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Abstract001

Document Key Information Extraction (KIE)002
transforms unstructured or semi-structured003
documents into structured data, typically004
key–value pairs or grouped entities, that sup-005
port enterprise applications such as business006
workflow automation. While recent work ex-007
plores the use of Large Language Models008
(LLMs) for KIE using prompting, rather than009
document-specific fine-tuning, progress is hin-010
dered by the lack of benchmarks tailored to this011
emerging paradigm. We introduce DocKIE-012
Bench, a benchmark specifically designed to013
evaluate KIE in the context of LLMs. DocKIE-014
Bench provides carefully designed schema with015
detailed descriptions, formats, and examples,016
covers 38 document types from diverse do-017
mains, and includes fine-grained component018
tags (tables, forms, handwritten regions, and019
others) that enable nuanced analysis of model020
performance. We evaluate both proprietary and021
open-source LLMs and conduct comprehensive022
ablation studies on schema design and input023
modality, offering practical insights into cur-024
rent strengths and limitations. The dataset will025
be publicly available.026

1 Introduction027

Key Information Extraction (KIE) refers to the028

task of identifying and extracting structured infor-029

mation, typically in the form of key-value pairs030

or grouped entities, from unstructured or semi-031

structured documents. This structured information032

underpins a wide range of downstream applications033

such as database population, robotic process au-034

tomation, and automated business workflows. As035

such, KIE plays a central role in document un-036

derstanding pipelines, especially in enterprise and037

industrial settings (Cui et al., 2021).038

With the emergence of Large Language Models039

(LLMs), there has been growing interest in leverag-040

ing their strong generalization capabilities for KIE041
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Figure 1: Overview of the LLM-for-KIE paradigm and
the proposed benchmark, DocKIE-Bench. The illustra-
tion shows how a LLM performs KIE based on a docu-
ment and a schema, and how DocKIE-Bench supports
this process through diverse document types, carefully
designed schemas, and fine-grained annotations.

tasks across diverse document types. While ear- 042

lier fine-tuning-based approaches (Xu et al., 2020, 043

2021; Li et al., 2021; Hong et al., 2022; Wang et al., 044

2022; Kim et al., 2022; Huang et al., 2022) demon- 045

strated effectiveness in controlled experimental set- 046

tings, they face significant scalability challenges. 047

These methods require substantial effort in data 048

curation and model retraining whenever new docu- 049

ment types are introduced, limiting their practical- 050

ity in dynamic real-world environments. 051

To overcome these limitations, recent efforts 052

have shifted toward the LLM-for-KIE paradigm (He 053

et al., 2023; Perot et al., 2023; Liao et al., 2024; 054

Zhang et al., 2025), where key information is ex- 055

tracted using an LLM without document-specific 056

fine-tuning. As illustrated in Figure 1, an LLM is 057

prompted with a document and information about 058

entity keys for extraction (referred to as schema), 059

and returns the corresponding values in a structured, 060

machine-readable format such as JSON. Despite 061

the promise of this paradigm, the lack of standard- 062

ized benchmarks tailored for evaluating LLMs in 063

KIE settings hinders rigorous assessment and mean- 064
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ingful comparison across approaches.065

In the context of the LLM-for-KIE paradigm,066

a benchmark designed for LLM-based KIE must067

account for several factors that are largely over-068

looked in prior benchmarks. First, as the paradigm069

shifts away from document-specific training, the070

information provided in the schema has to be both071

clear and unambiguous, extending beyond mere072

key names to include descriptions or contextual073

cues. In earlier fine-tuning-based settings, where074

the test distribution closely matched the training075

data, models could learn to resolve ambiguities be-076

tween key names and values during training, mak-077

ing such precision less critical. However, in the078

training-free setting of LLM-for-KIE, the clarity079

and specificity of the schema are essential for guid-080

ing the model and enabling meaningful evaluation081

of extraction performance.082

Secondly, existing benchmarks typically target a083

narrow range of document types, often focusing on084

a single document type, under the assumption that085

models are fine-tuned for each specific extraction086

task. In contrast, the LLM-for-KIE paradigm elim-087

inates the need for task-specific training, shifting088

the focus towards generalization across heteroge-089

neous document structures and formats. As such, a090

benchmark for this setting should prioritize broad091

coverage of diverse document types to better as-092

sess the robustness and adaptability of LLM-based093

extractors in real-world scenarios.094

Lastly, given the training-free nature of LLMs095

and their growing applicability in KIE tasks, there096

is a need for benchmarks that go beyond coarse-097

grained accuracy metrics. In particular, incorporat-098

ing fine-grained annotations that specify, for each099

entity key, the type of document component from100

which the value is extracted (e.g., table, form field,101

checkbox, handwritten region) allows for more de-102

tailed evaluation. These component-level annota-103

tions provide an additional analytical dimension,104

enabling more insightful diagnostics of model be-105

havior under the LLM-for-KIE paradigm. Rather106

than treating performance as a single aggregated107

score, such granularity reveals strengths and weak-108

nesses of a model across different content types,109

offering a more comprehensive understanding of110

its generalization capabilities.111

In view of the above considerations, we pro-112

pose DocKIE-Bench, a novel benchmark specif-113

ically designed to evaluate LLM-based KIE sys-114

tems. DocKIE-Bench features clearly defined115

schemas based on our proposed schema design,116

which includes a description, format specifications, 117

and examples for each entity across a wide range 118

of document types, enabling precise and unam- 119

biguous evaluation of LLM extraction capabili- 120

ties. By incorporating a diverse set of document 121

types, the benchmark supports robust assessment 122

of model generalization. Additionally, it includes 123

fine-grained annotations of document components, 124

such as tables, forms, and handwritten texts, al- 125

lowing for detailed analysis of model performance 126

across different component types. 127

Using DocKIE-Bench, we conduct extensive ex- 128

periments with both proprietary and open-source 129

LLMs to assess their effectiveness on the KIE task. 130

We also perform ablation studies to systematically 131

examine the impact of key factors such as schema 132

design and input modality. These studies provide 133

deeper insight into model behavior, strengths, and 134

limitations within the LLM-for-KIE setting. 135

Our contributions are summarized as follows: 136

• We introduce DocKIE-Bench, a benchmark 137

tailored for evaluating KIE capabilities in 138

LLMs with schema-guided structured outputs. 139

• We curate a diverse collection of documents 140

spanning various domains and formats, with 141

fine-grained annotations linking extracted val- 142

ues to specific document components (e.g., 143

tables, forms, handwritten regions). 144

• We conduct extensive experiments with pro- 145

prietary and open-source LLMs, including ab- 146

lation studies, to provide practical insights 147

into LLM behavior and guide future KIE sys- 148

tem development. 149

2 Related Works 150

2.1 Benchmarks for KIE 151

Several benchmarks have been proposed to evalu- 152

ate KIE systems, but they are mostly designed for 153

fine-tuned models and lack critical features neces- 154

sary for the emerging LLM-for-KIE paradigm. 155

Limited Schema and Document Diversity. Early 156

benchmarks such as SROIE (Huang et al., 2019) 157

and FUNSD (Jaume et al., 2019) adopt simple 158

schemas with flat entity structures (i.e., no grouped 159

entities) and focus on narrow document types like 160

receipts and form-like documents. CORD (Park 161

et al., 2019) introduces grouped entities and brief 162

textual descriptions of entities, but remains lim- 163

ited to receipts. More recent datasets such as 164
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Figure 2: Overview of the dataset construction process for DocKIE-Bench. The process begins with the collection
of documents from both manually curated sources and publicly available KIE benchmarks. These documents are
then converted into structured text using document parsing tools. Next, key-value pairs are annotated and used to
construct corresponding schemas with descriptions, formats, and examples. These schemas are then refined through
LLM-based simulation to improve clarity and consistency. Finally, we apply fine-grained document component
annotations, such as table, form, checkbox, to enable detailed evaluation of LLM-for-KIE paradigm.

POIE (Kuang et al., 2023) expand to product im-165

ages captured in the wild, and the Kleister se-166

ries (Stanisławek et al., 2021) focuses on NDA167

and charity documents. While these benchmarks168

are suitable for the fine-tuning paradigm, they lack169

key elements for LLM-for-KIE, including broad170

document-type coverage, detailed entity descrip-171

tions, and document component labeling, which172

are features essential for insightful evaluation of173

LLM-based KIE systems.174

Benchmarks with Broader Document Cover-175

age. Benchmarks like VRDU (Wang et al., 2023b),176

RealKIE (Townsend et al., 2024) and OmniAI177

OCR (OmniAI, 2025) improve along the axis of178

document diversity, covering wider range of for-179

mats such as registration form, FCC invoices, and180

bank check, making them better aligned with real-181

world industrial use-cases. However, despite their182

diversity, they still lack detailed schema descrip-183

tions and component-level annotations, limiting184

their applicability for evaluating LLM behavior in185

training-free settings.186

DocKIE-Bench, on the other hand, is con-187

structed from the ground up with the various as-188

pects of LLM-for-KIE paradigm in mind. It curates189

documents from a wide range of sources, to ensure190

domain diversity, and applies rigorous annotation191

and revision to meet the paradigm’s core require-192

ments: detailed schema for KIE, broad document193

coverage, and fine-grained component labeling.194

2.2 Evaluating LLMs for KIE 195

Recent efforts to apply LLMs to KIE have led to 196

a wide range of evaluation methodologies. Prior 197

works (He et al., 2023; Perot et al., 2023; Wang 198

et al., 2023a; Luo et al., 2024; Zhang et al., 2025; 199

Zhu et al., 2025) have adopted a variety of strate- 200

gies to facilitate KIE evaluation of LLMs across 201

prior KIE benchmarks. Some of the strategies in- 202

clude: modification of schema (e.g., rewriting en- 203

tity keys into natural language); addition of few- 204

shot examples to adapt the LLMs to KIE settings. 205

While these approaches highlight the potential 206

of LLMs in KIE, the lack of consistency across 207

evaluation strategies hinders fair and accurate com- 208

parisons of model performance. This challenge 209

underscores the need for a standardized benchmark 210

that is specifically designed for LLMs in KIE tasks. 211

Without standardized schema descriptions, diverse 212

document coverage, and component-level annota- 213

tions, prior benchmarks fall short in supporting 214

insightful and interpretable evaluations across dif- 215

ferent LLM-based works. 216

To address this gap, we introduce DocKIE- 217

Bench, a benchmark purpose-built for evaluating 218

KIE performance in the LLM-for-KIE paradigm. 219

3 DocKIE-Bench 220

In this section, we describe the dataset construction 221

process of DocKIE-Bench. Figure 2 illustrates the 222

overall workflow of this construction process. 223
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Dataset # Types Dataset # Types

CORD (2019) 1 DocILE (2023) 2
SROIE (2019) 1 VRDU (2023b) 2
PWC (2020) 1 AutoBench (2025) 4
DeepForm (2020) 1 RealKIE (2024) 5
WildReceipt (2021) 1 SIMARA (2023) 6
ETD500 (2021) 1 FUNSD (2019) 16
POIE (2023) 1 OmniAI OCR (2025) 37
Kleister (2021) 2 DocKIE-Bench (Ours) 38

Table 1: Number of document types covered by public
KIE datasets compared with DocKIE-Bench. DocKIE-
Bench comprises 38 types, the largest among all
datasets. OmniAI OCR is the next most diverse, but
11 of those contain fewer than three documents.

3.1 Document Collection224

We have collected various licensed documents from225

the web. Details regarding the sources of these doc-226

uments are described in Appendix A.1. DocKIE-227

Bench consists of two main components. First,228

we curated a set of 20 document types commonly229

found in business operations, such as invoices, pur-230

chase orders, contracts, and application forms. For231

each type, we collected 5 representative samples,232

resulting in 100 documents. Due to potential pri-233

vacy concerns in real-world documents, we syn-234

thetically generated or anonymized all field values235

to ensure there were no personally identifiable or236

sensitive contents.237

Second, we expanded DocKIE-Bench with eight238

adapted public benchmark datasets used in prior239

KIE studies (Park et al., 2019; Kardas et al., 2020;240

Choudhury et al., 2021; Kuang et al., 2023; Šimsa241

et al., 2023; Wang et al., 2023b; Townsend et al.,242

2024; OmniAI, 2025). These datasets were se-243

lected based on their diversity and complementary244

coverage of document types mostly not represented245

in our manually collected set and variety of key246

types. From these benchmarks, we curated 19 dis-247

tinct documents types and selected a total of 100248

samples to augment DocKIE-Bench. Each selected249

dataset was reformatted to align with the DocKIE-250

Bench schema to ensure consistency and compara-251

bility during evaluation.252

In total, DocKIE-Bench comprises 200 docu-253

ments: 100 manually curated samples and 100254

additional samples adapted from existing bench-255

mark datasets. This combination ensures a bal-256

anced and diverse evaluation set spanning a wide257

range of document types. Notably, as shown in258

Table 1, DocKIE-Bench covers 38 distinct docu-259

ment types, the most among existing KIE bench-260

marks. Detailed dataset statistics are presented in261
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Figure 3: Ambiguous schema descriptions can cause
LLMs to generate varied yet semantically valid answers
that may be penalized for output differences.

Appendix A.2. 262

3.2 Document Textualization 263

Since LLMs generally operate over text inputs, it 264

is essential to convert documents, often stored as 265

PDFs or image files (JPG, PNG), into a textual for- 266

mat. Importantly, since documents convey meaning 267

not only through content but also through visual 268

layout, preserving such structural information dur- 269

ing text conversion is critical for accurate under- 270

standing and extraction. While traditional OCR 271

tool like Tesseract1 can extract raw text, they often 272

lose important structural information. Moreover, in 273

case of scanned images embedded in PDFs, PDF 274

parsers alone cannot extract any text. 275

To address these limitations, we employed a 276

combination of advanced document parsing tools 277

of Upstage Document Parse2 and LlamaParse3 to 278

extract structured representations of documents. 279

These tools provide structured text that reflects lay- 280

out cues (e.g., headers, columns, tables), enabling 281

LLMs to better understand the document layout. 282

3.3 Schema 283

3.3.1 Role of Schema for Reliable Evaluation 284

In traditional KIE setup, key names have been the 285

only information passed to models. However, the 286

flexible output capabilities of modern LLMs often 287

lead to varied yet valid answers, making consis- 288

tent evaluation difficult. This flexibility, combined 289

with minimal key information, can result in multi- 290

ple plausible outputs beyond the intended golden 291

answer, as illustrated in Figure 3. 292

1https://github.com/tesseract-ocr/tesseract
2https://www.upstage.ai/products/

document-parse
3https://www.llamaindex.ai/llamaparse
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To mitigate this issue, we introduce schema that293

provide detailed information for each key. The294

schema clarifies the expected answer format and in-295

tent, serving as a reference for determining whether296

a model’s output aligns with user expectations.297

3.3.2 Structure of Schema298

To mitigate such ambiguity and to enhance consis-299

tency, we define each key in the schema using three300

components: a description, a format, and represen-301

tative examples.302

• Description: provides an explanation of what303

the key represents.304

• Format: specifies the expected structure or repre-305

sentation of the value. For instance, if the format306

indicates that currency symbols must precede the307

amount (e.g., $100), then even if the document308

contains 100 USD, the model must normalize the309

output to the specified form.310

• Example: offers concrete instances of valid val-311

ues, which help guide the model’s generation and312

support more accurate inference.313

The description and format facilitate reliable eval-314

uation of LLM outputs, while the example helps315

promote consistency in model inference.316

In addition to these semantic features, we also in-317

corporate structural aspects into the schema design.318

To enable flexible and expressive schema defini-319

tions, we adopt the JSON Schema standard4. This320

structured format supports a wide range of data321

types, such as integers, strings, and booleans, and322

allows for complex key structures, including arrays323

and nested objects. Such flexibility is particularly324

valuable for representing grouped keys in tabular325

documents, where multiple rows with column-wise326

data must be extracted in groups.327

3.3.3 Schema Design Process328

We begin by identifying key-value pairs for each329

document type using qualified human annotators.330

For public datasets, we leverage existing keys331

and ground-truth values while for internally col-332

lected documents, both keys and ground-truth val-333

ues are annotated directly. Based on the annotated334

key-value pairs, we then design the correspond-335

ing schema based on the structure defined in Sec-336

tion 3.3.2.337

To enhance the consistency and reduce potential338

ambiguity in schema specification, we performed339

4https://json-schema.org

schema LLM-based refinement process. Specif- 340

ically, we prompt GPT-4.1 (gpt-4.1-2025-04-14) 341

with the initial schema and generate five indepen- 342

dent inferences. If semantically correct but struc- 343

turally inconsistent outputs (e.g. "$100" vs. "100") 344

appear across runs, we compare them with the 345

ground-truth value and revise the corresponding de- 346

scription or format to enforce a unique, consistent 347

target output. This refinement step helps us pro- 348

duce a more unambiguous schema, enabling more 349

consistent evaluation in LLM-for-KIE settings. 350

3.4 Document Component Annotation 351

DocKIE-Bench includes document component an- 352

notations at the key-value pair level. These an- 353

notations help identify which types of visual or 354

structural components are associated with each ex- 355

tracted value, thereby enabling more detailed error 356

analysis. Each key-value pair is tagged with zero, 357

one, or more of the following six component types: 358

• table: appears within a tabular structure. 359

• form: follows a header–content pair pattern, typ- 360

ical in forms. 361

• checkbox: presented using a checkbox element. 362

• handwritten: handwritten rather than machine- 363

printed. 364

• plain: appears in plain text paragraphs. 365

• chart: displayed in chart images. 366

This document component annotation supports 367

fine-grained evaluation and helps uncover perfor- 368

mance trends across different document types and 369

layouts. The categorization of these components 370

was inspired by prior works in document under- 371

standing (Mathew et al., 2021, 2022), which em- 372

phasized the importance of visual elements. 373

4 Experiments 374

This section presents an extensive experimental 375

study that evaluates the performance of LLMs on 376

our DocKIE-Bench. The detailed experimental 377

setup for the use of Structured Outputs, system and 378

user prompts is presented in Appendix B. 379

4.1 Evaluation Metrics 380

KIE Metrics We adopt KIEval (Khang et al., 2025) 381

as the metric to assess KIE, where the extracted 382

key-value pairs evaluated with structural awareness 383

(grouping) in mind. KIEval’s Entity F1 measures 384

the extraction performance of individual key-value 385

5
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Model Name Context Max KIEvalAligned Entity F1 Group F1 API Error Parsing Error Format Error

gpt-4o-mini-2024-07-18 128,000 64.22±0.11 67.62±0.15 30.60±0.86 0.00±0.00 1.00±0.00 0.00±0.00

gpt-4o-2024-11-20 128,000 65.41±0.09 67.77±0.07 38.53±0.31 0.00±0.00 0.00±0.00 0.00±0.00

gpt-4.1-nano-2025-04-14 1,047,576 52.70±0.01 56.95±0.04 23.64±0.88 0.00±0.00 0.00±0.00 0.00±0.00

gpt-4.1-mini-2025-04-14 1,047,576 67.30±0.21 69.86±0.17 39.96±0.57 0.00±0.00 0.00±0.00 0.00±0.00

gpt-4.1-2025-04-14 1,047,576 71.62±0.26 74.03±0.15 46.03±0.22 0.00±0.00 0.00±0.00 0.00±0.00

o3-mini-2025-01-31 200,000 64.68±0.27 67.41±0.31 42.26±0.26 0.00±0.00 0.00±0.00 0.00±0.00

o4-mini-2025-04-16 200,000 66.48±0.15 69.66±0.15 41.69±0.00 0.67±0.47 0.00±0.00 0.00±0.00

gemini-2.0-flash-lite 1,048,576 53.61±0.22 56.27±0.19 16.12±0.29 0.00±0.00 6.00±0.82 0.33±0.47

gemini-2.0-flash 1,048,576 59.35±0.32 63.25±0.29 27.17±0.62 0.00±0.00 3.67±0.47 5.00±0.00

gemini-2.5-flash-preview-04-17† 1,048,576 63.25±0.11 65.30±0.11 29.46±0.15 3.67±0.47 4.00±0.00 0.00±0.00

gemini-2.5-pro-preview-05-06† 1,048,576 62.42±0.33 64.22±0.31 23.11±0.62 0.67±0.94 1.33±0.47 0.00±0.00

claude-3-5-haiku-20241022 200,000 63.53±0.16 66.83±0.17 37.54±0.70 0.00±0.00 0.00±0.00 3.00±0.00

claude-3-7-sonnet-20250219 200,000 70.58±0.19 72.78±0.19 45.62±0.63 0.00±0.00 0.00±0.00 0.00±0.00

Qwen2.5-0.5B-Instruct 32,768 19.07±0.07 22.52±0.07 8.12±0.10 0.00±0.00 9.00±0.82 0.00±0.00

Qwen2.5-1.5B-Instruct 32,768 35.25±0.08 38.81±0.09 12.85±0.21 0.00±0.00 8.33±1.25 0.00±0.00

Qwen2.5-3B-Instruct 32,768 47.24±0.05 51.51±0.03 16.80±0.10 0.00±0.00 7.00±0.00 0.00±0.00

Qwen2.5-7B-Instruct 131,072* 52.50±0.14 56.89±0.11 19.88±0.14 0.00±0.00 1.00±0.00 0.00±0.00

Qwen2.5-32B-Instruct 131,072* 65.80±0.13 68.82±0.09 40.96±0.16 0.00±0.00 0.33±0.47 0.00±0.00

Qwen2.5-72B-Instruct 131,072* 67.17±0.31 69.94±0.32 41.42±0.21 0.00±0.00 1.33±0.94 0.00±0.00

gemma-3-1b-it 32,768 15.73±0.18 18.17±0.20 1.87±0.26 0.00±0.00 31.33±1.25 0.00±0.00

gemma-3-4b-it 131,072 49.90±0.13 53.99±0.17 19.37±0.39 0.00±0.00 0.00±0.00 0.00±0.00

gemma-3-12b-it 131,072 59.64±0.17 62.56±0.18 29.38±0.68 8.00±0.82 0.00±0.00 0.00±0.00

gemma-3-27b-it 131,072 63.50±0.08 66.28±0.06 37.07±0.40 0.00±0.00 0.00±0.00 0.00±0.00

Mistral-Small-3.1-24B-Instruct 131,072 68.33±0.01 70.97±0.01 38.09±0.01 0.00±0.00 1.00±0.00 0.00±0.00

Llama-3.3-70B-Instruct 131,072 65.53±0.06 68.13±0.07 41.15±0.03 0.00±0.00 1.33±0.47 0.00±0.00

Table 2: Performance comparison of various proprietary and open-source LLMs, based on key metrics such as
KIEvalAligned, Entity F1, and Group F1, demonstrating the dominance of GPT-4.1 and Claude-3-7-Sonnet, while
highlighting the scaling trends within Qwen and Gemma series, as well as the notable performance of Mistral-Small-
3.1-24B-Instruct relative to its size. Additionally, the table underscores the challenges faced by reasoning-focused
models like Gemini and o-series in maintaining accuracy despite larger context. Some Qwen models leverage RoPE
scaling to extend context length from 32K to 128K, as indicated by the * mark in the table. Gemini 2.5 models
show API failures due to copyright issues, marked with † in the table to denote these occurrences.

pairs, while Group F1 evaluates the extraction per-386

formance at group-level (i.e. groups of related en-387

tities). Additionally, KIEvalAligned, a modification388

of Entity F1 for industrial applications, focuses389

on the number of corrections required to fix in-390

correct predictions. More details can be found in391

Appendix B.3.392

Reliability Metrics In addition to extraction per-393

formance, we assess model reliability by measur-394

ing the frequency of failures in generating valid395

structured outputs. There are three types of er-396

rors: API, Parsing and Format errors. API errors397

refer to cases where the API call fails due to server-398

side issues (e.g., timeouts). Parsing errors occur399

when the model’s output cannot be parsed as valid400

JSON. Format errors, on the other hand, occur401

when the output is syntactically valid JSON but402

deviates from the expected schema structure.403

All experiments are conducted across three inde-404

pendent runs, and we report the averaged results,405

along with the standard deviation.406

4.2 Model Comparison 407

Table 2 presents the performance comparison of 408

several proprietary and open-source LLMs under 409

the text-only setting, where visual documents are 410

converted to text using Upstage Document Parse, 411

which yield better KIE results than LlamaParse (see 412

Appendix C). 413

Among the models evaluated, GPT-4.1 achieves 414

the highest performance across all key metrics, 415

demonstrating superior accuracy and grouping ca- 416

pabilities. Claude 3.7 Sonnet follows closely, de- 417

livering consistently strong results across evalu- 418

ation dimensions. Among open-source models, 419

Mistral (MistralAI, 2025) delivers notably strong 420

performance. While not as large as some of the 421

parameter-heavy models (e.g., 70B+), its 24B scale 422

positions it in the mid-sized range relative to other 423

open models considered in this study. Its com- 424

petitive performance suggests that larger parame- 425

ter counts do not always translate directly to bet- 426

ter KIE results, especially across different model 427

providers. In contrast, models like Qwen2.5 (Yang 428

et al., 2024) and Gemma 3 (Kamath et al., 2025) 429

exhibit a clear positive scaling trend, with larger 430
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Model Name Schema KIEvalAligned Parsing Error

gpt-4o-mini D 61.04±0.27 1.00±0.00

(2024-07-18) D + F 62.17±0.19 1.33±0.47

D + F + E 64.22±0.11 1.00±0.00

gpt-4o D 62.70±0.30 0.00±0.00

(2024-11-20) D + F 63.57±0.19 0.33±0.47

D + F + E 65.41±0.09 0.00±0.00

gpt-4.1-nano D 50.03±0.33 0.33±0.47

(2025-04-14) D + F 51.11±0.37 0.33±0.47

D + F + E 52.70±0.01 0.00±0.00

gpt-4.1-mini D 63.68±0.19 0.33±0.47

(2025-04-14) D + F 64.54±0.16 0.33±0.47

D + F + E 67.30±0.21 0.00±0.00

gpt-4.1 D 65.28±0.21 0.00±0.00

(2025-04-14) D + F 66.38±0.23 0.00±0.00

D + F + E 71.62±0.26 0.00±0.00

Table 3: Comparison across different schema designs
containing description (D), format (F), and example (E).

variants consistently outperforming their smaller431

counterparts.432

Interestingly, reasoning-focused models such as433

Gemini 2.5, o3-mini, and o4-mini underperform434

despite extended context windows and large output435

capacities. For instance, the o-series models lag436

behind GPT-4.1 and are more comparable in per-437

formance to GPT-4o. While Gemini 2.5 improves438

over its predecessor (2.0 Flash), it still falls short439

of achieving top-tier scores. These results suggest440

that advanced reasoning capability alone does not441

strongly correlate with effective KIE performance.442

A notable pattern is also observed among443

smaller models such as Qwen2.5-0.5B-Instruct and444

Gemma-3-1b-it, which exhibit significantly higher445

parsing error rates. This trend highlights a trade-off446

between model size and parsing robustness, sug-447

gesting that reliable KIE performance with mini-448

mal parsing errors generally requires models with449

sufficient capacity (e.g. 4B+).450

4.3 Effect of Schema on Performance451

Table 3 examines the impact of different schema452

configurations on LLM performance. As we incre-453

mentally enrich the schema with a description (D),454

formatting rules (F), and examples (E), we observe455

consistent gains in extraction accuracy.456

Comparing the D and D + F settings reveals that457

adding format guidelines enhances extraction qual-458

ity, particularly for structured fields such as dates,459

numerical values, and standardized formats. For-460

mat instructions help reduce ambiguity and guide461

the model toward consistent outputs. For exam-462

ple, fields like dates (e.g., 07/08/2024 vs. 07 / 08463

/ 24) and addresses benefit from clear formatting464

expectations. These findings highlight the value of465

Model Name Modality KIEvalAligned Parsing Error

gpt-4.1-nano T 52.70±0.01 0.00±0.00

(2025-04-14) I 47.81±0.47 0.00±0.00

T + I 55.83±0.48 0.67±0.47

gpt-4.1-mini T 67.30±0.21 0.00±0.00

(2025-04-14) I 76.04±0.17 0.67±0.47

T + I 74.44±0.20 0.00±0.00

gpt-4.1 T 71.62±0.26 0.00±0.00

(2025-04-14) I 72.46±0.15 0.00±0.00

T + I 77.42±0.06 0.00±0.00

Table 4: Performance comparison of different input
modalities across GPT 4.1 models. In Modality, T, I,
and T + I indicated text-only, image-only and use text
and image together, respectively.

structural guidance in improving model reliability 466

for such keys. 467

Extending the schema further to include exam- 468

ples (D + F + E) provides an additional perfor- 469

mance boost. Real-world examples convey nu- 470

anced cues, such as address delimiters, apartment 471

labels, currency symbol placement, spacing, and 472

capitalization, that are often difficult to fully ar- 473

ticulate through descriptions alone. The inclusion 474

of examples allow the model to infer these sub- 475

tle patterns, complementing textual and structural 476

instructions with concrete, context-rich signals. 477

5 Analysis 478

Building on the experimental results, we proceed 479

with an analysis focused on the assessment of inher- 480

ent visual understanding capabilities across models 481

and the relationship between different modalities 482

and document components in our benchmark. 483

5.1 Impact of Modality 484

While textualizing documents is the most conve- 485

nient approach for applying LLMs to information 486

extraction, recent advances in multi-modal LLMs 487

allow models to directly process visual documents. 488

This section investigates how well models can in- 489

terpret and integrate textual and visual inputs. 490

Table 4 compares three input modalities: HTML 491

text only (T), image only (I), and a combined set- 492

ting with both text and image inputs (T + I). Overall, 493

image-only inputs tend to outperform text-only in- 494

puts, suggesting that key information in our bench- 495

mark is primarily grounded in visual layout and 496

structure. An exception is observed with GPT- 497

4.1 nano, where the text-only input slightly out- 498

performs the image-only setting, indicating that 499

smaller models may struggle with visual compre- 500

hension in the absence of textual cues, possibly due 501
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Model Name Modality Table Form Plain Handwritten Chart Checkbox

gpt-4.1-nano T 72.34±0.83 72.10±0.22 75.01±1.81 37.73±0.32 11.11±0.00 7.46±0.44

(2025-04-14) I 63.32±1.97 69.23±0.33 77.78±1.88 52.98±1.68 24.52±3.30 57.48±6.08

T + I 69.59±0.54 74.86±0.47 74.29±0.48 58.54±0.00 16.05±0.00 57.37±1.59

gpt-4.1-mini T 79.79±0.41 77.55±0.30 57.81±1.35 55.36±0.00 53.54±2.46 26.53±0.00

(2025-04-14) I 87.64±1.17 83.47±0.14 74.01±1.66 80.86±2.31 57.08±12.89 58.08±0.56

T + I 83.78±1.67 83.39±0.42 70.00±0.22 72.62±1.68 42.47±11.75 53.97±2.59

gpt-4.1 T 89.90±0.30 80.80±0.15 66.05±0.13 56.79±1.75 44.25±5.19 31.93±0.25

(2025-04-14) I 76.35±0.77 77.96±0.11 69.03±0.84 60.12±0.84 82.91±2.82 56.40±0.21

T + I 91.46±0.33 83.99±0.01 66.42±2.44 75.00±3.86 63.24±4.59 50.00±1.10

Table 5: Component-level analysis of model performance. Each column represents a distinct component, and
the rows provide KIEvalAligned for different models. Notable trends include the substantial performance gains in
visually dominant components (Checkbox, Chart, Handwritten) when incorporating image data and the consistent
performance across structured components (Table, Form, Plain) regardless of modality.

to limited model capacity.502

For the combined modality (T + I), results show503

a general trend of improvement, demonstrating syn-504

ergy between text and image inputs. However, GPT-505

4.1 mini presents a slight drop in performance com-506

pared to its image-only setting. This suggests that507

the inclusion of textual input may, in some cases,508

introduce noise or conflicting signals that interfere509

with accurate visual referencing.510

In contrast, GPT-4.1 achieves its best perfor-511

mance in the T + I setting, showing a substantial512

margin over both single-modality inputs, indicat-513

ing a more advanced capability to effectively inte-514

grate multi-modal inputs while filtering out noise.515

Such findings suggest that higher-performing mod-516

els may employ more refined mechanisms to align517

visual and textual cues and prioritize salient infor-518

mation for robust information extraction.519

5.2 Document Component520

Our benchmark includes component-type annota-521

tions for each key-value pair, enabling a more gran-522

ular analysis of model behavior. The component-523

level results in Table 5 reveal both the relative diffi-524

culty of different components and how input modal-525

ity influences performance across them.526

The superior performance of image-based inputs527

over text-only inputs is primarily driven by visually528

dominant components such as Checkbox, Chart,529

and Handwritten, where visual information plays530

a crucial role in accurate extraction. In contrast,531

components with more structured or text-heavy lay-532

outs, such as Table, Form, and Plain, exhibit mini-533

mal performance differences between text-only and534

image-only inputs. This suggests that the modal-535

ity gap is concentrated within a specific subset of536

components, rather than being uniformly present537

across all component types.538

The combined modality (T + I) proves especially 539

effective for components that depend on both tex- 540

tual labels and spatial structure, including Form, 541

Table, and Handwritten. In these cases, the largest 542

model (GPT-4.1) shows substantial gains from 543

multi-modal integration, whereas smaller models 544

demonstrate limited or inconsistent benefits. This 545

pattern supports the notion that successful multi- 546

modal fusion is closely tied to model capacity, with 547

smaller models often struggling to meaningfully 548

leverage both input types effectively. 549

Overall, these findings highlight the value of 550

our benchmark in analyzing how text, layout, and 551

visual content contribute to model performance 552

across diverse components. This structure serves a 553

basis for more targeted assessments of future mod- 554

els, enabling deeper insights into text and visual 555

processing capabilities of LLMs. 556

6 Conclusion 557

We present DocKIE-Bench, a benchmark tailored 558

to evaluate LLMs on document KIE. It fills key 559

gaps in existing benchmarks by providing struc- 560

tured schemas with descriptions, formatting rules, 561

and examples; diverse coverage of 38 real-world 562

document types; and fine-grained component anno- 563

tations linking each value to its visual context. 564

Our experiments show that proprietary models 565

outperform open-source models, but even the best 566

models fall short of high accuracy, highlighting 567

room for improvement. Ablation studies demon- 568

strate that well-specified schemas significantly im- 569

prove performance, and multi-modal inputs offer 570

further gains when paired with sufficiently capa- 571

ble models. These results highlight the value of 572

DocKIE-Bench as a comprehensive benchmark for 573

advancing LLM-for-KIE paradigm through more 574

reliable evaluation and deeper analysis. 575
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Limitations576

While DocKIE-Bench is designed to be a compre-577

hensive and practical benchmark for LLM-based578

KIE, certain limitations remain, primarily due to579

the inherent complexity of real-world document580

understanding.581

First, the definition of “key information” in a doc-582

ument is inherently use-case dependent. Different583

practitioners may define varying schemas for the584

same document, for instance, an invoice could be585

labeled with a single invoice_total field or broken586

down into subtotal, tax, and grand_total. Exhaus-587

tively covering all valid schema interpretations is588

impractical. To maintain consistency and enable589

controlled evaluation, DocKIE-Bench adopts a sin-590

gle, carefully curated schema per document type.591

While this narrows the evaluation scope, it ensures592

comparability across models in benchmarking.593

Second, to provide LLMs with structured,594

machine-readable input, visual documents are con-595

verted to HTML or Markdown via automated pars-596

ing tools. As with any learned system, these parsers597

may occasionally introduce noise that can affect598

absolute performance. However, since all models599

are evaluated on the same parsed outputs, such ar-600

tifacts impact all systems equally, preserving the601

validity of relative comparisons and performance602

trends.603

Overall, these design choices reflect practical604

trade-offs aimed at building a usable, reproducible,605

and extensible benchmark for advancing the study606

of LLMs in document-level information extraction.607
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A Dataset Details789

A.1 Dataset Composition790

Table 8 presents detailed information about the791

datasets included in DocKIE-Bench, including792

their dataset sources, names, document types, and793

brief descriptions. This table provides a compre-794

hensive view of both manually curated datasets795

and adapted public benchmarks used in DocKIE-796

Bench.797

A.2 Dataset Statistics798

Mean ± Std Range (Min - Max)

# Pages 12.05 ± 49.85 1 - 474
# Tokens 10,179.40 ± 34,097.75 142 - 234,542
# Keys 14.66 ± 7.45 3 - 34
# Values 48.80 ± 90.64 4 - 651
# Groups 5.51 ± 11.51 0 - 58

Table 6: Document-level statistics of DocKIE-Bench.
Each row represents a different statistics computed over
200 documents. Token counts were computed using
the GPT-4.1 tokenizer on documents parsed into HTML
format using Upstage Document Parse.

DocKIE-Bench consists of 200 documents from799

manually curated and public KIE benchmarks. Ta-800

ble 6 summarizes the key statistics of DocKIE-801

Bench. The number of pages per document varies,802

with some documents consisting of a single page803

and others containing up to 474 pages, reflecting804

realistic variability found in practical settings. In805

cases where the number of pages is large, the result-806

ing token-length could be as long as 230K tokens,807

exceeding the context window of many LLMs. This808

underscores one of the key challenges of LLMs in809

realistic KIE applications, reflected in our bench-810

mark. Similarly, the number of target keys, ground-811

truth values, and groups ranges from 3 to 34, 4812

to 651, and 0 to 58, indicating the diversity in in-813

formation density across different document types.814

This diversity allows DocKIE-Bench to support815

comprehensive evaluation across a wide variety of816

document structures and extraction challenges.817

B Experimental Details818

B.1 Structured Outputs819

To practically utilize KIE from LLM inference re-820

sults, it is essential to be able to automatically parse821

values with corresponding keys. At the moment,822

the most effective method for this is to utilize Struc-823

tured Outputs. Recent LLM inference APIs, includ-824

ing proprietary services like OpenAI5, as well as 825

open-source libraries like vLLM6, provide support 826

for Structured Outputs, a feature that guides LLM 827

decoding to adhere to a predefined JSON schema. 828

Since our schema format follows JSON schema, 829

we can easily integrate Structured Outputs with 830

our benchmark, allowing model responses to be 831

generated in a format that conforms exactly to the 832

schema. 833

B.2 System and User Prompts 834

Both system and user prompts play a crucial role in 835

guiding the LLM to perform the task as intended. 836

To ensure a fair comparison, we designed prompts 837

to be as concise and general as possible while main- 838

taining clarity in task-specific output. 839

Figure 4 and Figure 5 illustrate the system and 840

user prompts used for proprietary and open-source 841

models, respectively. For proprietary models (e.g., 842

GPT, Gemini), the JSON schema used for Struc- 843

tured Outputs is typically handled internally by 844

the API provider through opaque mechanisms. In 845

contrast, for open-source models (e.g., Mistral, 846

Gemma), which are commonly deployed via infer- 847

ence frameworks such as vLLM, the schema must 848

be explicitly provided by the user. So, for open- 849

source models, we explicitly include the stringified 850

JSON schema in the system prompt to ensure con- 851

sistency in output structure. 852

The textualized document is included as part 853

of the user prompt to provide the model with the 854

necessary input for extraction. In cases where the 855

combined input exceeds the model context window, 856

we truncate the textualized document from the end 857

to fit within the maximum token limit. 858

B.3 KIEval 859

Conventional KIE evaluation approaches typically 860

focus on entity-level F1 scores. However, as dis- 861

cussed in (Khang et al., 2025), these methods often 862

overlook the structural grouping of related enti- 863

ties, an essential aspect for downstream applica- 864

tions such as saving the extracted result to rela- 865

tional databases. To address this, we adopt KIEval 866

(Khang et al., 2025), an evaluation metric designed 867

to assess key-value extraction with structural aware- 868

ness (grouping) in mind. This metric first aligns 869

predicted and ground-truth groups when group enti- 870

5https://platform.openai.com/docs/guides/
structured-outputs

6https://docs.vllm.ai/en/latest/features/
structured_outputs.html
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Model Name Parser KIEvalAligned Parsing Error

gpt-4o-mini DP 64.22±0.11 1.00±0.00

(2024-07-18) Llamaparse 50.48±0.07 0.00±0.00

gpt-4o DP 65.41±0.09 0.00±0.00

(2024-11-20) Llamaparse 50.62±0.10 0.67±0.47

gpt-4.1-nano DP 52.70±0.01 0.00±0.00

(2025-04-14) Llamaparse 45.04±0.11 0.00±0.00

gpt-4.1-mini DP 67.30±0.21 0.00±0.00

(2025-04-14) Llamaparse 51.63±0.38 1.33±0.47

gpt-4.1 DP 71.62±0.26 0.00±0.00

(2025-04-14) Llamaparse 53.07±0.16 0.00±0.00

Table 7: Performance comparison using Upstage Docu-
ment Parse (DP) and LlamaParse across multiple GPT
model configurations. Note that LlamaParse failed to
produce textual outputs for seven documents, resulting
in incomplete input for those cases.

ties are present, and then compute both entity-level871

and group-level scores based on the matched pairs.872

C Evaluation with Different Document873

Parsers874

The method used to convert documents into text875

has a significant impact on the downstream perfor-876

mance of KIE systems. To investigate this, we com-877

pare two representative parsing approaches: HTML878

outputs from Upstage Document Parse (DP) and879

Markdown outputs from LlamaParse using its de-880

fault “Balanced” mode. Table 7 summarizes the881

performance of LLMs under each setting.882

Across all GPT models, DP consistently outper-883

forms LlamaParse by a notable margin, demon-884

strating the importance of accurate and structured885

parsing for reliable extraction. It is worth noting886

that LlamaParse failed to generate usable Mark-887

down for seven documents, resulting in incomplete888

textual inputs for those cases, which negatively889

impacted downstream extraction performance.890
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Prompt format for proprietary models

System:
You are a helpful assistant that extracts structured information from documents.

User:
Content to analyze: {content}

1. If you cannot find the information or the value is not mentioned, return
nothing.
2. If you can find more than one value for a key, return all the values in an array.
3. Return the value only if the given key’s value exists in the provided content. If it does
not exist, return empty string.

Figure 4: Prompt format for proprietary models typically accessed via APIs (e.g., GPT, Gemini), with the textualized
document inserted at {content}.

Prompt format for open-source models

System:
You are a helpful assistant that extracts structured information from documents.

Your responses should follow the schema:
[Start of schema]
{JSON schema}
[End of schema]
Please ensure your answers adhere to this format and do not contain any unnecessary text.

User:
Content to analyze: {content}

1. If you cannot find the information or the value is not mentioned, return
nothing.
2. If you can find more than one value for a key, return all the values in an array.
3. Return the value only if the given key’s value exists in the provided content. If it does
not exist, return empty string.

Figure 5: Prompt format for open-source models (e.g., Mistral, Gemma) typically executed with inference libraries
such as vLLM. JSON schema and textualized document are inserted into {JSON schema} and {content}, respec-
tively.
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Dataset
source

Dataset name Document type Description

Curated - air waybill An air waybill is a receipt issued by an international airline for goods and an evidence of the
contract of carriage.

Curated - annuity account withdrawal
application

An annuity account withdrawal application is a form used by individuals to request the
withdrawal of funds from their annuity accounts.

Curated - application for individual
annuity

An application for individual annuity is a document used to apply for a personal annuity plan.

Curated - bank statement A bank statement is a summary issued by a bank that details a customer’s account transactions
and balances over a specific period.

Curated - bill of lading A bill of lading is a legal document issued by a carrier to acknowledge receipt of cargo for
shipment and acts as a shipment contract.

Curated - business card A business card is a small printed card that contains a person’s name, company affiliation,
contact details, and professional title.

Curated - commercial invoice A commercial invoice is a customs document used in international trade that provides details
about the sale transaction and goods shipped.

Curated - driver license A driver license is an official document permitting a person to operate a motor vehicle and
serves as a form of personal identification.

Curated - f1040 Form 1040 is an IRS tax form used by individuals to file annual income tax returns in the
United States.

Curated - f9465 Form 9465 is an IRS document used to request a monthly installment plan for paying off tax
debts.

Curated - fss4 Form SS-4 is used by entities in the United States to apply for an Employer Identification
Number (EIN) from the IRS.

Curated - fw2 Form W-2 is an IRS tax form used by employers to report wages paid to employees and the
taxes withheld from them.

Curated - fw9 Form W-9 is a tax form used in the United States to request a taxpayer identification number
(TIN) and certification.

Curated - medical report A medical report is a document prepared by healthcare professionals detailing a patient’s
medical history, diagnosis, and treatment.

Curated - packing list A packing list is a shipping document that itemizes the contents of a package or shipment, used
for inventory and customs purposes.

Curated - passport A passport is an official government-issued document that certifies a person’s identity and
nationality for international travel.

Curated - receipt A receipt is a document acknowledging that a person has received money or goods in exchange
for a product or service.

Curated - resume A resume is a document created by an individual to present their background, skills, and
accomplishments for job applications.

Curated - shipping request A shipping request is a document submitted to initiate the shipment of goods, detailing the
sender, recipient, and contents.

Curated - travel insurance claim A travel insurance claim is a form submitted to an insurer requesting compensation for losses
incurred during travel, such as medical emergencies or cancellations.

Public CORD Receipt A receipt is a document acknowledging that a person has received money or goods in exchange
for a product or service.

Public RealKIE SEC S1 Filings SEC S-1 filings are registration documents submitted to the U.S. Securities and Exchange
Commission for companies planning to go public, detailing financial and business information.

Public RealKIE US Non-Disclosure
Agreements

A US Non-Disclosure Agreement is a legal contract that prevents parties from disclosing
confidential information shared during business activities.

Public RealKIE UK Charity Reports UK Charity Reports are documents submitted by charitable organizations in the UK outlining
financial statements, activities, and compliance with charity regulations.

Public RealKIE FCC Invoices FCC invoices are billing documents related to regulatory services or fines issued by the U.S.
Federal Communications Commission.

Public RealKIE Resource Contracts Resource contracts are legal agreements that define the terms for the extraction, use, or
allocation of natural or organizational resources.

Public OmniAI OCR Staff Shift Schedule A staff shift schedule is a document that outlines the working hours and assigned shifts of
employees over a given time period.

Public OmniAI OCR DEMOCRATIC
DESIGNATING PETITION

A Democratic Designating Petition is a political document used to gather signatures for placing
a candidate on the ballot in a Democratic primary election.

Public OmniAI OCR Glossary A glossary is a list of terms and their definitions, typically used to explain technical or
domain-specific vocabulary.

Public OmniAI OCR Real Estate Transaction A real estate transaction document contains statistical data summarizing property sales, prices,
and market trends within a specific region or period.

Public OmniAI OCR CALIFORNIA
COMMERCIAL LEASE
AGREEMENT

A California Commercial Lease Agreement is a legally binding contract outlining terms for
renting commercial property in the state of California.

Public OmniAI OCR Bank Check A bank check is a written, dated, and signed instrument that directs a bank to pay a specific sum
of money to the bearer or a designated person.

Public OmniAI OCR Money Flow Report A money flow report details the movement of funds within an organization or account over a
specific period.

Public OmniAI OCR Medical Equipment Inspection
Checklist

A medical equipment inspection checklist is a document used to verify the functionality and
safety compliance of medical devices.

Public VRDU Ad-buy Forms Ad-buy forms are documents used to request or confirm the purchase of advertising space
across various media platforms.

Public VRDU Registration Forms Registration Forms are government documents filed by foreign agents with the US government,
containing essential details such as agent names, bureau addresses, activity purposes.

Public POIE Product Info The Product Info documents consist of camera-captured images of real-world product
packaging.

Public PWC Machine Learning Papers Machine learning papers are academic or technical documents that present research,
methodologies, and findings in the field of machine learning.

Public FUNSD Noisy Scanned Documents Noisy Scanned Documents are low-resolution grayscale images from the RVL-CDIP collection,
containing realistic noise introduced through repeated scanning and printing.

Public SROIE Receipt A receipt is a document acknowledging that a person has received money or goods in exchange
for a product or service.

Table 8: Detailed information on the datasets included in DocKIE-Bench. Each entry presents the dataset source,
name, document type, and a brief description, offering a comprehensive overview of the benchmark, which comprises
both manually curated datasets and adapted public benchmarks.
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