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Abstract
Language generation based on maximum likeli-
hood estimation (MLE) has become the funda-
mental approach for text generation. Maximum
likelihood estimation is typically performed by
minimizing the log-likelihood loss, also known
as the logarithmic score in statistical decision the-
ory. The logarithmic score is strictly proper in the
sense that it encourages honest forecasts, where
the expected score is maximized only when the
model reports true probabilities. Although many
strictly proper scoring rules exist, the logarith-
mic score is the only local scoring rule among
them that depends exclusively on the probabil-
ity of the observed sample, making it capable of
handling the exponentially large sample space of
natural text. In this work, we propose a straight-
forward strategy for adapting scoring rules to lan-
guage generation, allowing for language modeling
with any non-local scoring rules. Leveraging this
strategy, we train language generation models us-
ing two classic strictly proper scoring rules, the
Brier score and the Spherical score, as alternatives
to the logarithmic score. Experimental results
indicate that simply substituting the loss func-
tion, without adjusting other hyperparameters, can
yield substantial improvements in model’s gener-
ation capabilities. Moreover, these improvements
can scale up to large language models (LLMs)
such as LLaMA-7B and LLaMA-13B. Source
code: https://github.com/shaochenz
e/ScoringRulesLM.

1. Introduction
Language generation has played a pivotal role in the ad-
vancement of natural language processing, serving as the
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foundation for a wide range of applications (Bengio et al.,
2000; Mikolov et al., 2010; Radford et al., 2018; Brown
et al., 2020). The primary goal of language generation is to
learn the underlying probability distribution of a given text
corpus. To achieve this, maximum likelihood estimation
(MLE) is commonly employed to estimate the parameters of
a probability distribution that best explains the text corpus
(Myung, 2003).

Maximum likelihood estimation is generally performed by
minimizing the log-likelihood loss, also known as the log-
arithmic score, a prominent example of a strictly proper
scoring rule (Good, 1952; Gneiting & Raftery, 2007). In
statistical decision theory, scoring rules serve as quantitative
measures to assess the quality of probabilistic predictions,
by assigning a numerical score based on the predicted distri-
bution and the observed sample. A scoring rule is considered
strictly proper if it encourages models to report their true
beliefs or probabilities. In other words, the expected score
is maximized only when the model reports true probabili-
ties, and any deviation from the truth will result in a lower
expected score. Due to this property, strictly proper scoring
rules are well-suited as loss functions for calibrating prob-
abilistic models (Lakshminarayanan et al., 2017). This is
exemplified by the logarithmic score, which corresponds to
the log-likelihood loss.

In addition to the logarithmic score, there are other strictly
proper scoring rules that provide attractive loss functions for
probabilistic prediction problems (Shoemaker, 1991; Hung
et al., 1996; Kline & Berardi, 2005; Hui & Belkin, 2021).
However, only the logarithmic score has wide applications
in language generation, primarily because it is the only
strictly proper scoring rule that is also local: it depends ex-
clusively on the predictive probability of the observed sam-
ple (Good, 1952; Shuford Jr et al., 1966; Bernardo, 1979).
Given the exponentially large sample space for natural text,
calculating the score based on the entire probability distribu-
tion is infeasible, which hinders the application of non-local
scoring rules in language modeling. Consequently, the loga-
rithmic score, being both local and strictly proper, remains
the only scoring rule capable of handling the exponentially
large sample space of natural text. Nevertheless, the loga-
rithmic score has faced criticism for its unbounded nature
and sensitivity to small perturbations in the predicted dis-
tribution (Selten, 1998), suggesting that alternative strictly
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proper scoring rules might offer more suitable and robust
options for training and evaluation in specific scenarios.

To investigate the impact and potential benefits of training
language models with alternative strictly proper scoring
rules, we propose a straightforward strategy for adapting
non-local scoring rules to serve as loss functions for lan-
guage generation. Specifically, we distribute the scoring
rule at the token level to promote well-calibrated prediction
of conditional probabilities at each time step, consequently
leading to well-calibrated sequence-level probability pre-
dictions. We further introduce score smoothing to enable
honest label smoothing for arbitrary scoring rules. Our ap-
proach allows language modeling with any non-local scor-
ing rules while ensuring that the expected loss is minimized
only when the model produces the desired probabilities.
Leveraging this strategy, we train language generation mod-
els using two classic strictly proper scoring rules, the Brier
score (Brier, 1950) and the Spherical score (Roby, 1965), as
alternatives to the logarithmic score.

Experimental results indicate that simply substituting the
loss function, without adjusting other hyperparameters, can
yield substantial improvements in the model’s generation
capabilities. Moreover, these improvements can scale up
to large language models (LLMs) such as LLaMA-7B and
LLaMA-13B.

2. Strictly Proper Scoring Rules
In this section, we provide essential background on strictly
proper scoring rules, including the definition and several
popular examples.

2.1. Scoring Rules

Scoring rules assign a numerical score based on the pre-
dicted distribution and the observed sample. Let X =
{1, ...,m} represents the discrete sample space consisting
of a finite number m of different samples, and Pm = {p =
(p1, ..., pm) : p1, ..., pm ≥ 0,

∑m
i=1 pi = 1} be the set of

probability measures on X . A scoring rule S(p, i) takes val-
ues in the extended real line R = [−∞,∞], indicating the
reward or utility of predicting p when sample i is observed:

S(p, i) : Pm ×X 7→ R. (1)

Assuming samples conform to a data distribution q, we
denote S(p, q) as the expected score:

S(p, q) = Ei∼q[S(p, i)] =

m∑
i=1

qi · S(p, i). (2)

2.2. Propriety

A scoring rule is proper if the expected score is maximized
when the model reports true probabilities:

S(p, q) ≤ S(q, q), ∀p, q ∈ Pm. (3)

It is strictly proper when the equality holds if and only if
p = q. Propriety is an essential requirement for training and
evaluating probabilistic models (Bröcker & Smith, 2007;
Lakshminarayanan et al., 2017). In terms of training, strictly
proper scoring rules can serve as training criteria to calibrate
probabilistic models for well-calibrated prediction. In terms
of evaluation, strictly proper scoring rules assess the quality
of probabilistic predictions by measuring how they align
with the true probabilities.

2.3. Locality

A scoring rule is local if the probabilistic prediction is eval-
uated only at the observed sample, which means that there
exists an equivalent function Slocal(pi, i) that satisfies:

S(p, i) = Slocal(pi, i), ∀p ∈ Pm, i ∈ X . (4)

A local scoring rule depends exclusively on the probability
of the observed sample, rather than being rewarded for other
features of the probabilistic distribution, such as its shape.
It has been proven that every scoring rule being both proper
and local is equivalent to the logarithmic score (Bernardo,
1979). Formally, if S is both proper and local, then for some
constant A and function B, we have:

S(p, i) = A log pi +B(i). (5)

2.4. Examples

We provide some examples of strictly proper scoring rules
below.

Logarithmic score. The logarithmic score is a local scoring
rule that measures the log probability of the observed sample.
It is defined as:

S(p, i) = log pi. (6)

This scoring rule is closely related to maximum likelihood
estimation and is widely used in language modeling. Despite
its widespread use, the logarithmic score has been criticized
for being unbounded and sensitive to small perturbations in
the predicted distribution (Selten, 1998).

Brier score. The Brier score (Brier, 1950) is a quadratic
scoring rule that measures the mean squared difference be-
tween the predicted distribution and the true outcome. It is
defined as:

S(p, i) = 1−
m∑
j=1

(δij − pj)
2 = 2pi −

m∑
j=1

p2j , (7)
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where δij = 1 if i = j and δij = 0 otherwise. The expected
Brier score is S(p, q) =

∑m
i=1 q

2
i − (pi − qi)

2, which is
maximized when p = q. A more general form is the α-
power score (Selten, 1998):

S(p, i) = αpα−1
i − (α− 1)

m∑
j=1

pαj , α > 1. (8)

The α-power score defines a family of strictly proper scoring
rules, with the Brier score being a special case for α = 2.

Spherical score. The spherical score (Roby, 1965) mea-
sures the cosine similarity between the predicted probability
vector and the true probability vector. It is defined as:

S(p, i) =
pi
|p|

. (9)

The expected spherical score, S(p, q) = ⟨p, q⟩/|p|, is pro-
portional to the cosine similarity and is therefore maximized
when p = q. A more general form is the pseudo-spherical
score:

S(p, i) =
pα−1
i

(
∑m

j=1 p
α
j )

α−1
α

, α > 1. (10)

It reduces to the spherical score when α = 2. Note that
both the α-power score and the pseudo-spherical score de-
pend on the current prediction probability pi as well as the
global characteristics of the distribution, i.e., the α-norm of
p. Therefore, they are strictly proper but non-local.

In addition to the classic scores introduced above, strictly
proper scoring rules can also be constructed from any
bounded strictly convex function on Pm. Please refer to
Gneiting & Raftery (2007) for a literature review.

3. Language Generation with Strictly Proper
Scoring Rules

In this section, we present our strategy for adapting non-
local scoring rules to serve as loss functions for language
generation. Section 3.1 introduces the framework of utiliz-
ing scoring rules as loss functions. Section 3.2 describes
our approach for distributing the scoring rule at the token
level, which overcomes the locality constraint. Section 3.3
further adapts scoring rules to support regularization with
label smoothing.

For simplicity of notation, we focus on unconditional se-
quence models in this section, where samples x ∈ X consist
of discrete tokens x = {x1, x2, ..., xT }. The data distribu-
tion is represented by q(x), the model predicts the distri-
bution pθ(x), and the scoring rule is denoted as S(pθ, x).
The subsequent discussion can be directly extended to con-
ditional sequence generation scenarios, such as translation
and summarization tasks.

3.1. Scoring Rules as Losses

Scoring rules assign a numerical score based on the pre-
dicted distribution pθ and the observed sample x, which can
be interpreted as the reward or utility of predicting pθ when
sample x is observed. It is natural to maximize the scoring
rule S by minimizing the associated loss function LS :

LS(θ) = −S(pθ, q) = −Ex∼qS(pθ, x). (11)

As long as S is strictly proper, the associated loss LS will
have a unique minimizer pθ = q, encouraging the model to
report the true distribution q.

In sequence prediction problems, given the maximum length
Tmax and vocabulary size V , the sample space has an ex-
ponentially large size of V Tmax . This makes it intractable
to calculate scoring rules that depend on global character-
istics of the distribution, such as the Brier score and the
spherical score. The logarithmic score, being both local
and strictly proper, remains the only scoring rule capable of
handling sequence prediction problems. The corresponding
loss function is:

Llog(θ) = −Ex∼q log pθ(x). (12)

This loss function can also be derived from maximum like-
lihood estimation and is commonly referred to as the log-
likelihood loss or cross-entropy loss.

3.2. Token-Level Scoring Rules

In general, sequence models do not directly compute the
probability of entire sequences. Instead, they decompose the
sequence probability into a product of token probabilities in
an autoregressive manner:

pθ(x) =

T∏
t=1

pθ(xt|x<t). (13)

This autoregressive decomposition transforms the sequence
prediction task into a series of conditional token prediction
tasks, where the sample space is reduced to V for each task.
As long as the model predicts the accurate conditional token
probability q(xt|x<t), it can correctly recover the sequence
probability q(x). Therefore, we can distribute the scoring
rule at the token-level to promote well-calibrated prediction
for each token prediction task. In this way, we define the
following loss based on token-level scoring rules:

LS(θ) = −Ex∼q[

T∑
t=1

S(pθ(·|x<t), xt)]

= −
T∑

t=1

Ex<t∼q[
∑
xt

q(xt|x<t)S(pθ(·|x<t), xt)]

= −
T∑

t=1

Ex<t∼q[S(pθ(·|x<t), q(·|x<t))].

(14)
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In the above equation, pθ(·|x<t) and qθ(·|x<t) are probabil-
ity vectors of size |V |, representing the conditional proba-
bility distributions of the next word given the history x<t.
The equation shows that the loss is minimized only when
each token-level scoring rule S(pθ(·|x<t), q(·|x<t)) is max-
imized. For strictly proper S, maximizing the score means
matching every pθ(·|x<t) with q(·|x<t), consequently lead-
ing to well-calibrated probability predictions pθ = q:

pθ(x) =

T∏
t=1

pθ(xt|x<t) =

T∏
t=1

q(xt|x<t) = q(x). (15)

Token-level score optimization allows for language model-
ing with any non-local strictly proper scoring rules, such as
the Brier score (Brier, 1950) and the spherical score (Roby,
1965). For the Brier score, the token-level loss is given by:

LBrier(θ) = −Ex∼q

T∑
t=1

2pθ(xt|x<t)− |pθ(·|x<t)|2.

(16)
The token-level loss for the spherical score is:

LSpherical(θ) = −Ex∼q

T∑
t=1

pθ(xt|x<t)

|pθ(·|x<t)|
. (17)

For the logarithmic score, its token-level loss formulation is
equivalent to the sequence-level one defined in Equation 12.

3.3. Score Smoothing

In practical applications, it is not always expected for a
model to perfectly fit the data distribution, as the label
smoothing technique (Szegedy et al., 2016) might be em-
ployed for regularization purposes. Label smoothing is typ-
ically used in classification and sequence prediction tasks,
where it modifies the cross-entropy loss by replacing the
one-hot label vector with a soft label to avoid overconfident
predictions.

Suppose we have a label set X = {1, ...,m} and a label
distribution q. Label smoothing with a smoothing factor ϵ
encourages the model to produce a smooth distribution qϵ:

qϵi = (1− ϵ)qi +
ϵ

m
. (18)

The current label smoothing technique is limited to loss func-
tions based on the logarithmic score. Here we introduce a
general smoothing technique called score smoothing, which
supports label smoothing for arbitrary scoring rules. Given
a smoothing factor ϵ, the smoothed score Sϵ is defined as:

Sϵ(p, i) = (1− ϵ) · S(p, i) + ϵ

m
·

m∑
j=1

S(p, j). (19)

Table 1. Expected scores when the model conducts or ignores score
smoothing.

Score Logarithmic Brier Spherical

S(p = q, qϵ) −∞ 0.8020 0.9010

S(p = qϵ, qϵ) -0.7778 0.8119 0.9011

Ideally, score smoothing should be consistent with the goal
of label smoothing, motivating the model to generate the
desired smooth distribution qϵ. In this context, we define
a smoothed score as proper if the expected score satisfies
Sϵ(p, q) ≤ Sϵ(qϵ, q), and it is strictly proper when the
equality only holds at p = qϵ. The following equation shows
that Sϵ is strictly proper as long as S is strictly proper:

Sϵ(p, q) = (1− ϵ)

m∑
i=1

qiS(p, i) +
ϵ

m

m∑
i=1

S(p, i)

=

m∑
i=1

((1− ϵ)qi +
ϵ

m
) · S(p, i)

= S(p, qϵ).

(20)

By definition, the expected smoothed score Sϵ(p, q) =
S(p, qϵ) is maximized only when the model produces qϵ,
proving that Sϵ is strictly proper as well.

However, when applying score smoothing in practice, we
observe that the smoothing term might be ignored in some
scoring rules. This is primarily attributed to the correspond-
ing loss being relatively flat around the optimal point qϵ.
Since a nearly equivalent minimal loss can be achieved
without taking the smoothing term into account, the model
lacks enough incentive to perform label smoothing.

Consider an example with the number of labels m = 100, a
one-hot true probability q = (1, 0, 0, ..., 0), and a smooth-
ing factor ϵ = 0.1. Table 1 gives the expected score
Sϵ(p, q) = S(p, qϵ) when the model produces p = q, qϵ

respectively. The logarithmic score imposes −∞ score
penalty for disregarding score smoothing with p = q. In
contrast, the Brier score and the spherical score are bounded,
which can only impose a relatively mild penalty when score
smoothing is ignored. In particular, the spherical score ex-
hibits nearly identical expected scores in both cases, causing
the smoothing term to be almost disregarded.

To address this limitation, we introduce a masked logarith-
mic score to enhance the smoothing effect. In the target
distribution qϵ, all labels have a probability of at least ϵ

m .
Therefore, labels with probabilities below this threshold
can be considered under-smooth. We apply the logarith-
mic score to further augment the smoothing term for these
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Table 2. Implementation details on different datasets.

Dataset En-De En-Fr TED CNN

batch size 32k 32k 32k 64k
learning rate 7e-4 5e-4 7e-4 2e-4
dropout 0.1 0.1 0.3 0.1
attention dropout 0 0 0 0.1
warmup steps 4k 4k 4k 2k
training steps 200k 300k 18k 100k
fine-tuning steps 50k 50k 4k 20k
weight decay 0 0 0.0 0.01
beam size 5 5 5 4
length penalty 0 0.6 1 2

under-smooth labels:

Sϵ
log(p, i) = Sϵ(p, i) +

ϵ

m

m∑
j=1

1{pj <
ϵ

m
} log pj , (21)

where 1{·} is the indicator function that takes the value 1
if the inside condition holds. Since the logarithmic score is
only applied to under-smooth labels, it does not affect the
propriety of the score. Formally, for strictly proper S, we
have:

Sϵ
log(p, q) ≤ Sϵ(p, q) ≤ Sϵ(qϵ, q) = Sϵ

log(q
ϵ, q). (22)

Therefore, the expected score is maximized only when p =
qϵ, implying that Sϵ

log is strictly proper. Enhanced by the
masked logarithmic score, it ensures a stronger incentive for
the model to produce the desired smooth distribution qϵ.

4. Experiments
4.1. Setup

Datasets. We primarily evaluate our method on machine
translation and abstractive summarization. For machine
translation, we conduct experiments on widely used transla-
tion benchmarks under difference scales: WMT14 English-
French (En-Fr, 35.8M pairs), WMT14 English-German
(En-De, 4.5M pairs), TED bilingual dataset (10 directions,
each with ∼200K pairs). For WMT datasets, we use new-
stest2013 for validation and newstest2014 for test, and apply
BPE (Sennrich et al., 2016) with 32K merge operations to
learn a joint vocabulary on the tokenized data. For TED
bilingual dataset, we use the pre-processed data used in
Xu et al. (2021). The translation quality is measured by
BLEU (Papineni et al., 2002). For abstractive summariza-
tion, We conduct experiments on the summarization bench-
mark CNN/DailyMail (311K pairs, Hermann et al., 2015).
The summarization quality is measured with ROUGE-1,
ROUGE-2, and ROUGE-L (Lin, 2004). We adopt the set-
tings of Transformer-base (Vaswani et al., 2017) for most
datasets, except that we use Transformer-big for WMT14
En-Fr. Implementation details are provided in Table 2.

Large Language Models. We further investigate the per-
formance of scoring rules at a larger model scale. Due
to the large computational cost of pre-training, we utilize
two open-source large language models (LLaMA-7B and
LLaMA-13B, Touvron et al., 2023) as our foundation mod-
els, and only employ strictly proper scoring rules for instruc-
tion tuning. We conduct instruction tuning using the Alpaca
dataset by GPT4 (Wang et al., 2022; Taori et al., 2023),
which comprises 52K instruction-following demonstrations.
We keep the standard settings for instruction tuning on Al-
paca, except that the log-likelihood loss is replaced with
losses associated with other scoring rules.

Similarly, the generative capability of LLMs is evaluated on
machine translation and abstractive summarization. Besides,
we also employ MT-bench, a multi-turn question set, to
evaluate the open-ended question answering capabilities of
LLMs. For machine translation, we follow previous works
(Jiao et al., 2023; Zhang et al., 2023a; Zeng et al., 2023; Liu
et al., 2023) to evaluate the translation capability on four
WMT22 translation tasks (Chinese-to-English, English-to-
Chinese, German-to-English, and English-to-German). For
text summarization, we follow Liu et al. (2023) to conduct
the evaluation on CNN/DailyMail Dataset. We employ
beam search with a beam size of 4 for machine translation
and 2 for summarization.

4.2. Training from Scratch

In our initial investigation, we evaluate the performance of
various strictly proper scoring rules when training language
generation models from scratch. We employ three typical
scoring rules - the logarithmic score, the Brier score, and
the spherical score - to train language generation models.
Figure 1 displays their performance curves on three datasets:
WMT14 En-De, WMT14 En-Fr, and CNN/DailyMail.

The results indicate that, although all of these scoring rules
are strictly proper, they still exhibit noticeable differences
when training language generation models from scratch.
Among the three datasets, the logarithmic score consistently
converges the fastest and achieves the best performance.
The spherical score follows, and the Brier score exhibits the
slowest convergence and the lowest performance.

We hypothesize that such differences may be attributed to
two primary factors. On one hand, despite sharing the same
optimum of p = q, different strictly proper scoring rules
possess distinct learning dynamics. For a specific neural
architecture, the optimization trajectory and achievable opti-
mum for each score vary, depending on the characteristics
of the score’s gradient. For instance, compared to the other
two scores, the logarithmic score exhibits a larger gradient
during the initial stages of training, which may facilitate
model warmup and enable faster convergence. On the other
hand, the hyperparameter settings we employed were ob-
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Figure 1. Performance curves of different strictly proper scoring rules on translation and summarization tasks.

Table 3. BLEU scores on WMT14 En-De and WMT14 En-Fr test
sets. ‘+ Brier’ and ‘+ Spherical’ represent fine-tuning with the
Brier score or the Spherical score. The compared methods are
based on our implementation. Statistical significance is indicated
by ∗(p < 0.01) vs. the baseline.

Model EN-DE EN-FR

Transformer 27.61 41.92

MixCE (Zhang et al., 2023b) 27.75 42.03
TaiLr (Ji et al., 2023) 27.95 42.12
Convex (Shao et al., 2023) 27.80 42.05

Transformer + Brier 28.01∗ 42.50∗

Transformer + Spherical 28.07∗ 42.09

Figure 2. Question answering capabilities evaluated on MT-bench,
a multi-turn question set.

tained from previous works that used the logarithmic score
for training (Vaswani et al., 2017). These settings may not
be as well-suited for other scoring rules, resulting in their
relatively inferior performance.

4.3. Fine-tuning with Scoring Rules

As we have already observed, it is relatively challenging for
other scoring rules to surpass the performance of the loga-
rithmic score when training from scratch. Here, we further
explore the impact of using alternative scores for fine-tuning
on models trained with the logarithmic score. We fine-tune
from an earlier checkpoint to ensure the total number of
training steps remains unchanged. We fix all hyperparame-

Table 4. ROUGE scores on CNN/DailyMail. RG-1, RG-2, RG-L
stand for ROUGE-1, ROUGE-2, and ROUGE-L scores, respec-
tively. The compared methods are based on our implementation.

Model RG-1 RG-2 RG-L

Transformer 39.72 17.00 36.41

MixCE (Zhang et al., 2023b) 40.16 17.48 36.85
TaiLr (Ji et al., 2023) 39.11 15.99 36.06
Convex (Shao et al., 2023) 40.15 17.67 36.70

Transformer + Brier 40.20 17.56 36.78
Transformer + Spherical 40.20 17.55 36.73

Table 5. BLEU scores of Alpaca fine-tuned large language models
on WMT22 test sets.

Model EN-DE DE-EN EN-ZH ZH-EN

LLaMA-7B 25.42 17.93 13.86 13.17
+ Brier 29.15 21.09 15.74 17.75
+ Spherical 29.07 21.05 15.87 17.95

LLaMA-13B 29.35 21.74 15.58 16.27
+ Brier 29.54 22.80 17.10 19.99
+ Spherical 29.82 23.11 15.85 19.59

ters and only modify the loss function to correspond with
the alternative scores.

Table 3 and Table 4 present the impact of fine-tuning on
translation and summarization performance. As can be seen,
even without adjusting hyperparameters for specific scores,
fine-tuning with Brier score or Spherical score can still yield
certain improvements on logarithmic score pre-trained mod-
els. We conjecture that such improvements stem from the
complementarity between scoring rules. As different scor-
ing rules follow unique optimization trajectories towards
the same global optimum, fine-tuning with another score
might aid the model in escaping its current trapped region,
consequently leading to further performance improvements.

We continue to explore the effectiveness of scoring rules on a
larger model scale. During the instruction tuning of LLaMA-
7B and LLaMA-13B, we substitute the log-likelihood loss
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Figure 3. Performance curves on WMT14 En-De test set when fine-tuning with different scoring rules.

Table 6. ROUGE scores of Alpaca fine-tuned large language mod-
els on CNN/DailyMail.

Model RG-1 RG-2 RG-L

LLaMA-7B 28.66 12.49 26.37
LLaMA-7B + Brier 32.15 14.76 29.72
LLaMA-7B + Spherical 30.89 13.87 28.45

Table 7. BLEU scores on the WMT14 En-De test set.

α 1.5 1.75 2 2.25 2.5

α-power 27.91 28.05 28.01 27.84 27.71
pseudo-spherical 28.09 27.91 28.07 27.92 27.64

with loss functions associated with the Brier score and the
spherical score. The translation and summarization perfor-
mance are presented in Table 5 and Table 6, respectively.
Due to memory constraints, we only assess the summariza-
tion performance of LLaMA-7B. It is surprising to see that
fine-tuning with alternative scoring rules can lead to more
significant performance improvements on LLMs. Particu-
larly on LLaMA-7B, both scores exhibit an average increase
of over 3 BLEU points in translation quality, and the spheri-
cal score also demonstrates an average improvement of over
3 ROUGE points in summarization performance.

Figure 2 displays the multi-turn question-answering capa-
bilities of LLMs. Models fine-tuned using the Brier score
and the spherical score exhibit stronger overall performance,
particularly in extraction and reasoning tasks. In contrast,
the model fine-tuned with the logarithmic score is better at
writing, roleplay, and STEM tasks.

4.4. Model Dynamics during Fine-tuning

The above experiments show that fine-tuning with other
scoring rules can enhance the generative capabilities of lan-
guage generation models. However, it remains unclear what
changes occur within the model during this process. In this
section, we investigate the dynamics of the model during the
fine-tuning process to better understand its impact. Specifi-
cally, on the WMT14 En-De dataset, we pre-train the Trans-

Table 8. Average BLEU scores on WMT22 test sets.

α 1.5 1.75 2 2.25 2.5

α-power 19.93 20.11 20.93 19.27 19.12
pseudo-spherical 20.42 20.67 20.98 20.03 19.52

former using MLE loss and fine-tune it with various scoring
rules. Then we track the changes of different scoring rules
and also the BLEU score on the test set. Figure 3 illustrates
their relative changes, calculated as S(pθ,q)−S(pθold

,q)

|S(pθold
,q)| .

As observed, when fine-tuning with the logarithmic score,
all metrics fluctuate around their original values since the
model is pre-trained with the same score. When fine-tuning
with the Brier score or the spherical score, both scores
show a certain improvement, accompanied by an increase
in BLEU. In contrast, the logarithmic score experiences
a significant drop. This interesting phenomenon implies
that although different strictly proper scores share the same
global optimum, their optimization trajectories might be
conflicting, and these scores do not always align with the
model’s generative capabilities. Therefore, comprehensively
considering multiple scores during training can help the
model achieve stronger generative capabilities. It also sug-
gests that when assessing language models, a more accurate
evaluation could be achieved by considering multiple scores
collectively, rather than relying solely on the perplexity.

4.5. Pseudo-spherical Score and Power Score

Previously, we explored the impact of Brier score and spher-
ical score for training language generation models. Here, we
further investigate two more general scoring rules, namely
the pseudo-spherical score and the α-power score, as de-
scribed in section 2.4. Both scores include a parameter
α, with Brier score and spherical score being their special
cases when α = 2. To examine the impact of the parameter
α, we conduct experiments on both Transformer-base and
LLaMA-7B. Table 7 and Table 8 give the results on the
WMT14 En-De test set and WMT22 test sets, respectively.
Overall, a stable and superior performance is achieved at
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Table 9. BLEU scores on the TED bilingual dataset. Avg means the average BLEU. ‘Transformer w/ LS’ represents a Transformer trained
with label smoothing. ‘Transformer w/o LS’ represents a Transformer trained without smoothing.

X-En Fr Ru He Ar It Nl Ro Tr De Vi Avg

Transformer w/o LS 39.39 24.81 37.07 31.79 37.75 35.86 34.40 25.64 34.88 26.48 32.81
+ Brier 40.02 25.43 37.85 32.12 38.41 36.32 35.23 26.17 36.05 26.81 33.44
+ Spherical 40.27 25.49 38.13 32.37 38.67 36.85 36.63 26.43 35.66 27.02 33.75

Transformer w/ LS 40.64 25.74 38.48 32.74 38.87 36.81 35.77 26.80 36.03 27.18 33.91
+ Brier 40.19 25.32 38.36 32.59 38.60 36.40 35.40 26.53 35.65 27.22 33.63
+ Spherical 40.45 25.87 38.40 32.82 38.56 36.68 35.68 26.84 36.00 27.34 33.86

Table 10. Average BLEU scores on TED test sets.

Score S Sϵ Sϵ
log

Brier 33.63 33.80 34.49
Spherical 33.86 33.89 34.43

α = 2. When α > 2, the model performance typically
experiences a noticeable decline. In contrast, the models
can still maintain a competitive performance when α < 2.

4.6. Effect of Score Smoothing

Label smoothing is a commonly used regularization tech-
nique for classification networks, particularly crucial in low-
resource scenarios. Therefore, we conduct experiments
on the TED bilingual dataset to examine whether score
smoothing could yield a similar effect. First, we train Trans-
former models using the smoothed and unsmoothed log-
likelihood loss respectively, and then fine-tune them with
the unsmoothed Brier and spherical score. The results are
presented in Table 9. When not using label smoothing, fine-
tuning with alternative scores brings noticeable improve-
ments. However, for models trained with label smoothing,
fine-tuning with unsmoothed scores may result in a perfor-
mance decline, indicating the necessity of score smoothing.

Next, we employ score smoothing techniques to fine-tune
the Transformer w/ LS. For simplicity, we only report the
average BLEU score in Table 10. The smoothed score Sϵ

results in some improvement, but the impact is relatively
minor. By enhancing the smoothing term with the masked
logarithmic score, Sϵ

log leads to a more noticeable improve-
ment in performance, indicating that score smoothing can
also serve as an effective regularization technique.

5. Related Work
Strictly Proper Scoring Rules in Deep Learning. In ad-
dition to the widely used logarithmic score, various strictly
proper scoring rules have played a significant role in deep
learning. The Brier score serves as a training criterion for
classification networks (Shoemaker, 1991; Hung et al., 1996;

Kline & Berardi, 2005; Hui & Belkin, 2021), as well as an
evaluation metric for the quality of uncertainty calibration
(Lakshminarayanan et al., 2017; Ovadia et al., 2019; Gruber
& Buettner, 2022). The pseudo-spherical score offers solu-
tions for training energy-based models (Yu et al., 2021) and
knowledge distillation (Lee & Lee, 2022). In the continu-
ous space, some scoring rules present appealing generative
modeling approaches. For example, the Hyvärinen score
(Hyvärinen & Dayan, 2005; Ehm & Gneiting, 2012) gives
rise to score-based generative models (Song & Ermon, 2019;
Song et al., 2021). The energy and kernel score (Gneiting &
Raftery, 2007) facilitate the development of generative net-
works through scoring rule minimization (Gritsenko et al.,
2020; Pacchiardi et al., 2021; Pacchiardi & Dutta, 2022).

Loss Functions for Language Generation. Currently, the
loss functions used in language generation models are pri-
marily improved versions of cross-entropy loss. One line of
research adapts the cross-entropy loss through techniques
such as truncation (Kang & Hashimoto, 2020) and reweight-
ing (Ji et al., 2023). Another line of research introduces
an additional loss term to complement the cross-entropy
loss, such as incorporating reverse cross-entropy (Zhang
et al., 2023b), reflective likelihood loss (Dieng et al., 2019),
unlikelihood loss (Welleck et al., 2020), and Gaussian prior
objective (Li et al., 2020). Stahlberg & Kumar (2022) trans-
forms the multi-class word prediction problem into multiple
binary classification problems, which also leads to a well-
calibrated model distribution when proper scoring rules (e.g.,
the logarithmic score used in this work) are employed for
binary classification. A recent approach (Shao et al., 2023)
involves composing the cross-entropy loss with a convex
function, which results in a local but improper scoring rule
that alters the shape of the model distribution to be sharper
than the data distribution. Other loss functions primarily
involve reinforcement learning-based reward optimization,
where rewards are derived from evaluation metrics (Ranzato
et al., 2016; Shen et al., 2016; Shao et al., 2019; 2021), hu-
man feedback (Stiennon et al., 2020; Ouyang et al., 2022),
generative adversarial nets (Yu et al., 2017; Yang et al.,
2018), or reference demonstrations (Pang & He, 2021). To
our knowledge, our work is the first attempt to train lan-
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guage generation models using scoring rules other than the
logarithmic score.

6. Conclusion
This paper investigates the use of non-local strictly proper
scoring rules for training language generation models, with
a primary focus on the Brier score and the spherical score.
Although these scores do not perform as well as the logarith-
mic score when training models from scratch, they demon-
strate substantial improvements when fine-tuning models
that have been pre-trained with the logarithmic score.

Our findings raise several intriguing questions for future
research: Despite being strictly proper, different scores still
exhibit considerable performance variations when training
language models. Are there other scores that exhibit supe-
rior performance during pre-training or fine-tuning? What
factors contribute to these performance differences, and can
we develop additional metrics or properties to determine a
score’s suitability for training language generation models?
Furthermore, beyond model training, it is worth exploring
whether these scores can function as evaluation metrics,
similar to Perplexity (PPL), for assessing the calibration of
language generation models.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. α-power Score and α-entmax Loss
We are grateful for the very insightful comments provided by Reviewer gaCL, which motivated us to investigate the
connection between the α-power score and α-entmax loss.

Softmax has a limitation in that it cannot produce probabilities exactly equal to zero. To generate sparse probability
distributions, methods such as sparsemax (Martins & Astudillo, 2016) and α-entmax (Peters et al., 2019; Martins et al.,
2020) have been proposed, where sparsemax is a special case of α-entmax with α = 2. Given the probability space
△d = {p ∈ Rd : p ≥ 0, ∥p∥1 = 1}, α-entmax is a transformation Rd → △d, defined as:

α-entmax(z) = arg max
p∈△d

p⊤z +H⊤
α (p), (23)

where H⊤
α (p) is a family of entropies parametrized by a scalar α ≥ 1, known as Tsallis α-entropies:

H⊤
α (p) =

{
1

α(α−1)

∑
j (pj − pαj ), α > 1

−
∑

j pj log pj , α = 1
. (24)

The associated loss function is called α-entmax loss:

Lα(z, x) = (p− ex)
⊤z +H⊤

α (p), (25)

where p = α-entmax(z) and ex is the one-hot vector corresponding to the ground truth word x. We will show that under
certain conditions (i.e., the probability of ground truth word px > 0, α > 1), the α-entmax loss is equivalent to the following
token-level loss based on α-power score:

Lα-power(p, x) = (α− 1)

m∑
j=1

pαj − αpα−1
x . (26)

To solve the constrained problem in equation 23, we can apply the Lagrange multiplier:

f(p, λ, µ) = p⊤z +H⊤
α (p)− λ(

∑
j

pj − 1)−
∑
j

µjpj . (27)

∂f(p, λ, µ)

∂pj
= zj −

1

α− 1
pα−1
j − λ− µj = 0. (28)

Due to the complementary slackness condition of the KKT, if the solution pj > 0, then we have µj = 0, which yields:

zj = λ+
pα−1
j

α− 1
. (29)

Similarly, if the probability of ground truth word px > 0, then zx = λ +
pα−1
x

α−1 . Substituting these into equation 25, we
obtain:

Lα(z, x) =
∑

j,pj>0

pjzj − zx +H⊤
α (p) =

∑
j,pj>0

pj(λ+
1

α− 1
pα−1
j )− λ− pα−1

x

α− 1
+H⊤

α (p)

=
∑
j

pαj
α− 1

− pα−1
x

α− 1
+

1

α(α− 1)
−

∑
j

pαj
α(α− 1)

=
1

α(α− 1)
[(α− 1)

∑
j

pαj − αpα−1
x + 1]

=
Lα-power(p, x) + 1

α(α− 1)
.

(30)

As shown, the α-entmax loss is a linear transformation of the α-power score based loss, so they are fundamentally equivalent.
This reveals the propriety of the α-entmax loss. However, the equivalence does not hold when px = 0. In this case, zx falls
below the threshold of obtaining positive probability, causing the gradient from the probability vector ∂p

∂zx
to be 0. This

makes it theoretically impossible to obtain a gradient from probability-based loss functions. Therefore, when applying
other strictly proper scoring rules to the training of sparse transformations, adjustments are still necessary to ensure that the
gradient can be transmitted to the golden logit zx.
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B. Scoring Rules as Beam Search Objective
We are grateful for the very insightful comments provided by Reviewer z8jq, which inspired us to investigate the application
of scoring rules as objectives for beam search.

In the realm of conditional generation tasks such as machine translation and text summarization, beam search is a widely
adopted decoding strategy aimed at finding the output sequence y with the highest length-normalized log-probability. The
formal objective of beam search can be expressed as:

max
y

∑|y|
t=1 log pθ(yt|x, y<t)

|y|α
, (31)

where α denotes the length penalty hyperparameter. The above equation can also be understood as maximizing the sum of
token-level logarithmic scores. Similarly, we can consider having beam search optimize other token-level scoring rules:

max
y

∑|y|
t=1 S(pθ(·|x, y<t), yt)

|y|α
. (32)

Here, S can be the Brier score S(p, i) = 2pi −
∑m

j=1 p
2
j , the spherical score S(p, i) = pi

|p| , or other strictly proper scoring
rules. A critical aspect is the sign (positive or negative) of the scoring rule. Given their definitions, the logarithmic score is
inherently negative, the spherical score is positive, and the sign of the Brier score is uncertain. For a negative score like
the logarithmic score, models tend to favor shorter sentences, whereas the length penalty α can counterbalance this by
encouraging longer output. Conversely, for a positive score like the spherical score, models are inclined to generate longer
sentences, and here, the length penalty α serves to encourage shorter sentences. To unify them, we subtract 1 from both the
Brier score and the spherical score to ensure they are non-positive:

S′
Brier = 2pi −

m∑
j=1

p2j − 1 ≤ 2pi − pi − 1 ≤ 0, S′
Spherical =

pi
|p|

− 1 ≤ 1− 1 = 0. (33)

We conduct experiments on the WMT14 En-De dataset to evaluate the impact of different scoring rules on the quality of
generated text when used as the objective for beam search. The results are presented in Table 11. The results indicate
that, among the three scoring rules examined, the logarithmic score yields the best performance, with the Brier score
outperforming the spherical score. However, there are exceptions. For instance, the model fine-tuned with the spherical
score demonstrated a preference for beam search optimization using the spherical score over the Brier score.

Table 11. BLEU scores on WMT14 En-De when applying different scoring rules as beam search objective.

Model Logarithmic Brier Spherical

Transformer 27.61 27.56 27.23
Transformer + Brier 28.01 27.95 27.53
Transformer + Spherical 28.07 27.40 27.78

Our investigation into the use of different scoring rules as objectives for beam search is far from exhaustive. It is plausible that
other strictly proper scoring rules could surpass the performance of logarithmic score. We leave this for future exploration.
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