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Abstract
Diversity has been one of the most crucial factors
on the design of adversarial ensemble methods.
This work focuses on the fundamental problems:
How to define the diversity for the adversarial
ensemble, and how to correlate with algorithmic
performance. We first show that it is an NP-Hard
problem to precisely calculate the diversity of two
networks in adversarial ensemble learning, which
makes it different from prior diversity analysis.
We present the first diversity decomposition under
the first-order approximation for the adversarial
ensemble learning. Specifically, the adversarial
ensemble loss can be decomposed into average of
individual adversarial losses, gradient diversity,
prediction diversity and cross diversity. Hence, it
is not sufficient to merely consider the gradient
diversity on the characterization of diversity as
in previous adversarial ensemble methods. We
present diversity decomposition for classification
with cross-entropy loss similarly. Based on the
theoretical analysis, we develop new ensemble
method via orthogonal adversarial predictions to
simultaneously improve gradient diversity and
cross diversity. We finally conduct experiments
to validate the effectiveness of our method.

1. Introduction
General machine learning models may be misled heavily
by examples with adversarial perturbations (Szegedy et al.,
2014; Goodfellow et al., 2015), which raises some serious
concerns about reliability of models, particularly in high-
risk applications such as healthcare, finance and autonomous
driving (Finlayson et al., 2019; Deng et al., 2021; Fursov
et al., 2021). Various robust methods have been developed
against adversarial examples in recent years (Zhang et al.,

*Equal contribution 1National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, Nanjing, China; School of
Artificial Intelligence, Nanjing University, Nanjing, China. Corre-
spondence to: Wei Gao <gaow@lamda.nju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2019b; Gowal et al., 2021; Pang et al., 2021; Wang et al.,
2023; Peng et al., 2023; Bartoldson et al., 2024).

Ensemble learning combines multiple learners rather than
one single learner with better performance, which has been
paid much attention in the adversarial robustness learning.
Sequential robust ensemble has been constructed via the
boosting framework (Abernethy et al., 2021; Zhang et al.,
2019a; 2022; Guo et al., 2022), and parallel ensemble has
also developed for robust learning (Pinot et al., 2020; Sen
et al., 2020; Yang et al., 2021; 2022; Deng & Mu, 2024).

Diversity has always been one of the most crucial factors in
the design of ensemble methods (Zhou, 2012; Wood et al.,
2023). For adversarial ensemble learning, Pang et al. (2019)
took prediction disagreements of base learners as diversity,
while Yang et al. (2020) defined the diversity via losses of
base learners on exchanged adversarial examples. Another
idea is to consider the misalignment of gradient directions
for diversity (Kariyappa & Qureshi, 2019; Dabouei et al.,
2020; Huang et al., 2021; Bogun et al., 2022).

There are some fundamental problems open for adversarial
ensemble learning. For example, how to formally define the
diversity of adversarial ensemble, and what’s more, how to
correlate diversity definition with algorithmic performance
from a theoretical view. This work studies fundamental
problems of diversity in the adversarial ensemble learning,
and the main contributions are summarized as follows:

• We first show that it is an NP-Hard problem to precisely
calculate the diversity of two neural networks in the
adversarial ensemble, since diversity is heavily relevant
to intrinsic structures and output predictions of models
simultaneously. This challenge makes it different from
traditional diversity on output predictions (Zhou, 2012;
Wood et al., 2023). Sun & Zhou (2018) indicated the
importance of structure diversity for decision trees,
whereas it remains open for neural networks.

• We present the first diversity decomposition under the
first-order approximation in the adversarial ensemble
learning. Specifically, the adversarial ensemble loss
is decomposed into average of individual adversarial
losses, prediction diversity, gradient diversity and cross
diversity. It is not sufficient to only consider gradient
diversity on the characterization of diversity as in prior
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adversarial ensemble methods. We present similar de-
composition for classification with cross-entropy loss,
which is commonly used for neural networks.

• Based on theoretical analysis, we develop the AdvEOAP
adversarial ensemble method1 via the orthogonal of
adversarial predictions of base learners, which could
improve gradient and cross diversity simultaneously.
We finally conduct empirical studies to validate the
effectiveness of our AdvEOAP method.

The rest of this work is constructed as follows: Section 2
presents some preliminaries. Section 3 provides diversity
analysis. Section 4 develops our method. Section 5 conducts
experiments. Section 6 concludes with future work.

2. Preliminary
Let X ⊆ Rd and Y denote the instance and label space,
respectively, where Y = {0, 1} for binary classification and
Y ⊆ R for regression. Let D be an underlying distribution
over the product space X × Y , and we have a training data

Sn = {(x1, y1), (x2, y2), · · · , (xn, yn)} ,

where each sample is drawn i.i.d. from distribution D.

Define the perturbation set ∆ϵ
p w.r.t. lp norm and ϵ > 0 as

∆ϵ
p = {δ ∈ Rd : ∥δ∥p = (|δ1|p+|δ2|p+· · ·+|δd|p)1/p ≤ ϵ},

which shows instances’ imperceptible perturbation (Szegedy
et al., 2014). Let F = {f : X → R} be a hypothesis space,
and loss function ℓ : Y × Y → R is introduced to measure
performance. Given f ∈ F , we define the adversarial
perturbation w.r.t. example x as

δ∗f ∈ argmaxδ∈∆ϵ
p
ℓ(f(x+ δ), y),

and x+ δ∗f is called the adversarial example w.r.t. x.

We define the expected adversarial loss as

Ladv(f,D) = E(x,y)∼D

[
max
δ∈∆ϵ

p

{ℓ(f(x+ δ), y)}
]
,

and define the empirical adversarial loss w.r.t. data Sn as

L̂adv(f, Sn) =
1

n

n∑
i=1

max
δ∈∆ϵ

p

{ℓ(f(xi + δ), yi)}.

We finally introduce some useful notations in this work.
Denote by ⟨·, ·⟩ the inner product of two vectors, and ei is a
unit vector with i-th element 1. Write [k] = {1, 2, · · · , k}

1Code is available at https://github.com/GuoJQ42/AdvOAP.

for integer k > 0. For two non-negative real numbers a and
b with a+ b = 1, we define the KL-divergence as

KL(a, b) = a ln(a/b) + (1− a) ln((1− a)/(1− b)) ,

and for two probability vectors a = (a1, a2, · · · , am) and
b = (b1, b2, · · · , bm), we define the KL-divergence as

KL(a, b) =
m∑
i=1

ai ln(ai/bi) .

3. Theoretical Analysis on Diversity
Given m learners f1(x), ..., fm(x), this work focuses on the
simplest ensemble method (Dietterich, 2000; Zhou, 2012)

f̄(x) =

m∑
j=1

fj(x)

m
.

We begin with the challenge on the analysis of adversarial
diversity, and then present diversity decomposition w.r.t.
squared loss and cross-entropy loss, respectively.

3.1. Main challenge on analysis of adversarial diversity

For traditional non-adversarial ensemble learning, it is easy
to make the error-ambiguity decomposition over example
(x, y) w.r.t. squared loss from (Krogh & Vedelsby, 1994;
Zhou, 2012) as follows:

(f̄(x)− y)2︸ ︷︷ ︸
ensemble loss

=

m∑
j=1

(fj(x)− y)2

m︸ ︷︷ ︸
average loss

−
m∑
j=1

(fj(x)− f̄(x))2

m︸ ︷︷ ︸
ambiguity

,

where the ambiguity can be viewed as ensemble diversity.
Wood et al. (2023) further presented bias-variance-diversity
decomposition for ensemble learning, simplified by

ensemble loss = bias + variance − diversity.

It is natural to consider some similar decompositions in the
adversarial diversity learning. However, this remains some
challenges as shown by the following theorem.

Theorem 3.1. For squared loss, it is an NP-hard problem
to precisely calculate the diversity w.r.t. example (x, y) in
the adversarial ensemble learning as follows:

1

2

2∑
j=1

max
δ∈∆ϵ

p

{(fj(x+δ)−y)2}−max
δ∈∆ϵ

p

{(f̄(x+δ)−y)2} ,

where the error ambiguity decomposition is considered for
two neural networks f1(x) and f2(x) with ReLU activation,
and f̄(x) = (f1(x) + f2(x))/2.
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Theorem 3.1 shows that, even for the ensemble of two neural
networks, it is an NP-hard problem to make error ambiguity
decomposition in the adversarial ensemble learning. The
main challenge is that the adversarial example is heavily
dependent on the intrinsic structure of neural network, and
diversity analysis is relevant to intrinsic structure, model
prediction and adversarial perturbation simultaneously. This
is different from traditional diversity analysis on model
predictions (Zhou, 2012; Wood et al., 2023). We also notice
the importance of structure diversity for decision trees (Sun
& Zhou, 2018), whereas it remains open for neural networks.

The proof idea involves the reduction of 3-SAT problem.
Specially, we consider a 3-SAT problem with k clauses,
and each clause is a disjunction of 3 literals. We construct
a neural network g(x) with Θ(k) layers and Θ(k) width,
where each literal can be regarded as an input node of g(x),
and each disjunction and conjunction can be replaced with
the max and min operators, respectively. The max and
min operators can be constructed by ReLU activation. We
construct two neural networks f1(x, x0) = min(g(x), x0)
and f2(x, x0) = min(g(x),−x0) by adding an auxiliary
variable x0. The detailed proof is given in Appendix A,
which is partially motivated from previous work on l1 or l∞
norm (Katz et al., 2017; Weng et al., 2018), while our work
generalizes to lp norm with p = 1, 2, · · · ,∞.

3.2. Diversity decomposition w.r.t. squared loss

Previous ensemble methods generally take the first-order
approximation for adversarial loss function, and focus on
gradient diversity (Kariyappa & Qureshi, 2019; Dabouei
et al., 2020; Huang et al., 2021). This is partially because
of the NP-hardness for adversarial diversity in Theorem 3.1.
Following the first-order Taylor approximation, we have

f̄(x+δ) =

m∑
j=1

fj(x+ δ)

m
≈

m∑
j=1

fj(x)

m
+

m∑
j=1

∇fj(x)
T δ

m
.

We now present the first decomposition for the adversarial
ensemble loss w.r.t. squared loss as follows:

Theorem 3.2. For ensemble f̄ =
∑m

j=1 fj/m, we present
the decomposition of adversarial ensemble loss under the
first-order approximation over example (x, y) as follows:

max
δ∈∆ϵ

p

{(f̄(x+δ)−y)2} =

m∑
j=1

maxδ∈∆ϵ
p
{(fj(x+ δ)− y)2}

m︸ ︷︷ ︸
average of individual adversarial losses

−
m∑
j=1

(fj(x)− f̄(x))2

m︸ ︷︷ ︸
prediction diversity

− ϵ2
m∑
j=1

∥∇fj(x)∥2q − ∥∇f̄(x)∥2q
m︸ ︷︷ ︸

gradient diversity

1 2 3 4 5 6 7 8 9 10 11 12
Number of CNN Base Learners

0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Ad
ve

rs
ar

ia
l L

os
s

CIFAR10 (l2 norm ball)

Average adversarial loss
Adversarial ensemble loss

1 2 3 4 5 6 7 8 9 10 11 12
Number of CNN Base Learners

0
2 9
2 8
2 7
2 6
2 5
2 4
2 3
2 2

Di
ve

rs
ity

CIFAR10 (l2 norm ball)

Prediction diversity
Gradient diversity
Cross diversity

1 2 3 4 5 6 7 8 9 10 11 12
Number of CNN Base Learners

2.00

2.20

2.40

2.60

Ad
ve

rs
ar

ia
l L

os
s

CIFAR10 (l  norm ball)

Average adversarial loss
Adversarial ensemble loss

1 2 3 4 5 6 7 8 9 10 11 12
Number of CNN Base Learners

0
2 9
2 8
2 7
2 6
2 5
2 4
2 3
2 2
2 1
20

Di
ve

rs
ity

CIFAR10 (l  norm ball)

Prediction diversity
Gradient diversity
Cross diversity

Figure 1. An illustration of diversity decomposition in Theorem 3.2
on dataset CIFAR10 of perturbation balls with l2 and l∞ norm,
respectively. Here, we consider CNNs as base learners.

− 2ϵ

m∑
j=1

∥∇fj(x)∥q|fj(x)− y| − ∥∇f̄(x)∥q|f̄(x)− y|
m︸ ︷︷ ︸

cross diversity

where 1/p+ 1/q = 1.

In this theorem, the adversarial ensemble loss is decomposed
into the average of individual adversarial losses, prediction
diversity, gradient diversity and cross diversity. Gradient
diversity measures the dispersion of gradients concerning
the mean of gradients w.r.t. lq norm, and it exactly becomes
the variance as for q = 2. Prediction diversity can be
understood as the traditional diversity such as ambiguity
(Krogh & Vedelsby, 1994; Zhou, 2012). Cross diversity
can be viewed as a cross between functional outputs and
gradients. Gradient and cross diversities are highly relevant
to intrinsic structures of functions and functional outputs.
The detailed proof is given in Appendix B.1.

From Theorem 3.2, it is also observable that gradient and
cross diversities take more important roles on adversarial
ensemble learning as for larger ϵ (i.e., radius of perturbation
ball), yet prediction diversity dominates as for smaller ϵ.
Also, the decomposition is relevant to the lp-norm distance
of perturbation ball. Thus, the characterization of diversities
in adversarial ensemble learning is more complicated than
that of traditional non-adversarial ensemble learning.

Figure 1 presents an intuitive illustration for the diversity
decomposition of Theorem 3.2. Here, we consider dataset
CIFAR10 with two classes, and focus on the perturbation
ball with the popular l2 and l∞ norm. More experiment
details are given in Appendix B.2, and we try to understand
the trends of loss functions and diversities as the number of
CNN-base learners increases.

As can be seen from Figure 1, we have smaller adversarial
ensemble loss as for larger prediction, gradient and cross
diversities w.r.t. l2 and l∞ norm perturbation balls, when we
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keep average of individual adversarial losses stable. Gener-
ally, gradient and cross diversities are larger than prediction
diversity and take more important roles. This is nicely in
accordance with our Theorem 3.2, and diversity empirically
plays an important role in adversarial ensemble learning.

We focus on the first-order approximation as in previous
adversarial ensemble methods (Kariyappa & Qureshi, 2019;
Dabouei et al., 2020; Huang et al., 2021), and it is interesting
to explore the second-order (or higher-order) approximation
from gradients and Hessian matrices. The main challenge is
how to obtain the closed-form solution of adversarial loss
via second-order approximation, because it is relevant to the
roots of high-order polynomials (Forsythe & Golub, 1965;
Moré & Sorensen, 1983; Fortin & Wolkowicz, 2004). More
discussions on this issue are given in Appendix B.3.

Relevant to previous adversarial ensemble methods

Most previous ensemble methods consider the first-order
approximation of adversarial loss functions (Kariyappa &
Qureshi, 2019; Dabouei et al., 2020; Yang et al., 2021;
Bogun et al., 2022), and the diversity is measured by the
average of cos values over pairs of gradients of base learner.
Specifically, the diversity w.r.t. instance x is given by

1

m(m− 1)

m∑
i=1

m∑
j=i+1

cos(∇fi(x),∇fj(x)),

where cos(∇fi(x),∇fj(x)) denotes the cos value of the
angle between ∇fi(x) and ∇fj(x). We could derive the
relationship between our gradient diversity and previous
diversity via the cos functions as follows:

Gradient diversity =
mϵ2 − ϵ2

m2

m∑
i=1

∥∇fi(x)∥22

− ϵ2

m2

∑
i ̸=j

∥∇fi(x)∥2∥∇fj(x)∥2 cos(∇fi(x),∇fj(x)) .

It is feasible to enlarge gradient diversity by decreasing cos
functions, which is nicely in accordance with previous work
(Dabouei et al., 2020; Bogun et al., 2022). Meanwhile, it is
noteworthy of other important factors on gradient diversity
such as gradient norm, rather than only one factor, which
can be shown by following examples.
Example 1. There exist two ensembles of the same averages
of cos values and individual adversarial losses, but with
different adversarial ensemble losses.

Proof. We focus on 2-dimensional instance space X ⊆ R2

and label space Y ⊆ R, and consider

f1(x) = x1 + x2, f2(x) = x1 − 3x2 ,

f3(x) = abx1 + bx2, f4(x) = abx1 − bx2 ,
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Figure 2. An illustration of the influence of average cos value
on dataset CIFAR10 of perturbation balls with l2 and l∞ norm,
respectively. Here, we consider CNNs as base learners.

where a = (
√
5−1)/2 and b = (

√
6+1)/(a+

√√
5a). We

study two ensembles: one ensemble of f1 and f2; the other
ensemble of f3 and f4. For example (x, y) = ([1, 0], 1) and
perturbation set ∆ = {δ : ∥δ∥2 ≤ 2}, we have

cos(∇f1(x),∇f2(x)) = cos(∇f3(x),∇f4(x)) ,

also with the same average of individual adversarial losses

2∑
i=1

max
δ∈∆

(fi(x+ δ)− y)2

2
=

4∑
i=3

max
δ∈∆

(fi(x+ δ)− y)2

2
.

However, the adversarial ensemble losses are different from

max
δ∈∆

(f1(x+ δ)/2 + f2(x+ δ)/2− y)2 = 8 ,

max
δ∈∆

(f3(x+ δ)/2 + f4(x+ δ)/2− y)2 ≈ 7.2 .

Here, we consider the l2 norm in perturbation set ∆, and
similar analysis could be made for lp-norm. More details
are presented in Appendix B.4.

In addition to Example 1, we could also present empirical
studies on adversarial ensemble losses versus the cos values
over dataset CIFAR10, and the experiment details are given
in Appendix B.2. Figure 2 shows the curves of adversarial
ensemble loss, the averages of cos values and individual
adversarial losses with l2 and l∞ norm.

From Figure 2, it is clear that adversarial ensemble losses
keep decreasing when we increase number of CNN-base
learners, whereas it almost remains constant for the averages
of cos values and individual adversarial losses. Therefore,
it is not sufficient to characterize the diversity of adversarial
ensemble by merely considering the average of cos values
as in (Dabouei et al., 2020; Bogun et al., 2022).

3.3. Diversity decomposition w.r.t. cross-entropy loss

We study the decomposition of adversarial ensemble w.r.t.
cross-entropy loss for binary classification, and also follow
the first-order approximation f(x+δ) ≈ f(x)+∇f(x)T δ.
For base learners with logit outputs (i.e., the logarithm of
the ratio of probabilities), we have the probability of the
positive class over x+ δ as follows:

pf (x+ δ) =
(
1 + exp(−(f(x) +∇f(x)T δ)

)−1
. (1)
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Figure 3. An illustration of diversity decomposition in Theorem 3.4
on dataset CIFAR10 of perturbation balls with l2 and l∞ norm,
respectively. Here, we consider CNNs as base learners.

The cross-entropy loss over (x+ δ, y) is given by

ℓ(f(x+ δ), y) = −y(f(x) +∇f(x)T δ)

+ ln(1 + exp(f(x) +∇f(x)T δ)) ,

as in (Bishop & Nasrabadi, 2006), and recall that

δ∗f ∈ argmaxδ∈∆ϵ
p
ℓ(f(x+ δ), y) . (2)

We have the following closed-form solution for pf (x+ δ∗),
and the detailed proof is presented in Appendix C.1.

Lemma 3.3. For function f and example (x, y), we have

pf (x+δ∗f ) =
(
1+exp(−(f(x)−(2y−1)∥∇f(x)∥qϵ))

)−1

where probability of positive class pf (·) and perturbation
δ∗f are defined by Eqns. (1) and (2), respectively.

Based on this lemma, we have

Theorem 3.4. For ensemble f̄ =
∑m

j=1 fj/m, we have
the decomposition of adversarial ensemble loss under the
first-order approximation over example (x, y) as follows:

max
δ∈∆ϵ

p

ℓ(f̄(x+ δ), y) =

m∑
j=1

maxδ∈∆ϵ
p
ℓ(fj(x+ δ), y)

m︸ ︷︷ ︸
average of individual adversarial losses

−r

m∑
j=1

∥∇fj(x)∥q − ∥∇f̄(x)∥q
m︸ ︷︷ ︸

gradient diversity

−
m∑
j=1

KL(pf̄ (x̃f̄ ), pfj (x̃fj ))

m︸ ︷︷ ︸
cross diversity

where 1/p + 1/q = 1, r = ϵ(y − pf̄ (x̃f̄ ))(2y − 1), pf (·)
is defined by Eqn. (1), and x̃f = x+ δ∗f is the adversarial
example with δ∗f from Eqn. (2).

In this theorem, the adversarial ensemble loss is decomposed
into the average of individual adversarial losses, gradient
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Figure 4. An illustration of influence of the average cos value on
dataset CIFAR10 of perturbation balls w.r.t. l2 and l∞ norm,
respectively. Here, we consider CNNs as base learners.

diversity and cross diversity. The cross diversity shows the
diversity of base learners according to their KL divergence
to ensemble f̄ , which is relevant to function outputs and
gradients, as shown in Lemma 3.3. It is evident that the
decomposition of Theorem 3.4 is quite different from that
of Theorem 3.2 because of different loss functions. The
detailed proof is presented in Appendix. C.2.

We also present Figure 3 to illustrate the decomposition of
Theorem 3.4, and some experimental details are given in
Appendix B.2. As can be seen, adversarial ensemble loss
gets smaller as for larger cross and gradient diversities w.r.t.
l2 and l∞ norm perturbation balls, when we maintain the
average of individual adversarial losses stable. In addition,
it is not sufficient to characterize the diversity of adversarial
ensemble by only merely considering the average of cos
values as done in (Dabouei et al., 2020; Bogun et al., 2022).
We also present some empirical studies on the influence of
average cos values on adversarial ensemble loss shown in
Figure 4, and more details are given in Appendix C.3.

4. Our AdvEOAP Method
Motivated from our theoretical analysis in Theorem 3.4, we
develop a robust ensemble method for multi-class learning,
and the basic idea is to train multiple deep neural networks
for adversarial ensemble via a regularization by considering
gradient diversity and cross diversity simultaneously.

For multi-class learning with κ classes, the base learner
f = (f1, f2, · · · , fκ) : X → Rκ maps each instance to a
κ-dimensional logit vector. The predicted probability vector
pf (x) = (pf1(x), pf2(x), · · · , pfκ(x)) can be calculated
from f(x) via softmax function as follows

pfk(x) =
exp (fk(x))∑κ
j=1 exp (fj(x))

. (3)

This section also focuses on the first-order approximation
f(x + δ) ≈ f(x) + Jf (x)δ, where Jf (x) is the Jacobi
matrix of f (Rudin et al., 1964). Denote by

δ∗f ∈ argmaxδ∈∆ϵ
p
ℓ(f(x+ δ), y) . (4)

For m base learners f1, · · · ,fm with fj = (fj,1, · · · , fj,κ),

5



On the Diversity of Adversarial Ensemble Learning

class 1 class 2 class 3 class 4

Pr
ob
ab
ili
ty Learner1

class 1 class 2 class 3 class 4

Pr
ob
ab
ili
ty Learner2

class 1 class 2 class 3 class 4

Pr
ob
ab
ili
ty Learner3

class 1 class 2 class 3 class 4
Pr
ob
ab
ili
ty Ensemble

Figure 5. An illustration of orthogonality by optimizing Eqn. (5).

we have cross diversity for multi-classification

Cross diversity =

m∑
j=1

KL(pf̄ (x+ δ∗
f̄
),pfj

(x+ δ∗fj
))

m
,

where pf (·) and δ∗f are given by Eqns. (3)-(4), respectively.
From some algebraic derivations in Appendix D.1, we have

Gradient diversity =

m∑
j=1

⟨r,Jfj (x)δ
∗
fj

− Jf̄ (x)δ
∗
f̄
⟩

m

=

m∑
j=1

⟨r,fj(x+ δ∗fj
)− f̄(x+ δ∗

f̄
)⟩

m

where r = pf̄ (x+ δ∗
f̄
)− ey .

For multi-class learning, we could simultaneously improve
cross diversity and gradient diversity by diversifying the
output predictions of adversarial examples of base learners.
This motivates us to develop a new ensemble algorithm via
orthogonal adversarial predictions, i.e., we orthogonalize
the outputs over adversarial examples for base learners to
improve diversity. The orthogonal idea is inspired by (Pang
et al., 2019), which is limited only on clean examples, while
our work generalizes to adversarial examples.

Specifically, we introduce a regularization for orthogonal
adversarial output predictions of f1, · · · ,fm as

Γα(x, y) = H

 m∑
j=1

p̃fj (x+ δ∗fj
)

m

+α log(det(ATA)) ,

where H(·) is the function of information entropy and

A = [p̃f1
(x+ δ∗f1

), · · · , p̃fm
(x+ δ∗fm

)] ∈ R(K−1)×m .

Here, p̃f (·) is an (K − 1)-dimensional vector obtained by
removing the y-th element of pf (·) and normalizing with
l1 norm, and det(ATA) shows the square of volume of
polytope spanned by p̃f1

(x+ δ∗f1
), · · · , p̃fm

(x+ δ∗fm
) as

in (Bernstein, 2009). Intuitively, the orthogonal probabil-
ity vectors p̃f1(x + δ∗f1

), · · · , p̃fm(x + δ∗fm
) could yield

Algorithm 1 The AdvEOAP method
Input: training dataset S, number of base learners m,
learning rate η and the SGD iterations T
Initialize: base learners f1, · · · ,fm

for t = 1 to T do
Partition training dataset S into batches S1, · · · , Sb

for k ∈ [b] do
Generate adversarial examples for every base learner
and example by the PGD-attack
for j = 1 to m do

Update learner fj by gradient descent in Eqn. (5)
end for

end for
end for
Output: Ensemble model f̄ =

∑m
j=1 fj/m

larger volume and entropy in Γα(x, y), and hence improve
gradient diversity and cross diversity simultaneously.

Given training sample S = {(x1, y1), · · · , (xn, yn)}, we
present the final objective optimization as

n∑
i=1

m∑
j=1

max
δ∈∆ϵ

p

ℓ(fj(xi + δ), yi)− λΓα(xi, yi)

mn
, (5)

where λ is a hyper-parameter to tradeoff adversarial loss and
regularization Γα(·). We could obtain mutual orthogonal
base learners f1, · · · ,fm from the optimization of Eqn. (5),
and the details are given in Appendix D.2.

Figure 5 gives an illustration for the orthogonality of base
learners. Here are three base learners in multi-class learning
of 4 classes, and the ground-truth class is class 1. The output
predictions are mutually orthogonal except for the ground-
truth class 1. Therefore, the ensemble of three base learners
could make correct prediction robustly even if three base
learners are misled to different classes.

On the optimization of Eqn. (5), we take adversarial training
method with stochastic gradient descent from (Madry et al.,
2018). We generate adversarial examples w.r.t. all base
learners by PGD-attack, and calculate gradients to update
the parameters for each base learner of deep neural network.
Algorithm 1 presents the detailed description for our Ad-
versarial Ensemble training with Orthogonal Adversarial
Predictions, which is short for AdvEOAP. For Algorithm 1,
the time complexity takes m-times as that of training a
single neural network adversarially. In addition, it takes
O(m3) computational cost to calculate the regularization
and gradients. More details are given in Appendix D.3
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Table 1. Comparison of classification accuracies (mean ± std %) over adversarial examples generated by different adversarial attacks.
•/◦ indicates that our AdvEOAP is significantly better/worse than the corresponding methods (pair-wise t-test at 95% significance level).

Methods FGSM PGD10 PGD20 PGD40 AutoPGD MORA AutoAttack

M
N

IS
T

Our AdvEOAP 96.413±0.124 95.676±0.039 95.648±0.056 95.504±0.098 94.907±0.187 94.672±0.209 94.072±0.423

GAL 10.271±0.709• 00.001±0.002• 00.002±0.005• 00.000±0.000• 00.000±0.000• 00.004±0.005• 00.000±0.000•
ADP 10.888±1.931• 00.000±0.000• 00.000±0.000• 00.000±0.000• 00.000±0.000• 00.004±0.006• 00.000±0.000•

AdvADP 95.333±0.098• 95.119±0.061 95.059±0.089 93.032±0.191• 93.298±0.109• 93.172±0.063• 92.948±0.062•
DVERGE 74.903±1.059• 37.506±4.292• 34.807±4.981• 05.846±2.573• 00.001±0.002• 00.299±0.361• 00.000±0.000•

PDD 10.446±1.293• 06.041±2.640• 04.059±2.904• 02.256±2.792• 01.163±1.295• 04.100±4.006• 00.000±0.000•
TRS 91.044±0.892• 86.544±1.300• 86.709±1.014• 85.954±3.283• 80.902±4.905• 79.628±5.471• 78.615±5.997•

iGATADP 83.814±2.408• 79.892±1.410• 79.281±1.732• 79.778±2.028• 59.357±4.559• 50.208±6.439• 48.589±5.178•

F-
M

N
IS

T

Our AdvEOAP 82.743±0.263 81.770±0.245 81.752±0.248 80.543±0.290 81.467±0.079 80.643±0.332 80.506±0.327

GAL 15.404±6.709• 00.352±0.447• 00.170±0.215• 00.315±0.306• 00.000±0.000• 00.009±0.005• 00.000±0.000•
ADP 22.287±1.741• 00.001±0.002• 00.001±0.002• 00.000±0.000• 00.000±0.000• 00.009±0.005• 00.000±0.000•

AdvADP 82.728±0.331 79.167±0.338• 79.074±0.387• 80.080±0.408• 78.461±0.372• 77.833±0.313• 77.732±0.245•
DVERGE 48.242±1.536• 27.140±2.878• 25.846±3.019• 32.652±3.033• 17.222±4.786• 20.126±4.605• 15.035±5.560•

PDD 29.936±4.991• 18.740±4.925• 17.958±4.873• 19.043±4.524• 12.161±5.521• 14.408±3.617• 00.319±0.466•
TRS 70.767±0.466• 69.330±0.125• 69.285±0.105• 67.641±0.440• 68.719±0.098• 67.800±0.183• 67.250±0.304•

iGATADP 66.278±2.051• 63.139±0.236• 62.967±0.149• 62.882±0.379• 61.920±0.083• 51.869±4.773• 48.750±5.763•

C
IF

A
R

10

Our AdvEOAP 55.718±0.245 53.076±0.249 52.996±0.255 52.903±0.295 51.997±0.234 48.318±0.065 47.884±0.060

GAL 12.370±2.959• 00.007±0.013• 00.000±0.000• 00.000±0.000• 00.000±0.000• 00.002±0.004• 00.000±0.000•
ADP 23.100±0.757• 00.008±0.010• 00.001±0.003• 00.000±0.000• 00.000±0.000• 00.001±0.003• 00.000±0.000•

AdvADP 55.478±0.214 47.116±0.278• 46.802±0.284• 46.573±0.332• 44.192±0.216• 42.904±0.235• 42.174±0.198•
DVERGE 28.536±0.882• 05.358±0.344• 04.830±0.343• 04.690±0.269• 02.246±0.155• 02.868±0.178• 01.748±0.164•

PDD 23.750±4.005• 14.116±4.596• 14.896±4.596• 17.400±2.710• 05.570±2.365• 09.526±4.345• 01.000±0.626•
TRS 39.350±0.402• 37.548±0.431• 37.453±0.440• 37.263±0.259• 36.690±0.440• 32.828±0.433• 32.588±0.433•

iGATADP 19.990±0.509• 18.075±0.035• 18.000±0.056• 13.707±2.596• 17.260±0.099• 12.365±1.054• 12.090±1.103•

5. Experiments
We conduct experiments on three datasets2: MNIST of
70000 images and 784 dimensions, F-MNIST of 70000
images and 784 dimensions, and CIFAR10 of 60000 im-
ages and 3072 dimensions. Three datasets have been well-
studied in previous works (Strauss et al., 2017; Kariyappa
& Qureshi, 2019; Yang et al., 2021; Deng & Mu, 2024). We
compare our method with the state-of-the-art methods on
adversarial ensemble learning as follows:

• GAL: Non-adversarial training via the diversity of cos
values of gradients (Kariyappa & Qureshi, 2019);

• ADP: Non-adversarial training via the diversity of the
orthogonality of predictions (Pang et al., 2019);

• AdvADP: Adversarial training via the diversity of the
orthogonality of predictions (Pang et al., 2019);

• DVERGE: Adversarial training on the exchange of
adversarial examples in base learners to diversify the
adversarial vulnerability (Yang et al., 2020);

2Download from https://paperswithcode.com/dataset.

• PDD: Non-adversarial training to diversify the feature
representations via dropouts (Huang et al., 2021);

• TRS: GAL by preserving the smoothness of base learn-
ers (Yang et al., 2021);

• iGATADP: AdvADP by allocating globally adversarial
examples to base learners (Deng & Mu, 2024).

For all datasets, the perturbation size is set as 0.2, 0.05 and
0.03 under l∞-norm ball, respectively, as done in (Croce
& Hein, 2020; Deng & Mu, 2024). For all methods, we
select ResNet20 as base learners with learners number as 3,
3 and 8 for MNIST, F-MNIST and CIFAR10, respectively.
More settings are given in Appendix E.1. All experiments
are performed on a server with 64 CPU cores (2 Intel Xeon
Gold 6430 CPUs) and NVIDIA GeForce RTX 4090 GPU,
running Ubuntu 24.04 with 1TB main memory.

5.1. Performance under adversarial attacks

We take accuracy to measure performance on adversarial
examples generated by seven popular adversarial attacks,
i.e., FGSM (Goodfellow et al., 2015), PGD10, PGD20,

7
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Table 2. Comparison of classification accuracies (mean ± std %) over adversarial examples generated by EOT and BPDA attacks. •/◦
indicates that our AdvEOAP is significantly better/worse than the corresponding methods (pair-wise t-test at 95% significance level).

Attacks Datasets Our AdvEOAP GAL AdvADP PDD DVERGE TRS iGATADP

E
O

T

MNIST 88.116±0.316 01.178±1.958• 85.724±0.163• 03.913±5.471• 38.358±3.147• 75.535±4.981• 72.721±1.258•
F-MNIST 62.416±0.778 02.201±1.886• 61.137±0.547• 08.323±1.815• 35.162±2.390• 56.592±1.110• 57.893±2.147•
CIFAT10 42.003±0.504 01.490±0.179• 40.787±0.238• 08.535±0.006• 20.371±0.550• 31.629±1.156• 16.408±2.697•

B
PD

A
1 MNIST 95.382±0.079 00.002±0.005• 92.713±0.137• 02.757±2.852• 14.187±7.868• 85.024±3.758• 71.763±3.041•

F-MNIST 80.080±0.256 00.352±0.447• 79.074±0.387• 17.958±4.873• 25.846±3.019• 66.409±0.450• 62.967±0.149•
CIFAT10 49.530±0.050 00.000±0.000• 44.687±0.286• 14.896±4.596• 04.730±0.343• 33.417±0.310• 10.693±1.776•

B
PD

A
2 MNIST 95.676±0.104 00.000±0.000• 93.646±0.133• 12.398±4.848• 19.385±8.467• 86.783±3.416• 84.261±1.767•

F-MNIST 80.832±0.311 01.098±0.243• 80.832±0.380 30.152±8.392• 40.672±2.473• 68.032±0.364• 73.444±0.657•
CIFAT10 53.092±0.230 00.000±0.000• 47.858±0.174• 25.277±4.449• 05.608±0.343• 37.383±0.355• 14.500±2.608•

B
PD

A
3 MNIST 96.132±0.071 00.000±0.000• 94.857±0.085• 09.165±0.941• 57.491±1.640• 88.993±2.873• 91.126±0.672•

F-MNIST 81.309±0.409 00.343±0.206• 82.106±0.468 30.265±9.179• 52.157±1.658• 68.900±0.330• 75.948±0.619•
CIFAT10 52.440±0.226 00.000±0.000• 46.240±0.252• 25.690±3.737• 05.347±0.382• 36.480±0.261• 13.600±2.548•

B
PD

A
4 MNIST 94.596±0.135 00.022±0.020• 92.830±0.244• 04.941±4.538• 02.635±1.482• 81.595±2.255• 44.669±7.900•

F-MNIST 80.241±0.247 00.026±0.045• 80.757±0.386 05.706±7.595• 50.324±4.693• 67.526±0.467• 68.174±0.462•
CIFAT10 53.383±0.110 00.273±0.073• 53.397±0.160 12.650±1.642• 26.573±0.046• 40.507±0.399• 14.410±1.161•

Table 3. Comparison of accuracies (mean±std%) for our AdvEOAP

with and without regularization Γ(·) under the APGD attack.

Our AdvEOAP MNIST F-MNIST CIFAR10
without Γα(·) 93.513±0.046 80.317±0.159 50.833±0.102

with Γα(·) 94.907±0.187 81.202±0.311 51.997±0.234
Improvement 1.394±0.149↑ 1.150±0.140↑ 1.163±0.257↑

PGD40 (Madry et al., 2018), AutoPGD (Croce & Hein,
2020), MORA (Gao et al., 2022) and AutoAttack (Croce &
Hein, 2020). All methods are evaluated over 50 runs with
different random initializations, as summarized in Table 1.

From Table 1, it is clear that our AdvEOAP method achieves
significantly better performance than GAL, PDD and TRS,
since it wins at most times and never loses. This is because
such methods merely focus on cos values as the diversity
measure, yet ignore other factors such as cross diversity and
individual adversarial losses, which is consistent with the
ensemble decomposition as in Theorem 3.4.

Our AdvEOAP is also better than DEVERGE and iGATADP,
since DVERGE exchanges adversarial examples of base
learners and iGATADP allocates adversarial examples of
ensemble, without the consideration of diversities of base
learners. Our AdvEOAP outperforms ADP and AdvADP,
since such methods consider diversity over clean examples,
rather than adversarial examples. It is quite different to study
diversity in the adversarial ensemble learning, which is
heavily relevant to intrinsic structures and output predictions
of models simultaneously as in Theorem 3.1.

We further study two additional adversarial attacks BPDA
(Athalye et al., 2018a) and EOT (Athalye et al., 2018b),

0 0.01 0.02 0.03 0.04 0.05
Perturbation Size

0.80
0.83
0.85
0.88
0.90
0.93
0.95
0.98
1.00

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y MNIST

Our method
AdvADP
TRS
iGAT

0 0.01 0.02 0.03 0.04 0.05
Perturbation Size

0.40
0.50
0.60
0.70
0.80
0.90
1.00

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y FMNIST

Our method
AdvADP
TRS
iGAT

Figure 6. Influence of perturbation sizes under the PGD20 attack.

where EOT considers adversarial perturbations insensitive
to transformations, and BPDA considers potential gradient
risks and designs corresponded attacks. More details are
given in Appendix E.2. We implement EOT and four BPDA
attacks, and experimental comparisons are summarized in
Table 2. It is obvious that our AdvEOAP method achieves
better performance than other adversarial ensembles, which
shows the robustness of our method to gradient risks and
adversarial perturbations insensitive to transformations.

We also present some ablation experiments to verify the
effectiveness of the regularization Γα(·) in Eqn. (5), which
essentially considers gradient diversity and cross diversity
via orthogonal adversarial predictions. Table 3 shows some
experimental comparisons for our AdvEOAP with and with-
out regularization. It is clear that our method takes better
performance with regularization, which nicely shows the
importance of diversity on the design of ensemble methods.

We study the influence of different perturbation size ϵ over
datasets MNIST and FMNIST, as shown in Figure 6. It is
observable that our AdvEOAP achieves better or comparable
performance than other ensemble methods for different size
of perturbations, in particular for larger ϵ. This shows the
effectiveness of our methods for larger perturbation size.
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Figure 8. The frequency of number of misled classes.

We finally compare the training time of AdvEOAP with other
methods in Figure 7. As can be seen, our AdvEOAP takes
comparable training time to other adversarial-training en-
sembles AdvADP, DVERGE, PDD, TRS and iGAT, but
with more time than the non-adversarial training methods
GAL and ADP, which obviously take smaller adversarial
prediction accuracy as shown in Table 1.

5.2. Orthogonality and convergence analysis

We now illustrate the orthogonality of base learners for our
AdvEOAP, which could mislead base learners to different
classes under adversarial attacks. Figure 8 summarizes the
frequency of number of misled classes with 8 base learners
over two datasets MNIST and FMNIST. It is clear that base
learners of our AdvEOAP predict with more different classes
than that of AdvEOAP without regularization.

We also present the convergence analysis on adversarial
ensemble loss, average of adversarial losses, as well as
gradient diversity and cross diversity during the training
process. Figure 9 presents the convergence curves over three
datasets MNIST, FMNIST and CIFAR10. It is clear that our
AdvEOAP method could decrease adversarial ensemble loss,
and simultaneously increase gradient diversity and cross
diversity. This is nicely in accordance with our diversity
decomposition in Theorem 3.4.

6. Conclusion
Diversity has always been one of the most crucial factors
on the designs of ensemble methods. This work focuses
on the fundamental problems of diversity in the adversarial
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Figure 9. The curve of adversarial losses and diversities during the
training process, where we normalize according to the average of
individual adversarial losses.

ensemble learning. We prove the NP-Hard problem on the
precise calculation of diversity for networks in adversarial
ensemble learning, and give the first diversity decomposition
under first-order approximation. Specifically, adversarial
ensemble loss can be decomposed into average of individual
adversarial losses, prediction diversity, gradient diversity
and cross diversity. We consider similar diversity decompo-
sition for classification with cross-entropy loss. Based on
theoretical analysis, we develop a new ensemble method via
orthogonal adversarial predictions to improve gradient and
cross diversity simultaneously. An interesting future work is
to explore other adversarial ensemble algorithms with better
robustness and generalization from our theoretical analysis.

Acknowledgements
The authors want to thank the reviewers for their helpful
comments and suggestions. This research was supported by
National Key R&D Program of China (2021ZD0112802)
and NSFC (62376119).

Impact Statement
This work shows the NP-Hardness of the calculation for
diversity in adversarial ensemble learning and presents the
first diversity decomposition with first-order approximation.
It further develops a new ensemble method for adversarial
defense and validates it through a series of experiments.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

9



On the Diversity of Adversarial Ensemble Learning

References
Abernethy, J., Awasthi, P., and Kale, S. A multiclass boost-

ing framework for achieving fast and provable adversarial
robustness. CoRR, abs/2103.01276, 2021.

Andriushchenko, M., Croce, F., Flammarion, N., and Hein,
M. Square attack: A query-efficient black-box adversarial
attack via random search. In Proceedings of the 16th
European Conference on Computer Vision, pp. 484–501,
Virtual Event, 2020.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples. In Proceedings of the
35th International Conference on Machine Learning, pp.
274–283, Stockholm, Sweden, 2018a.

Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. Synthe-
sizing robust adversarial examples. In Proceedings of the
35th International Conference on Machine Learning, pp.
284–293, Stockholm, Sweden, 2018b.

Bartoldson, B. R., Diffenderfer, J., Parasyris, K., and
Kailkhura, B. Adversarial robustness limits via scaling-
law and human-alignment studies. In Proceedings of the
41st International Conference on Machine Learning, pp.
3046–3072, Vienna, Austria, 2024.

Bernstein, D. S. Matrix Mathematics: Theory, Facts, and
Formulas. Princeton University Press, 2009.

Bishop, C. M. and Nasrabadi, N. M. Pattern Recognition
and Machine Learning, volume 4. Springer, 2006.

Bogun, A., Kostadinov, D., and Borth, D. Saliency diver-
sified deep ensemble for robustness to adversaries. In
Proceedings of the 36th AAAI Workshop on Adversarial
Machine Learning and Beyond, Virtual Event, 2022.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks. In Proceedings of the 37th International Con-
ference on Machine Learning, pp. 2206–2216, Vienna,
Austria, 2020.

Dabouei, A., Soleymani, S., Taherkhani, F., Dawson, J., and
Nasrabadi, N. M. Exploiting joint robustness to adver-
sarial perturbations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 1122–1131, Seattle, WA, 2020.

Deng, Y. and Mu, T. Understanding and improving ensem-
ble adversarial defense. In Advances in Neural Infor-
mation Processing Systems 37, pp. 58075–58087, New
Orleans, LA, 2024.

Deng, Y., Zhang, T., Lou, G., Zheng, X., Jin, J., and Han,
Q.-L. Deep learning-based autonomous driving systems:
A survey of attacks and defenses. IEEE Transactions on
Industrial Informatics, 17(12):7897–7912, 2021.

Dietterich, T. G. Ensemble methods in machine learning.
In Proceedings of the 1st International Workshop on Mul-
tiple Classifier Systems, pp. 1–15, Cagliari, Italy, 2000.

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam,
A. L., and Kohane, I. S. Adversarial attacks on medical
machine learning. Science, 363(6433):1287–1289, 2019.

Forsythe, G. E. and Golub, G. H. On the stationary values of
a second-degree polynomial on the unit sphere. Journal
of the Society for Industrial and Applied Mathematics, 13
(4):1050–1068, 1965.

Fortin, C. and Wolkowicz, H. The trust region subproblem
and semidefinite programming. Optimization Methods
and Software, 19(1):41–67, 2004.

Fursov, I., Morozov, M., Kaploukhaya, N., Kovtun, E.,
Rivera-Castro, R., Gusev, G., Babaev, D., Kireev, I., Za-
ytsev, A., and Burnaev, E. Adversarial attacks on deep
models for financial transaction records. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 2868–2878, Virtual Event,
2021.

Gao, X., Xu, C.-Z., et al. Mora: Improving ensemble ro-
bustness evaluation with model reweighing attack. In
Advances in Neural Information Processing Systems 35,
pp. 26955–26965, New Orleans, LA, 2022.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In Proceedings of
the 3rd International Conference on Learning Represen-
tations, San Diego, CA, 2015.

Gowal, S., Rebuffi, S.-A., Wiles, O., Stimberg, F., Calian,
D. A., and Mann, T. A. Improving robustness using gener-
ated data. In Advances in Neural Information Processing
Systems 34, pp. 4218–4233, Virtual Event, 2021.

Guo, J.-Q., Teng, M.-Z., Gao, W., and Zhou, Z.-H. Fast
provably robust decision trees and boosting. In Proceed-
ings of the 39th International Conference on Machine
Learning, pp. 8127–8144, Baltimore, MD, 2022.

Huang, B., Ke, Z., Wang, Y., Wang, W., Shen, L., and Liu, F.
Adversarial defence by diversified simultaneous training
of deep ensembles. In Proceedings of the 35th AAAI Con-
ference on Artificial Intelligence, pp. 7823–7831, Virtual
Event, 2021.

Kariyappa, S. and Qureshi, M. K. Improving adversarial
robustness of ensembles with diversity training. CoRR,
abs/1901.09981, 2019.

10



On the Diversity of Adversarial Ensemble Learning

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In Proceedings of the 29th Inter-
national Conference on Computer Aided Verification, pp.
97–117, Heidelberg, Germany, 2017.

Krogh, A. and Vedelsby, J. Neural network ensembles, cross
validation, and active learning. In Advances in Neural
Information Processing Systems 7, pp. 231, Denver, CO,
1994.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In Proceedings of the 6th Interna-
tional Conference on Learning Representations, Vancou-
ver, Canada, 2018.
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Figure 10. The structure of transformed neural network. The φ1,j(·),max(·) and min(·) functions can be constructed by ReLU functions.
The φ2 is fully connected layer with −1, 1 or 0 weights. The φ3 is fully connected layer with 1 or 0 weights.

A. Proof of Theorem 3.1
Definition A.1 (3-SAT problem). Given r boolean variables and s clauses in a conjunctive normal form CNF formula with
each clause’s size at most 3, is there an assignment to the r variables to make the CNF formula to be satisfied?

We present a key lemma for NP-hardness of adversarial squared loss, and the basic idea is a reduction from 3-SAT problem.
Lemma A.2. For some ReLU neural network g(·) and example (x0, y0), it is an NP-hard problem to precisely calculate the
following adversarial squared loss

max
δ∈∆ϵ

p

{(g(x+ δ)− y)2} .

Proof. It is sufficient to prove the NP-hardness of solving maxδ∈∆ϵ
p
{(g(x + δ) − y)2} = γ for some γ > 0. Let

ϕ = C1 ∧C2 ∧ · · · ∧Cs be a 3-SAT formula over a variable set V = {v1, · · · , vr}. Each Ci = q1i ∨ q2i ∨ q3i is a disjunction
with three literals q1i , q

2
i , q

3
i , and each literal is a variable from V or their negations. The 3-SAT problem is to determine

whether there exists an assignment a : V → {0, 1} for true ϕ.

We will show that any 3-SAT formula ϕ can be transformed into a neural network g over sample (x0, y0) = (0,−1) in
polynomial time, as well as the following sufficient and necessary condition:

ϕ is satisfiable ⇐⇒ max
δ∈∆ϵ

p

{(g(x0 + δ)− y0)
2} = (ϵ/r1/p + 1)2 . (6)

We will construct the ReLU neural network g(x) = φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1(x) with input x = (x1, x2, · · · , xr) ∈ Rr as
shown in Figure 10. Specifically, we present the detailed constructions as follows:

• We construct function φ1(x) : Rr → Rr with the j-th element

[φ1(x)]j = max(xj+ϵ/r1/p, 0)−max(xj−ϵ/r1/p, 0)−ϵ/r1/p =


ϵ/r1/p for xj > ϵ/r1/p

xj for − ϵ/r1/p < xj ≤ ϵ/r1/p

−ϵ/r1/p for xj ≤ −ϵ/r1/p
,

For x0 = 0 and ∥δ∥p ≤ ϵ, we can achieve the maximum or minimum of the elements of φ1(x0 + δ) independently. It
is easy to construct φ1(x) with a ReLU neural network because of three operators +, − and max(·, 0). Intuitively, the
i-th element of φ1(x0 + δ) can be viewed as the variable vi in 3-SAT problem, and its value −ϵ/r1/p and ϵ/r1/p can
be viewed as the false and true of variable vi, respectively.

• We construct φ2(x) = (x,−x), and this follows that, for j ∈ [2r], x0 = 0 and ∥δ∥p ≤ ϵ,

−ϵ/r1/p ≤ [φ2 ◦ φ1(x0 + δ)]j ≤ ϵ/r1/p .

We achieve the maximum or minimum for the first r elements of φ2 ◦ φ1(x0 + δ) independently. The last r elements
are always the opposite of the first r elements. Intuitively, the last r elements of φ2 ◦ φ1(x0 + δ) can be viewed as the
negation of variables v1, · · · , vr in 3-SAT problem.
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• We construct φ3(x) = Wx with W = (w1
1;w

2
1;w

3
1; · · · ;w1

s ;w
2
s ;w

3
s)

T ∈ R3s×2r. Here, we construct three vectors
w1

i ,w
2
i ,w

3
i ∈ {0, 1}2r for clause Ci = q1i ∨ q2i ∨ q3i for i ∈ [s]. For k ∈ [3], the wk

i is the unit vector with j-th and
(j+ r)-th element 1 if qki is variable vj and its negation ¬vj , respectively. For j ∈ [3s], x0 = 0 and ∥δ∥p ≤ ϵ, we have

−ϵ/r1/p ≤ [φ3 ◦ φ2 ◦ φ1(x0 + δ)]j ≤ ϵ/r1/p .

Intuitively, every three elements of φ3 ◦ φ2 ◦ φ1(x0 + δ) can be viewed as three literals of a clause in 3-SAT problem.
We achieve independently the maximum or minimum for φ3 ◦ φ2 ◦ φ1(x0 + δ) whose corresponding literals are
different variables.

• We construct φ4(x) = (max{x1, x2, x3},max{x4, x5, x6}, · · · ,max{x3s−2, x3s−1, x3s}), where max{·, ·, ·} =
max{max{·, ·}, ·} and min{·, ·, ·} = min{min{·, ·}, ·} can be constructed via ReLU function (max{·, 0} function) as

max{a, b} = max{a− b, 0}+ b and min{a, b} = −max{b− a, 0}+ b . (7)

For j ∈ [s], x0 = 0 and ∥δ∥p ≤ ϵ, we have

−ϵ/r1/p ≤ [φ4 ◦ φ3 ◦ φ2 ◦ φ1(x0 + δ)]j ≤ ϵ/r1/p .

We can achieve the maximum for the j-th element of φ4 ◦φ3 ◦φ2 ◦φ1(x0+δ) if and only if the (3j−2)-th, (3j−1)-th
or 3j-th elements of φ3 ◦ φ2 ◦ φ1(x0 + δ) are maximal. Intuitively, the max function can be viewed as the ∨ operator,
and the i-th element of φ4 ◦ φ3 ◦ φ2 ◦ φ1(x0 + δ) can be viewed as the clause Ci in 3-SAT problem.

• We construct φ5(x) = min{x1, x2, · · · , xs} = min{min{min{· · · , xs−2}, xs−1}, xs} via ReLU function. For
x0 = 0 and ∥δ∥p ≤ ϵ, we have

−ϵ/r1/p ≤ φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1(x0 + δ) ≤ ϵ/r1/p . (8)

We achieve the maximum if and only if all elements of φ4◦φ3◦φ2◦φ1(x0+δ) are maximal. Intuitively, the min function
can be viewed as the ∧ operator in 3-SAT problem. The −ϵ/r1/p and ϵ/r1/p value of φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1(x0 + δ)
can be viewed as the false and true of the CNF formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cs, respectively.

For (x0, y0) = (0,−1) and ϵ ≤ 1, it remains to show that, from Eqns. (6) and (8),

ϕ is satisfiable ⇐⇒ there is an δ s.t. g(δ) = ϵ/r1/p . (9)

=⇒ If ϕ = C1 ∧C2 ∧ · · · ∧Cm is satisfiable, then there is a satisfiable assignment α. We set the i-th element of δ as ϵ/r1/p

and −ϵ/r1/p if α(vi) is true and false, respectively. Then, we discuss g(δ) step by step as follows:

• The i-th element of φ1(δ) is −ϵ/r1/p and ϵ/r1/p if the i-th element of δ is −ϵ/r1/p and ϵ/r1/p, respectively;

• The first r elements of φ2 ◦ φ1(δ) are equal to φ1(δ) while the last r elements are the opposite of the first r elements;

• The (3(i− 1)+ j)-th element of φ3 ◦φ2 ◦φ1(δ) is the l-th and (l+ r)-th element of φ2 ◦φ1(δ) if literal qji is variable
vl and ¬vl, respectively;

• Every element of φ4 ◦ φ3 ◦ φ2 ◦ φ1(δ) is ϵ/r1/p, since there is at least one true literal in q1i , q
2
i , q

3
i for every satisfiable

Ci = q1i ∨ q2i ∨ q3i , and hence there is at least one element with ϵ/r1/p in every three elements of φ3 ◦ φ2 ◦ φ1(δ);

• The final output φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1(δ) is ϵ/r1/p, since φ5 takes the minimum of φ4 ◦ φ3 ◦ φ2 ◦ φ1(δ).

⇐= If g(δ) = ϵ/r1/p, we discuss δ as follows:

• Every elements of φ4 ◦ φ3 ◦ φ2 ◦ φ1(δ) is ϵ/r1/p from φ5(·) ∈ [−ϵ/r1/p, ϵ/r1/p];

• At least one element is equal to ϵ/r1/p in every three elements of φ3 ◦ φ2 ◦ φ1(δ), since φ4 takes the maximum of
every three elements. Without loss of generality, let all (3(i− 1) + 1)-th elements be ϵ/r1/p for i ∈ [m];
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Figure 11. The structure of the transformed neural network. The φ block is a network similarly in the proof of Theorem A.2.

• For the first r elements of φ2 ◦ φ1(δ), the l-th element will be equal to ϵ/r1/p if literal q1i is variable vl. For the last r
elements of φ2 ◦ φ1(δ), the (l + r)-th element will be equal to ϵ/r1/p if literal q1i is the negation of variable ¬vl;

• The l-th element of φ1(δ) is ϵ/r1/p and −ϵ/r1/p if the l-th element of φ2 ◦φ1(δ) is ϵ/r1/p and −ϵ/r1/p, respectively;

• The l-th element of δ is ϵ/r1/p and −ϵ/r1/p if the l-th element of φ1(δ) is ϵ/r1/p and −ϵ/r1/p, respectively.

Let vl be true and false if the l-th element of δ is ϵ/r1/p and −ϵ/r1/p, respectively. This assignment makes the CNF formula
satisfiable, since there is at least one element in every three elements of φ3 ◦ φ2 ◦ φ1(δ) with ϵ/r1/p.

Proof of Theorem 3.1. It is sufficient to prove the NP-hardness of solving

1

2

2∑
j=1

max
δ∈∆ϵ

p

{(fj(x+ δ)− y)2} − max
δ∈∆ϵ

p

{(f̄(x+ δ)− y)2} = γ for some γ > 0 .

Let ϕ = C1∧C2∧· · ·∧Cs be a 3-SAT formula over variable set V = {v1, · · · , vr}. Each Ci = q1i ∨q2i ∨q3i is a disjunction
with three literals q1i , q

2
i , q

3
i , and each literal is a variable from V or their negations. We will show that any 3-SAT formula

ϕ can be transformed into two neural networks f1, f2 and sample (x0, y0) = (0,−1) in polynomial time, as well as the
following sufficient and necessary condition:

ϕ is satisfiable ⇐⇒ Υ :=
1

2

2∑
j=1

max
δ∈∆ϵ

p

{(fj(δ) + 1)2} − max
δ∈∆ϵ

p

{(f̄(δ) + 1)2} = (ϵ/r1/p + 1)2 − 1 . (10)

We will construct the ReLU neural network f1(x) and f2(x) with inputs x ∈ Rr+1 in Figure 11. For ϕ = C1∧C2∧· · ·∧Cs,
we construct neural network g(x1:r) as shown in Lemma A.2, where x1:r are the first r elements of x. We construct
f1(x) = min{g(x1:r), η(xr+1)} with

η(xr+1) = max(xr+1 +
ϵ

r1/p
, 0)−max(xr+1 −

ϵ

r1/p
, 0)− ϵ

r1/p
=


ϵ/r1/p for xr+1 > ϵ/r1/p

xr+1 for − ϵ/r1/p < xr+1 ≤ ϵ/r1/p

−ϵ/r1/p for xr+1 ≤ −ϵ/r1/p .

It is easy to construct f1(x) via a ReLU neural network from Eqn. (7), and we have

ϕ is satisfiable ⇐⇒ max
δ∈∆ϵ

p

{(f1(δ) + 1)2} = (ϵ/r1/p + 1)2 . (11)

This is because −ϵ/r1/p ≤ f1(x) ≤ ϵ/r1/p from Eqn. (8), and for ϵ ∈ (0, 1], ϕ is satisfiable if and only if there exists
an δ s.t. f1(δ) = ϵ/r1/p. If f1(δ) = ϵ/r1/p, then ϕ is satisfiable from Eqn. (9), since we have g(δ1:r) = ϵ/r1/p from
f1(δ) = min{g(δ1:r), η(δr+1)} and η(δr+1) ≤ ϵ/r1/p. For the inverse direction, if ϕ is satisfiable, then there is an δ1:r s.t.
g(δ1:r) = ϵ/r1/p from Eqn. (9). This follows that f1(δ) = ϵ/r1/p for δk+1 = ϵ/r1/p.

In a similar manner, we construct f2(x) = min{g(x1:k), η(−xk+1)}, and have

ϕ is satisfiable ⇐⇒ max
δ∈∆ϵ

p

{(f2(δ) + 1)2} = (ϵ/r1/p + 1)2 . (12)
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For odd function η(x), we have the ensemble f̄(x) = (f1(x) + f2(x))/2 as

f̄(x) =
1

2
(min{g(x1:k), η(xk+1)}+min{g(x1:k), η(−xk+1)}) ≤

1

2
(η(xk+1)+η(−xk+1)) =

1

2
(η(xk+1)−η(xk+1)) = 0 .

We have −ϵ/r1/p ≤ f̄(x) ≤ 0, and it holds that (f̄(δ) + 1)2 ≤ 1 for ϵ ∈ (0, 1], and the equality holds for δ = 0. We have

max
∥δ∥p≤ϵ

{(f̄(δ) + 1)2} = 1 . (13)

For the proof of Eqn. (10), we have Υ = (ϵ/r1/p +1)2 − 1 if ϕ is satisfiable from Eqns. (11)-(13). For the inverse direction,
if Υ = (ϵ/r1/p + 1)2 − 1, then we have, from Eqn. (13),

1

2

2∑
j=1

max
δ∈∆ϵ

p

{(fj(δ) + 1)2} = (ϵ/r1/p + 1)2 . (14)

From f1(δ), f2(δ) ∈ [−ϵ/r1/p, ϵ/r1/p] and ϵ ∈ (0, 1], we have

(f1(δ) + 1)2 ≤ (ϵ/r1/p + 1)2 and (f2(δ) + 1)2 ≤ (ϵ/r1/p + 1)2 .

This follows that, from Eqn. (14)

max
δ∈∆ϵ

p

{(f1(δ) + 1)2} = (ϵ/r1/p + 1)2 and max
δ∈∆ϵ

p

{(f2(δ) + 1)2} = (ϵ/r1/p + 1)2 ;

therefore, ϕ is satisfiable from Eqns. (11)-(12). This completes the proof.

B. Appendix for Section 3.2
B.1. Proof of Theorem 3.2

We begin with some useful lemmas as follows:
Lemma B.1 (Hölder’s inequality (Young, 1936)). For two real vectors a = (a1, · · · , ad) and b = (b1, · · · , bd), we have

d∑
i=1

|aibi| ≤ ∥a∥p∥b∥q for positive p and q with 1/p+ 1/q = 1 ,

where the equality holds if and only if α|ai|p = β|bi|q for i ∈ [d] w.r.t. some positive constants α and β.
Lemma B.2. For vectors w, δ ∈ Rd, we have

max
∥δ∥p≤ϵ

wT δ = ϵ∥w∥q and min
∥δ∥p≤ϵ

wT δ = −ϵ∥w∥q.

Proof. For every δ with ∥δ∥p ≤ ϵ, we have, from Lemma B.1,

wT δ ≤
d∑

i=1

|wiδi| ≤ ∥δ∥p∥w∥q ≤ ϵ∥w∥q .

Notice that the above equality holds if we choose δ = δ∗ = (δ∗1 , δ
∗
2 , · · · , δ∗d) with

δ∗i = sign(wi)ϵ
(
|wi|q/∥w∥qq

)1/p
,

where sign(wi) is equal to −1, 0, 1 if wi is negative, zero or positive, respectively. This follows that

max
∥δ∥p≤ϵ

wT δ = ϵ∥w∥q .

We also have, by letting δ′ = −δ,

min
∥δ∥p≤ϵ

wT δ = min
∥−δ′∥p≤ϵ

wT (−δ′) = min
∥δ′∥p≤ϵ

−wT δ′ = − max
∥δ′∥p≤ϵ

wT δ′ = −ϵ∥w∥q ,

which completes the proof.
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Lemma B.3. For linear function hw(x) = wTx+ b, we have, for positive p, q with 1/p+ 1/q = 1,

max
∥δ∥p≤ϵ

(wT (x+ δ) + b− y)2 = (|wTx+ b− y|+ ∥w∥qϵ)2 .

Proof. We have the adversarial squared loss

max
∥δ∥p≤ϵ

(wT (x+ δ) + b− y)2 = max
∥δ∥p≤ϵ

(wTx+ b− y +wT δ)2 .

From Lemma B.2, we have −∥w∥qϵ ≤ wT δ ≤ ∥w∥qϵ and

max
∥δ∥p≤ϵ

(wT (x+ δ) + b− y)2 = max
∥δ∥p≤ϵ

(wTx+ b− y +wT δ)2 = (|wTx+ b− y|+ ∥w∥qϵ)2 ,

which completes the proof.

Proof of Theorem 3.2. We have the adversarial loss for fj and f̄ , from Lemma B.3,

max
δ∈∆ϵ

p

{(f̄(x+ δ)− y)2} = max
δ∈∆ϵ

p

{(f̄(x) +∇f̄(x)T δ − y)2} = (|f̄(x)− y|+ ∥∇f̄(x)∥qϵ)2 ,

max
δ∈∆ϵ

p

{(fj(x+ δ)− y)2} = max
δ∈∆ϵ

p

{(fj(x) +∇fj(x)
T δ − y)2} = (|fj(x)− y|+ ∥∇fj(x)∥qϵ)2 .

This follows that

1

m

m∑
j=1

max
δ∈∆ϵ

p

{(fj(x+ δ)− y)2} − max
δ∈∆ϵ

p

{(f̄(x+ δ)− y)2}

=
1

m

m∑
j=1

(|fj(x)− y|+ ∥∇fj(x)∥qϵ)2 − (|f̄(x)− y|+ ∥∇f̄(x)∥qϵ)2

−
(
(f̄(x)− y)2 + 2|f̄(x)− y|∥∇f̄(x)∥qϵ+ ∥∇f̄(x)∥2qϵ2

)
=

ϵ2

m

m∑
j=1

(∥∇fj(x)∥2q − ∥∇f̄(x)∥2q) +
2ϵ

m

m∑
j=1

(∥∇fj(x)∥q|fj(x)− y| − ∥∇f̄(x)∥q|f̄(x)− y|)

+
1

m

m∑
j=1

(fj(x)− y)2 − (f̄(x)− y)2

= Gradient Diversity + Cross Diversity +
1

m

m∑
j=1

(fj(x)− y)2 − (f̄(x)− y)2 .

We also have

1

m

m∑
j=1

(fj(x)− y)2 − (f̄(x)− y)2 =
1

m

m∑
j=1

fj(x)
2 − f̄(x)2 =

1

m

m∑
j=1

(fj(x)− f̄(x))2 ,

which completes the proof.

B.2. Training Details for Diversity Decomposition

We consider the base learners as convolutional neural network with two convolutional layers and one MLP layer of 100
neurons. The first convolutional layer has 24 filters with kernel size 5, while the second convolutional layer has 24 filters of
kernel size 5. We take the ReLU activation function, and the input and output sizes are 3×32×32 and 1, respectively.

We select the 5-th and 6-th class on datasets MNIST and F-MNIST to train the base learners independently, and take the
SGD method (Robbins & Monro, 1951) with batch size 256 and learning rate 0.01. We consider the PGD-attack (Madry
et al., 2018) to calculate the adversarial ensemble loss and average of individual adversarial losses. The perturbation size is
set to 8/255 and 128/255 for l∞ and l2 norm, respectively.
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B.3. Discussions on the Second-Order Approximation

For the second-order approximation, we have

f(x+ δ) ≈ f(x) +∇f(x)T δ +
1

2
δTH(x)δ ,

where H(x) is the Hessian matrix of f at point x. This follows that

max
δ∈∆ϵ

p

(f(x+ δ)− y)2 = max
δ∈∆ϵ

p

(
f(x) +∇f(x)T δ +

1

2
δTH(x)δ − y

)2
,

and hence, it is sufficient to consider two problems as follows

max
δ∈∆ϵ

p

f(x) +∇f(x)T δ +
1

2
δTH(x)δ − y and min

δ∈∆ϵ
p

f(x) +∇f(x)T δ +
1

2
δTH(x)δ − y .

We focus on the special case p = 2, and the above two problems can be formalized as

min
∥δ∥2≤ϵ

1

2
δTBδ − bT δ for some b ∈ Rn and symmetric matrix B ∈ Rn×n . (15)

This is known as the trust region subproblem (Forsythe & Golub, 1965; Moré & Sorensen, 1983; Fortin & Wolkowicz,
2004), and we have

• the optimal solution δ∗ = B−1b if there is no solution on the boundary {δ : ∥δ∥2 ≤ ϵ} in (15), from the positive
definiteness of B and ∥B−1b∥ < ϵ;

• the optimal solution δ∗ = −(B + α∗I)−1b if there is solution on the boundary {δ : ∥δ∥2 ≤ ϵ} in (15) and α∗ > −λ1.
Here, λ1 is the smallest eigenvalue of B and α∗ is the solution of

n∑
i=1

γ2
j

(λj + α∗)2
= ϵ2 , (16)

where λ1, · · · , λn are eigenvalues of B and γ1, · · · , γn are the elements of QT b with eigendecomposition B = QΛQT .

• the optimal solution δ∗ = δ0 + τz if there is solution on the boundary {δ : ∥δ∥2 ≤ ϵ} in (15) and α∗ ≤ −λ1 in (16).
Here, δ0 is the solution of

(B − λ1I)δ0 = −b s.t. ∥δ0∥ ≤ ϵ ,

and z is an eigenvector of B with eigenvalue λ1 and τ ∈ R satisfies ∥δ0 + τz∥ = ϵ.

Here, the main challenge is how to obtain the closed-form solution of adversarial loss via second-order approximation, since
it is relevant to the roots of high-order polynomials Eqn. (16).

B.4. Discussions of Average of cos Values for l∞ Norm

We focus on 2-dimensional instance space X ⊆ R2 and label space Y ⊆ R, and consider

f1(x) = x1 + x2, f2(x) = x1 − 3x2, f3(x) = abx1 + bx2 and f4(x) = abx1 − bx2 ,

where a = (
√
5− 1)/2 and b =

√
2 +

√
5/5. We study two ensembles: one ensemble of f1 and f2; the other ensemble of

f3 and f4. For example (x, y) = ([1, 0], 1) and perturbation set ∆ = {δ : ∥δ∥∞ ≤ 1}, we have

cos(∇f1(x),∇f2(x)) =
⟨∇f1(x),∇f2(x)⟩

∥∇f1(x)∥2∥∇f2(x)∥2
=

⟨∇f3(x),∇f4(x)⟩
∥∇f3(x)∥2∥∇f4(x)∥2

= cos(∇f3(x),∇f4(x)) ,

and we also have the same average of individual adversarial losses from Lemma B.3 as follows

2∑
i=1

max
δ∈∆

(fi(x+ δ)− y)2

2
=

4∑
i=3

max
δ∈∆

(fi(x+ δ)− y)2

2
.
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However, the adversarial ensemble losses are different from

max
δ∈∆

(f1(x+ δ)/2 + f2(x+ δ)/2− y)2 = 8 and max
δ∈∆

(f3(x+ δ)/2 + f4(x+ δ)/2− y)2 ≈ 7.2 .

Thus, there exist two ensembles of the same averages of cos values and individual adversarial losses, but with different
adversarial ensemble losses for l∞ norm.

C. Appendix for Section 3.3
C.1. Proof of Lemma 3.3

We have the cross-entropy loss

ℓ(f(x+ δ), y) = −y(f(x) +∇f(x)T δ) + ln(1 + exp(f(x) +∇f(x)T δ)) ,

and the adversarial cross-entropy loss

max
δ∈∆ϵ

p

ℓ(f(x+ δ), y) = max
δ∈∆ϵ

p

{
− y(f(x) +∇f(x)T δ) + ln(1 + exp(f(x) +∇f(x)T δ))

}
. (17)

For δ ∈ ∆ϵ
p, we have, from Lemma B.1

−∥∇f(x)∥qϵ ≤ ∇f(x)T δ ≤ ∥∇f(x)∥qϵ .

We get the maximum of Eqn. (17) when

∇f(x)T δ =

{
∥∇f(x)∥qϵ for y = 0

−∥∇f(x)∥qϵ for y = 1 ,

and the optimal adversarial perturbation δ∗ with ∇f(x)T δ∗ = −(2y − 1)∥∇f(x)∥qϵ. We finally have

f(x+ δ∗) = f(x) +∇f(x)T δ∗ = f(x)− (2y − 1)∥∇f(x)∥qϵ ,

and the probability of the positive class of the adversarial example x+ δ∗

padvf,+ =
1

1 + exp(−(f(x) +∇f(x)T δ∗))
=

1

1 + exp(−(f(x)− (2y − 1)∥∇f(x)∥qϵ))
,

which completes the proof.

C.2. Proof of Theorem 3.4

We have

ln(1 + exp(fj(x)− y′∥∇fj(x)∥qϵ))− ln(1 + exp(f̄(x)− y′∥∇f̄(x)∥qϵ))

=
1

1 + exp(f̄(x)− y′∥∇f̄(x)∥qϵ)
ln(

1 + exp(fj(x)− y′∥∇fj(x)∥qϵ)
1 + exp(f̄(x)− y′∥∇f̄(x)∥qϵ)

)

+
1

1 + exp(−(f̄(x)− y′∥∇f̄(x)∥qϵ))
ln(

1 + exp(fj(x)− y′∥∇fj(x)∥qϵ)
1 + exp(f̄(x)− y′∥∇f̄(x)∥qϵ)

)

=
1

1 + exp(f̄(x)− y′∥∇f̄(x)∥qϵ)
ln(

1 + exp(fj(x)− y′∥∇fj(x)∥qϵ)
1 + exp(f̄(x)− y′∥∇f̄(x)∥qϵ)

)

+
1

1 + exp(−(f̄(x)− y′∥∇f̄(x)∥qϵ))
ln(

1 + exp(−(fj(x)− y′∥∇fj(x)∥qϵ))
1 + exp(−(f̄(x)− y′∥∇f̄(x)∥qϵ))

)

+
1

1 + exp(−(f̄(x)− y′∥∇f̄(x)∥qϵ))
(fj(x)− y′∥∇fj(x)∥qϵ− f̄(x) + y′∥∇f̄(x)∥qϵ)

= KL(pf̄ ,adv, pfj ,adv) + pf̄ ,+,adv(fj(x)− y′∥∇fj(x)∥qϵ− f̄(x) + y′∥∇f̄(x)∥qϵ) .
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This follows that, from Lemma 3.3,

1

m

m∑
j=1

max
∥δ∥p≤ϵ

ℓ(f̃j(x+ δ), y)− max
∥δ∥p≤ϵ

ℓ(ḡ(x+ δ), y)

=
1

m

m∑
j=1

ln(1 + exp(fj(x)− y′∥∇fj(x)∥qϵ))− y(fj(x)− y′∥∇fj(x)∥qϵ)

− ln(1 + exp(f̄(x)− y′∥∇f̄(x)∥qϵ)) + y(f̄(x)− y′∥∇f̄(x)∥qϵ)

=
1

m

m∑
j=1

KL(pf̄ ,adv, pfj ,adv) + (pf̄ ,+,adv − y)(2y − 1)ϵ
1

m

m∑
j=1

(∥∇f̄(x)∥q − ∥∇fj(x)∥q) ,

which completes the proof.

C.3. Discussions of Average of cos Values for Cross-Entropy Loss

Example 2. There exist two ensembles of the same averages of cos values and individual adversarial cross-entropy losses,
but with different adversarial ensemble losses for cross-entropy loss and l2 norm.

Proof. We focus on 2-dimensional instance space X ⊆ R2 and label space Y ⊆ R, and consider

f1(x) = x1 + x2, f2(x) = x1 − 3x2, f3(x) = abx1 + bx2 and f4(x) = abx1 − bx2 ,

where

a =

√
5− 1

2
and b =

2 ln
(√

(1 + exp(1 +
√
2))(1 + exp(1 +

√
10))− 1

)
√
5− 1 +

√
10− 2

√
5

.

We study two ensembles: one ensemble of f1 and f2; the other ensemble of f3 and f4. For example (x, y) = ([1, 0], 1) and
perturbation set ∆ = {δ : ∥δ∥2 ≤ 1}, we have

cos(∇f1(x),∇f2(x)) =
⟨∇f1(x),∇f2(x)⟩

∥∇f1(x)∥2∥∇f2(x)∥2
=

⟨∇f3(x),∇f4(x)⟩
∥∇f3(x)∥2∥∇f4(x)∥2

= cos(∇f3(x),∇f4(x)) ,

and we also have the same average of individual adversarial losses from Lemma 3.3

2∑
i=1

max
δ∈∆

(fi(x+ δ)− y)2

2
=

4∑
i=3

max
δ∈∆

(fi(x+ δ)− y)2

2
=

ln(1 + exp(1 +
√
2)) + ln(1 + exp(1 +

√
10))

2
.

However, the adversarial ensemble losses are different from

max
δ∈∆

(f1(x+ δ)/2 + f2(x+ δ)/2− y)2 ≈ 2.4999 and max
δ∈∆

(f3(x+ δ)/2 + f4(x+ δ)/2− y)2 ≈ 2.3738 ,

which completes the proof.

Example 3. There exist two ensembles of the same averages of cos values and individual adversarial cross-entropy losses,
but with different adversarial ensemble losses for cross-entropy loss for l∞ norm.

Proof. We focus on 2-dimensional instance space X ⊆ R2 and label space Y ⊆ R, and consider

f1(x) = x1 + x2, f2(x) = x1 − 3x2, f3(x) = abx1 + bx2 and f4(x) = abx1 − bx2 ,

where a = (
√
5− 1)/2 and b = ln(

√
(1 + exp(3))(1 + exp(5))− 1)/

√
5 . We study two ensembles: one ensemble of

f1 and f2; the other of f3 and f4. For example (x, y) = ([1, 0], 1) and perturbation set ∆ = {δ : ∥δ∥∞ ≤ 1}, we have

cos(∇f1(x),∇f2(x)) =
⟨∇f1(x),∇f2(x)⟩

∥∇f1(x)∥2∥∇f2(x)∥2
=

⟨∇f3(x),∇f4(x)⟩
∥∇f3(x)∥2∥∇f4(x)∥2

= cos(∇f3(x),∇f4(x)) ,
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and we also have the same average of individual adversarial losses from Lemma 3.3

2∑
i=1

max
δ∈∆

(fi(x+ δ)− y)2

2
=

4∑
i=3

max
δ∈∆

(fi(x+ δ)− y)2

2
=

ln(1 + exp(3)) + ln(1 + exp(5))

2
.

However, the adversarial ensemble losses are different from

max
δ∈∆

(f1(x+ δ)/2 + f2(x+ δ)/2− y)2 ≈ 3.0486 and max
δ∈∆

(f3(x+ δ)/2 + f4(x+ δ)/2− y)2 ≈ 2.3738 ,

which completes the proof.

D. Appendix for Section 4
D.1. Proof of the Extended Diversity

For simplicity, we abbreviate f(x̃f ) and pf (x̃f ) to f and pf , respectively. Let fk, pfk , k ∈ [K] be the k-th element of f
and pf , respectively. We have the adversarial cross-entropy loss for multi-classification

ℓ(f(x̃f ), y) = −fy + log

(
K∑

k=1

exp(fk)

)
.

This follows that

ℓ(f̄(x̃f̄ ), y)−
1

m

m∑
j=1

ℓ(fj(x̃fj
), y) = −f̄y +

1

m

m∑
j=1

fj,y + log

(
K∑

k=1

exp(f̄k)

)
− 1

m

m∑
j=1

log

(
K∑

k=1

exp(fj,k)

)
. (18)

We also have

log

(
K∑

k=1

exp(f̄k)

)
− log

(
K∑

k=1

exp(fj,k)

)
=

K∑
k1=1

exp(f̄k1
)∑K

k=1 exp(f̄k)
log

( ∑K
k=1 exp(f̄k)∑K
k=1 exp(fj,k)

)

=

K∑
k1=1

exp(f̄k1
)∑K

k=1 exp(f̄k)
log

(
fj,k1/

∑K
k=1 exp(fj,k)

f̄k1
/
∑K

k=1 exp(f̄k)
× f̄k1

fj,k1

)
=

K∑
k=1

pf̄k(f̄k − fj,k)− KL(pf̄ ,pfj
) ,

and this follows that, by setting r = pf̄ (x̃f̄ )− ey ,

1

m

m∑
j=1

log

(
K∑

k=1

exp(fj,k)

)
− log

(
K∑

k=1

exp(f̄k)

)
=

m∑
j=1

⟨r,fj(x̃fj
)− f̄(x̃f̄ )⟩
m

+

m∑
j=1

KL(pf̄ (x̃f̄ ),pfj
(x̃fj

))

m
. (19)

We have, from the first-order approximation f(x̃f ) ≈ f(x) + Jf (x)δ
∗
f ,

1

m

m∑
j=1

⟨r,fj(x̃fj )− f̄(x̃f̄ )⟩ =
1

m

m∑
j=1

⟨r,Jfj (x)δ
∗
fj

− Jf̄ (x)δ
∗
f̄ ⟩ ,

which completes the proof by combining with Eqns. (18)-(19).

D.2. Proof of Orthogonality

We now show the orthogonalization of the predictions of base learners by optimizing Eqn. (5) as follows.
Theorem D.1. For K multi-class learning, let f1, · · · , fm be m base learners with cross-entropy loss being at least B, and
K − 1 is a multiple of m. We have the minimizer of Eqn. (5) over example (x, y) as

pfi(x+ δ∗fi)k =


exp(−B) for k = y
1−exp(−B)

K−1 for k ∈ si

0 otherwise ,

(20)

where s1, · · · , sm is a partition of set {1, · · · ,K}\{y} and pfi(x̃fi)k is the k-th element of pfi(x̃fi).
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Table 4. Comparison of training time (times(s) per epoch) for our AdvEOAP with and without the regularization Γ.

Our AdvEOAP MNIST F-MNIST CIFAR10

without regularization Γα(·) 40.08 40.11 123.84

with regularization Γα(·) 41.45 41.32 125.48

Proof. We first have pfi(x+ δ∗fi)y = exp(−B), since the adversarial cross-entropy loss is at least B for each base learner.
The regularization in Eqn. (5) is defined as

Γα(x, y) = H(
∑m

j=1
p̃fj

(x̃fj
)/m) + α · log(V (p̃f1

(x̃f1
), · · · , p̃fm

(x̃fm
))) .

The V (p̃f1
(x̃f1

), · · · , p̃fm
(x̃fm

)) achieves its maximum if and only if the non-label probability vectors of each individual
network are mutually orthogonal (Bernstein, 2009). The H(

∑m
j=1 p̃fj

(x̃fj
)/m) achieves the maximum if and only if the

mean of non-label probability vectors of individual networks are uniform. It is obvious that Eqn. (20) satisfies the two
conditions simultaneously. Thus, Eqn. (20) is the minimizer of Eqn. (5).

D.3. Other Details of Algorithm 1

PGD-attack for lp norm perturbation ball

The PGD-attack generates adversarial examples iteratively for l∞-norm perturbation ball as follows

xt+1,j =
∏

x+∆ϵ
∞

(xt,j + α · sign(∇ℓ(fj(x
t,j), y))) ,

where
∏

denotes the projection and x +∆ϵ
∞ = {x + δ|δ ∈ ∆ϵ

∞}. The x0,j is initialized as x, and xT,j is used as the
adversarial example of base learner fj . For other lp norm perturbation ball, PGD-attack generates adversarial examples as

xt+1,j =
∏

x+∆ϵ
p

(xt,j + α · gp(∇ℓ(fj(x
t,j), y))) ,

where gp is the function that maps the gradient to the update direction

gp(w) = sign(wi)ϵ(|wi|q/∥w∥qq)1/p .

Calculating the volume of polytope

For m vectors x1, · · · ,xm ∈ Rd and X = (x1, · · · ,xm) ∈ Rd×m, we have, from matrix theory (Bernstein, 2009),

V 2(x1, · · · ,xm) = det(XTX) ,

where det(XTX) is the determination of the matrix XTX . For matrix A ∈ Rn×n, we also have

∂ det(A)

∂aij
= det(A)(A−1)T ,

where aij is the i-th row and j-th column element of A. We finally optimize the objective Eqn. (5) for neural networks with
SGD method (Robbins & Monro, 1951).

Time Complexity of Algorithm 1

The time complexity of Algorithm 1 takes m-times as that of training a single neural network adversarially (m is the number
of neural networks in the ensemble). In addition, it takes O(m3) computational cost for the regularization with its gradient.
In practice, the regularization takes much smaller computational cost than that of training neural networks, as in Table 4.
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Table 5. Hyperparameters of all ensemble methods used in our experiments. Parameters that were not applicable were left blank.

Parameter GAL ADP AdvADP DVERGE PDD TRS iGAT(ADP)

α 0.5 2 2 - 0.01 1 2

β - 0.5 0.5 - - 5 0.5

E. Appendix for Section 5
E.1. Experimental settings

For iGATADP, we take 150, 150 and 480 epoches for MNIST, F-MNIST and CIFAR10 for convergence; while for other
ensemble methods, we take 60, 60 and 250 epoches for MNIST, F-MNIST and CIFAR10, respectively. For adversarial
examples in training process, we take PGD10 with 10 steps with step-size 0.04, 0.01 and 0.008 for MNIST, F-MNIST and
CIFAR10, respectively. We set α = 0.02 and λ = 10 for our method, and Table 5 summarizes parameter setting for others.

E.2. EOT and BPDA attacks

We take the Backward Pass Differentiable Approximation (BPDA) attack (Athalye et al., 2018a) for potential gradient risks
and designs attacks. We design four different attacks as follows:

• BPDA1: For potential gradients vanishing risk (i.e., small gradient of ensemble from different gradient of base learner),
we instead use the k times of the average logits of the base learners as the logit of the ensemble, where k ∈ [1,m]
and m is the number of base learners. We evaluate all possible values of k ∈ [1,m] and report the lowest adversarial
accuracy observed.

• BPDA2: For potential incorrect gradients from random gradients of single base learner, we consider the attack of
deleting a base learner and using other gradients of the ensemble.

• BPDA3: For potential incorrect gradients from random gradients of base learners, we could consider the attack of
selecting randomly half of base learners at each step for attack.

• BPDA4: For other potential gradient risks, we consider the black box attack (Andriushchenko et al., 2020).

We also take the Expectation over Transformation (EOT) attack (Athalye et al., 2018b) to add adversarial perturbations
insensitively in transformations. We implement 20 times rotations randomly within -30 to +30 degrees.
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