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Fig. 1: Reconstructing humans from monocular videos frequently fail under occlusion.
In this paper, we introduce OccFusion, a method that combines 3D Gaussian splatting
with 2D diffusion priors for modeling occluded humans. Our method outperforms the
state-of-the-art in rendering quality and efficiency, resulting in clean and complete
renderings free of artifacts.

Abstract. Most existing human rendering methods require every part
of the human to be fully visible throughout the input video. However,
this assumption does not hold in real-life settings where obstructions
are common, resulting in only partial visibility of the human. Consid-
ering this, we present OccFusion, an approach that utilizes efficient 3D
Gaussian splatting supervised by pretrained 2D diffusion models for effi-
cient and high-fidelity human rendering. We propose a pipeline consist-
ing of three stages. In the Initialization stage, complete human masks are
generated from partial visibility masks. In the Optimization stage, 3D
human Gaussians are optimized with additional supervision by Score-
Distillation Sampling (SDS) to create a complete geometry of the hu-
man. Finally, in the Refinement stage, in-context inpainting is designed
to further improve rendering quality on the less observed human body
parts. We evaluate OccFusion on ZJU-MoCap and challenging OcMotion
sequences and find that it achieves state-of-the-art performance in the
rendering of occluded humans.
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1 Introduction

Rendering 3D humans from monocular in-the-wild videos has been a persistent
challenge, with significant implications in virtual/augmented reality, healthcare,
and sports. Given a video of a human moving around a scene, this task involves
reconstructing the appearance and geometry of the human, allowing for the
rendering of the human from novel views.

When faced with the problem of human reconstruction from monocular video,
several works based on neural radiance fields (NeRFs) have achieved promising
results [9, 19, 37, 56]. 3D Gaussian splatting [24] further improves upon NeRF-
based rendering methods for better performance. By representing the human not
as an implicit radiance field but as a set of explicit 3D Gaussians, methods like
GauHuman [14] and 3DGS-Avatar [46] are able to render humans comparable
in quality to NeRF methods while taking only a few minutes to train and less
than a second to render.

Rendering occluded humans is a relatively new yet critically important prob-
lem. Most human rendering literature assumes that humans are in clean envi-
ronments free from occlusions. However, in real-world scenes such as hospitals,
sports stadiums, and construction sites, humans may frequently be occluded
by all kinds of obstacles. Unfortunately, most existing human rendering meth-
ods are not able to handle such challenging real-world scenarios, producing a
lot of undesirable floaters, artifacts, and incomplete body parts. On the other
hand, methods proposed to address human rendering under occlusions like Oc-
cNeRF [62] and Wild2Avatar [61] are limited and impractical due to their high
computational costs and long training time. This tradeoff between efficiency and
rendering quality greatly limits the applicability of past approaches.

In this work, we introduce OccFusion, an efficient yet high quality method
for rendering occluded humans. To gain improved training and rendering speed,
OccFusion represents the human as a set of 3D Gaussians. Like almost all other
human rendering methods, OccFusion assumes accurate priors such as human
segmentation masks and poses are provided for each frame, which can be ob-
tained with state-of-the-art off-the-shelf estimators such as SAM [25] and HMR
2.0 [8]. However, to ensure complete and high-quality renderings under occlu-
sion, OccFusion proposes to utilize generative diffusion priors, more specifically
pose-conditioned Stable Diffusion 1.5 [48] with ControlNet [73] plugins, to aid
in the reconstruction process.

Our approach consists of three stages: (1) The Initialization Stage: we uti-
lize segmentation and pose priors to inpaint occluded human visibility masks
into complete human occupancy masks to supervise later stages. (2) The Op-
timization Stage: we initialize a set of 3D Gaussians and optimize them based
on observed regions of the human, applying pose-conditioned Score-Distillation
Sampling (SDS) to help ensure completeness of the modeled human body in both
the posed and canonical space. (3) The Refinement Stage: we utilize pretrained
generative models to inpaint unobserved regions of the human with context from
partial observations and renderings from the previous stage, further improving
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Fig. 2: OccFusion achieves occluded human rendering via three sequential stages. In
the Initialization Stage, we recover complete binary human masks {M̂} from oc-
cluded partial observations {I} with the help of segmentation priors {M} and pose
priors {P}. {M̂} will be further used to help optimize the 3D Gaussians Π in subse-
quent stages. In the Optimization Stage, we apply {P} conditioned SDS on both
posed human and canonical human to enforce the human occupancy to remain com-
plete. In the Refinement Stage, we use the coarse human renderings {Î} from the
Optimization Stage to help generate missing RGB values in {I} through our proposed
in-context inpainting. Through this process, both the appearance and geometry of the
human are fine-tuned to be in high fidelity. Training of all three stages takes only 10
minutes on a single Titan RTX GPU.

the quality of the renderings. Despite taking only 10 minutes to train, our method
outperforms the state-of-the-art in rendering humans from occluded videos.

In summary, our contributions are: (i) We propose OccFusion, the first
method to combine Gaussian splatting with diffusion priors for the rendering
of occluded humans from monocular videos. Multiple novel components are pro-
posed along with a three-stage pipeline, consisting of Initialization, Optimiza-
tion, and Refinement stages. (ii) We demonstrate that OccFusion achieves state-
of-the-art efficiency and rendering quality of occluded humans on both simulated
and real-world occlusions.

2 Related Work

2.1 Neural Human Rendering

Traditional methods to reconstruct humans usually require dense arrays of cam-
eras [2,4,10] or depth information [4,5,49,68], both of which are unobtainable for
in-the-wild scenes. To solve this problem, Neural Radiance Fields (NeRFs) [37]
have recently been used to model dynamic humans from monocular videos
[9, 17, 19, 51, 56, 69]. These methods achieve high-quality novel view synthesis
by parametrizing the human body using an SMPL [35] pose prior and modeling
it as a radiance field. However, since NeRFs depend on large Multi-Layer Per-
ceptrons (MLPs), they are computationally expensive, usually taking days to
train and minutes to render [14,24,46]. To speed up NeRF-based models, multi-
resolution hash encoding [6, 18, 40, 43], and generalizability [2, 13, 27, 41] have
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been proposed. However, these methods either face a rendering bottleneck [14]
or an expensive pre-training process, both of which affect their efficiency.

Point-based rendering methods like 3D Gaussian splatting [24] greatly ac-
celerate the rendering of static and dynamic scenes. Recently, there have been
an abundance of works applying 3D Gaussian splatting to human rendering
tasks [12, 14, 20, 26, 28, 29, 33, 38, 42, 46, 65, 71]. Like NeRF-based approaches,
Gaussian splatting-based approaches represent the human in a canonical space
and use Linear Blend Skinning (LBS) to transform the human into the posed
space. Gaussian splatting methods achieve state-of-the-art performance of dy-
namic humans with fast training times and real-time rendering, causing them to
be the more desired method [14,46].

2.2 Occluded Human Rendering

NeRF-W [36] and other works [3, 47, 72] are able to account for photometric
variation and transient occluders in complex in-the-wild scenes, allowing them to
render consistent representations from unconstrained image collections. However,
these works are not designed to handle dynamic objects like humans.

Rendering humans in occluded settings is a relatively new problem. Sun et
al. [50] utilize a layer-wise scene decoupling model to decouple humans from
occluding objects. OccNeRF [62] combines geometric and visibility priors with
surface-based rendering to train a human NeRF model. Wild2Avatar [61] pro-
poses an occlusion-aware scene parametrization scheme to decouple the human
from the background and occlusions. While these works provide decent render-
ings of humans free of occlusions, they are slow and impractical. A concurrent
work to ours is OccGaussian [64], which also proposes to model occluded hu-
mans with 3D Gaussians by performing an occlusion feature query in occluded
regions. We provide comparisons to their published results in Table 1.

2.3 Generative Diffusion Priors

Inferring the appearance of unobserved regions of 3D scenes requires the usage
of generative models. The recent success of 2D diffusion models has made them
the preferred model to use for generation [21, 32, 34, 48, 53]. To lift 2D diffusion
models for 3D content generation, DreamFusion [45] proposed Score Distillation
Sampling (SDS), a commonly used method for utilizing a pre-trained 2D diffusion
model to supervise 3D content generation [30,52,54,67].

Diffusion models can also be used as priors for training NeRFs and Gaus-
sian splatting, combining reconstruction with generation [59, 60, 63, 70, 75, 76].
ReconFusion [59] uses SDS in conjunction with multi-view conditioning to syn-
thesize the appearance of unobserved regions of a scene from sparse views, while
BAGS [75] utilizes SDS to supervise a Gaussian splatting model.
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3 Preliminaries

Before we introduce our method, we first overview important basics of 3D human
modeling with SMPL (subsection 3.1). Then, we discuss 3D Gaussian splatting,
and how it can be applied to human modeling (subsection 3.2). Finally, we
propose OccGauHuman, a simple improvement of GauHuman [14] that is better
designed for occluded human rendering (subsection 3.3)

3.1 3D Human Modeling

SMPL [35] is a model that parametrizes the human body with a 3D surface
mesh. To transform between the canonical space to a pose space, the Linear
Blend Skinning (LBS) algorithm is used. Given a 3D point xc in the canonical
space and the shape β and pose θ parameters of the human, a point in the posed
space can be calculated as:

xp =

K∑
k=1

wk (Gk(J, θ)xc + bk(J, θ, β)) , (1)

where J contains K joint locations, Gk and bk are the transformation matrix
and translation vector, and wk ∈ [0, 1] are a set of skinning weights. The SMPL
representation is commonly used as a geometric prior for human rendering [14,
19,46,56,61,62,69].

3.2 Human Rendering with 3D Gaussian Splatting

3D Gaussian splatting. 3D Gaussian splatting [24] models a scene as a set of
3D Gaussians Π. Each Gaussian is defined by its 3D location pi, opacity oi ∈
[0, 1], center µi, covariance matrix Σi, and spherical harmonic coefficients. The
i-th Gaussian is defined as oie

− 1
2 (p−µi)

TΣ−1
i (p−µi). During rendering, these 3D

Gaussians are mapped from the 3D world space and projected to the 2D image
space via α-blending, with the color of each pixel being calculated across the N
3D Gaussians as:

C =

N∑
j=1

cjαj

j−1∏
k=1

(1− αk), (2)

where cj is the color and α is the z-depth ordered opacity. During the train-
ing process, 3D Gaussians are adaptively controlled via densification (splitting
and cloning) and pruning until they achieve the optimal density to adequately
represent the scene.

GauHuman [14] . In the line of work that uses 3D Gaussian splatting for human
rendering [12,26,29,46], GauHuman is a representative approach due to its bal-
ance of efficiency and rendering quality. After initializing 3D Gaussians on the
vertices of the SMPL mesh, GauHuman learns a representation of the human
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in canonical space and utilizes LBS to transform each individual Gaussian into
the posed space. A pose refinement module MLPΦpose

and an LBS weight field
module MLPΦlbs

are used to learn the LBS transformation, and a merge oper-
ation based on KL divergence is used along with splitting, cloning, and pruning
to help the 3D Gaussians reach convergence.

We base our method on GauHuman due to its fast training and state-of-the-
art representative ability.

3.3 OccGauHuman: A Better Baseline for Occluded Human
Rendering

In common human rendering tasks, videos are captured in a clean environment,
with every pixel in the image belonging to either the human or the background.
By using a semantic segmentation model such as SAM [25] to preprocess a video,
we can train the human rendering model only on pixels labeled as "human".
However, occlusions in the videos may lead to sparse observations of the human.
As a result, fitting NeRF-based human rendering models on only the visible
human pixels results in an incomplete geometry with lots of artifacts [61,62].

Gaussian splatting-based rendering models [24] are especially suitable for hu-
man modeling tasks due to their explicit geometry and point-based representa-
tion. In this section, we present three straightforward tweaks of GauHuman [14]
to make it perform better on videos with occlusions: (1) Firstly, as discussed
above, we train the model on visible human pixels only. (2) We adjust the loss
weights to put more weight on the mask loss computed between rendered human
occupancy maps and the segmentation masks — we found that this helps render
more crisp human boundaries. (3) We disable the densification and pruning of
3D Gaussians during training — this helps maintain a rather complete human
geometry based on the SMPL initialization. The benefits brought by our updates
compared to the original GauHuman are presented in Table 1.

4 OccFusion

In our approach, we train a Gaussian splatting-based human rendering model on
the visible pixels of a human. However, recovering occluded content for a dynam-
ically moving human is not trivial — humans are usually in challenging poses,
and complex occlusions can cause additional issues. It is also essential to pre-
serve consistency of the human appearance and geometry across different frames.
Considering these challenges, we propose our method OccFusion in multiple sep-
arate stages. In the Initialization stage (section 4.1), we inpaint occluded binary
human masks for more reliable geometric guidance. In the Optimization stage
(section 4.2), we use the inpainted masks to train a human rendering model
based on GauHuman [14] while using Score Distillation Sampling (SDS) con-
straints on both the posed space and canonical space. In the Refinement stage
(section 4.3), we fine-tune the trained model from the Optimization Stage with
in-context inpainting to further refine the appearance of the human. An overview
of our OccFusion is shown in Figure 2.
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4.1 Initialization Stage: Recovering Human Geometry from Partial
Observations

Generative diffusion models [48] have demonstrated promise to be used as priors
for different tasks [22,52]. The most straightforward method for occluded human
rendering is to utilize a precomputed segmentation prior M and pose prior P to
condition a diffusion prior Φ [39,73] to inpaint 1−M — the image regions that
are not occupied by the human. However, there are two significant barriers to
such a straightforward approach, as articulated below.

Conditioned human generation cannot handle challenging poses. It is true that
a conditioned diffusion prior Φ is able to generate detailed images while staying
consistent to the condition. However, since diffusion models are usually overfitted
on more commonly seen poses, Φ usually fails to generate reasonable images when
conditioned on challenging poses (see Figure 3 middle column). We attribute
this limitation to the inappropriate 2D representation of P — when joints self-
occlude each other, it is impossible to tell which joints are closest to the camera
when they are projected to 2D. So, we propose to simplify the 2D representation
of P. We apply a Z-buffer test on the depth map rendered from the SMPL
mesh [35] and then calculate the distance d between its z-axis location and the
corresponding 2D z-buffer. Given a pre-defined threshold σ, we deem a joint
is self-occluded if d > σ. Self-occluded joints are ignored when projecting 3D
joints onto the 2D canvas for conditioning Φ (see Figure 3 right column). Our
simplification improves the generation quality of Φ for challenging poses.

Occluded human 2D pose ! Simplified 2D posePose conditioned SD generations Pose conditioned SD generations

Fig. 3: Stable Diffusion 1.5 generations [48] conditioned on a challenging pose P. While
conditioning on the original pose results in multiple limbs and other abnormalities, our
method of simplifying pose by removing self-occluded joints results in more feasible
generations.

Per-frame inpainting cannot guarantee cross-frame consistency. Compared to
image generation models, video generation models [7, 11, 58] are less accessible
and much more expensive to run. Without an explicit modeling of object motion
in the video, frame-by-frame generation with an image generative model leads to
cross-frame inconsistency, which is not desirable for human reconstruction (see
Figure 4 middle column). Instead of inpainting the occluded parts of the human
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directly with Φ, we claim that it is more feasible to inpaint binary human masks
since small variations in the human silhouette are more acceptable (see Figure 4
right column). We first inpaint the RGB image I and then rely on an off-the-
shelf segmentation model [23] to obtain the inpainted binary human masks {M̂},
which is used to assist the training of the rendering model in subsequent stages.

Occluded
Human "

2D pose ! Human
Mask #

Inpainting
Mask

Inconsistent RGB Inpainting Consistent binary mask $#

Fig. 4: While generative models provide inconsistent inpainting results, the binary
masks that can be extracted from these generated images are much more consistent.

4.2 Optimization Stage: Enforcing Human Completeness with SDS
Regularization

After obtaining the inpainted masks {M̂} that outline a reasonable human sil-
houette, we build a Gaussian splatting model similar to the one described in
section 3.2 for human rendering. The 3D Gaussians Π are initiated as the SMPL
mesh vertices, which are able to be deformed to adapt to different poses through
SMPL-based LBS (Equation 3.1). With the help of {M̂}, the training of Π
consists of multiple photometric loss terms Lphoto:

λrgbL1(M·I,M·I′)+λmaskL2(M̂,A)+λssimSSIM(M·I,M·I′)+λlpipsLPIPS(M·I,M·I′),
(3)

where L1 is the L-1 loss, L2 is the L-2 loss, SSIM(·) is the SSIM function [55],
LPIPS is the VGG-based perceptual loss [74], I′ is the rendered image from Π,
and A is the rendered human occupancy map. Each of the loss terms is scaled
by a weight hyperparameter λ.

Even with the supervision of {M̂}, geometry inconsistency still exists. Al-
though inconsistent human masks affect the training of Π much less than in-
consistent images, human completeness cannot be guaranteed without further
steps.

Using diffusion priors to enforce human completeness. We build off of the in-
sights from [52, 57, 67] and apply Score Distillation Sampling (SDS) [45] to im-
prove the quality of human renderings and reduce artifacts. Instead of applying
SDS on RGB images I′, which causes appearance inconsistency, we apply it di-
rectly to the rendered human occupancy maps A so that diffusion scores are
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propagated to encourage complete A:

L(P)
SDS = Et,ϵ

[
w(t) (ϵϕ(A; t,P)− ϵ)

∂A

∂Π

]
, (4)

where t is a scheduled time stamp, w(·) is a weighting function, ϵ(·) is the UNet
noise estimator in Φ, and ϵ is the injected Gaussian noise.

Using diffusion priors to regularize canonical pose. In-the-wild videos often in-
volve very sparse observations of the human, with only incomplete regions of
the human visible in each frame. To further enforce completeness, we propose to
render the human in the canonical Da-pose P̂ with the human oriented at a ran-
dom angle ∈ {k π

9 , k ∈ Z}. Applying SDS on the canonical renderings serves as
regularization and is randomly activated during training. Overall, at each train-
ing step in the Optimization Stage, the 3D Gaussians Π are optimized towards:

∇Π

[
Lphoto + ρ · λposeL(P)

SDS + (1− ρ) · λcanL(P̂)
SDS

]
, (5)

where ρ is a random variable that has a 75% chance to be 1 and 0 otherwise.
With this formulation, the Optimization stage results in a complete and coherent
geometry regardless of the viewing angle.

4.3 Refinement Stage: Refining Human Appearance via In-context
Inpainting

As shown in Figure 6 Exp. C and D, applying diffusion priors on rendered human
occupancy maps is not able to recover the missing appearances of the human.
This motivates the need for a subsequent stage that keeps refining Π for better
appearance.

The refinement of the appearance of 3D objects is not a new topic [31,52,67].
However, no existing generative models are capable of handling the consistency
of appearance of a human across different frames and poses. We attribute this
difficulty to the denoising process used in generative priors — random noise is
injected to rendering at each SDS step which leads to uncertain results. This
is infeasible for reconstruction tasks, which require frame-consistent representa-
tions that agree with all observations.

Our approach involves generating inpainted images of the occluded human
offline to use as references. We first identify the occluded regions to be inpainted
R by using the rendered human occupancy masks A from the Optimization
Stage and pre-computed human visibility masks M: R = (1 − M) · A. In or-
der to encourage the generated regions to be more consistent with the partial
observations, we propose in-context references inspired by in-context learning
of language models [1]. Although renderings from the Optimization Stage lack
sharp and high-fidelity details, they resemble complete human geometries and
possess good enough features that can be used as a coarse reference to guide Φ
to inpaint similar contents at occluded body regions. To achieve this, we stack
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Î and I together as a single image input to Φ with an additional prompt phrase
— "the same person standing in two different rooms".

We use the inpainted RGB images {Ĩ} along with other priors to finetune
Π via photometric losses. Since diffusion models still tend to be somewhat in-
consistent, we smooth training by putting more weight on perceptual loss terms
and use L1 loss for the pixel-wise loss terms for its high robustness to variance:

∇Π

[
λrgbL1(M · I,M · I′) + λmaskL2(M̂,A) + λgenL1(̃I,R · I′) + λlpipsLPIPS(I, I′)

]
.

(6)
We train our entire pipeline for only 10 minutes on a single TITAN RTX

GPU.

4.4 Implementation Details

OccFusion requires several priors. We run SAM [25] to get all the human masks
{M}. While we follow previous work [61, 62] and use the ground truth poses
provided by ZJU-MoCap and OcMotion, pose priors P can be obtained via
occlusion-robust SMPL prediction/optimization methods such as HMR 2.0 [8]
and SLAHMR [66] for in-the-wild videos. We use the pre-trained Stable Diffusion
1.5 model [48] with ControlNet [73] plugins for content generation in all the
stages. Improving the quality of priors is not the focus of this work.

In the Initialization Stage, instead of inpainting incomplete human masks
directly, we run the pretrained diffusion model to inpaint RGB images with 10
inference steps and 1.0 ControlNet conditioning scale. After inpainting the RGB
images, we then run SAM-HQ [23] with P as the prompts to get {M̂}.

In the Optimization Stage, we train the 3D human Gaussian Π from scratch
by following the objective Equation 5. We set λrgb = 1e4, λmask = 2e4, λssim =
1e3, and λlpips = 1e3. At each training step, we randomly switch the SDS reg-
ularization on either posed human space or the canonical Da-pose space with a
probability of 75% and 25%. When applying SDS regularization on the canon-
ical human space, we rotate the human by θ radians around its vertical axis,
where θ is uniformly sampled from {k π

9 , k ∈ N}. We set the SDS loss weights as
λpose = 2e5 and λcan = 2e5. In this stage, we train Π for 1200 steps.

In the Refinement Stage, we first generate the RGB human inpaintings via the
proposed in-context inpainting method. We condition the pretrained diffusion
model on M, with 10 inference steps and 0.3 ControlNet conditioning scale.
During training, we set the loss weights as λrgb = 1 and λmask = 0.1, λgen =
0.1, and λlpips = 0.2. In this stage, we finetune Π for another 1800 steps with
Gaussian densification and pruning enabled for the first 1000 steps.

5 Experiments

In this section, we conduct quantitative and qualitative evaluation of our ap-
proach against state-of-the-art methods. Then, we conduct ablation studies of
our entire pipeline, demonstrating that each stage is necessary for optimal per-
formance.
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Table 1: Quantitative comparison on the ZJU-MoCap and OcMotion datasets. LPIPS
values are scaled by ×1000. We color cells that have the best and second best metric
values.

Methods ZJU-MoCap [44] OcMotion [15]
PSNR↑ SSIM↑ LPIPS↓ PSNR∗↑ SSIM∗↑ LPIPS∗↓

HumanNeRF [56] 20.67‡ 0.9509‡ - - - -
3DGS-Avatar [46] 17.29† 0.9410† 63.25† 9.788† 0.7203† 188.1†

GauHuman [14] 21.55 0.9430 55.88 15.09 0.8525 107.1
OccNeRF [62] 22.40‡ 0.9562‡ 43.01‡ 15.71 0.8523 82.90
OccGaussian [64] 23.29‡ 0.9482‡ 41.93‡ - - -
Wild2Avatar [61] - - - 14.09§ 0.8484§ 93.31§

OccGauHuman 22.71 0.9492 54.60 18.85 0.8863 86.53
OccFusion 23.96 0.9548 32.34 18.28 0.8875 82.42

∗ Metrics calculated on visible pixels only.
† Model trained for 5k iterations with ×3 training time.
‡ Results taken from OccGaussian [64], using ×5 training frames.
§ Model trained under the default setting [61] using ×2 training frames.

5.1 Datasets and Evaluation

ZJUMoCap. ZJU-MoCap [44] is a dataset consisting of 6 dynamic humans cap-
tured with a synchronized multi-camera system. Since the humans are in a lab
environment free of occlusions, we follow OccNeRF’s [62] protocol to simulate
occlusion of the human, masking out the center 50% of the human pixels for the
first 80 % of frames. To challenge OccFusion on videos with even sparser frames,
we use only 100 frames from the first camera with a sampling rate of 5 to train
the models and use the other 22 cameras for evaluation.

OcMotion. OcMotion [15] comprises of 48 videos of humans interacting with
real objects in indoor environments. Experiments are conducted on the same 6
sequences adopted by Wild2Avatar [61], which are selected to provide a diverse
coverage of real-world occlusions. We form sparser sub-sequences by sampling
only 50 frames to train the models.

Evaluation. We compare our OccFusion to OccNeRF [62], OccGaussian [64],
and Wild2Avatar [61], the state-of-the-art in occluded human rendering. We
also compare our results to GauHuman [14], HumanNeRF [56], and 3DGS-
Avatar [46], popular human rendering methods not designed for occlusion. For
fairness of comparison, all methods use the same set of segmentation masks
and pose priors. We evaluate the methods both quantitatively and qualitatively.
For our quantitative evaluations, we calculate the Peak Signal-to-Noise Ratio
(PSNR), Structural SIMilarity (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) metrics against the ground truth images. Since no ground
truth is provided for OcMotion, we calculate the metrics on visible pixels only.
For qualitative evaluations, we render the human from novel views and assess
the quality of the renderings.
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OursON OGH Ref.Input OursON OGH Ref.Input
ZJU-MoCap OcMotion

Fig. 5: Qualitative comparisons on simulated occlusions in the ZJU-MoCap dataset
[44] (left column) and real-world occlusions in the OcMotion dataset [16] (right
column). ON denotes OccNeRF [62] and OGH denotes OccGauHuman.

5.2 Results on Simulated and Real-world Occlusions

We provide quantitative metrics averaged over all the sequences in Table 1.
Overall, methods designed for occluded human rendering tend to outperform
their traditional counterparts. Among those methods, OccFusion consistently
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Table 2: Ablation results on the ZJU-MoCap [44] dataset. LPIPS values are scaled
by ×1000.

Exp. Methods PSNR↑ SSIM↑ LPIPS↓ Train time
- GauHuman [14] 21.55 0.9430 55.88 10 mins
A OccGauHuman 22.54 0.9457 54.88 2 mins
B + Init Stage generated masks {M̂} 23.52 0.9516 52.35 5 mins
C + Posed space SDS 23.90 0.9510 55.47 7 mins
D + Canonical space SDS (Optim

Stage)
23.91 0.9514 55.35 7 mins

E + Refinement Stage 23.96 0.9548 32.34 10 mins

performs up to par or better than the state-of-the-art on both datasets while
significantly beating all the baselines on LPIPS.

Qualitative results on novel view synthesis can be found in Figure 5. Oc-
cNeRF [62] has trouble generating unseen regions and renders significant dis-
coloration and floaters when faced with occlusion. OccGauHuman’s renderings
are blurry and occasionally incomplete. We observe that OccFusion is the only
method to consistently render sharp and high-quality renderings free of occlu-
sions.

5.3 Ablation Studies

Input Exp. A Ref.Exp. B Exp. D Exp. E Exp. B Exp. C Exp. D

Fig. 6: Qualitative ablation studies. Please see Table 2 for corresponding experiments.
Major differences are highlighted by red arrows.

In this section, we study the effect of each of our proposed components by
adding them one by one and report average metrics on ZJU-MoCap in Table 2.
Each stage plays a part towards optimal performance. Qualitative results on our
ablations are included in Figure 6. We can see that the Initialization Stage helps
enforce completeness for the initially incomplete human. The SDS regularization
provided in the Optimization Stage helps remove floaters and artifacts in the
posed and canonical space, further improving the shape of the human. Finally,
the Refinement Stage helps make the renderings more detailed in less observed
regions, greatly improving rendering quality.
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Additional studies on our method, as well as rendered video results, can be
found in the supplementary materials.

6 Discussions and Conclusion

Limitations. Recovering occluded dynamic humans is challenging. As mentioned
in section 4.3, reconstructing a 3D human requires adhering to multiple consis-
tencies. However, even with the state-of-the-art generative models, it is still
impossible to perfectly maintain those consistencies for 4D content (3D + mo-
tion) generation. Although our proposed methods are specifically designed to
eliminate potential variances when using generative priors, we can still observe
some generations are less coherent (e.g. Figure 4), which may hurt the training
of the rendering model on all stages. Moreover, we found that conditioning gen-
erative models with 2D poses is weak — the pose of the generated human does
not always align with the condition pose, which may introduce even more uncer-
tainty for training. In future work, we hope to train our own consistency-aware
diffusion model specifically finetuned on human data.

Another major limitation is the lack of diversity of data. ZJU-MoCap consists
of humans rotating in place in a brightly lit motion capture environment. While
OcMotion is more representative of a real world scene, its diversity is still lacking,
with all the sequences being collected in the same indoor room. In addition, since
both datasets are collected from Chinese universities, the subjects are all East
Asian men. We believe that a promising future step for this field is to collect
more diverse data to test the generalizability of human rendering methods like
ours.

Societal Impacts. Being able to reconstruct a human from an occluded monoc-
ular video can have a great societal impact. For example, having a high-fidelity
3D reconstruction of a human can help telemedicine practitioners become more
immersed in the 3D space. While our research could lead to privacy concerns
if humans are reconstructed without their consent, we believe that the benefits
can be harnessed responsibly with appropriate safeguards.

Conclusion. In this work, we propose OccFusion, one of the first works that
utilize 3D Gaussian splatting for occluded human rendering. Our approach con-
sists of three stages: the Initialization, Optimization, and Refinement stages.
By combining the efficiency and representative ability of 3D Gaussian splatting
with the generation capabilities of diffusion priors, our method achieves state-of-
the-art in occluded human rendering quality as measured by the PSNR, SSIM,
and LPIPS metrics while only taking around 10 minutes to train. We hope our
work inspires further exploration into the capabilities of diffusion priors to aid
in human reconstruction.
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