-
resents the cost to move between two points (7, j)
in its distribution. We compute each entry using
the Euclidean distance between the embeddings
generated for each component.

Given simplexes o € A%, 8 € A’ and the cost
matrix M, the 1-Wasserstein distance (Vallender,
1974) between them is —

min

Wi(p,q) = .
T'eRnxm 7
subject to Zj I'; j; = o; and ZZ ;= B;

where M, ; = d(4, j) denotes the cost matrix
and d(., .) denotes the distance between the distri-
butions. We then define the similarity (TaskSim)

; M, ;T
9.
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Figure 2: Sample conversations to showcase TaskSim similarity values versus other benchmarks

between two task-oriented conversations C; and
C5 as the weighted sum of the W distances be-
tween their respective components —
TaskSim(Cy, Co) = Y AW (CF,CF) (1)
where C¥ = {U;, I, S;} represents the conversa-
tion’s components (i.e.) utterances, intents, and

slots, and +y is a hyperparameter reflecting the influ-
ence of each component on the similarity.

4 Experimental Evaluation

4.1 Experimental Setup

We conduct our experiments on an Intel Core i9
with 64GB of RAM. We implement TaskSim in
Python, leveraging the POT library (Flamary et al.,
2021) for the 1-Wasserstein optimal transport dis-
tance. yis setto 2, 1, and 1 for the intent, utterances
and slots components, respectively.

Dataset We use SGD (Rastogi et al., 2020), a
benchmark dataset of multi-turn task-oriented con-
versations between users and agents spanning 20
domains like travel, dining, weather, etc. Its 20,000
conversations are annotated with active intents and
slot information.

Baselines We compare TaskSim to three ap-
proaches from the literature. Conversational Edit
Distance (ConvED) (Lavi et al., 2021) is a dia-
logue similarity metric that aligns utterances be-
tween conversations and computes the edit distance
between their embeddings. Hierarchical Optimal
Transport (HOTT) (Yurochkin et al., 2019) com-
putes similarity between documents by modeling
their topics using latent Dirichlet allocation (LDA)
(Blei et al., 2003), and subsequently uses the 1-
Wasserstein distance on the topic and text embed-
dings. Cosine Similarity (Cosine) measures simi-

larity based on the cosine of the angle between text
embeddings.

4.1.1 k-NN classification Results

We perform k-NN classification to demonstrate
TaskSim’s ability to classify conversations into the
correct domain. Table 1 shows the accuracy of the
classification (on 1 run). Popular similarity metrics
like cosine perform relatively well, but rely only on
utterances to measure text similarity. Thus, differ-
ent phrasing and entity names highly influence the
metric even though the conversations are very sim-
ilar. Topic-based metrics like HOTT produce poor
accuracy scores as topic modeling methods like
LDA use word-frequency distributions which are
unable detect relevant topics from short utterances.
The masking of slot values and combination of
other dialogue features like intents and slots helped
TaskSim overcome the shortcomings of existing
textual and document based similarity metrics.

Accuracy
Cosine 0.78
HOTT 0.15
ConvED 0.86
TaskSim 0.95

Table 1: Accuracy scores for £-NN classification

4.1.2 Conversational clusters Results

To highlight the effectiveness of our approach, we
visualize the conversational clusters formed by k-
means clustering over 20 iterations. We set the
number of clusters to 24, the total number of do-
mains in the dataset. Figure 3 shows the colored
visualization of the clusters. The well-formed dis-
tinct clusters demonstrate the ability of TaskSim to
efficiently identify similar conversations and thus
could improve the performance downstream con-
versational analytics tasks.
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Figure 3: Conversations clustered using k-means and
color coded by domain names.

4.1.3 Ablation Study

We also perform an ablation study to investigate
the influence of each component in TaskSim. The
classification accuracy scores (c.f. Table 2) how di-
alogue specific features like intents and slots aid in
improving the distance metric that only uses utter-
ances. We conclude that TaskSim components can
be used in isolation but provide maximized value
when used in combination with slot descriptions
and intents.

Accuracy
TaskSim 0.95
- Utterance 0.88
- Slot 0.93
- Intent 0.94

Table 2: k-NN classification accuracy after removing
components of TaskSim

4.2 Robustness to Re-ordering

To demonstrate this capability, we perform a per-
turbation analysis on the SGD dataset wherein 30%
of the utterances in each conversation have been re-
ordered and compared with the original one (Table
3). An edit distance based metric, considers a con-
versation as a sequence of utterances only, which
fails to identify similar tasks in a different sequence.
TaskSim correctly captures the average distance be-
tween conversations as 0 since it represents the
conversation as a distribution over all the intents,
slots and utterances. The use of intents and slot
descriptions helps to identify the overall goal and
closeness of individual tasks in the conversation.

5 Related Work

Efforts across many natural language tasks includ-
ing sentiment analysis (Poria et al., 2016), recom-

Approach  Avg. Distance

HOTT 0.200
ConvED 4.150
Cosine 0.005
TaskSim 0.000

Table 3: Impact of conversational re-ordering on per-
formance of all approaches

mendation systems (Magara et al., 2018), and ques-
tion answering (Sidorov et al., 2015), have relied
on using distance-based similarity measures over
text embeddings (Wang and Dong, 2020). In ad-
dition to these measures, recent work on dialogue
similarity have also leveraged conversation struc-
ture, where Appel et al. (2018) consider the number
of dialogue turns, words, and cycles and use cosine
similarity. Similarly, Xu et al. (2019) cluster user-
bot dialogues using different distance measures,
Enayet and Sukthankar (2022) measure similarity
of dialogue sequences using the Hamming distance,
and Lavi et al. (2021) align user-bot utterances be-
fore using edit-distance to compute similarity.
The use of optimal transport over text distribu-
tions has shown promising results in document sim-
ilarity (Solomon, 2018) resulting in popular metrics
like the word mover’s distance (WMD) (Kusner
et al., 2015) and supervised WMD (Huang et al.,
2016). Recently, Yurochkin et al. (2019) used op-
timal transport over topic models for documents,
demonstrating a significant improvement in per-
formance over traditional distance based measures.
However, direct application of such approaches
to task-oriented dialogues is challenging, due to
the unique structure and different components of
conversations, as shown in our results.

6 Limitations and Conclusion

TaskSim was designed specifically for task-oriented
conversations; it not only captures semantic similar-
ity between the utterances but also utilizes dialog
specific features like intents and slots to identify
the overall objective of the conversation. Future
work will further validate its effectiveness by car-
rying out human evaluations to investigate the in-
clusion of additional dialog features on open do-
main dialog datasets, more extensive experiments
to demonstrate the hyper-parameter optimization
methodology to weigh different dialog components
in TaskSim, and experiments that evaluate the ef-
fects of more accurate distance values on down-
stream tasks like prompt engineering.
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