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ABSTRACT

Compositional zero-shot learning (CZSL) task aims to recognize unseen composi-
tional visual concepts, e.g., sliced tomatoes, where the model is learned only
from the seen compositions, e.g., sliced potatoes and red tomatoes.
Thanks to the prompt tuning on large pre-trained visual language models such as
CLIP, recent literature shows impressively better CZSL performance than tradi-
tional vision-based methods. However, the key aspects that impact the generaliza-
tion to unseen compositions, including the diversity and informativeness of class
context, and the entanglement between visual primitives, i.e., state and object, are
not properly addressed in existing CLIP-based CZSL literature. In this paper, we
propose a model by prompting the language-informed distribution, aka., PLID,
for the CZSL task. Specifically, the PLID leverages pre-trained large language
models (LLM) to 1) formulate the language-informed class distributions which
are diverse and informative, and 2) enhance the compositionality of the class em-
bedding. Moreover, a visual-language primitive decomposition (VLPD) module
and a stochastic logit mixup (SLM) strategy are proposed to dynamically fuse the
decisions from the compositional and the primitive logit space. Orthogonal to the
existing literature of soft, hard, or distributional prompts, our method advocates
prompting the LLM-supported class distribution that leads to a better zero-shot gen-
eralization. Experimental results on MIT-States, UT-Zappos, and C-GQA datasets
show the superior performance of the PLID to the prior arts. The code and models
will be publicly released.

1 INTRODUCTION

Compositional visual recognition is a fundamental characteristic of human intelligence (Lake et al.,
2017) but it is challenging for modern deep learning systems. For example, humans can easily
recognize unseen sliced tomatoes after seeing sliced potatoes and red tomatoes.
Such a compositional zero-shot learning (CZSL) capability is valuable in that, novel visual concepts
from a huge combinatorial semantic space could be recognized without “seeing” any of their training
data. For example, C-GQA (Naeem et al., 2021) dataset contains 413 states and 674 objects. This
implies a total of at least 278K compositional classes in an open world while only 2% of them are
accessible in training. Therefore, CZSL can significantly reduce the need for large-scale training data.

Traditional vision-based methods either directly learn the visual feature of compositions, or try to
first decompose the visual data into representations of simple primitives, i.e., states and objects,
and then learn to re-compose the compositions (Misra et al., 2017; Atzmon et al., 2020; Zou et al.,
2020; Huynh & Elhamifar, 2020; Karthik et al., 2022; Tokmakov et al., 2019; Naeem et al., 2021;
Zhang et al., 2022b; Mancini et al., 2021; Li et al., 2022). Thanks to the recent large pre-trained
vision-language models (VLM) such as CLIP (Radford et al., 2021), recent state-of-the-art CZSL
methods have been developed (Nayak et al., 2023; Lu et al., 2023; Xu et al., 2022; Huang et al.,
2023). For instance, CSP (Nayak et al., 2023) inherits the hard prompt template of the CLIP, i.e., a
photo of [state][object] where only the embeddings of the state-object pairs are trained. The
following methods (Lu et al., 2023; Xu et al., 2022; Huang et al., 2023) use soft prompt introduced
in CoOp (Zhou et al., 2022b), where the embeddings of the prompt template are jointly optimized,
leading to a better CZSL performance. The impressive performance of CLIP-based CZSL methods
benefits from the sufficiently good feature alignment between the image and text modalities, and the
prompting techniques for adapting the aligned features to recognizing compositional classes.
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Figure 1: Challenges of compositional recognition. (a) images of the same compositional class appear
differently due to diverse visual backgrounds or foregrounds. (b) red tomatoes and sliced tomatoes
are visually correlated because 1) both are tomatoes object, and 2) the object tomatoes is inherently
entangled with the state red, resulting in the need of primitive decomposition.

Despite the success of existing CLIP-based methods, we find several key considerations to prompt
the pre-trained CLIP for better CZSL modeling. First, the diversity and informativeness of prompts
are both important to distinguish between compositional classes. CZSL can be treated as zero-
shot learning on fine-grained categories, which requires a fine-grained context to prompt the CLIP
model (Radford et al., 2021; Lu et al., 2022). However, to contextualize a class with fine granularity,
the hard prompt in Radford et al. (2021) suffers from the heuristic design of prompt templates, and a
single prompt for each class lacks diversity to capture the intra-class variance of visual data (Fig. 1a).
Though the ProDA (Lu et al., 2022) proposes to learn a collection of prompts that formulate class-
specific distribution to address the diversity, the lack of language informativeness in their prompts
limits their performance on fine-grained compositional categories. Second, the entanglement between
visual primitives, e.g.red and tomatoes in Fig. 1b, incurs difficulty in learning decomposable
visual representations that are useful for compositional generalization (Liu et al., 2022; Karthik et al.,
2022), while such a capability is missing in (Nayak et al., 2023; Xu et al., 2022). Though the more
recent work (Lu et al., 2023; Huang et al., 2023) learn to decompose the primitives and considers
the re-composed compositional predictions, their language-only decomposition and probability-level
mixup potentially limit the generalizability in the open-world.

In this paper, we propose a novel CLIP-based method for the CZSL task by prompting the language-
informed distributions (PLID) over both the compositional and primitive categories. To learn
the diverse and informative textual class representations, the PLID leverages off-the-shelf large
language models (LLM) to build the class-specific distributions and to enhance the class embeddings.
Furthermore, we propose a visual language primitive decomposition (VLPD) module to decompose
the image data into simple primitives. Eventually, the compositional classification is enhanced by
our stochastic logit mixup (SLM), which takes the merits of both the compositional and primitive
recognitions. The proposed PLID shows state-of-the-art performance on CZSL benchmarks such as
MIT-States (Isola et al., 2015), UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem et al., 2021).

Note that our method is orthogonal to the existing hard prompt (Radford et al., 2021), soft prompt
tuning (Zhou et al., 2022b), and prompt distribution learning (Lu et al., 2022; Kwon et al., 2023;
Liu et al., 2023; Derakhshani et al., 2023). We advocate prompting the distribution of informative
LLM-based class descriptions. From a classification perspective, this is grounded on the classification-
by-description (Menon & Vondrick, 2023; Maniparambil et al., 2023; Yan et al., 2023; He et al.,
2023), that LLM-generated text enables more informative class representations. Compared to the
deterministic soft/hard prompt aforementioned, our distribution modeling could capture the intra-
class diversity for better zero-shot generalization. Compared to the existing prompt distribution
learning approaches, the class context is more linguistically interpretable and provides fine-grained
descriptive information about the class. Our method is also parameter-efficient without the need to
optimize a large collection of prompts. Specific to the CZSL task, the enhanced class embeddings
by LLM descriptions enable visual language primitive decomposition and decision fusion in both
compositional and primitive space, which eventually benefits the generalization to the unseen.

In summary, the contributions are as follows. a) We develop a PLID method that advocates prompting
the language-informed distribution for compositional zero-shot learning, which is orthogonal to
existing soft/hard and distributional prompt learning. b) We propose primitive decomposition and
stochastic logit mixup to fuse the classification decision from compositional and primitive predictions.
c) We empirically show that PLID could achieve superior performance to prior arts in both the
closed-world and open-world settings on MIT-States, UT-Zappos, and C-GQA datasets.
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2 RELATED WORK

Prompt Learning in VLM Vision-Language Models (VLM) such as the CLIP (Radford et al.,
2021) pre-trained on web-scale datasets recently gained substantial attention for their strong zero-
shot recognition capability on various downstream tasks. Such a capability is typically achieved
by performing prompt engineering to adapt pre-trained VLMs. Early prompting technique such
as the hard prompt in CLIP uses the heuristic template “a photo of [CLS]” as the textual input.
Recently, the soft prompt tuning method in CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a),
and ResPT (Razdaibiedina et al., 2023) that uses learnable embedding as the textual context of
class names significantly improved the model adaptation performance. This technique is further
utilized in MaPLe (Khattak et al., 2023) that enables multi-modal prompt learning for both image
and text. However, the prompts of these methods are deterministic and lack the diversity to capture
the appearance variety in fine-grained visual data, so they are prone to overfitting the training data.
To handle this issue, ProDA (Lu et al., 2022) explicitly introduces a collection of soft prompts to
construct the class-specific Gaussian distribution, which results in better zero-shot performance and
inspires the recent success of PPL (Kwon et al., 2023) in the dense prediction task. Similarly, the
PBPrompt (Liu et al., 2023) uses neural networks to predict the class-specific prompt distribution and
utilizes optimal transport to align the stochastically sampled soft prompts and image patch tokens.
The recent work (Derakhshani et al., 2023) assumes the latent embedding of prompt input follows a
Gaussian prior and adopts variational inference to learn the latent distribution. In this paper, in order
to take the merits of the informativeness of hard prompt and the diversity of distributional modeling,
we adopt the soft prompt to adapt the distributions supported by LLM-generated class descriptions.

Compositional Zero-Shot Learning (CZSL) For a long period, the CZSL task has been studied
from a vision-based perspective in literature. They either directly learn the compositional visual
features or disentangle the visual features into simple primitives, i.e., states and objects. For exam-
ple, (Nagarajan & Grauman, 2018; Li et al., 2020; Naeem et al., 2021) performs a direct classification
by projecting the compositional visual features into a common feature space, and (Lu et al., 2016;
Misra et al., 2017; Atzmon et al., 2020; Huynh & Elhamifar, 2020; Zou et al., 2020; Karthik et al.,
2022; Liu et al., 2022) decompose the visual feature into simple primitives so that the compositional
recognition can be achieved by learning to recompose from the primitives. Though the recent large-
scale pre-trained CLIP model shows impressive zero-shot capability, it is found to struggle to work
well for compositional reasoning (Ma et al., 2023; Yuksekgonul et al., 2023; Lewis et al., 2022).
Thanks to the recent prompt learning (Zhou et al., 2022b), the CZSL task has been dominated by
CLIP-based approaches (Nayak et al., 2023; Lu et al., 2023; Xu et al., 2022; Huang et al., 2023). The
common idea is to prompt the frozen CLIP model to separately learn the textual embeddings of simple
primitives, which empirically show strong compositionality for zero-shot generalization. However,
these methods tend to overfitting due to the lack of prompt diversity or language informativeness.
In this paper, based on the frozen CLIP, we leverage LLMs to enhance the compositionality of text
embeddings and propose to decompose both the image and text modalities for better compositional
recognition in an open world.

3 PRELIMINARIES

CZSL Task Formulation The CZSL task aims to recognize images of a compositional category
y ∈ C, where the semantic space C is a Cartesian product between the state space S = {s1, . . . , s|S|}
and object space O = {o1, . . . , o|O|}, i.e., C = S × O. For example, as shown in Fig. 1, a model
trained on images of red apple and sliced tomatoes needs to additionally recognize an
image of sliced apple. In training, only a set of seen compositions is available. In closed-world
testing, the model needs to recognize images from both the seen compositions in C(s) and the unseen
compositions in C(u) that are assumed to be feasible, where the cardinality |C(s) ∪ C(u)| ≪ |C| since
most of the compositions in C are practically not feasible. In open-world testing, the model needs to
recognize images given any composition in C.

VLMs for CZSL Large pre-trained VLMs such as CLIP (Radford et al., 2021) have recently been
utilized by CSP (Nayak et al., 2023) for the CZSL task. The core idea of CSP is to represent the text
embeddings of states in S and objects in O as learnable parameters and contextualize them with the
hard prompt template “a photo of [s][o]” as the input of the CLIP text encoder, where [s] ∈ S and
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Figure 2: Overview of PLID. The CZSL task is formulated to align the feature of image x with the learnable
text features of compositional class y = (s, o) based on frozen CLIP (ET and EV ). We propose the language-
informed distributions (LID) which are constructed by the LLM-generated class descriptions and the soft
prompts p1:L for each state-object pair (s, o). The features of the image and text are enhanced by text and visual
feature enhancement (TFE and VEF). Furthermore, we propose the visual language primitive decomposition
(VLPD) module to recompose the compositional logits, which are further fused with the compositional logit
between ty and v by our stochastic logit mix-up (SLM). With the compositional and primitive recognition, our
model is jointly trained by loss functions Ly(x, y), Ls(x, s), and Lo(x, o).

[o] ∈ O. Given an image x, by using the cosine similarity (cos) as the logit, the class probability
of the composition y is defined as pθ(y|x) = softmax(cos(v, ty)), where θ are the |S| + |O|
learnable parameters, v and ty are the image feature and class text embedding, respectively.

In training, the prediction pθ(ŷ|x) is supervised by multi-class cross-entropy loss. In CZSL testing,
a test image is recognized by finding the compositional class c ∈ C which has the maximum
cos(v, tc). The CSP method is simple, parameter-efficient, and largely outperforms traditional
approaches. However, due to the lack of diversity and informativeness in prompting, the zero-shot
capability of CLIP is not fully exploited by CSP for the CZSL task.

4 PROPOSED METHOD

Overview Fig. 2 shows an overview of the PLID. The basic idea is to use LLMs to generate
sentence-level descriptions for each compositional class, and learn to prompt the class-wise text
distributions (supported by the descriptions) to be aligned with image data. Besides, we introduce
visual language primitive decomposition (VLPD) and stochastic logit mixup (SLM) to enable
recognition at both compositional and primitive levels. In testing, an image is recognized by fusing
the decisions from the directly predicted and the recomposed compositions.

4.1 PROMPTING LANGUAGE-INFORMED DISTRIBUTION

Motivation To adapt the large pre-trained CLIP (Radford et al., 2021) to downstream tasks, recent
distributional prompt learning (Lu et al., 2022; Kwon et al., 2023; Liu et al., 2023; Derakhshani et al.,
2023) shows the importance of context diversity by distribution modeling for strong generalization.
Motivated by the inherent fine-granularity of compositional recognition in the CZSL task, we argue
that not only the context diversity but also the context informativeness by language modeling, are
both important factors to adapt CLIP to the zero-shot learning task. The insight behind this is that
the sentence-level descriptions could contextualize compositional classes in a more fine-grained
manner than the prior arts. Therefore, we propose to address the two factors by learning to Prompt
the Language-Informed Distributions (PLID) for the CZSL task.

Compositional Class Description To generate diverse and informative text descriptions for each
compositional class, we adopt a similar way as (Menon & Vondrick, 2023) by prompting an LLM that
shows instruction-following capability. An example below shows the format of the LLM instruction.
Keywords: sliced, potato, picture
Output: The picture features a beautifully arranged plate of thinly

sliced potatoes.
###
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See the Appendix B for more details. For each composition y = (s, o), we generate M descriptions
denoted as S(y) = {S(y)

1 , . . . , S
(y)
M } where S

(y)
m is a linguistically complete sentence. Different

to (Menon & Vondrick, 2023) that aims to interpret the zero-shot recognition by attribute phrases
from LLMs, we utilize the LLM-based sentence-level descriptions in the CZSL task for two benefits:
1) provide diverse and informative textual context for modeling the class distributions that capture the
intra-class variance, and 2) enhance the class embedding with fine-grained descriptive information.

Language-Informed Distribution (LID) For both the image and text modalities, we use the frozen
CLIP model and learnable feature enhancement modules to represent the visual and language features,
which are also adopted in existing CZSL literature (Lu et al., 2023; Huang et al., 2023).

Specifically, for the text modality, each composition y is tokenized and embedded by CLIP embedding
layer and further prompted by concatenating with learnable context vectors, i.e., “[p1] . . . [pL][s][o]”,
where p1:L is initialized by “a photo of” and shared with all classes. Followed by the frozen
CLIP text encoder ET , the embedding of class y is qy = ET ([p1] . . . [pL][s][o]) where qy ∈ Rd.
Following the CZSL literature (Xu et al., 2022; Lu et al., 2023), here the soft prompt p1:L and
primitive embeddings [s][o] are learnable while ET is frozen in training.

To simultaneously address the lack of diversity and informativeness of the soft prompts, we propose
to formulate the class-specific distributions supported by the texts S(y) and learn to prompt these
distributions. Specifically, we encode S(y) by the frozen CLIP text encoder: D(y) = ET (S(y)),
where D(y) ∈ RM×d. Then, we use D(y) to enhance qy by ty = ΨTFE(qy,D

(y)) where ΨTFE is the
text feature enhancement (TFE) implemented by cross attention (Vaswani et al., 2017). Similarly,
given an image x, to mitigate the loss of fine-grained cues, we augment it with N views to be
X = {x(1), . . . ,x(N)}. Followed by the frozen CLIP visual encoder EV , the feature of x is enhanced
by v=ΨVFE(EV (x), EV (X)) where ΨVFE is the visual feature enhancement (VFE) by cross attention.

⋯⋯ ⋯
DSP(𝐭!) DSP(𝐭")

ℰ" ⋯
soft prompt

hard promptCLIP Text Encoder

Figure 3: Hybrid prompting for intra-
and inter-class covariance optimization.

We treat the enhanced text feature ty of class y as the class
mean and ty +D(y) as the distribution support points (DSP)
that follow the Gaussian N (ty,Σy). The motivation of ty +

D(y) is to enable the flexibility of DSP to traverse around
in the d dimensional space in training since ty is trainable
while D(y) are pre-trained. For all |C(s)| (denoted as C) seen
compositional classes, we build joint Gaussian distributions
N (µ1:C ,Σ1:C) similar to ProDA (Lu et al., 2022), where the
means µ1:C ∈ RC×d are given by ty over C classes, and the
covariance Σ1:C ∈ Rd×C×C is defined across C classes for
each feature dimension from DSP.

Remark: Compared to the ProDA (Lu et al., 2022) that learns a collection of non-informative prompts,
our DSPs are language-informed by D(y) that provides more fine-grained descriptive information to
help recognition and decomposition. Besides, our method is more parameter-efficient than ProDA
since we only have a single soft prompt to learn. This is especially important for the CZSL task
where there is a huge number of compositional classes. Lastly, we highlight the benefit of performing
the intra- and inter-class covariance optimization induced by the learning objective of distribution
modeling, which will be introduced below.

Learning Objective Given the visual feature v ∈ Rd of image x and the text embeddings t1:C
from class-wise joint distributions N (µ1:C ,Σ1:C), according to the (Lu et al., 2022), minimizing the
cross-entropy loss is equivalent to minimizing the upper bound of negative log-likelihood (NLL):

NLL(x, y) = − logEt1:Cp(y|v, t1:C) ≤ − log
exp(hy/τ)∑C

k=1 exp((hk + h
(m)
k,y )/τ)

:= Ly(x, y), (1)

where the compositional logit hy = cos(v, ty), the pairwise margin h
(m)
k,y = v⊤Ak,yv/(2τ) and

A ∈ Rd×C×C is given by Ak,y = Σkk +Σyy −Σky −Σyk. The covariance Ak,y indicates the
correlation between the k-th out of C classes and the target class y on each of d feature dimensions.
The insight of minimizing Ly(x, y) is illustrated in Fig. 3, which encourages minimizing intra-class
variance by Σyy and Σkk, and maximizing inter-class separability indicated by Σky and Σyk. In
Appendix C, we discuss our workaround by covariance sharing when C is too large to compute A.
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4.2 PRIMITIVES DECOMPOSITION AND DECISION FUSION
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Figure 4: VLPD for recomposing.

Motivation Considering the fundamental challenge in
the CZSL task, that the visual primitives are inherently en-
tangled in an image, an unseen composition in testing can
be hardly identified if its object (or its state) embedding is
overfitted to the visual data of seen compositions. To this
end, it is better to inherit the benefits of the decompose-
recompose paradigm (Zou et al., 2020; Karthik et al., 2022;
Liu et al., 2022) by decomposing visual features into sim-
ple primitives, i.e., states and objects, from which the
recomposed decision can be leveraged for zero-shot recog-
nition. Thanks to the compositionality of CLIP (Wolff
et al., 2023; Trager et al., 2023), such motivation can be achieved by the visual-language primitive
decomposition (VLPD). See Fig. 4 and we explain it below. Based on VLPD, we propose the
stochastic logit mixup to fuse the directly learned compositions and the recomposed ones.

VLPD Specifically, we use two parallel neural networks fs and fo to decompose v into the state
visual feature fs(v) and object visual feature fo(v), respectively, under the supervision of text
features. To get the supervision, we group ty over the subset Yo, in which all compositions share the
same given object o (see vertical ellipses in Fig. 4), and group ty over the subset Ys, in which all
compositions share the same given state s (see horizontal ellipses in Fig. 4). Thus, given a state s and
an object o, the predicted object logit hs and state logit ho are computed by

hs = cos

fs(v),
1

|Ys|
∑
y∈Ys

ty

 , ho = cos

fo(v),
1

|Yo|
∑
y∈Yo

ty

 . (2)

Note that we use fs and fo to decompose visual features v, which is different from DFSP (Lu et al.,
2023) that only decomposes the compositional logits. In experiments, we show the superiority of
performing both visual and language decomposition in Table 5.

Following the spirit of distribution modeling, we also introduce the distributions over state and object
categories, where the corresponding DSP, denoted as D(s) and D(o), are obtained by grouping D(y)

over Ys and Yo, respectively. This leads to the following upper-bounded cross-entropy losses:

Ls(x, s) = − log
exp(hs/τ)∑|S|

k=1 exp((hk + h
(m)
k,s )/τ)

, Lo(x, o) = − log
exp(ho/τ)∑|O|

k=1 exp((hk + h
(m)
k,o )/τ)

,

(3)
where h

(m)
k,s and h

(m)
k,o are determined the same way as h(m)

k,y in Eq. (1). See details in Appendix D.

With the individual fs and fo, it is safe to have p(y|v) = p(s|v) · p(o|v) that induces p(y|v) ∝
exp((hs + ho)/τ). Therefore, the recomposed logit matrix H(rc) ∈ R|S|×|O| is a Cartesian sum
between h(s) ∈ R|S| and h(o) ∈ R|O|, i.e., H(rc) = h(s)⊕h(o)⊤, where h(s) contains all state logits
and h(o) contains all object logits. See the red and blue squares in Fig. (4), respectively.

Stochastic Logit Mixup Given the recomposed logit h(rc)
y ∈ H(rc) and the directly learned

compositional logit hy, we propose a stochastic logit mixup (SLM) method for decision fusion by
sampling a coefficient λ from a Beta prior distribution:

h̃y = (1− λ)hy + λh(rc)
y , λ ∼ Beta(a, b), (4)

where (a, b) are hyperparameters indicating the prior preference for each decision. In training, we
replace the hy and hk of Eq. (1) with the mixed logit h̃y and h̃k, respectively. In testing, we use the
expectation of the Beta distribution which is a/(a+ b).

The insights behind the SLM are that the Beta distribution indicates a prior to hy or h(rc)
y . It provides

the flexibility of which compositional decision to trust in, and the stochasticity of the coefficient λ
inherently introduces a regularization effect in training (Carratino et al., 2022). Moreover, compared
to softmax probability mixup (Huang et al., 2023), our logit mixup avoids the limitation of softmax
normalization over a huge number of compositional classes, that rich information of class relationship
is lost after softmax normalization according to (Bang et al., 2022). Such class relationships are even
more important in the CZSL problem as indicated in (Naeem et al., 2021).
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Method MIT-States UT-Zappos C-GQA

S U H AUC S U H AUC S U H AUC

Closed

CLIP (Radford et al., 2021) 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp (Zhou et al., 2022b) 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
ProDA1 (Lu et al., 2022) 37.4 51.7 32.7 16.1 63.7 60.7 47.6 32.7 – – – –
CSP (Nayak et al., 2023) 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
PCVL (Xu et al., 2022) 48.5 47.2 35.3 18.3 64.4 64.0 46.1 32.2 – – – –
HPL (Wang et al., 2023) 47.5 50.6 37.3 20.2 63.0 68.8 48.2 35.0 30.8 28.4 22.4 7.2
DFSP (Lu et al., 2023) 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5
PLID 49.7 52.4 39.0 22.1 67.3 68.8 52.4 38.7 38.8 33.0 27.9 11.0

Open

CLIP (Radford et al., 2021) 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.3
CoOp (Zhou et al., 2022b) 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.7
ProDA1 (Lu et al., 2022) 37.5 18.3 17.3 5.1 63.9 34.6 34.3 18.4 – – – –
CSP (Nayak et al., 2023) 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.2
PCVL (Xu et al., 2022) 48.5 16.0 17.7 6.1 64.6 44.0 37.1 21.6 – – – –
HPL (Wang et al., 2023) 46.4 18.9 19.8 6.9 63.4 48.1 40.2 24.6 30.1 5.8 7.5 1.4
DFSP (Lu et al., 2023) 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.4
PLID 49.1 18.7 20.4 7.3 67.6 55.5 46.6 30.8 39.1 7.5 10.6 2.5

Table 1: CZSL results of Closed- and Open-World settings on three datasets. Baseline results are from published
literature, where the PCVL was not evaluated on the C-GQA dataset such that we use “–” instead.

5 EXPERIMENTS

Datasets and Evaluation We perform experiments on three CZSL datasets, i.e., MIT-States (Isola
et al., 2015), UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem et al., 2021), following the
standard splitting protocols in CZSL literature (Purushwalkam et al., 2019; Nayak et al., 2023; Lu
et al., 2023). See dataset details in the Appendix E. We report the metrics in both closed-world (CW)
and open-world (OW) settings, including the best seen accuracy (S), the best unseen accuracy (U), the
best harmonic mean (H) between the seen and unseen accuracy, and the area under the curve (AUC)
of unseen versus seen accuracy. For OW evaluation, following the CSP (Nayak et al., 2023), we adopt
the feasibility calibration by GloVe (Pennington et al., 2014) to filter out infeasible compositions.

Implementation Details We implement the PLID based on the CSP codebase in PyTorch. The
CLIP architecture ViT-L/14 is used by default. Without mentioning, we generate M = 64 texts and
augment an image with N = 8 views, and adopt Beta(1, 9) as prior. The dropout rates of TFE and
VFE are set at 0.5. We use a single NVIDIA 6000Ada GPU for training and testing. Following (Lu
et al., 2023), we use Adam optimizer with base learning rate 5e-5, and steply decay it with the factor
of 0.5 every 5 training epochs for a total of 20 epochs. Other details are in the Appendix E.

5.1 MAIN RESULTS

The results are reported in Table 1. We compare with the CZSL baselines that are developed on the
same frozen CLIP model. The table shows that under both the closed-world and open-world test
settings, our proposed PLID method achieves the best performance in most metrics on the three
datasets. Note that ProDA (Lu et al., 2022) also formulates the class-wise Gaussian distributions
to address the intra-class diversity, but it can only outperform CLIP and CoOp on all metrics. This
indicates the importance of both diversity and informativeness for the CZSL task. On the UT-Zappos
dataset, the PLID outperforms the DFSP in terms of S, H, and AUC by 0.6%, 5.2%, and 2.7%
respectively, while inferior to the DFSP on the best unseen metric. The potential reason is that DFSP
fuses the text features into the image images, which better preserves the generalizability of CLIP
for the small downstream UT-Zappos dataset. Note that the HPL method uses prompt learning and
recognition at both compositional and primitive levels, but it performs only slightly better than CSP
and way worse than our method, indicating that traditional prompt learning helps but is not enough to
adapt the CLIP model to the CZSL task.

1ProDA is re-implemented since it was originally for zero-shot learning. Limited by the GPU memory, ProDA is not applicable to the
C-GQA dataset which consists of more than 278K compositional classes.
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LID TFE VFE OPT VLPD SLM Hcw AUCcw How AUCow

(a) 35.41 18.56 17.37 5.56
(b) ✓ 37.06 20.43 18.65 6.50
(c) ✓ ✓ 37.76 21.07 19.05 6.62
(d) ✓ ✓ ✓ 37.87 21.09 19.70 6.95
(e) ✓ ✓ ✓ ✓ 38.80 21.67 19.61 7.01
(f) ✓ ✓ ✓ ✓ ✓ 38.42 21.69 20.24 7.31
(g) ✓ ✓ ✓ ✓ ✓ ✓ 38.97 22.12 20.41 7.34

Table 2: Ablation study. (a): the baseline that uses mean pooling of text embeddings from T5-generated
sentences. (b): add distribution modeling. (c): change the mean pooling to the cross-attention. (d): augment
images followed by cross-attention aggregation. (e): change T5-base LLM to the OPT-1.3B. (f): add VLPD
followed by the fixed logit fusion. (g): change the fusion to a stochastic manner, which reaches to our full PLID.

LLM MIT-States UT-Zappos C-GQA

Hcw AUCcw How AUCow Hcw AUCcw How AUCow Hcw AUCcw How AUCow

T5 38.41 21.53 20.46 7.34 54.76 40.18 44.18 28.47 26.94 10.65 9.77 2.35
OPT 38.97 22.12 20.41 7.34 52.38 38.67 46.61 30.84 27.87 11.04 10.55 2.54

Table 3: Effect of LLMs on three CZSL datasets.

5.2 MODEL ANALYSIS

Ns No Ny Hcw AUCcw How AUCow

38.44 21.67 19.53 6.99
✓ ✓ 38.30 21.62 19.49 6.95

✓ 38.49 21.90 19.93 7.20
✓ ✓ ✓ 38.97 22.12 20.41 7.34

Table 4: Effect of LID on classes of states
(Ns), objects (No), and compositions (Ny).

Ablation Study In Table 2, we show the contribution of
the major components in the PLID model. It is clear that
all components are beneficial. Here we highlight some
important observations: (1) Our LID method significantly
improves the performance compared to the baseline (a) and
is much better than ProDA (20.43% vs 16.1% of AUCcw)
when referring to Table 1. This implies that modeling
the distribution by way of ProDA is not sufficient, but
language informativeness is critical and preferred for the
CZSL task. (2) Rows (c)(d)(e) show that TFE, VFE, and
OPT-1.3B can further achieve some performance gains. (3) Rows (f)(g) show that VLPD benefits
more in the open-world setting while the SLM contributes more in the closed-world setting.

text image Hcw AUCcw How AUCow

37.94 20.98 19.67 6.98
✓ 38.40 21.31 19.99 7.13
✓ ✓ 38.97 22.12 20.41 7.34

Table 5: Effect of VLPD. The three rows
indicate no decomposition, decompose text-
only, and decompose both (full VLPD).

Effect of LLM In Table 3, we analyze the choice of
LLMs by comparing PLID using the pre-trained T5 (Raf-
fel et al., 2020a) and OPT (Zhang et al., 2022a). It shows
the performance varies across CZSL datasets. Note that
the quality of the generated texts by OPT is much bet-
ter than T5 (see examples in Appendix B), the results
imply that the higher text quality on the large C-GQA
dataset leads to better CZSL performance. Besides, on
the UT-Zappos dataset, the better OPT does not show bet-
ter closed-world performance. The reason could be that
UT-Zappos is too small and its commercial shoe images do not exhibit diverse visual backgrounds.

Effect of LID In Table 4, we further investigate at which semantic level the language-informed dis-
tribution (LID) should be applied. Denote the Gaussian distribution on state, object, and composition
as Ns, No, and Ny, respectively. The Table 4 results clearly show the superiority of applying LID
on all three semantic levels. This indicates the generality of language-informed distribution towards
many potential zero-shot or open-vocabulary recognition problems.

Design Choice of VLPD In Table 5, we validate the design choices of VLPD, including the model
without primitive decomposition, only decompose text into primitives, and our decomposition on
both visual and language primitives (VLPD). The results show the clear advantage of our VLPD
design choice. Note that DFSP also has primitive decomposition but only on text modality. Our better
performance thus indicates the need for decomposition on both visual and image.

8



Under review as a conference paper at ICLR 2024

20.5
21.0
21.5
22.0

4 8 16 32 646.5
6.8
7.1
7.4

OW
CW

(a) AUC vs. M

20.5
21.0
21.5
22.0

2 4 8 166.5
6.8
7.1
7.4

OW
CW

(b) AUC vs. N

Figure 5: Impact of M and N . We set N = 8 for the
Fig. 5a, while we set M = 64 for the Fig. 5b.
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Figure 6: Impact of (a, b). Here (1, 1) implies ran-
dom sampling while (5, 5) implies equally trusted.
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“small laptop”“heavy gear” “splintered palm”“small dog”
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“engraved floor”
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Figure 8: Qualitative results. We show the success and failure cases of prediction on the MIT-States test set.

Hyperparameters In Fig. 5, we quantitatively show the impact of the number of generated text
descriptions M and the number of augmented image views N . It shows that the best performance is
achieved when M = 64 and N = 8. We note that more augmented image views slightly decrease the
performance, which could be attributed to the overfitting of the seen compositions.

In Fig. 6, we show the impact of the Beta prior parameters (a, b). We set them to (1, 1) for random
sampling, (1, 9) for preference to the composition, (9, 1) for preference to re-composition, and (5, 5)
for equal preference, respectively. It reveals that trusting more of the directly learned composition by
Beta(1, 9) achieves the best results.
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(a) LLM text embeddings

10 0 10

10

0

10

0
1
2
3
4
5
6
7
8
9

(b) Learned DSP

Figure 7: tSNE visualization of the text embeddings.

Qualitative Analysis We use the tSNE to
visualize the generated text embeddings D
and the learned DSP from or PLID model
in Fig. 7, where the same set of 10 compo-
sitional classes are randomly selected from
MIT-States dataset. It shows that by learning
the distribution of each composition from
LLM-generated texts using Eq. (1) and (3)
and TFE module, compositional class em-
beddings can be distributed more compactly
in each class (small intra-class variance),
and better separated among multiple classes (large inter-class distance). In Appendix F, we show
primitive-level tSNE embedding visualizations that reveal the same observation.

In Fig. 8, we show some success and failure cases of our PLID model. For example, the heavy
water case indicates an incorrect label while PLID could correctly predict it as huge wave. This
shows the robustness of PLID against noisy labels. The last two failure cases reveal PLID still
could make mistakes on the state prediction (cooked pasta) and object prediction (engraved
floor), which indicates there is still a long way to go for the CZSL problem.

6 CONCLUSION

In this work, we propose a novel CLIP-based compositional zero-shot learning (CZSL) method
named PLID. It leverages the generated text description of each class from large language models to
formulate the class-specific Gaussian distributions. By softly prompting these language-informed
distributions, PLID could achieve diversified and informative class embeddings for fine-grained
compositional classes. Besides, we decompose the visual embeddings of image data into simple
primitives that contain the basic states and objects, from which the re-composed predictions are
derived to calibrate the prediction by our proposed stochastic logit mixup strategy. Experimental
results show the superiority of the PLID method to prior arts on all common CZSL datasets.
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A BROADER IMPACT AND LIMITATIONS

Broader Impact This work can be broadly extended to more downstream multi-modality ap-
plications, such as general zero-shot learning, text-image retrieval, text-to-image generation, etc.,
when the class composition is not especially taken into consideration. Besides, the central idea of
LLM-grounded modality alignment is not limited to text and image, but any modality that could
reveal the semantic categories in practice is promising to explore in the future. The potential negative
societal impact is that, the developers should be cautious by carefully examining the societal biases
indicated by the generated textual class descriptions, even though the large language models we used
are publicly accessible.

Limitations One limitation is that the primitive decomposition could be difficult to learn when the
states are non-visual concepts like smelly, hot, etc., even by the pre-trained CLIP model. Another
limitation is that the generated descriptions by LLMs are not grounded to the image such that some
distraction from generated descriptions could be introduced.

B GENERATING COMPOSITIONAL CLASS DESCRIPTIONS

In this work, we choose T5 and OPT models as the LLMs for compositional class description
generation. For the T5 model, we follow the same setting as (He et al., 2023) that uses the T5-base
model for word-to-sentence generation. The T5-base model was pre-trained on the Colossal Clean
Crawled Corpus dataset (Raffel et al., 2020b) and finetuned on the CommonGen dataset (Lin et al.,
2020). Take the painted ceiling as an example, the results from T5-base model are:

- A very old but beautifully decorated ceiling.
- A remodeled interior with a painted ceiling.
- A painted ceiling at a restaurant.
- Stained glass windows and a carved pattern on the ceiling.
- Painted ceilings and a fireplace.
- This apartment has a painted ceiling.
- A painted ceiling was a huge hit.
- A chandelier is painted in the middle of the ceiling.
- A stained glass window in a bathroom with a white painted ceiling.
- The ceiling of a hotel is painted.
- ...

For the OPT model, we adopt the pre-trained OPT-1.3B model which is small but still could generate
sentences of sufficiently good quality. Considering that it is a decoder-only LLM that relies on a
few examples as the prompt for word-to-sentence generation, we design the prompt template with 4
examples as shown below.

Keywords: sliced, potato, picture
Output: The picture features a beautifully arranged plate of thinly

sliced potatoes.
###
Keywords: red, apple, photo
Output: In the photo, a bright red apple is the central focus,

captured in stunning detail.
###
Keywords: leather, shoes, image
Output: The image showcases a sleek pair of leather shoes,

meticulously designed to impress.
###
Keywords: broken, car, photo
Output: The photo captures the aftermath of a car accident with a

broken vehicle lying on the road.
###

where the Keywords is followed by the words of the state, object, and the word randomly picked
from the set {photo,image,picture}. Using the same example painted ceiling as T5-base
model, the generated sentences are:
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- The painting of the ceiling features an intricate pattern of
intricate gold-colored paint and is framed by a white
background.

- The ceiling has been painted with the pictures of these three
characters, all arranged together.

- In the picture, the ceiling is covered in bright, colorful
paintwork that has been painted on by hands painted white. The
colors have been selected carefully.

- In the picture, the ceiling features painted decoration. The
decoration resembles the surface of the sea, and has been
painted in shades of blue.

- The photograph captures both the bright colors of the painting
atop the ceiling and the subtle shades of light reflecting off
of it.

- The large picture shows a large pattern painted onto the ceiling.
The blue line shows paint dripping down.

- The wall behind the picture shows three different painted
ceilings, in bright contrasting colors. A vibrant sky and blue
skies are depicted against the dark brick wall.

- The ceiling of the room depicted in the painting could very well
be painted in a few hours. The details of each object are
clearly defined in its placement and position.

- Another photo of the same scene, this time featuring a ceiling
painted in a stunning, white color.

- A painted ceiling is shown, painted according to a specific
design. this is a typical design that can also include
decorative or functional elements.

- ...

It is clear that the generated class descriptions are much more diverse and informative than those of
the OPT model.

C COVARIANCE SHARING

For the CZSL task, the spatial complexity of computing the covariance matrix Σ1:C is O(|C(s)|2d)
which could be too heavy to compute if the number of the compositions is too large. For example, the
C-GQA dataset contains 278K seen compositions which result in around 6× 1013 floating elements
of Σ1:C for 768-dim text features. To handle this issue, we instead implement the Σ1:C by sharing
the covariance across attributes given the same object. This implies that the model is encouraged to
learn the object-level distributions.

Specifically, similar to the VLPD module of the main paper, we compute the mean µ1:|O| and
covariance Σ1:|O| over the objects by grouping ty and D(y) with object labels:

to =
1

|Yo|
∑
y∈Yo

ty, D(o) =
1

|Yo|
∑
y∈Yo

D(y), (5)

where Yo is the subset of compositions in Y that contains the same object as y. Then, all the pairwise
margins H(m)

o ∈ R|O|×|O| in object space can be mapped back to H(m) ∈ RC×C in a compositional
space by sharing it with all compositions in Yo. This could significantly reduce the computation load
of the covariance while compromising the accuracy of distribution modeling.

Since the distribution modeling for both our PLID and ProDA is not applicable to the C-GQA dataset,
we use the MIT States dataset to show the negative impact of sharing the covariance (see Table 6). It
shows that the covariance sharing can significantly save the GPU memory (17.6 vs 32.5 GB), while
still performing much better than ProDA.

D PRIMITIVE-LEVEL GAUSSIAN MODELING

To formulate the Gaussian distributions over the state classes and the object classes, we group the text
embeddings of composition descriptions D by Eq. (5), resulting in the distribution support points
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Variants Mem.(GB) Hcw AUCcw How AUCow

ProDA (Lu et al., 2022) 32.5 32.71 16.11 17.30 5.11
PLID (w. ShareCov) 17.6 38.50 (-0.47%) 21.69 (-0.43%) 19.81 (-0.60%) 7.04 (-0.30%)
PLID (full) 22.2 38.97 22.12 20.41 7.34

Table 6: Effect of covariance sharing on MIT-States dataset. All methods use the same batch size of 64 for a
fair comparison of GPU memory.

(DSP) to +D(o) and ts +D(s) for a given object class o and state class s, respectively. The DSPs
are assumed to follow the state distribution N (ts,Σs) or the object distribution N (to,Σo), where
the covariances Σs and Σo are determined by D(s) and D(o), respectively.

Eventually, given the decomposed state visual features fs(v) and object visual features fo(v), the
logit margin terms are defined as

h
(m)
k,s = fs(v)

⊤Ak,sfs(v), and h
(m)
k,o = fo(v)

⊤Ak,ofo(v), (6)

where the index k ranges within [1, |S|] for computing the state classification loss Ls, and ranges
within [1, |O|] for computing the object classification loss Lo, respectively.

E MORE IMPLEMENTATION DETAILS

Datasets We perform experiments on three CZSL datasets, i.e., MIT-States (Isola et al., 2015),
UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem et al., 2021). MIT-States consists of 115
states and 245 objects, with 53,753 images in total. Following (Purushwalkam et al., 2019; Nayak
et al., 2023; Lu et al., 2023), it is split into 1,262 seen and 300/400 unseen compositions for training
and validation/testing, respectively. UT-Zappos contains 16 states and 12 objects for 50,025 images
in total, and it is split into 83 seen and 15/18 unseen compositions for training and validation/testing.
C-GQA contains 453 states and 870 objects for 39,298 images, and it is split into 5,592 seen and
1,040/923 unseen compositions for training and validation/testing, respectively, resulting in 7,555
and 278,362 target compositions in closed- and open-world settings.

Implementation Our model is implemented on top of the CSP (Nayak et al., 2023) codebase,
which extends the CLIP model for compositional zero-shot learning. To tokenize the generated long
sentences of each compositional class, we set the context length to the default value of 77 in the
original CLIP model. For the soft prompt embeddings, we set the context length of text encoder to
8 for all datasets. We use the dropout rate of 0.3 for the learnable state and object embeddings. In
training, we follow the DFSP (Lu et al., 2023) that uses the performance of the validation set for
model selection. The rest hyperparameters of our final model on each dataset are listed in Table 7.

Hyperparameters MiT-States UT-Zappos C-GQA
max epochs 50 25 20
base learning rate 0.00005 0.0001 0.00001
weight decay 0.00002 0.00001 0.00001
number of text descriptions 64 32 64
number of image views 8 8 8
attention dropout 0.5 0.1 0.1
weights of primitive loss 0.1 0.01 0.01

Table 7: Hyperparameters of model implementation.

15



Under review as a conference paper at ICLR 2024

10 0 10

10

0

10

0
1
2
3
4
5
6
7
8
9

(a) LLM Embeddings of States
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(b) Learned DSP of States
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(c) LLM Embeddings of Objects
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(d) Learned DSP of Objects

Figure 9: tSNE visualization of the primitive-level text embeddings (states: Fig. 9a and 9b, objects:
Fig. 9c and 9d). This figure clearly shows that, compared to the raw embeddings by pre-trained
LLMs, our method achieves better distributions over both the state and object classes.

F MORE RESULTS

Primitive-level Visualization In addition to the tSNE visualization of Gaussian distributions over
the composition-level classes, we provide the visualizations of the primitive-level classes in Fig. 9.
These figures show that our model could learn better text distributions over state classes and object
classes than those of the pre-trained LLMs.
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