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Abstract
The popularity of conversational digital assis-001
tants has resulted in efforts to improve user002
experience by extracting insights from the logs.003
These approaches utilize distance based metrics004
to identify similarities between user conversa-005
tions. These metrics are typically designed to006
compare text snippets and do not take advan-007
tage of the unique conversational features in008
dialogues that are absent from other textual009
sources. To address this gap, in this work, we010
present TaskSim, a novel conversational similar-011
ity metric that utilizes different dialogue com-012
ponents (e.g.utterances, intents, and slots) with013
optimal transport. Extensive experimental eval-014
uation of the TaskSim metric on a benchmark015
dataset demonstrate its superior performance016
over other traditional similarity approaches.017

1 Introduction018

Task-oriented conversational assistants have be-019

come increasingly popular in multiple industries020

enabling users to perform tasks such as travel reser-021

vations, banking transactions, online shopping, etc.,022

through multi-turn conversations. These assistants023

support pre-defined sets of tasks that are executed024

based on user objectives or intents, and their as-025

sociated task parameters or slots provided in the026

conversation (c.f. Figure 1).027

The increased use of these assistants has led to028

the availability of valuable user-assistant conversa-029

tion logs (Budzianowski et al., 2018; Andreas et al.,030

2020), prompting efforts to extract insights to im-031

prove the user-experience including personalized032

response generation, next-action recommendations,033

and information retrieval (Yaeli et al., 2022; Gao034

et al., 2020; Li et al., 2022). A key aspect of such035

conversational analytics is identifying similarities036

and dissimilarities between conversations.037

Measuring semantic textual similarity is the ba-038

sis of many natural language and text processing039

tasks, such as question answering, sentiment analy-040

sis, and information extraction (Zhou et al., 2015;041

User
Assistant

Search for flights from 
Boston to NYC on July 1

Intent: search_flight
Slots:
• departure_loc : Boston
• arrival_loc : NYC
• departure_date : July 1Sure! Here is a list of 

available flights

Book me an economy seat on 
AA 368. I also require a hotel 

room for 3 days.

Intent: book_flight, book_hotel
Slots:
• ticket_class : Economy
• flight_number : AA 368
• hotel_loc : NYC
• hotel_arrival_date : July 1
• hotel_dep_date : July 4

Your flight has been 
booked. Which hotel would 

you prefer?

I want to stay at the Park 
Hyatt

Your stay has been booked.

Intent: book_hotel
Slots:
• hotel_name : Park Hyatt

Figure 1: Sample task-oriented conversation depicting
user intents, slot parameters, and their respective values.

Ye et al., 2016; Poria et al., 2016); it has been exten- 042

sively studied for textual sources like documents, 043

social media, transcripts, etc. However, there has 044

been limited prior work studying similarity in task- 045

oriented conversation settings (Appel et al., 2018; 046

Lavi et al., 2021). Most approaches leverage pop- 047

ular word embeddings like Word2Vec (Mikolov 048

et al., 2013) and GloVe (Pennington et al., 2014) 049

to obtain higher-dimension semantic vector repre- 050

sentations of words, and then use distance-based 051

approaches such as cosine and edit-distance to com- 052

pute the similarity between text snippets. 053

While such approaches can identify semantic 054

relationships between texts, task-oriented conver- 055

sations present several challenges that limit their 056

effectiveness. Firstly, they consist of distinct com- 057

ponents – intents, slots, and utterances – that impact 058

the similarity and overlap between conversations. 059

For instance, users can have different objectives 060

(e.g., booking travel vs. product returns), or even 061

have the same intents but provide different lev- 062

els of slot information (Ruane et al., 2018). Ad- 063

ditionally, information is typically provided over 064

multiple conversation turns, and each turn could 065

involve multiple user intents and slots. Finally, the 066

same set of tasks can be expressed using numerous 067

possible utterances by users, depending on their 068
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choice of phrasing, order of sentences, use of collo-069

quialisms, introducing digressions, etc. (Guichard070

et al., 2019). Hence, relying solely on distance071

based similarity of word-embeddings would ad-072

versely impact performance.073

In this work, we present TaskSim, a novel sim-074

ilarity metric designed for task-oriented conver-075

sations to address the above challenges. TaskSim076

represents the structure of conversations as distribu-077

tions over the different task-oriented components078

and combines the geometry of the distributions079

with optimal transport to measure the similarity be-080

tween conversations. Our approach is inspired by081

prior work in topic modelling (Kusner et al., 2015;082

Yurochkin et al., 2019) that have shown the effec-083

tiveness of comparing the structure of distributions,084

albeit for different settings. We evaluate TaskSim085

on a benchmark task-oriented conversation dataset086

and demonstrate its effectiveness while present de-087

tailed use-cases illustrating its improvement over088

existing approaches.089

2 Illustrative Example090

Conversations often constitute multiple instructions091

executed in different orders by different users. Fig-092

ure 2 shows users 1 and 2 having similar conver-093

sation about making bookings for a trip but with094

re-ordered tasks. An ideal metric to measure con-095

versational similarity should be able to identify that096

the overall goal of these conversations is the same.097

3 Similarity Metric for Task-Oriented098

Conversations099

3.1 Definition100

A task-oriented conversational system supports a101

pre-defined set of user intents I and their corre-102

sponding slots or parameters S . Each conversation103

Ci consists of a multi-turn sequence of utterances104

Ui between the user and the system or agent, a105

subset of active intents, and slot-value information106

provided by the user (i.e.) Ii ⊆ I and Si ⊆ S107

(Figure 1). Our objective is to compute the simi-108

larity between task-oriented conversations, given109

their components (i.e.) utterances, intents, and slot110

information.111

3.2 Approach112

The key to TaskSim is to measure similarity be-113

tween task-oriented conversations as a function of114

the distance between their component-wise distri-115

butions. For each component, our goal is to repre-116

sent its distribution over every conversation and to 117

then determine the cost of transforming or trans- 118

porting the cumulative component-wise distribu- 119

tions of one conversation to another. 120

Intuitively, conversations with similar intents, 121

slot information, and analogous language would 122

reflect similar distributions, and hence a lower cost 123

of transportation (i.e.) higher similarity. However, 124

any differences in their components would incur a 125

larger cost, and hence reflect a lower similarity. 126

We begin by generating embeddings for all the 127

intents and slots within the ontology. We do so on 128

the masked conversations: the slot values in every 129

conversation are masked with their corresponding 130

slot name from the ontology. This is to ensure that 131

entities representing slot values do not incorrectly 132

bias or ambiguate the similarity of the embeddings 133

(Gladkova and Drozd, 2016; Shi et al., 2018). For 134

instance, the embedding similarity between the un- 135

related utterances - "I want a ticket to the Big Ap- 136

ple" and "I want a ticket to the Apple conference", 137

could be unduly influenced by the word ‘Apple’, 138

but masking with their appropriate slot names (e.g., 139

<arrival_city> and <product_name>), resolves this 140

possibility. We denote ∆l
U as the simplex of utter- 141

ance embeddings of a conversation. 142

We then compute probability simplexes ∆n
I , ∆m

S 143

for each conversation over the set of intents I and 144

slots S – 145

∆n
K = {pi ∈ Rn+1 |

n∑
i=0

pi = 1 , pi ≥ 0 ∀i ∈ |K|} 146

where each pi reflects the frequency of occurrence 147

of intents and slots over the utterances. For exam- 148

ple, ∆n
I for conversation Ci represents the proba- 149

bility of all n intents within Ci. We then compute 150

a cost matrix Mi,j for each component, that rep- 151

resents the cost to move between two points (i, j) 152

in its distribution. We compute each entry using 153

the Euclidean distance between the embeddings 154

generated for each component. 155

Given simplexes α ∈ ∆n
K , β ∈ ∆m

K and the cost 156

matrix M, the 1-Wasserstein distance (Vallender, 157

1974) between them is – 158

W1(p, q) = min
Γ∈Rn×m

∑
i,j

Mi,jΓi,j 159

subject to
∑

j
Γi,j = αi and

∑
i
Γi,j = βj 160

where Mi,j = d(i, j) denotes the cost matrix 161

and d(., .) denotes the distance between the distri- 162

butions. We then define the similarity (TaskSim) 163
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Figure 2: Sample conversations to showcase TaskSim similarity values versus other benchmarks

between two task-oriented conversations C1 and164

C2 as the weighted sum of the W1 distances be-165

tween their respective components –166

TaskSim(C1, C2) =
∑

γW1(C
⊕
1 , C⊕

2 ) (1)167

where C⊕
i = {Ui, Ii, Si} represents the conversa-168

tion’s components (i.e.) utterances, intents, and169

slots, and γ is a hyperparameter reflecting the influ-170

ence of each component on the similarity.171

4 Experimental Evaluation172

4.1 Experimental Setup173

We conduct our experiments on an Intel Core i9174

with 64GB of RAM. We implement TaskSim in175

Python, leveraging the POT library (Flamary et al.,176

2021) for the 1-Wasserstein optimal transport dis-177

tance. γ is set to 2, 1, and 1 for the intent, utterances178

and slots components, respectively.179

Dataset We use SGD (Rastogi et al., 2020), a180

benchmark dataset of multi-turn task-oriented con-181

versations between users and agents spanning 20182

domains like travel, dining, weather, etc. Its 20,000183

conversations are annotated with active intents and184

slot information.185

Baselines We compare TaskSim to three ap-186

proaches from the literature. Conversational Edit187

Distance (ConvED) (Lavi et al., 2021) is a dia-188

logue similarity metric that aligns utterances be-189

tween conversations and computes the edit distance190

between their embeddings. Hierarchical Optimal191

Transport (HOTT) (Yurochkin et al., 2019) com-192

putes similarity between documents by modeling193

their topics using latent Dirichlet allocation (LDA)194

(Blei et al., 2003), and subsequently uses the 1-195

Wasserstein distance on the topic and text embed-196

dings. Cosine Similarity (Cosine) measures simi-197

larity based on the cosine of the angle between text 198

embeddings. 199

4.1.1 k-NN classification Results 200

We perform k-NN classification to demonstrate 201

TaskSim’s ability to classify conversations into the 202

correct domain. Table 1 shows the accuracy of the 203

classification (on 1 run). Popular similarity metrics 204

like cosine perform relatively well, but rely only on 205

utterances to measure text similarity. Thus, differ- 206

ent phrasing and entity names highly influence the 207

metric even though the conversations are very sim- 208

ilar. Topic-based metrics like HOTT produce poor 209

accuracy scores as topic modeling methods like 210

LDA use word-frequency distributions which are 211

unable detect relevant topics from short utterances. 212

The masking of slot values and combination of 213

other dialogue features like intents and slots helped 214

TaskSim overcome the shortcomings of existing 215

textual and document based similarity metrics. 216

Accuracy
Cosine 0.78
HOTT 0.15
ConvED 0.86
TaskSim 0.95

Table 1: Accuracy scores for k-NN classification

4.1.2 Conversational clusters Results 217

To highlight the effectiveness of our approach, we 218

visualize the conversational clusters formed by k- 219

means clustering over 20 iterations. We set the 220

number of clusters to 24, the total number of do- 221

mains in the dataset. Figure 3 shows the colored 222

visualization of the clusters. The well-formed dis- 223

tinct clusters demonstrate the ability of TaskSim to 224

efficiently identify similar conversations and thus 225

could improve the performance downstream con- 226

versational analytics tasks. 227

3



Figure 3: Conversations clustered using k-means and
color coded by domain names.

4.1.3 Ablation Study228

We also perform an ablation study to investigate229

the influence of each component in TaskSim. The230

classification accuracy scores (c.f. Table 2) how di-231

alogue specific features like intents and slots aid in232

improving the distance metric that only uses utter-233

ances. We conclude that TaskSim components can234

be used in isolation but provide maximized value235

when used in combination with slot descriptions236

and intents.237

Accuracy
TaskSim 0.95

- Utterance 0.88
- Slot 0.93
- Intent 0.94

Table 2: k-NN classification accuracy after removing
components of TaskSim

4.2 Robustness to Re-ordering238

To demonstrate this capability, we perform a per-239

turbation analysis on the SGD dataset wherein 30%240

of the utterances in each conversation have been re-241

ordered and compared with the original one (Table242

3). An edit distance based metric, considers a con-243

versation as a sequence of utterances only, which244

fails to identify similar tasks in a different sequence.245

TaskSim correctly captures the average distance be-246

tween conversations as 0 since it represents the247

conversation as a distribution over all the intents,248

slots and utterances. The use of intents and slot249

descriptions helps to identify the overall goal and250

closeness of individual tasks in the conversation.251

5 Related Work252

Efforts across many natural language tasks includ-253

ing sentiment analysis (Poria et al., 2016), recom-254

Approach Avg. Distance
HOTT 0.200
ConvED 4.150
Cosine 0.005
TaskSim 0.000

Table 3: Impact of conversational re-ordering on per-
formance of all approaches

mendation systems (Magara et al., 2018), and ques- 255

tion answering (Sidorov et al., 2015), have relied 256

on using distance-based similarity measures over 257

text embeddings (Wang and Dong, 2020). In ad- 258

dition to these measures, recent work on dialogue 259

similarity have also leveraged conversation struc- 260

ture, where Appel et al. (2018) consider the number 261

of dialogue turns, words, and cycles and use cosine 262

similarity. Similarly, Xu et al. (2019) cluster user- 263

bot dialogues using different distance measures, 264

Enayet and Sukthankar (2022) measure similarity 265

of dialogue sequences using the Hamming distance, 266

and Lavi et al. (2021) align user-bot utterances be- 267

fore using edit-distance to compute similarity. 268

The use of optimal transport over text distribu- 269

tions has shown promising results in document sim- 270

ilarity (Solomon, 2018) resulting in popular metrics 271

like the word mover’s distance (WMD) (Kusner 272

et al., 2015) and supervised WMD (Huang et al., 273

2016). Recently, Yurochkin et al. (2019) used op- 274

timal transport over topic models for documents, 275

demonstrating a significant improvement in per- 276

formance over traditional distance based measures. 277

However, direct application of such approaches 278

to task-oriented dialogues is challenging, due to 279

the unique structure and different components of 280

conversations, as shown in our results. 281

6 Limitations and Conclusion 282

TaskSim was designed specifically for task-oriented 283

conversations; it not only captures semantic similar- 284

ity between the utterances but also utilizes dialog 285

specific features like intents and slots to identify 286

the overall objective of the conversation. Future 287

work will further validate its effectiveness by car- 288

rying out human evaluations to investigate the in- 289

clusion of additional dialog features on open do- 290

main dialog datasets, more extensive experiments 291

to demonstrate the hyper-parameter optimization 292

methodology to weigh different dialog components 293

in TaskSim, and experiments that evaluate the ef- 294

fects of more accurate distance values on down- 295

stream tasks like prompt engineering. 296

4



References297

Jacob Andreas, John Bufe, David Burkett, Charles Chen,298
Josh Clausman, Jean Crawford, Kate Crim, Jordan299
DeLoach, Leah Dorner, Jason Eisner, et al. 2020.300
Task-oriented dialogue as dataflow synthesis. Trans-301
actions of the Association for Computational Linguis-302
tics, 8:556–571.303

Ana Paula Appel, Paulo Rodrigo Cavalin, Marisa Af-304
fonso Vasconcelos, and Claudio Santos Pinhanez.305
2018. Combining textual content and structure306
to improve dialog similarity. arXiv preprint307
arXiv:1802.07117.308

David M Blei, Andrew Y Ng, and Michael I Jordan.309
2003. Latent dirichlet allocation. Journal of machine310
Learning research, 3(Jan):993–1022.311

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang312
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-313
madan, and Milica Gasic. 2018. Multiwoz-a large-314
scale multi-domain wizard-of-oz dataset for task-315
oriented dialogue modelling. In Proceedings of the316
2018 Conference on Empirical Methods in Natural317
Language Processing, pages 5016–5026.318

Ayesha Enayet and Gita Sukthankar. 2022. An analysis319
of dialogue act sequence similarity across multiple320
domains. In Proceedings of the Thirteenth Language321
Resources and Evaluation Conference, pages 3122–322
3130.323

Rémi Flamary et al. 2021. Pot: Python optimal324
transport. Journal of Machine Learning Research,325
22(78):1–8.326

Jianfeng Gao, Chenyan Xiong, and Paul Bennett. 2020.327
Recent advances in conversational information re-328
trieval. In Proceedings of the 43rd International329
ACM SIGIR Conference on Research and Develop-330
ment in Information Retrieval, pages 2421–2424.331

Anna Gladkova and Aleksandr Drozd. 2016. Intrinsic332
evaluations of word embeddings: What can we do333
better? In Proceedings of the 1st Workshop on Eval-334
uating Vector-Space Representations for NLP, pages335
36–42.336

Jonathan Guichard, Elayne Ruane, Ross Smith, Dan337
Bean, and Anthony Ventresque. 2019. Assessing338
the robustness of conversational agents using para-339
phrases. In 2019 IEEE International Conference On340
Artificial Intelligence Testing (AITest), pages 55–62.341
IEEE.342

Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha,343
and Kilian Q Weinberger. 2016. Supervised word344
mover’s distance. Advances in neural information345
processing systems, 29.346

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-347
berger. 2015. From word embeddings to document348
distances. In International conference on machine349
learning, pages 957–966. PMLR.350

Ofer Lavi, Ella Rabinovich, Segev Shlomov, David 351
Boaz, Inbal Ronen, and Ateret Anaby Tavor. 2021. 352
We’ve had this conversation before: A novel ap- 353
proach to measuring dialog similarity. In Proceed- 354
ings of the 2021 Conference on Empirical Methods 355
in Natural Language Processing, pages 1169–1177. 356

Shuyang Li, Bodhisattwa Prasad Majumder, and Ju- 357
lian McAuley. 2022. Self-supervised bot play for 358
transcript-free conversational recommendation with 359
rationales. In Proceedings of the 16th ACM Confer- 360
ence on Recommender Systems, pages 327–337. 361

Maake Benard Magara, Sunday O Ojo, and Tranos Zuva. 362
2018. A comparative analysis of text similarity mea- 363
sures and algorithms in research paper recommender 364
systems. In 2018 conference on information commu- 365
nications technology and society (ICTAS), pages 1–5. 366
IEEE. 367

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef- 368
frey Dean. 2013. Efficient estimation of word 369
representations in vector space. arXiv preprint 370
arXiv:1301.3781. 371

Jeffrey Pennington, Richard Socher, and Christopher D 372
Manning. 2014. Glove: Global vectors for word rep- 373
resentation. In Proceedings of the 2014 conference 374
on empirical methods in natural language processing 375
(EMNLP), pages 1532–1543. 376

Soujanya Poria, Iti Chaturvedi, Erik Cambria, and Fed- 377
erica Bisio. 2016. Sentic lda: Improving on lda with 378
semantic similarity for aspect-based sentiment analy- 379
sis. In 2016 international joint conference on neural 380
networks (IJCNN), pages 4465–4473. IEEE. 381

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 382
Raghav Gupta, and Pranav Khaitan. 2020. Towards 383
scalable multi-domain conversational agents: The 384
schema-guided dialogue dataset. In Proceedings of 385
the AAAI Conference on Artificial Intelligence, vol- 386
ume 34, pages 8689–8696. 387

Elayne Ruane, Théo Faure, Ross Smith, Dan Bean, Julie 388
Carson-Berndsen, and Anthony Ventresque. 2018. 389
Botest: a framework to test the quality of conver- 390
sational agents using divergent input examples. In 391
Proceedings of the 23rd International Conference on 392
Intelligent User Interfaces Companion, pages 1–2. 393

Yong Shi, Yuanchun Zheng, Kun Guo, Wei Li, and 394
Luyao Zhu. 2018. Word similarity fails in multiple 395
sense word embedding. In International Conference 396
on Computational Science, pages 489–498. Springer. 397

Grigori Sidorov, Helena Gómez-Adorno, Ilia Markov, 398
David Pinto, and Nahun Loya. 2015. Computing text 399
similarity using tree edit distance. In 2015 Annual 400
Conference of the North American Fuzzy Information 401
Processing Society (NAFIPS) held jointly with 2015 402
5th World Conference on Soft Computing (WConSC), 403
pages 1–4. IEEE. 404

Justin Solomon. 2018. Optimal transport on discrete 405
domains. AMS Short Course on Discrete Differential 406
Geometry. 407

5

http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html


SS Vallender. 1974. Calculation of the wasserstein dis-408
tance between probability distributions on the line.409
Theory of Probability & Its Applications, 18(4):784–410
786.411

Jiapeng Wang and Yihong Dong. 2020. Measurement412
of text similarity: a survey. Information, 11(9):421.413

Luxun Xu, Vagelis Hristidis, and Nhat XT Le. 2019.414
Clustering-based summarization of transactional415
chatbot logs. In 2019 IEEE International Confer-416
ence on Humanized Computing and Communication417
(HCC), pages 60–67. IEEE.418

Avi Yaeli, Segev Shlomov, Alon Oved, Sergey Zeltyn,419
and Nir Mashkif. 2022. Recommending next best420
skill in conversational robotic process automation. In421
International Conference on Business Process Man-422
agement, pages 215–230. Springer.423

Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and424
Chang Liu. 2016. From word embeddings to docu-425
ment similarities for improved information retrieval426
in software engineering. In Proceedings of the 38th427
international conference on software engineering,428
pages 404–415.429

Mikhail Yurochkin, Sebastian Claici, Edward Chien,430
Farzaneh Mirzazadeh, and Justin M Solomon. 2019.431
Hierarchical optimal transport for document represen-432
tation. Advances in Neural Information Processing433
Systems, 32.434

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.435
2015. Learning continuous word embedding with436
metadata for question retrieval in community ques-437
tion answering. In Proceedings of the 53rd Annual438
Meeting of the Association for Computational Lin-439
guistics and the 7th International Joint Conference440
on Natural Language Processing (Volume 1: Long441
Papers), pages 250–259.442

6


