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Abstract

We present a novel approach for explaining Gaussian processes (GPs) that can uti-
lize the full analytical covariance structure present in GPs. Our method is based on
the popular solution concept of Shapley values extended to stochastic cooperative
games, resulting in explanations that are random variables. The GP explanations
generated using our approach satisfy similar favorable axioms to standard Shap-
ley values and possess a tractable covariance function across features and data
observations. This covariance allows for quantifying explanation uncertainties
and studying the statistical dependencies between explanations. We further extend
our framework to the problem of predictive explanation, and propose a Shapley
prior over the explanation function to predict Shapley values for new data based
on previously computed ones. Our illustrations demonstrate the effectiveness of
the proposed approach.

1 Introduction

Shapley values [1], a solution concept derived from cooperative game theory, are an essential tool
in explainable AI that helps understand and interpret the prediction of complex machine learning
models. In particular, SHapley-Additive-exPlanation (SHAP) [2] algorithms have been applied in
various fields, including finance [3], healthcare [4], and robotics [5]. SHAP algorithms compute
Shapley values by formulating cooperative game payoffs based on the function obtained from the
learning algorithm, e.g., a regressor. This function is often treated as fixed, resulting in deterministic
game payoffs. In contrast, we argue that uncertainty in model predictions also plays an equally
important role for trustworthy machine learning models as it enables users to make more informed
decisions [6], assess the model’s confidence [7], and identify areas where more data or improved
features are needed [8]. Since uncertainty in model prediction can propagate to downstream expla-
nation, explainability tools should also help users better understand the model’s confidence or lack
thereof in its predictions, allowing them to calibrate their trust in the explanations. By providing
transparency into both the model’s predictions and uncertainty, AI systems can become more reliable,
interpretable, and trustworthy, facilitating broader adoption across domains where trust is imperative.
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Gaussian processes (GPs) [9] are a natural model class for developing an explanation method that can
account for predictive uncertainty. While there exist model-specific explanation methods for popular
models such as LinearSHAP [10] for linear models, TreeSHAP [11] for trees, DeepSHAP [2] for
deep networks, and RKHS-SHAP [12] for kernel methods, there is a lack of GP-specific Shapley
value based explanation methods despite the ubiquity of GPs in machine learning. While feature
importance can be studied via automatic relevance determination (ARD) lengthscales [9] of the
covariance kernel, they only reveal global notions of importance which are not associated to the
specific predictions, and are limited to the specific classes of kernels. Yoshikawa and Iwata [13]
have proposed using a GP with a local linear regression component for interpretability, but this
approach results in a specific interpretable GP model rather than a general GP explanation algorithm.
Recently, Marx et al. [14] proposed to sample multiple realisations of the GP function and to apply a
model-agnostic explanation algorithm to each sample, thus getting a distribution over explanations.
While this in principle can give uncertainties in explanations, it is computationally expensive and not
tailored for GPs. It does not take advantage of the various important properties that GPs enjoy, such
as the fact that posterior means are reproducing kernel Hilbert space (RKHS) [15] functions and that
we have a fully tractable covariance structure. These properties, as we later demonstrate, can lead
to more effective estimation of Shapley values and help to understand the statistical dependencies
across these explanations. Additionally, this covariance structure allows us to formulate explanations
themselves as GPs and thus are able to predict explanations of unseen data.

To address this gap, we present the GP-SHAP algorithm. In Section 2, we contextualize our work
by introducing the concepts of stochastic cooperative games and stochastic Shapley values. Both
are studied thoroughly by game theorists [16, 17], but have not been utilized by the explanation
community. Section 3 characterizes the stochastic cooperative game induced by GPs through the use
of the conditional mean process [18, 8], a GP of conditional expectations. We use the weighted least
squares formulation of Shapley values [19, 2] to express explanations as multivariate Gaussians with a
tractable covariance structure. We then introduce the GP-SHAP algorithm as a method for estimating
these stochastic Shapley values. In addition, we extend the GP-SHAP algorithm by combining
it with the Bayesian weighted least squares approach by Slack et al. [20]. The extension we call
BayesGP-SHAP integrates two sources of uncertainty: GP predictive posterior uncertainty as well
as the Shapley value estimation uncertainty (in the cases where Shapley values are too expensive
to compute exactly). Section 4 expands beyond GP explanations, demonstrating the applicability
of our framework to other predictive models. We consider the setting of predictive explanations
and propose a Shapley prior to represent explanations for more general predictive models as GPs.
This allows us to predict explanations for new data without relying on the standard Shapley value
procedure and provide predictive uncertainty to more general explanations beyond GP models, such
as explanations from TreeSHAP, DeepSHAP, and KernelSHAP. Illustrations of the effectiveness
of GP-SHAP, BayesGP-SHAP, and the Shapley prior for predictive explanations are provided in
Section 5 and we conclude the paper in Section 6. All proofs in this paper are given in the appendix.

2 Stochastic cooperative games and their Shapley values

In this section, we review the concepts of stochastic cooperative games, denoted as s-games, and their
corresponding stochastic Shapley values, referred to as SSVs. These concepts provide the necessary
language to introduce GP-SHAP in the coming section. It is important to note that game theorists
have studied s-games in various forms [16, 17, 21], but they have not been adequately introduced
in the explanation literature. While Covert and Lee [22] briefly discussed s-games, they focused on
computing deterministic Shapley values (DSVs) of the mean of the s-game, overlooking the inherent
uncertainty in s-games and their potential application to uncertainty-aware explanations.

Problem formulation. The results presented below are analogous to the original work of Shap-
ley’s [1], but adapted to games with random outcomes. Formally, let Ω denote the player set and let
ν : 2Ω → L2(R) be a s-game with random variable payoff. We restrict our attention to stochastic
payoffs with finite second moments as we aim to characterise the variance of the corresponding
stochastic Shapley values. However, this is not a necessary condition to show existence and unique-
ness of the SSVs. We further require ν(∅) = δν0

where δν0
is the Dirac measure at some constant

ν0 ∈ R. We introduce the following concepts to formalise the axioms for SSVs:

Definition 1 (Carrier). A carrier of ν is any N ⊆ Ω such that ν(S) = ν(N ∩ S) for all S ⊆ Ω.
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Definition 2 (Permutation s-game). Denote Π(Ω) the set of permutations on Ω. For π ∈ Π(Ω), the
induced permutation s-game is νπ(πS) := ν(S) for all S ⊆ Ω, where πS is the image of S under π.
Definition 3 (Stochastic value allocation). Denote G the space of s-games for Ω. We say ϕ : G →
L2(R)|Ω| is a value allocation of ν that assigns to each player i ∈ Ω a stochastic value ϕi(ν).

The natural extension of the original axioms by Shapley are extended to s-games as follows:

1. (s-symmetry) For any π ∈ Π(Ω), ϕπi(νπ) = ϕi(ν).
2. (s-efficiency) For each carrier N of ν,

∑
i∈N ϕi(ν) = ν(N).

3. (s-linearity) For any ν, ω ∈ G, ϕ(ν + ω) = ϕ(ν) + ϕ(ω) where addition of s-games are
defined as (ν + ω)(S) := ν(S) + ω(S) for all S ⊆ Ω.

Note that all equality happens at the random variable level. Unsurprisingly, there is a unique stochastic
value allocation that satisfies these three axioms:
Theorem 4 (Stochastic Shapley values). The only stochastic value allocation ϕ of ν satisfying
s-symmetry, s-efficiency, and s-linearity takes the following form,

ϕi(ν) =
∑

S⊆N\{i}

c|S| (ν(S ∪ i)− ν(S)) (1)

where N is the smallest carrier set of Ω, c|S| =
1

|N |
(|N |−1

|S|
)−1

and ϕi(ν) is the ith SSV of s-game ν.

Note that Equation (1) is equivalent to the DSVs, except it is written in terms of random variables. We
emphasise that this result has been proven in Ma et al. [16] using a top-down approach, i.e. starting
with Equation (1) and verify it satisfies the stochastic axioms and uniqueness. In the appendix, we
offer a contrasting perspective where we mirror Shapley’s original bottom-up derivation, i.e. began
with the stochastic axioms and subsequently determined the unique solution.

2.1 Variances of stochastic Shapley values are not Shapley values of variance games
As (1) is now defined by summing over a weighted differences between random variables, we
can analyse the corresponding mean and variances across the SSVs. In the following, denote
ϕ̄ : Ḡ → R|Ω| as the deterministic Shapley value allocation where Ḡ := {ν̄ : Ω → R} is the space of
deterministic cooperative games, referred to as d-games from now on.
Proposition 5. Given the player set Ω, let ν be a stochastic game, ϕ a stochastic Shapley value
allocation, and ϕ̄ a deterministic Shapley value allocation. Suppose that E[ν] and V[ν] are the
corresponding mean and variance d-games, respectively. Then, E[ϕ(ν)] = ϕ̄(E[ν]), but V[ϕ(ν)] ̸=
ϕ̄(V[ν]). In particular, the SSV variance is given by

V[ϕi(ν)] =
∑

S⊆N\{i}

∑
S′⊆N\{i}

c|S|c|S′|
(
C[νS∪i, νS′∪i]− C[νS∪i, νS′ ]− C[νS , νS′∪i] + C[νS , νS′ ]

)
,

where νS = ν(S) and C is the covariance function between the stochastic payoffs.

Proposition 5 highlights the difference between variances of stochastic Shapley values, which capture
the propagated uncertainties through the s-game, and deterministic Shapley values of variance
games [23, 24], i.e. deterministic game ν̄(S) = V[ν(S)] for all S ⊆ Ω for some stochastic game ν.
Therefore, in the context of model explanations, variance-based allocation techniques such as the
Shapley effects [25] and the work of Fryer et al. [26], where they computed Shapley values on games
constructed using the variance and coefficient of determination R2 respectively, cannot be used to
capture uncertainty of explanations, as those approaches are themselves explaining the model variance
instead. Besides stochastic Shapley values, it is possible to leverage the framework of coalition
interval games [27] and interval Shapley values [28] to provide confidence intervals for feature
explanations, as Napolitano et al. [29] demonstrated. However, their approach is based on confidence
interval of predictive models, thus this frequentist approach is not applicable to Bayesian models such
as GPs and the obtained uncertainty around explanations have very different interpretations as well.

At first glance, computing the variance of each stochastic Shapley value seems cumbersome as it
requires summing over all possible coalitions twice. However, there exists a compact expression for
the full covariance matrix of stochastic Shapley values across players for stochastic games constructed
using a Gaussian process model, which we demonstrate in the following section.
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3 Explaining GPs with GP-SHAP

This section is dedicated to introducing GP-SHAP, where the key idea is about efficiently computing
stochastic Shapley values for stochastic games that models conditional expectations of Gaussian
processes. Specifically, in Section 3.1, we review the process of constructing Shapley values for model
explanations using deterministic cooperative games. We then proceed to formalize the stochastic
cooperative game induced by pushing the GP functions through the d-game and demonstrate that
the resulting stochastic Shapley values follow a multivariate Gaussian distribution. Section 3.2 is
dedicated to the estimation procedure and the introduction of two algorithms for computing GP
explanations: GP-SHAP and BayesGP-SHAP. GP-SHAP provides explanations that incorporate the
GP predictive uncertainty, while BayesGP-SHAP extends this further by accounting for the additional
estimation uncertainty arising in the weighted least squares procedure. This extension is similar to
how BayesSHAP introduced by Slack et al. [20] extends SHAP.

3.1 Formulating stochastic Shapley values for GP models

Let X,Y be random variables taking values in the d-dimensional instance space X ⊆ Rd and
label space Y (could be in R or discrete) respectively with the joint distribution p(X,Y ). We
use [d] := {1, ..., d} to denote feature index set and S ⊆ [d] as the feature index subset. For
supervised learning with GPs, the usual goal is to model P (Y | X = x) = ψ(f(x)) [9] where
f is the GP function of interest and ψ is a problem-specific transformation, e.g., ψ is the identity
map for regression and sigmoid transformation for classification problem. We then posit a prior
f ∼ GP(0, k) where k : X × X → R is a covariance kernel, and compute the posterior distribution
(or its approximation) p(f | D), which is typically also a GP with posterior mean m̃ and kernel k̃.

Explaining deterministic f with d-game. To explain a deterministic function f , we create a
d-game by treating each feature as a player and constructing the game with f . The resulting DSVs
then provide feature attributions that satisfy various favourable properties, such as the sum of the
attribution equals to the prediction made at that specific point, identical features receive the same
attribution, and null feature receives zero attribution [2]. The d-game for local attribution on an
observation x typically involves computing the expected value of f(X) using a reference distribution
r(X | XS = xS) for different feature subsets S ⊆ [d],

ν̄f (x, S) := Er[f(X) | XS = xS ]. (2)

This approach, also known as removal-based explanation [30], has been used in various explanation
algorithms [2, 11, 12, 31]. These d-games determine the “worth” of features in S by looking at the
expectation after “removing” the contribution of other features in [d]\S through integration. The
choice of reference distribution leads to explanations with different properties, such as improved
locality of estimation [32], promotion of fairness [33], or the incorporation of causal knowledge [34,
35]. In this paper, we focus on the scenario where r corresponds to the data distribution, i.e., r(X |
XS) = p(X | XS), as it is one of the most frequently used approaches in the literature [36, 37, 12, 31].
Although different reference functions result in different estimation procedures, our formulation of
s-games and SSVs for GPs still holds.

Induced s-game by stochastic f . Now suppose f is a random function with a posterior distribution
p(f | D). The corresponding stochastic cooperative game with players [d] can be defined analogously
to the deterministic case as νp(f |D) : X × 2[d] → L2(R) such that, for a given observation x ∈ X
and feature subset S ⊆ [d], the stochastic payoff is

νp(f |D)(x, S) = EX [f(X) | XS = xS ] . (3)

For brevity, we write νp(f |D) as νf , bearing in mind that νf is a random function since f is a random
function. In particular, when f is a GP with mean function m̃ and covariance function k̃, the stochastic
payoff νf is also a GP indexed by x and S.

Proposition 6 (Stochastic game νf as induced GP). Let f ∼ GP(m̃, k̃) with integrable sample paths,
i.e.

∫
X |f |dpX < ∞ almost surely. The stochastic payoff function νf induced by f is a Gaussian

process with the following mean and covariance functions:

mν(x, S) := EX [m̃(X) | XS = xS ], (4)

kν ((x, S), (x
′, S′)) := EX,X′

[
k̃(X,X ′) | XS = xS , X

′
S′ = x′

S′

]
. (5)
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In other words, the stochastic game νf now assigns a payoff distribution to each feature subset S,
where the variability arise from taking conditional expectation on a random function f . We note that
this GP is also known as the conditional mean process, previously studied in Chau et al. [8, 18].

Stochastic Shapley values as multivariate Gaussians for GPs. Given the s-game νf , we can
characterise the corresponding SSVs using the weighted least squares formulation of DSVs [19, 2].
For each coalition Sj ⊆ [d], let zj ∈ {0, 1}d be the binary vector such that zj [i] = 1 if i ∈ Sj

and Z ∈ {0, 1}2d×d the concatenation of all zj vectors. When the context is clear, we use Z

and [d] interchangeably. Let W ∈ R2d×2d be the diagonal matrix with entries Wjj = w(Sj) =
d−1

( d
|Sj |)|Sj |(d−|Sj |)

for all subsets with size 0 < |Sj | < d. When Sj has 0 or d elements, the weights

are set to ∞ to enforce the efficiency axiom.

Theorem 7 (Stochastic Shapley values of νf ). Let νf be an induced stochastic game from the GP
f ∼ GP(m̃, k̃) and denote vx := [νf (x, S1), . . . νf (x, S2d)]

⊤ the vector of stochastic payoffs across
all coalitions, then the corresponding stochastic Shapley values ϕ(νf (x, ·)) follows a d-dimensional
multivariate Gaussian distribution,

ϕ(νf (x, ·)) ∼ N (AE[vx],AV[vx]A
⊤) with A := (Z⊤WZ)−1Z⊤W, (6)

where E[vx] ∈ R2d and V[vx] ∈ R2d×2d are the corresponding mean vector and covariance matrix
of the payoffs.

The derivation is straightforward using the fact that the stochastic payoffs vx are multivariate Gaussian
random variables and the matrix A is obtained from the weighted regression formulation of Shapley
values. The resulting variance of ϕ(νf (x, ·)) can then be interpreted as the uncertainties around the
explanations, propagated from the posterior variance of f .

3.2 Estimation algorithms: the GP-SHAP and the BayesGP-SHAP

In this section, we introduce our main algorithm GP-SHAP and its variant BayesGP-SHAP to estimate
the stochastic Shapley values for GP posterior distributions.

Formulating GP-SHAP. Given a set of observations D = {(xi, yi)}ni=1 = (X,y) with GP prior
f ∼ GP(0, k), we can obtain the posterior GP f | D ∼ GP(m̃, k̃) by using the Gaussian conditioning
rule for regression or e.g. the variational or Laplace approximation for classification. In fact, the
conditional expectations of mean and covariance function from a posterior GP can be estimated
using conditional mean embeddings [38] without the need of explicit density estimations, following
derivations of Chau et al. [8, 18]. We provide technical discussion on conditional mean embeddings
in the appendix.

Proposition 8 (Estimating νf ). Given D = (X,y) and the posterior GP f | D ∼ GP(m̃, k̃), the
mean and covariance function of the stochastic cooperative game νf can be estimated as,

m̂ν(x, S) = b(x, S)⊤m̃(X), k̂ν ((x, S), (x
′, S′)) = b(x, S)⊤K̃XXb(x′, S′), (7)

where b(x, S) := (KXSXS
+ λI)−1kS(XS ,xS), m̃(X) = [m̃(x1), . . . , m̃(xn)]

⊤, and kS :
XS × XS → R is the kernel defined on the sub-feature space of X and we write kS(xS ,XS) :=

[kS(xS ,x1S), ..., kS(xS ,xnS)] and KXX and K̃XX as the gram matrix of X using kernel k and k̃
respectively. The parameter λ > 0 is a fixed hyperparameter to stabilise the inversion.

It is worth noting that the estimation m̂ν coincides with the one deployed in RKHS-SHAP [12] since
we are also utilising conditional mean embeddings for the estimation of conditional expectation of
RKHS functions. In addition, we obtain the analytical covariance function that is used to estimate the
covariance of the stochastic Shapley values in the following proposition:

Proposition 9 (GP-SHAP). Let the matrix A be defined as in Theorem 7. The mean and covariance
for the multivariate stochastic Shapley values can be estimated as,

ϕ (ν̂f (x, ·)) = N
(
AB(x, [d])⊤m̃(X),AB(x, [d])⊤K̃XXB(x, [d])A⊤

)
(8)

where B(x, [d]) = [b(x, [d]1), . . . ,b(x, [d]2d)]
⊤.

5



The complete algorithm, along with a discussion of computational techniques deployed to reduce
computation time, such as vectorisation across X using tensor operations and incorporation of the
sparse GP formulation to speed up computations of quantities from Propositions 8 and 9, is provided
in the appendix. It is worth noting that subsampling coalitions to reduce computational cost while
estimating Shapley values is also a standard approach in SHAP algorithm implementations [2].
Empirically, this procedure has been shown to give an unbiased estimate of the true DSVs, with the
variance decreasing at a rate of O( 1ℓ ), where ℓ is the number of coalition samples [22]. However, this
approach incurs an additional source of uncertainty, due to estimation, and we propose to incorporate
that as well into our framework by utilising the BayesSHAP approach proposed by Slack et al. [20].

Formulating BayesGP-SHAP. To capture the estimation uncertainty, Slack et al. [20] proposed
BayesSHAP and reformulated the WLS procedure as a hierarchical Bayesian weighted least square
and studied the corresponding posterior distribution over the deterministic Shapley values. We provide
the hierarchical data generation process below, with an abuse of notations, for a deterministic f , we
have

ν̄ | z, ϕ̄, ϵ, f,x ∼ ϕ̄⊤z + ϵ ϵ | z ∼ N (0, σ2w(z)−1) (9)

ϕ̄ | σ2 ∼ N (0, σ2I) σ2 ∼ Inv-χ2(ℓ0, σ
2
0) (10)

where w and z are the weight function and binary vector respectively introduced in Theorem 7, and
ℓ0, σ2

0 are two hyperparameters, typically set to small values to keep priors uninformative. Slack
et al. [20] showed that the posterior distribution on σ2 and ϕ̄ follows a scaled Inv-χ2 and normal
respectively, due to their corresponding conjugacies with the likelihood.
Proposition 10 (BayesSHAP [20]). Given the data generation above, the posterior distribution on ϕ̄
and σ2 follows:

ϕ̄ | σ2,Zℓ, f,x,D ∼ N (Aℓv̄x, (Z
⊤
ℓ WℓZℓ)

−1σ2) (11)

σ2 | Zℓ, f,x,D ∼ Scaled-Inv-χ2

(
ℓ0 + ℓ,

ℓ0σ
2
0 + ℓs2(v̄x)

ℓ0 + ℓ

)
(12)

where ℓ is the number of coalitions S = {Sj}ℓj=1 we sample uniformly from 2[d], Zℓ is the binary
matrix representing S, and Wℓ is the corresponding weight matrix, and Aℓ = (Z⊤

ℓ WℓZℓ)
−1Z⊤

ℓ Wℓ

is the WLS matrix, v̄x = [ν̄f (x, S1), ..., ν̄f (x, Sℓ)]
⊤ is the vector of deterministic payoffs, and

s2(v̄x) =
1

ℓ

[
(v̄x − ZℓAℓv̄x)

⊤Wℓ(v̄x − ZℓAℓv̄x) + (Aℓv̄x)
⊤(Aℓv̄x)

]
(13)

measures the average weighted error in the regression and the norm of the mean explanations.

It is important to highlight that while both GP-SHAP and BayesSHAP have a notion of the “posterior
of Shapley values”, the two sources of uncertainty which these approaches capture are very different:
GP-SHAP corresponds to the predictive uncertainty induced by the GP posterior p(f | D), whereas
BayesSHAP is the uncertainty due to having to estimate Shapley values when their exact computation
is infeasible due to the exponential number of coalitions – and is in Slack et al. [20] proposed for a
deterministic f . Nonetheless, by integrating the BayesSHAP posterior of Shapley values through the
posterior GP p(f | D), we can in fact incorporate both sources of uncertainty, leading to our second
algorithm, BayesGP-SHAP.
Proposition 11 (BayesGP-SHAP). Continuing from Propositions 9 and 10, the posterior distribution
of the stochastic Shapley values can be estimated using the Bayesian WLS approach as,

ϕ | σ2,Zℓ,x,D ∼ N
(
AℓB(x,S))⊤m̃(X),AℓB(x,S)⊤K̃XXB(x,S)A⊤

ℓ + (Z⊤
ℓ WℓZℓ)

−1σ2
)

where σ2 is sampled from σ2 | Zℓ ∼ Scaled-Inv-χ2
(
ℓ0 + ℓ,

ℓ0σ
2
0+ℓs2(E[vx])

ℓ0+ℓ

)
.

We note that in the above proposition, instead of integrating p(σ2 | Zℓ, f,x,D) with respect to the
posterior GP, which leads to a complex scaled mixture of Gaussians, we simplify the expression and
construct a scaled inverse chi-square distribution with s2(E[vx]) instead, which represents the error
of the weighted regression with respect to the mean payoffs E[vx].

Conditionally on σ2, the posterior variance in BayesGP-SHAP is therefore the sum of the variance
from GP-SHAP and BayesSHAP due to Gaussian conjugacies.
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4 Predictive explanations using the Shapley prior

In this section, we move beyond standard GP explanations by formulating explanation functions of
a broader class of models as Gaussian processes. We introduce a Shapley prior over the space of
vector-valued explanation functions ϕ : X → Rd, which correspond to Shapley values for arbitrary
functions f . By treating previously obtained Shapley values as regression labels, we can predict
explanations for new data without relying on the standard procedure to compute Shapley values.
Our framework is not limited to explanations generated from GP-SHAP, but can also be applied to
other explanation methods such as TreeSHAP, DeepSHAP, or model-agnostic KernelSHAP. The
proposed approach learns the direct mapping from X to the space of Shapley values, without the
need to access the underlying model f during training, which is different from previous predictive
approaches such as FastSHAP [39]. In contrast to prior work, Hill et al. [40] also considered fitting
a GP regression model directly to explanation functions, but their focus is on incorporating the
corresponding predictive uncertainty to explanations from black-box classifiers rather than predicting
Shapley values for unseen data.

To achieve this, we leverage the key ideas behind the GP-SHAP algorithm, which uses the facts that
GPs remain tractable under conditional expectations (to build the s-game) and linear combinations (to
compute the stochastic Shapley values). By applying these properties to a GP prior GP(0, k) instead
of a posterior, we have an induced prior over the space of Shapley functions ϕ.
Proposition 12 (The Shapley prior over ϕ). The prior f ∼ GP(0, k) and the corresponding stochastic
game νf (x, S) = E[f(X) | XS = xS ] induce a vector-valued GP prior over the explanation
functions ϕ ∼ GP(0, κ) where κ : X × X → Rd×d is the matrix-valued covariance kernel

κ(x,x′) = A(x)⊤A(x′), A(x) = Ψ(x)A⊤ (14)

where Ψ(x) =
[
E[k(·, X) | XS1 = xS1 ], . . . ,E[k(·, X) | XS

2d
= xS

2d
]
]
, and the ⊤ sign refers to

taking inner products in the RKHS of k.

By utilizing the Shapley function prior, we can apply our approach to predict explanations for a
wide range of models, including trees, deep neural networks, or RKHS functions, by treating their
explanations as noisy samples from this prior and using them as regression labels. Our approach is
based on the perspective that there exists a true data generating mechanism f∗ : X → Y and that any
model f we use is an approximation of f∗. Therefore, any explanations derived from f can be seen
as an attempt to reveal the true explanations under f∗. This perspective has also been adopted in the
work of Chen et al. [36] and Marx et al. [14]. We present the predictive posterior below.
Proposition 13 (Predictive explanations as multi-output GPs). Given Dϕ = {(xi,ϕi)}ni=1 =
(X,ΦX) where ϕi ∈ Rd are the Shapley values computed under predictive model f and ΦX =
[ϕ1, ...,ϕn]

⊤, the predictive explanations for new data x′ is distributed as,

ϕ(x′) | Dϕ ∼ N (m̃ϕ(x
′), κ(x′,x′)− κ(x′,X)bκ(x

′,X)) (15)

where m̃ϕ(x
′) = bκ(x

′,X)⊤ vec(ΦX), bκ(x′,X) := (κXX + σ2
ϕI)

−1κ(X,x′), κXX is the gram
matrix for kernel κ of size nd× nd, κ(x′,X) = [κ(x′,x1), . . . , κ(x

′,xn)] is of size d× nd and σ2
ϕ

is the noise parameter for regression.

In fact, we see that the posterior mean m̃ϕ(x
′) from (15) are Shapley values of the following payoff

vector ṽx′ , computed based on the observed explanations ΦX,
Proposition 14 (Posterior mean as Shapley values for payoff vector ṽx′). The posterior mean
m̃ϕ(x

′) corresponds to Shapley values for the payoff vector ṽx′ , i.e., m̃ϕ(x
′) = Aṽx′ , where

ṽx′ =
∑n

i=1 Ψ(x′)⊤Ψ(xi)A
⊤αi and αi ∈ Rd is the [i, ..., i + (d − 1)] subvector of (κXX +

σ2
ϕI)

−1 vec(ΦX).

5 Illustrations

We demonstrate the proposed approaches through three sets of illustrations. We first conduct an
ablation study to examine how predictive and estimation uncertainty captured by our explanation
algorithms vary under different configurations. We then move on to discuss various exploratory
tools that can assist practitioners in utilizing the stochastic explanations. Finally, we demonstrate the

7



1

0

1

SS
Vs

25% data, 50% coalition used 25% data, 100% coalition used

MedInc
HouseAge

AveRooms
AveBedrms

Population
AveOccup

Latitude
Longitude

1

0

1

SS
Vs

100% data, 50% coalition used

MedInc
HouseAge

AveRooms
AveBedrms

Population
AveOccup

Latitude
Longitude

100% data, 100% coalition used

bayesSHAP GPSHAP BayesGPSHAP

Figure 1: Ablation study on different uncertainties captured by GP-SHAP, BayesSHAP, and BayesGP-
SHAP when computing local explanations (SSVs) using the California housing dataset [41]. 95%
credible intervals around explanations are shown.

effectiveness of the Shapley prior for the predictive explanations problem. Our code is included in the
supplementary material, and we provide implementation details in the appendix. For all experiments,
we pick the radial basis function (RBF) as our covariance kernel k for the GPs.

5.1 Ablation study on different notions of uncertainties captured

We conducted a comparison between GP-SHAP, BayesSHAP, and BayesGP-SHAP to demonstrate
the differences between model predictive uncertainty and estimation uncertainty captured in the
stochastic Shapley values. BayesSHAP is applied to the predictive posterior mean of GP to obtain
its explanation. For this purpose, we used the California housing dataset [41] from the StatlLib
repository, which includes 20640 instances and 8 numerical features, with the goal of predicting the
median house value for California districts, expressed in hundreds of thousands of dollars. We trained
our GP model using 25% and 100% of the data and calculated local stochastic explanations from
GP-SHAP, BayesSHAP, and BayesGP-SHAP using 50% and 100% of coalitions. The results, shown
in Figure 1, demonstrate that the magnitude of BayesSHAP uncertainties (green bars) are uniform
across features as it is designed to capture the overall estimation performance and not feature-specific
uncertainty. In contrast, GP-SHAP (red bars) exhibits varying uncertainties across features due to
the propagation of variation from the posterior GP f to the attributions. This allows practitioners to
make more granular statements about the uncertainty around specific feature explanations. We also
observe that increasing the number of coalitions and training data generally leads to a decrease in
both estimation and predictive uncertainties, but the estimation uncertainty drops more significantly.
BayesGP-SHAP (yellow bars) consistently provides a more conservative uncertainty estimation by
considering both predictive and estimation uncertainties.

5.2 Exploratory analysis of the stochastic explanations

We propose several exploratory analysis methods to aid practitioners in comprehending the stochastic
explanations generated for their downstream tasks. To this end, we use BayesGP-SHAP to explain a
Gaussian process model trained on the breast cancer dataset [42]. The dataset consists of 569 patients,
30 numeric features, and the objective is to predict whether a tumor is malignant or benign.

Local explanation. To visualize local explanations, we can plot the mean and standard deviations
of stochastic Shapley values in a bar plot. This approach allows us to not only understand the
degree of contribution a feature has to the prediction but also the corresponding credible interval as a
measure of explanation uncertainty. Figure 2a displays that both “worst fractal dimension” and “worst
perimeter” features have a similar contribution in terms of their absolute mean stochastic Shapley
values. However, the model is much more uncertain about the former, allowing the user to calibrate
their trust in model explanations.
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Figure 2: Illustrations of possible exploratory analyses utilising the BayesGP-SHAP covariance
structure, applied on the breast cancer dataset.

Heuristic global explanation as means of absolute stochastic Shapley values. It is common to
compute the mean absolute DSVs as a proxy to global feature contributions [43] based on computed
local explanations. Although this heuristic does not result in any explanations that are themselves
DSVs of any game at the global level, they provide a quick summary to practitioners about the
overall contributions. We can similarly compute the average of the absolute stochastic Shapley
values, which are now distributed according to a folded multivariate Gaussian distribution [44] with
a tractable covariance structure. However, it is important to highlight a key distinction from the
previous approach: when computing the mean of absolute SSVs, we consider the uncertainty in
the local stochastic explanations, while directly calculating the absolute values of mean SSVs
(equivalent to computing absolute DSVs) disregards this uncertainty. We believe the former approach
is more appropriate than the latter as practitioners utilising Gaussian processes would want their
global explanations to take the predictive uncertainty into account. The blue and yellow bars in
Figure 2b depict these two approaches, respectively. Notably, we observe that the blue bars suggest
that the "worst fractal dimension" feature is considered more influential than "worst concave points"
because it accounts for the higher variability in the former feature’s explanation. In contrast, the
yellow bar overlooks this variability, leading to a different conclusion.

Correlations and dependencies across explanations. As we have access to the explanation
covariance, we can explore their correlation and visualise them as in Figure 2c. For instance, the
stochastic Shapley values of “concavity error” are less correlated with other features. Moreover, as our
explanations are multivariate Gaussians, we can build an undirected Gaussian graphical model [45]
using the precision matrix (inverse of the covariance matrix) to study the independence across the
local stochastic explanations. We visualise the corresponding graphical model for explanations from
patient 1 in Figure 2d by setting a sparsity threshold of 90%, following the approach in [46].

5.3 Predictive explanations

Finally, we showcase the effectiveness of our Shapley prior by comparing the regression per-
formances of a multi-output GP using the Shapley prior with multi-output random forest
and neural networks when predicting withheld explanations generated from GP-SHAP, Tree-
SHAP, and DeepSHAP, respectively. We use the diabetes dataset [47] from the UCI repos-
itory, which contains 442 patients with 10 numerical features and the goal is to predict dis-
ease progression. We first train a GP, a random forest, and a neural network, to obtain the
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subsequent explanations from GP-SHAP, TreeSHAP, and DeepSHAP. Next, we feed 70% of
the explanations to our predictive model as training data and the remaining 30% as test data.
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Figure 3: Predictive performance
of using Shapley prior to predict ex-
planations generated from different
explanation algorithms on the dia-
betes dataset.

We repeat this process over 10 seeds and compute the root mean
squared error between the predicted explanation and the exact
explanations for respective models, as shown in Figure 3. We
observe that our GP-model with the Shapley prior consistently
outperforms random forest and neural network model for pre-
dicting all three types of explanations. This demonstrates that
the inductive bias that comes from our choice of covariance
structure κ allows to build more accurate predictive explanation
models. We also observe that the overall average prediction
error for explanations generated from GP-SHAP is lower than
that of TreeSHAP [11] and DeepSHAP [2], suggesting that
GP-SHAP produce explanations that are easier to learn. This
follows our intuition as GPs are typically smoother functions
than trees and neural networks.

6 Discussion

In this work, we presented a novel and principled approach for explaining Gaussian process models
using stochastic Shapley values. The proposed algorithm GP-SHAP, and its variant BayesGP-SHAP,
allow practitioners to consider both predictive and estimation uncertainties when reasoning about the
explanations and calibrate their trust in the model accordingly. Furthermore, we consider the setting
of predictive explanations, where we introduced a Shapley prior over explanation functions, enabling
us to model and predict Shapley values for a wider range of predictive models. We demonstrated
the effectiveness of our methods through a number of illustrations and discussed various exploratory
tools for practitioners to analyse the stochastic explanations.

Limitations and future outlook. While the general framework of using stochastic Shapley values
for stochastic explanations can be applied beyond Gaussian process models, the specific estimation
algorithms presented in this paper are tailored to GPs and may not be directly applicable to other
probabilistic models like Bayesian neural networks. These alternative models would require different
estimation procedures as the resulting explanations would not be GPs anymore. Another promising
avenue for future research involves leveraging the uncertainty obtained from predicting explanations
and incorporating it into Bayesian optimization for guiding experimental design. For example, this
could allow practitioners to explore data regions that produce significant Shapley values for specific
features. At last, we would like to highlight that although SHAP is popular, as an explanation tool it
contains several limitations, specifically Kumar et al. [48] have shown that SHAP violates several
expected properties of explanations from a human-centric perspective.
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SUPPLEMENTARY MATERIAL: Explaining the uncertain: Stochastic Shapley
values for Gaussian process models

A The GP-SHAP algorithm and discussion on computation techniques

We present the complete algorithm for both GP-SHAP and BayesGP-SHAP in Algorithm 1.

Algorithm 1 GP-SHAP / BayesGP-SHAP

Input: Posterior mean function m̃, posterior covariance function k̃, inducing locations X̃, expla-
nation instances X, number of coalition samples nZ , hyperparameter λ, n0, σ2

0 , base kernel k,
algorithm algo,

1: Compute nI = number of inducing location, n = number of explanation instances, d = number
of features.

2: Compute Cholesky decomposition on posterior covariance LL⊤ = K̃X̃X̃

3: Sample coalitions S = {S1, ..., SnZ
} from [d], build binary matrix Z = {0, 1}nZ×d from S , and

compute weights W = diag[w1, ..., wnZ
] with wi =

d−1

( d
|Si|)|Si|(d−|Si|)

.

4: Compute A = (Z⊤WZ)−1Z⊤W ▷ Shape: d× nZ
5: Compute B(X,S) = [(KX̃SX̃S

+ λI)−1kS(X̃S ,XS) for S in S] ▷ Shape: nZ × nI × n

6: Compute Q where Qi,l,k =
∑

j B(X,S)i,j,kLj,l ▷ Shape: nZ × n× nI
7: Compute R where Ri,k,l =

∑
j Ai,jQj,k,l ▷ Shape: d× n× nI

8: Compute V where Vi,m,k,n =
∑

j,l Ri,j,kRm,l,n ▷ Shape: d× d× n× n

9: Compute E where Ei,k =
∑

j B(X,S)i,j,km̃(X̃)j ▷ Shape: nZ × n
10: Compute Φ = AE ▷ The mean stochastic Shapley values of shape d× n
11: if algo = GP-SHAP then
12: return mean explanations Φ and covariance V between d features and n instances
13: else if algo = BayesGP-SHAP then
14: Compute s2 = diag

(
(E− ZΦ)⊤W(E− ZΦ)

)
+diag(Φ⊤Φ) ▷ Shape: n× 1

15: Sample σ2 from Scaled-Inv-χ2
(
n0 + nZ ,

n0σ
2
0+nZs2

n0+nZ

)
▷ Shape: n× 1

16: return mean explanations Φ and covariance V + (Z⊤WZ)−1σ2

17: end if

Computational considerations. In terms of computational complexity, one of the most demanding
operations in the algorithm is the computation of conditional mean embeddings in step 5. Instead of
naively inverting an n× n matrix, which would have a computational cost of O(n3), we employ the
conjugate gradient method to reduce the computation of the conditional mean embedding component
to O(n2a), where a ≪ n represents the number of conjugate gradient iterations. Additionally, to
further reduce runtime, we utilize the variational sparse GP model [49]. This model learns a set of
inducing locations X̃ with a size of nI ≪ n, which can be reused for the estimation of conditional
mean embeddings in the algorithm. Consequently, the computation of the conditional expectation is
reduced from O(n2a) to O(n2Ia). Another computational burden arises from the computation of the
full covariance matrix across d features and n instances, which requires storage of a n2d2 matrix.
However, since the full covariance matrix can be factorized into the R component from step 7 of the
algorithm, we can store this low-rank component and compute covariances between specific instances
when necessary. It is worth noting that this decomposition of the covariance matrix allows us to avoid
redundant computations when computing the covariance component, as we no longer need to iterate
over all possible coalitions twice. Finally, we can further speed up our computational by parallelising
computation across the sub-sampled coalitions in step 5.
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B Proofs and derivations

B.1 Section 2 proofs: Stochastic Shapley values

We include the full proof of the derivation of stochastic Shapley values for completeness. The proof
is analogous to the original work of Shapley’s [1] but extended to random variable payoffs. Ma et al.
[16] has also proved the same theorem but used a different proving strategy. They started with the
solution and showed it satisfies the axioms and then prove uniqueness, whereas the following proof
starts from the characterisation of s-games and derive the solution from a bottom-up fashion.

To facilitate the proof, we first introduce the concept of stochastic symmetric game.
Proposition 15 (s-symmetric games). Let C be a real-valued random variables, then the symmetric
game νC,R(S) := C1[R ⊆ S] gets a stochastic shapley value as,

ϕi(νC,R) =
C

r
(16)

where r = |R|.

Proof. Take any i, j ∈ R, pick a permutation π ∈ Π(U) so that πR = R and πi = j, so the induced
game πνC,R = νC,R, and therefore by the s-symmetry axiom,

ϕj(νC,R) = ϕi(νC,R) (17)

Now by the s-efficiency axiom,

C = νC,R(R) =
∑
j∈R

ϕj(νC,R) = rϕi(νC,R) (18)

for any i ∈ R.

Now we can characterise the form of any stochastic game as follows:
Proposition 16. All s-games with finite carrier can be written as a linear combination of s-symmetric
games,

ν =
∑

R⊆N,R ̸=∅

νcR(ν),R (19)

where

CR(ν) =
∑
T⊆R

(−1)r−tν(T ) (20)

Proof. We start by verifying

ν(S) =
∑

R⊆N,R ̸=∅

νcR(ν),R(S) (21)

holds for all S ⊆ U , and for any finite carrier N of ν. If S ⊆ N , then we can rewrite the expression
as,

ν(S) =
∑
R⊆S

∑
T⊆R

(−1)r−tν(T ) (22)

=
∑
T⊆S

∑
T⊆R⊆S

(−1)r−tν(T ) (23)

=
∑
T⊆S

ν(T )

s∑
r=t

(−1)r−t

(
s− t

r − t

)
(24)

= ν(S) (25)

where in the last equation we used the fact that
∑s

r=t(−1)r−t
(
s−t
r−t

)
is a binomal expansion of

(1 + (−1))s−t, therefore the only non-zero expression is when t = s.
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We can now prove the uniqueness of stochastic Shapley values,
Theorem 4 (Stochastic Shapley values). The only stochastic value allocation ϕ of ν satisfying
s-symmetry, s-efficiency, and s-linearity takes the following form,

ϕi(ν) =
∑

S⊆N\{i}

c|S| (ν(S ∪ i)− ν(S)) (1)

where N is the smallest carrier set of Ω, c|S| =
1

|N |
(|N |−1

|S|
)−1

and ϕi(ν) is the ith SSV of s-game ν.

Proof. First, let us denote

γi(S) :=
∑
R⊆N

S∪{i}⊆R

(−1)r−s 1

r
.

Applying the s-linearity axiom on ϕ to the characterisation of ν from the previous propositions leads
us to the following,

ϕi(ν) = ϕi

 ∑
R⊆N,R ̸=∅

νCR(ν),R

 (26)

=
∑

R⊆N,R ̸=∅

ϕi(νCR(ν),R) (27)

=
∑

R⊆N,i∈R

cR(ν)
1

r
(28)

=
∑

R⊆N,i∈R

1

r

∑
S⊆R

(−1)r−sν(S)

 (29)

=
∑
S⊆N

∑
R⊆N

S∪{i}⊆R

(−1)r−sν(S)
1

r
(30)

=
∑
S⊆N

γi(S)ν(S) (31)

=
∑
S⊆N
i∈S

γi(S)ν(S) + γi(S − {i})ν(S − {i}) (32)

=
∑
S⊆N
i∈S

γi(S) (ν(S)− ν(S − {i})) (33)

=
∑
S⊆N
i∈S

(s− 1)!(n− s)!

n!
(ν (S)− ν (S − {i})) (34)

=
∑

S⊆N\{i}

c|S| (ν(S ∪ i)− ν(S)) (35)

where in (32) we used the following observation: given i /∈ S′ ⊆ N , and S = S′ ∪ {i}, then
γi(S) = −γi(S′).

It satisfies uniqueness by construction.

Proposition 5. Given the player set Ω, let ν be a stochastic game, ϕ a stochastic Shapley value
allocation, and ϕ̄ a deterministic Shapley value allocation. Suppose that E[ν] and V[ν] are the
corresponding mean and variance d-games, respectively. Then, E[ϕ(ν)] = ϕ̄(E[ν]), but V[ϕ(ν)] ̸=
ϕ̄(V[ν]). In particular, the SSV variance is given by

V[ϕi(ν)] =
∑

S⊆N\{i}

∑
S′⊆N\{i}

c|S|c|S′|
(
C[νS∪i, νS′∪i]− C[νS∪i, νS′ ]− C[νS , νS′∪i] + C[νS , νS′ ]

)
,

where νS = ν(S) and C is the covariance function between the stochastic payoffs.
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Proof. The equivalence between mean of stochastic Shapley values and deterministic Shapley values
of mean game is trivial to show leveraging the linearity of expectation. The variance of V[ϕi(ν)] can
be shown by repeatedly applying the standard identity V[X + Y ] = V[X] + V[Y ] + 2C[X,Y ] for
random variables X,Y . Now consider the deterministic Shapley values of variance game V[ν],

ϕ̄i[V[ν(·)]] =
∑

S⊆N\{i}

c|S| (V[ν(S ∪ i)]− V[ν(S)]) (36)

Comparing to the expression of V[ϕi(ν)] from the lemma,

V[ϕi(ν)] =
∑

S⊆N\{i}

∑
S′⊆N\{i}

c|S|c|S′|
(
C[νS∪i, νS′∪i]− C[νS∪i, νS′ ]− C[νS , νS′∪i] + C[νS , νS′ ]

)
,

even if we assume mutual independence across all payoff random variables, leading to C[ν(S ∪
i), ν(S)] = 0 for all S, we still would not subtract but instead sum the variance of V[ν(S ∪ i)] and
V[ν(S)]. Therefore the variances of stochastic Shapley values is not the same as the deterministic
Shapley values of the variance game.

B.2 Section 3.1 proofs on the stochastic Shapley values for induced stochastic game from GP

Proposition 6 (Stochastic game νf as induced GP). Let f ∼ GP(m̃, k̃) with integrable sample paths,
i.e.

∫
X |f |dpX < ∞ almost surely. The stochastic payoff function νf induced by f is a Gaussian

process with the following mean and covariance functions:

mν(x, S) := EX [m̃(X) | XS = xS ], (4)

kν ((x, S), (x
′, S′)) := EX,X′

[
k̃(X,X ′) | XS = xS , X

′
S′ = x′

S′

]
. (5)

Proof. This is a direct application of Chau et al. [18, Proposition 3.2] to the distribution P (X | XS =
xS).

Theorem 7 (Stochastic Shapley values of νf ). Let νf be an induced stochastic game from the GP
f ∼ GP(m̃, k̃) and denote vx := [νf (x, S1), . . . νf (x, S2d)]

⊤ the vector of stochastic payoffs across
all coalitions, then the corresponding stochastic Shapley values ϕ(νf (x, ·)) follows a d-dimensional
multivariate Gaussian distribution,

ϕ(νf (x, ·)) ∼ N (AE[vx],AV[vx]A
⊤) with A := (Z⊤WZ)−1Z⊤W, (6)

where E[vx] ∈ R2d and V[vx] ∈ R2d×2d are the corresponding mean vector and covariance matrix
of the payoffs.

Proof. Recall from Lundberg and Lee [2, Theorem 2], for deterministic Shapley values, given a
deterministic payoff v̄x for all 2d coalitions, the expression of Shapley values for each i ∈ [d],

ϕ̄xi =
∑

S⊆[d]\{i}

c|S| (ν̄f (S ∪ i)− ν̄f (S)) (37)

can be written compactly as the following vector,

ϕ̄x = Av̄x. (38)

We can therefore similarly write down the form of the stochastic Shapley values using this linear
operator A, acting now on a vector of random variable output stochastic payoff vector vx,

ϕx = Avx. (39)

Nonetheless, as Proposition 8 implies that vx is a multivariate Gaussian, therefore ϕx is also
multivariate Gaussian with mean and covariance the following,

vx ∼ N
(
AE[vx], AV[vx]A

⊤) . (40)
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B.3 Section 3.2 proofs on estimation

To proceed, we first introduce the concepts of conditional mean embedding as a tool to estimate
conditional expectation of functions living in their corresponding RKHSs,
Definition 17 (Conditional mean embedding [38]). LetX,Y be random variables and k : X → X →
R a kernel on X , then we define the following as the conditional mean embedding of p(X | Y = y),

µX|Y=y :=

∫
k(·, X)dP(X | Y = y) (41)

Proposition 18 (Conditional Mean estimation). For random variable X,Y , and a kernel k : X →
X → R on X and a kernel l : Y → Y → R on Y . Given observations D = {X,y}, the empirical
conditional mean embedding can be estimated as

µ̂X|Y=y = l(y,y) (Lyy + λI)
−1
k(X, ·), (42)

where l(y,y) = [l(y, y1), . . . , l(y, yn)]
⊤ and k(·,X) = [k(·,x1), . . . , k(·,xn)]

⊤, the parameter
λ > 0 is there to stablise the inversion. Now for f ∈ Hk, the conditional expectation can then be
estimated as,

Ê[f(X) | Y = y] = ⟨µ̂X|Y=y, f⟩ (43)

= l(y,y)(Lyy + λI)−1f , (44)

where f = [f(x1), . . . , f(xn)]
⊤.

Proof. This is standard result from literature, please read Song et al. [50], Muandet et al. [38] for
more details.

Now we can apply these propositions to estimate the mean and covariance functions of the induced
stochastic game from GP,

Proposition 8 (Estimating νf ). Given D = (X,y) and the posterior GP f | D ∼ GP(m̃, k̃), the
mean and covariance function of the stochastic cooperative game νf can be estimated as,

m̂ν(x, S) = b(x, S)⊤m̃(X), k̂ν ((x, S), (x
′, S′)) = b(x, S)⊤K̃XXb(x′, S′), (7)

where b(x, S) := (KXSXS
+ λI)−1kS(XS ,xS), m̃(X) = [m̃(x1), . . . , m̃(xn)]

⊤, and kS :
XS × XS → R is the kernel defined on the sub-feature space of X and we write kS(xS ,XS) :=

[kS(xS ,x1S), ..., kS(xS ,xnS)] and KXX and K̃XX as the gram matrix of X using kernel k and k̃
respectively. The parameter λ > 0 is a fixed hyperparameter to stabilise the inversion.

Proof. Without loss of generality, we will demonstrate this proposition with m̃, k̃ obtained via
standard GP regression, i.e.,

m̃(x) = k(x,X)(KXX + σ2I)−1y (45)

k̃(x,x′) = k(x,x′)− k(x,X)(KXX + σ2)−1k(X,x′). (46)

Starting with the mean function,

E[m̃(X) | XS = xS ] = EX [k(X,X)(KXX + σ2I)−1y | XS = xS ] (47)

= ⟨k(·,X)(KXX + σ2I)−1y, µX|XS=xS
⟩Hk

. (48)

We can replace the population conditional mean embedding with the empirical version, and expand,

Ê[m̃(X) | XS = xS ] = ⟨k(·,X)(KXX + σ2I)−1y, µ̂X|XS=xS
⟩Hk

(49)

= kS(XS ,xS)(KXSXS
+ λI)−1KXX(KXX + σ2I)−1y (50)

= b(x, S)⊤m̃(X). (51)

Analogously, the conditional expectation of the posterior covariance function, i.e., E[k̃(X,X ′) |
XS = xS , X

′
S = x′

S ], can be estimated following the steps above,

µ⊤
X|XS=xS

µX′|X′
S=x′

S
− µ⊤

X|XS=xS
k(·,X)(KXX + σ2I)−1k(X, ·)µX′|X′

S=x′
S
. (52)

After replacing the population conditional mean embedding as their empirical estimates, we can
arrive at the solution.
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Proposition 9 (GP-SHAP). Let the matrix A be defined as in Theorem 7. The mean and covariance
for the multivariate stochastic Shapley values can be estimated as,

ϕ (ν̂f (x, ·)) = N
(
AB(x, [d])⊤m̃(X),AB(x, [d])⊤K̃XXB(x, [d])A⊤

)
(8)

where B(x, [d]) = [b(x, [d]1), . . . ,b(x, [d]2d)]
⊤.

Proof. The result follows directly from the previous proposition. Recall ϕ(ν̂f (x, ·)) = Av̂x for v̂x

the vector of stochastic payoffs for each coalition. To estimate the mean, we

E[ϕ(ν̂f (x, ·))] = AE[v̂x] (53)

= A

 m̂ν(x, S1)
...

m̂ν(x, S2d)

 (54)

= A

 b(x, S1)
⊤m̃(X)

...
b(x, S2d)

⊤m̃(X)

 (55)

= AB(x, [d])⊤m̃(X). (56)

Recall V[vx]i,j = k̂ν((x, Si), (x, Sj)) = b(x, Si)
⊤K̃XXb(x, Sj), the derivation for the covariance

matrix then follows analogously as the derivation for the mean,

V[ϕ(ν̂f (x, ·))] = AV[v̂x]A
⊤ (57)

= A
[
b(x, Si)

⊤K̃XXb(x, Sj)
]2d,2d
i=1,j=1

A⊤ (58)

= AB(x, [d])⊤K̃XXB(x, [d])A⊤. (59)

Proposition 10 (BayesSHAP [20]). Given the data generation above, the posterior distribution on ϕ̄
and σ2 follows:

ϕ̄ | σ2,Zℓ, f,x,D ∼ N (Aℓv̄x, (Z
⊤
ℓ WℓZℓ)

−1σ2) (11)

σ2 | Zℓ, f,x,D ∼ Scaled-Inv-χ2

(
ℓ0 + ℓ,

ℓ0σ
2
0 + ℓs2(v̄x)

ℓ0 + ℓ

)
(12)

where ℓ is the number of coalitions S = {Sj}ℓj=1 we sample uniformly from 2[d], Zℓ is the binary
matrix representing S, and Wℓ is the corresponding weight matrix, and Aℓ = (Z⊤

ℓ WℓZℓ)
−1Z⊤

ℓ Wℓ

is the WLS matrix, v̄x = [ν̄f (x, S1), ..., ν̄f (x, Sℓ)]
⊤ is the vector of deterministic payoffs, and

s2(v̄x) =
1

ℓ

[
(v̄x − ZℓAℓv̄x)

⊤Wℓ(v̄x − ZℓAℓv̄x) + (Aℓv̄x)
⊤(Aℓv̄x)

]
(13)

measures the average weighted error in the regression and the norm of the mean explanations.

Proof. See Slack et al. [20, Section. 3.1].

Proposition 11 (BayesGP-SHAP). Continuing from Propositions 9 and 10, the posterior distribution
of the stochastic Shapley values can be estimated using the Bayesian WLS approach as,

ϕ | σ2,Zℓ,x,D ∼ N
(
AℓB(x,S))⊤m̃(X),AℓB(x,S)⊤K̃XXB(x,S)A⊤

ℓ + (Z⊤
ℓ WℓZℓ)

−1σ2
)

where σ2 is sampled from σ2 | Zℓ ∼ Scaled-Inv-χ2
(
ℓ0 + ℓ,

ℓ0σ
2
0+ℓs2(E[vx])

ℓ0+ℓ

)
.

Proof. We drop the bar notation of ϕ̄ to unify notations. Given the posterior GP f | D ∼ GP(m̃, k̃)

p(ϕ | σ2,Zℓ,x,D) =

∫
p(ϕ | σ2,Zℓ, f,x,D)p(f | D)df (60)
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Using a standard Gaussian conjugacy procedure, we can derive the variance as the sum of variances
from GP-SHAP and BayesSHAP. While it is possible to integrate p(σ2 | Zℓ, f,x,D) with respect to
the posterior, this leads to a complex scaled mixture of normals that is difficult to model. Instead,
we construct a scaled inverse chi-square distribution with s2(E[vx]), which represents the error of
the weighted regression with respect to the mean payoffs E[vx]. We sample σ2 from the following
distribution:

σ2 | Zℓ,x,D ∼ Scale-Inv-χ2

(
ℓ0 + ℓ,

ℓ0σ
2
0 + ℓs2(E[vx])

ℓ0 + ℓ

)
. (61)

B.4 Proofs for section 4 on predictive explanation and Shapley prior

Proposition 12 (The Shapley prior over ϕ). The prior f ∼ GP(0, k) and the corresponding stochastic
game νf (x, S) = E[f(X) | XS = xS ] induce a vector-valued GP prior over the explanation
functions ϕ ∼ GP(0, κ) where κ : X × X → Rd×d is the matrix-valued covariance kernel

κ(x,x′) = A(x)⊤A(x′), A(x) = Ψ(x)A⊤ (14)

where Ψ(x) =
[
E[k(·, X) | XS1

= xS1
], . . . ,E[k(·, X) | XS

2d
= xS

2d
]
]
, and the ⊤ sign refers to

taking inner products in the RKHS of k.

Proof. The proof is similar to how we proved previous propositions but applied to prior GP f ∼
GP(0, k) instead. If we set,

νf (x, S) = E[f(X) | XS = xS ], (62)

then νf is a GP on the joint space of data and coalitions with mean 0, and covariance function,

cov (νf (x, S), νf (x
′, S′)) = E[k(X,X ′) | XS = xS , X

′
S′ = x′

S′ ] (63)

= µ⊤
X|XS=xS

µX|XS′=x′
S′
. (64)

Since ϕ = Avx for vx the vector of stochastic payoff from the game induced by the GP prior, the
mean stays 0, and the covariance is,

κ(x,x′) = A
[
µ⊤
X|XSi

=xSi
µX|XSj

=x′
Sj

]2d,2d
i=1,j=1

A⊤ (65)

= AΨ(x)⊤Ψ(x′)A⊤ (66)

= A(x)⊤A(x′), (67)

therefore we have a matrix-valued covariance kernel κ to build a prior over the induced Shapley
values.

Proposition 13 (Predictive explanations as multi-output GPs). Given Dϕ = {(xi,ϕi)}ni=1 =
(X,ΦX) where ϕi ∈ Rd are the Shapley values computed under predictive model f and ΦX =
[ϕ1, ...,ϕn]

⊤, the predictive explanations for new data x′ is distributed as,

ϕ(x′) | Dϕ ∼ N (m̃ϕ(x
′), κ(x′,x′)− κ(x′,X)bκ(x

′,X)) (15)

where m̃ϕ(x
′) = bκ(x

′,X)⊤ vec(ΦX), bκ(x′,X) := (κXX + σ2
ϕI)

−1κ(X,x′), κXX is the gram
matrix for kernel κ of size nd× nd, κ(x′,X) = [κ(x′,x1), . . . , κ(x

′,xn)] is of size d× nd and σ2
ϕ

is the noise parameter for regression.

Proof. Follows from standard vector-valued Gaussian process regression results. See Alvarez et al.
[51] for a detailed discussion on regression with matrix-valued kernels.

Proposition 14 (Posterior mean as Shapley values for payoff vector ṽx′). The posterior mean
m̃ϕ(x

′) corresponds to Shapley values for the payoff vector ṽx′ , i.e., m̃ϕ(x
′) = Aṽx′ , where

ṽx′ =
∑n

i=1 Ψ(x′)⊤Ψ(xi)A
⊤αi and αi ∈ Rd is the [i, ..., i + (d − 1)] subvector of (κXX +

σ2
ϕI)

−1 vec(ΦX).
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Proof. There are two ways to see this. First is by brute force and rearranging the terms in the posterior
mean expression. The other is to leverage the vector-valued representer theorem [52] and write the
posterior mean as,

m̃ϕ(x
′) =

n∑
i=1

A(x′)⊤A(xi)αi, αi ∈ Rd (68)

=

n∑
i=1

AΨ(x′)⊤Ψ(xi)A
⊤αi (69)

= A

(
n∑

i=1

Ψ(x′)⊤Ψ(xi)A
⊤αi

)
(70)

= Aṽx′ (71)

after some linear algebra exercises, we can see that αi is the [i : i + (d − 1)] sub-vector of
(κXX + σ2

ϕI)
−1 vec(ΦX)

C Implementation details and further illustrations.

All illustrations are run locally on a MacbookPro 2021 with Apple M1 pro chip.

C.1 Ablation study on different notions of uncertainties captured

To demonstrate the difference between the uncertainties captured by GP-SHAP, BayesSHAP, and
BayesGP-SHAP, we utilise the California housing dataset [41]. This dataset was derived from the
1990 U.S. census, each observation represent a census block group. A block group is the smallest
geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically
has a population of 600 to 3,000 people). The dataset includes 20640 instances with 8 numerical
features measuring the following:

• MedInc: Median income in block group
• HouseAge: Median house age in block group
• AveRooms: Average number of rooms per household
• AveBedrms: Average number of bedrooms per household
• Population: Block group population
• AveOccup: Average number of houehold members
• Latitude: Block group latitude
• Longitude: Block group longitude

The target variable is the median house value for California districts, expressed in hundreds of
thousands of dollars. In the following, we train a GP model and extract explanations using GP-SHAP,
BayesSHAP, and BayesGP-SHAP, for 4 different configurations:

1. trained on 25% of data, estimate the Shapley values using 50% of coalitions.
2. trained on 25% of data, estimate the Shapley values using 100% of coalitions.
3. trained on 100% of data, estimate the Shapley values using 50% of coalitions.
4. trained on 100% of data, estimate the Shapley values using 100% of coalitions.

To fit the GP model, we employ a sparse Variational GP approach with 200 learnable inducing point
locations. The evidence lower bound is optimized using batch gradient descent with a batch size of
64, a learning rate of 0.01, and 100 iterations. The RBF kernel with learnable bandwidths initialized
using the median heuristic approach is used for the sparse GP. The inducing locations are initialized
using a standard clustering approach to obtain a representative set of inducing points.

After training the model, we reuse the learned inducing points and kernel bandwidths for the
explanation algorithms. The explanations are obtained using the procedure described in Algorithm 1
of our work.
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Figure 4: We plot the beeswarm plot of the mean and standard deviations of each stochastic explana-
tions from BayesGP-SHAP fitted on the housing dataset. The features are ranked according to the
distance span by the largest and smallest mean (std) stochastic Shapley values.

In Figure 1 of our paper, we present the stochastic Shapley values for the 11th observation, computed
using the three explanation algorithms. The plot includes the 95% credible interval to visualize the
uncertainties associated with the explanations.

Further illustration: In Figure 4, we plot the beeswarm plot on the mean and standard deviation
of each stochastic explanations respectively. We color the point based on the relative size of the
feature value compared to the rest. We see that in Figure 4a, which plotted the mean stochastic
shapley values for each observation, the relationship between most features’ explanation to the target
variable is quite linear. For example, the higher the median income (MedInc), the more positive those
feature contribute to predicting the respective median house value. On the other hand, Figure 4b
illustrated the standard deviation of each stochastic explanations. In general, we see that the larger
the feature values are, the more uncertain the explanation becomes. Nonetheless, we see that the
feature contributing the most, defined as the feature having largest distance spanned by their most
positive and most negative mean stochastic Shapley values, does not necessarily have the largest
variation respectively.

C.2 Exploratory analysis of the stochastic explanations

For this illustration, we utilise the breast cancer dataset [42], containing 569 patients with 30 numeric
features. They are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass
and describe characteristics of the cell nuclei present in the image:

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• compactness ( perimeter2

area−1 )

• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (“coastline approximation” - 1)

The goal is to predict whether a tumour is malignant or benign. We first fit a GP model with RBF
kernel using again the sparse Variational GP formulation with 200 learnable inducing locations. We
initialise the inducing points using standard clustering techniques on the data. The evidence lower
bound objective is optimised with a learning rate of 1e−4 and 1000 iterations using batch gradient
descent of batch size 64. To obtain the explanations, we run the BayesGP-SHAP algorithm with 216
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Figure 5: We plot the violin plot of the mean and standard deviations of each stochastic explanations
from BayesGP-SHAP fitted on the breast cancer. The features are ranked according to the distance
span by the largest and smallest mean (std) stochastic Shapley values.

number of coalitions. We do not compare GP-SHAP and BayesSHAP here because the BayesSHAP
uncertainties have shrunk to almost zero, i.e., the mean standard deviations from the BayesSHAP
uncertainties across all features and data is 0.0002. This reconfirms the fact from Slack et al. [20]
that as we increase the sample size the estimation error goes to zero, thus the uncertainties from
BayesSHAP goes to zero as well. On the other hand, GP-SHAP uncertainties still remain valid
because it represents the GP predictive uncertainties, which do not shrink to zero as we increase the
number of coalitions we use to esitmate the SVs.

Further illustrations: In Figure 5, we plot two violin plots to illustrate the relationship between
mean and standard deviation of the stochastic values with respect to the size of the original feature.
We see that the feature “worst fractal dimension” are the second most influential feature in terms of
mean stochastic explanations and also the feature that has highest uncertainty around its explanations.
In comparison with the housing prediction problem illustrated in Figure 4, the higher the feature
value doesn’t necessary give higher uncertainty around its explanation.

C.3 Predictive explanations

For this illustration, we utilise the Diabetes dataset [47] with 442 patient data and 10 numeric features
measuring the following:

• age: age in years
• sex
• bmi: body mass index
• bp: average blood presuure
• s1: total serum cholesterol
• s2: low-density lipoproteins
• s3: high-density lipoproteins
• s4: total cholesterol
• s5: Log of serum triglycerides level
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• s6: blood sugar level

The experiment is to assess the effectiveness of the Shapley prior we proposed in predicting explana-
tions estimated using SHAP algorithms for general models, including GP-SHAP, TreeSHAP, and
DeepSHAP. We use the implementation of TreeSHAP and DeepSHAP from the shap package [2].

While algorithms such FastSHAP [22] also learn a vector-valued function that returns explanations
given instances, the algorithm require access to the underlying model f during training while ours
required previously computed explanations. Due to this importance difference in the problem setup,
we do not compare the two algorithm.

We first generate three sets of explanations to set up three regression problems:

1. Fit a Gaussian process model and then run GP-SHAP to obtain explanations.

2. Fit a random forest model and then run TreeSHAP to obtain explanations.

3. Fit a neural network model and then run DeepSHAP to obtain explanations.

After obtaining explanations as groundtruths for this experiment, we randomly divide 70% of them
as training data and 30% of them as testing data. We then do the following,

1. We fit a multi-output GP using the proposed Shapley prior on the training data and predict
the explanations of the unseen test data.

2. We fit a multi-output random forest model on the training data and predict the explanations
of the unseen test data.

3. We fit a multi-output neural network model on the training data and predict the explanations
of the unseen test data.

We repeat this experiment 10 times using different seeds and compute the RMSE between the
predicted and groundtruths explanations. The results are then plotted in Figure 3.

C.4 Further ablation study: Impact of increased posterior prediction uncertainty on
explanation uncertainties

In this ablation study, we aim to examine the effect of increasing the uncertainty in posterior
predictions on the corresponding uncertainty in stochastic Shapley values. To demonstrate this, we
utilize the diabetic dataset [47] and split the data based on recorded sex. We train our GP model on
the male data and employ BayesGP-SHAP to explain the prediction results for both the male training
data and the female testing data. We adopt this split because we expect the biological characteristics
between males and females to be distinct enough to treat the female data as out-of-sample data,
thereby naturally resulting in increased predictive uncertainty for the female data. To further amplify
this uncertainty, we multiply each instance in the female testing data by distortion factors of two and
three, respectively, and assess the corresponding uncertainties in the explanations.

We begin by illustrating the relationship between the out-of-sampleness of the data and the corre-
sponding increase in predictive posterior uncertainties. This is depicted in Figure 6a, where we
observe that as the data becomes more out-of-sample, the predictive uncertainties consistently rise.
Even at distortion level 1, which represents the original female data, we can already observe increased
uncertainties compared to the uncertainties derived from male data prediction.

Furthermore, these increased uncertainties in the predictive posterior are reflected in the associated
feature explanations. This is evident in Figure 6b, where we visualize the uncertainties associated
with the feature explanations. For instance, the green bars representing the average uncertainties in
explaining female data with no distortion are consistently larger than the red bars, which represent the
average uncertainties of male data explanations. This observation aligns with the higher predictive
uncertainties observed in Figure 6a for the female data compared to the male training data.

It is worth noting that the uncertainty for the feature “sex” remains consistently close to zero. This is
because the feature “sex” is constant within both the female and male datasets. As a result, it acts as
the null player in each dataset and obtains an almost Dirac zero as its stochastic Shapley value.
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Figure 6: Ablation study: (left) We begin by training a Gaussian Process (GP) model on the male
data. We then make predictions using this trained model on both the male data and out-of-sample
female data. To assess the impact of increasing posterior uncertainties, we multiply the female data
by distortion levels of 1.0, 2.0, and 3.0. We visualize the results by plotting the density plot of the
standard deviations obtained from the predictive posterior distributions. (right) Next, we focus on
analyzing the average standard deviations of explanations per feature from the male and female data,
considering different distortion levels. We observe that as we progressively increase the posterior
uncertainties in the sample, these uncertainties are reflected in the uncertainties of the explanations
provided.

Figure 7: Comparing the predicted Shapley values with groundtruth from GP regression with Shapley
kernel versus fastSHAP on the diabetic dataset.
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Figure 8: Comparing the Kendall’s Tau score between the feature importance ranking from GP
regression with Shapley kernel and FastSHAP with groundtruth feature importance ranking on the
diabetic dataset.

D Comparison with FastSHAP [39]

We ran a predictive explanation experiment (see Figure 8 and 7 ) using the diabetic dataset from UCI,
comparing both our method and FastSHAP. In particular, we use 70% of the data as training, i.e. we
first compute the Shapley values for training data and treat them as labels, and predict the explanation
for the remaining data. We evaluated performance using both RMSE and Kendall’s tau distance (the
closer to 1 the better). Notably, Kendall’s tau distance assesses the consistency in feature importance
ranking between predicted explanations and the true explanations. In the experiments, our method
got RMSE 0.05, while FastSHAP got 0.09. In terms of Kendall’s tau, our method got an average
around 0.7 while FastSHAP got around 0.4, meaning the feature importance ranking recovered from
our method is more aligned with the groundtruth SVs than FastSHAP. Our findings indicate that our
method outperformed FastSHAP in this experiment.

Note however that interpretation of these comparisons should be nuanced since the two techniques
have different usecases: FastSHAP uses knowledge of the model, not the previously computed SVs,
whereas GPSHAP uses previously computed SVs and is agnostic to the type of model they came
from.
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