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Abstract

Artificial intelligence (AI) and machine learning (ML) have long treated data as1

clean numeric features and labels, with progress driven by ever-larger models and2

datasets, a view that is crystallized in Sutton’s “Bitter Lesson”. In this paper, we3

contend that human expertise, often encoded in natural language, mathematical4

formalisms, and software, should itself be regarded as a vital form of data. First,5

we survey physics-informed ML, geometric deep learning, and safe reinforcement6

learning to show how embedding expert knowledge narrows hypothesis spaces,7

reduces sample and computational complexity, and improves out-of-distribution8

generalization. Next, we trace the expanding scope of data in ML, demonstrating9

how integrating text, images, actions, and other data modalities can transform10

previously transductive learners into increasingly inductive ones. We then highlight11

large language models (LLMs) as the nexus of these trends, illustrating how12

reinforcement learning with human feedback and in-context learning let LLMs13

integrate human expertise as data for general-purpose computation. To measure14

current practice, we analyze 1,000 NeurIPS papers between 2020–2024, finding15

that explicit domain-expert integration remains low with 12–18%, while LLM-16

based methods for expert incorporation are surging from 1% in 2022 to 8% in 2024.17

We revisit the Bitter Lesson amid slowing Moore’s Law and real-world, non-i.i.d.18

data challenges, survey alternative perspectives, and propose new directions for19

dataset documentation, model design, and curated knowledge repositories. By20

recognizing human domain expertise and insights about tasks as first-class data,21

we envision a foundation for the development of more efficient and powerful AI.22

1 Introduction23

When we think about data in the context of artificial intelligence (AI) and its subfield of machine24

learning (ML), we often perceive these as clean numerical representations of features and labels. We25

often utilize such data in substantial volumes to effectively train prediction models that can solve a26

wide range of important real-world problems. Even when tackling complex scenarios involving audio,27

video, or natural language, we can represent our data through structured numeric frameworks, and28

increasingly also process them all at the same time using a combination of multiple specialized neural29

network architectures. To facilitate a stable training process, we typically normalize or standardize30

our data into a consistent numeric scale while maintaining essential information.31

In this article, we argue that established practices like these often prevent us from recognizing32

alternative forms of information as crucial to effective problem-solving with ML. We argue that our33

growing ability to handle diverse data types has paved the way for a new era in AI. In this era, we34

can do more than merely leverage increased computational power and larger datasets; we can also35

incorporate contextual information and insights about a task as data. Often, such information consists36
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of human expertise residing in natural, mathematical, or programmed languages that provide valuable37

structure for solving more complex problems with ML than has previously been possible.38

We emphasize that integrating problem-specific insights into problem-solving with ML can39

significantly reduce the demand for computation and data. In this context, we highlight the40

emergence of large language models (LLMs) as powerful tools capable of integrating a diverse41

range of human expertise and context information about a task as data. We ultimately conclude42

that these advancements may require new data collection strategies and model architecture designs,43

in order to unlock the full potential for a new, more sophisticated era of problem-solving in AI.44

Our arguments become pivotal in light of Richard Sutton’s influential perspective, The Bitter Lesson,45

published in 2019 [1]. Sutton contends that in the history of AI research, general computational46

methods have consistently outperformed approaches heavily reliant on human domain expertise.47

This trend is largely attributed to the exponentially decreasing cost of computation as described by48

Moore’s Law. Sutton illustrates his point with examples from computer chess, Go, speech recognition,49

and computer vision, highlighting that strategies emphasizing deep search and learning eventually50

surpassed methods that incorporated human knowledge.51

While we agree with Sutton’s argument about major breakthroughs in AI predominantly resulting52

from scaling computational resources rather than mimicking human cognitive processes, we argue53

that his dismissal of human domain expertise as insignificant for AI-driven problem-solving is54

increasingly outdated, especially under a clear slow-down and approaching end to Moore’s Law for55

digital computers. We base our counterargument on both the emerging capability and growing reliance56

of contemporary LLMs on expert domain knowledge as integral to general-purpose computation,57

alongside the rapid progress in ML models’ abilities to digest and generate multiple data types58

simultaneously. These recent developments represent a paradigm shift unforeseen by Sutton and59

other prominent AI researchers, and surface an intrinsic limitation in their original perspectives.60

In the following sections, we begin by emphasizing two key trends in AI and ML research. First,61

infusing ML models with problem-specific knowledge can reduce the need for computation and data,62

while often improving out-of-distribution generalization. Second, as the scope of data in ML grows,63

models gain the capacity to make more sophisticated predictions. We then show how LLMs unite64

these two trends by utilizing human domain expertise as data for general-purpose computation. Next,65

we offer a quantitative survey of NeurIPS papers from 2020-2024, reconsider Sutton’s Bitter Lesson66

in an era of slowing Moore’s Law, and survey alternative perspectives on these developments. We67

conclude our position with important implications that these developments have for existing data68

collection strategies and model architecture designs.69

2 Human expertise can reduce the need for computation and data, and70

improve out-of-distribution generalization71

A recurring theme in ML research is that integrating expert domain knowledge significantly reduces72

the number of data points required for solving a given problem. Technically speaking, incorporating73

such knowledge reduces the sample complexity or equivalently, increases sample efficiency, meaning74

that fewer data points are needed to achieve a particular level of model performance. When we apply75

these principles to deep learning or search-based methods, this typically results in a decrease of76

computational demand and thereby enhances our computational efficiency.77

Integrating problem-specific knowledge into solution methods often also improves a model’s ability78

to generalize beyond the training data distribution. Technically speaking, this enhancement reduces79

epistemic uncertainty, the uncertainty stemming from limited knowledge about novel conditions in80

which we want to solve a problem, and strengthens out-of-distribution generalization capabilities.81

In the following, we illustrate these principles through three example areas of modern ML research:82

physics-informed ML, geometric deep learning (geometric DL), and safe reinforcement learning (safe83

RL).84

Physics-informed ML refers to the integration of physical properties of a prediction task directly85

into the design of ML algorithms [2]. Current approaches utilize three distinct strategies: inductive86

bias, observational bias, and learning bias. Methods employing inductive bias embed physical87

knowledge directly into the structure of ML models, for instance, through specialized neural network88

architectures and implicit layers [3]. By encoding such physical knowledge, physics-informed ML89
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effectively narrows the hypothesis space that models must explore to fit patterns in the training data,90

leading to faster convergence and enhanced learning efficiency with fewer training samples.91

An illustrative example of this is the application of physics-informed RL to optimize the freeform92

design of nanophotonic devices, a combinatorial optimization problem encompassing approximately93

1074 candidate solutions [4]. Given a fixed budget for computation and data, Park et al. [4] show that94

physics-informed RL can reduce sample complexity by roughly 50% to match the performance of95

the best conventional RL approach. Furthermore, under an equivalent data usage, physics-informed96

RL outperforms conventional RL models by 7.8% in terms of deflection efficiency of the predicted97

nanophotonic designs.98

Geometric DL is an emerging field of ML research that studies geometric properties of ML tasks99

and datasets [5]. Given a set of group symmetry transformations towards which we want data100

representations and predictions of a task to be either invariant or equivariant, geometric DL explores101

how we can incorporate these symmetries into neural network architectures. By exploiting domain-102

specific knowledge about prevalent symmetries in a task, we are able to shrink the problem volume103

space by choosing the right model architecture [6].104

A concrete example that illustrates this well are Group Equivariant Convolutional Neural Networks105

(G-CNNs), which consider rotation and reflection symmetries for processing images. G-CNNs106

effectively learn robust representations with fewer samples compared to standard Convolutional107

Neural Networks (CNNs), which inherently handle only translation symmetries [7]. In an image108

classification task, for instance, G-CNNs enable robust detection of objects irrespective of their109

orientation, eliminating the need for extensive data augmentation with rotated images, which is a110

common practice when using traditional CNNs. Similarly, graph neural networks (GNNs) [8] and111

attention mechanisms in transformer architectures [9] capture permutation symmetries, and can112

thereby reduce the sample complexity of different sets of tasks where such symmetries are prevalent.113

Analogous to physics-informed ML, we often observe that incorporating symmetry into ML models114

also enables better generalizations outside the distribution of data we are able to collect and use for115

training. Although a theoretical relationship is yet to be established, geometric DL methods appear to116

be closely related to physics-informed ML methods.117

Safe RL is another pivotal yet distinct field of modern ML where expert domain knowledge can118

improve sample efficiency. Safe RL is a subfield of RL that deals with algorithms for decision-making119

and learning in complex and unpredictable environments while ensuring safety and minimizing120

the risk of harmful actions during the learning process, known as exploration. Methods typically121

incorporate domain-specific knowledge about ethical guidelines, physical limitations, and other122

criteria that constitute ‘safe’ behavior in a given task. These rules can often be incorporated into123

simulation models that provide a safe environment for the RL agent to explore and learn with less124

real-world data and fewer safety violations for performing a task.125

A concrete application that illustrates this well is the training of RL policies for autonomous systems126

in simulated environments before real-world deployment, where safety violations are reduced by up127

to 77% when agents operate in novel environments [10]. In this context, the interactions of an RL128

agent with a previously unseen environment represent the generalization performance of the agent’s129

actions to data that lies outside the distribution that the agent was able to encounter during training.130

3 The scope of data in ML is growing, and increases the inductive power of131

models132

The scope of what constitutes data in ML has been consistently expanding over time. As a result, ML133

models are evolving as not just being able to effectively process increasingly large amounts of data,134

but also effectively process increasingly diverse types and combinations of information as data, i.e.,135

the modality of data associated with a given task.136

By integrating diverse data sources into a prediction task, we can also assemble richer constellations137

of inputs and outputs for a markedly greater predictive power. In practice, this integration often138

converts transductive models, which may only predict a target when that same quantity has been139

observed, into inductive models, which can generalize in the absence of observations of that quantity.140
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A concrete application that illustrates this well is electric load profile forecasting. Traditionally, ML141

methods for this task are auto-regressive, meaning that they forecast future values of a load time142

series solely from its historical data using a model that is able to process sequential data only. As143

a result, these models are transductive and limited to making predictions for load that has historic144

measurements available as features. By contrast, recent multi-modal approaches integrate diverse145

data sources, like meteorological observations and satellite imagery, using specialized neural network146

architectures for each modality. These models take only remote-sensing inputs as features and147

metered load profiles as labels [11]. As a result, they can form inductive models that generalize to148

load profiles at unmetered locations using only readily available, remotely sensed meteorological and149

satellite data, without requiring ground truth load measurements to be available as features.150

A more general example of this trend is the rise of multi-modal transformer architectures, which151

convert diverse inputs, such as text, images, actions, audio, and more into a unified sequence of tokens152

processed by a single model. The Gato model by Reed et al. [12], for instance, is trained on over 600153

distinct tasks spanning dialogue, vision and robotic control, yet executes any of them through the154

same transformer backbone. By aligning different modalities in a shared representation space, these155

models demonstrate how broadening the notion of data empowers inductive learning, where a single156

model can generalize across tasks and domains far beyond the scope of single-modality models.157

4 LLMs can utilize human expertise as data for general-purpose computation158

The increasing capability of ML models to simultaneously process multiple data modalities as both159

inputs and outputs is also pivotal to incorporating human expertise as data for general-purpose160

computation. Human expert knowledge often resides in mathematical formulas, software, or natural161

language descriptions of important relationships [13]. This is information that we traditionally do not162

recognize as data for problem-solving when focusing on more conventional numeric values associated163

with training our ML models. In particular, we observe how LLMs have emerged as a powerful tool164

for integrating various types of human domain knowledge [14] and thereby expanded our scope of165

data for problem-solving with ML in an unprecedented way. Today, there are two approaches in166

which we observe this integration to unfold, namely through training and context data.167

Human expertise as training data. The first approach involves Reinforcement Learning with Human168

Feedback (RLHF) [15]. Advanced language models such as ChatGPT owe much of their success to169

this technique. The training process of these models begins with a transformer architecture trained in170

an unsupervised manner on a large corpus of text to produce a Generative Pretrained Transformer171

(GPT). This model is then fine-tuned using supervised learning on a curated dataset of labeled172

question-answer pairs to form an initial dialogue agent. Subsequently, human feedback is introduced,173

typically by ranking or evaluating multiple model responses to the same prompt, to guide the model’s174

behavior. Finally, the model’s policy, its strategy for generating outputs, is optimized using RL to175

align with human preferences.176

This pipeline highlights the essential role of human expertise as data at every stage, starting with177

unsupervised pre-training on carefully curated, high-quality text corpora, through supervised fine-178

tuning on labeled question-answer pairs, and culminating in RL guided by expert feedback.179

Human expertise as context data. The second approach involves in-context learning. This is an180

approach in which an LLM learns to perform a task based on examples of solutions provided as181

input data in the prompt. A benefit of this method is that LLMs do not need explicit retraining or182

fine-tuning for that specific task and can usually learn from a few examples included in the prompt.183

An example that illustrates this well is the use of in-context learning for mathematical optimization184

[16]. By providing several numeric samples that specify the task, along with a previously generated185

set of solutions and a corresponding score that captures how well the objective is satisfied, LLMs186

can leverage the optimization trajectory for recognizing patterns that guide the generation of new187

solutions along that trajectory. Experiments show that concurrent LLMs can solve a problem with188

fractions of only 3.5% and 20% of the available numeric datasets. This is notably also consistent189

with our observation that expert domain knowledge can reduce the need for computation and data.190

We can expect that in-context learning reduces sample complexity either when tapping into interrelated191

patterns and domain knowledge that is included in an LLM’s training data, or when these are explicitly192

provided as context data in a prompt.193
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5 A quantitative analysis of NeurIPS 2020 to 2024 studies194

We want to quantifying how frequently practitioners weave problem-specific domain expertise195

into their ML models for more efficient solutions, and how often they employ LLMs to do so. A196

quantitative answer to these questions provides us with further insight about the trends we observe197

across the broader ML research landscape. We therefore conducted a representative survey of 1,000198

NeurIPS papers published from 2020 through 2024, randomly sampling 200 papers per year. This199

interval spans both the advancement of domain expert integration methods and the adoption of LLMs,200

marked by the launch of GPT-3 in mid-2020 and ChatGPT in late 2022. For each paper, we provide201

its full text in PDF format to OpenAI’s ChatGPT o4-mini-high model, and prompt this model as202

follows:203

Review the attached research paper and address the following two questions:204

205

1. Does the study incorporate domain-specific expert knowledge about a206

problem into machine learning models to reduce the demand for computation207

and/or data?208

209

2. Are large language models (LLMs) used for incorporating domain-specific210

expert knowledge as training or context data into problem solving?211

212

Provide a "yes" or "no" answer and a one sentence explanation.213

The requested one sentence explanation for each answer allows us to more easily examine the accuracy214

of each answer. We manually validate the correctness of all responses by checking the consistency of215

binary responses and provided explanations with the content of each paper. Additionally, we have216

iteratively improved our prompt in an LLM-driven optimization procedure, and ultimately selected217

the above prompt for its low false-positive and false-negative rates. To ensure that each evaluation is218

uncontaminated by prior context, we disable both memory and cross-chat references. An example of219

the model’s dual-question response is:220

Yes. The authors leverage neuroscience-inspired domain knowledge—221

specifically the all-or-none firing characteristics and inter-/222

intra-neuron temporal dependencies of spiking neurons—to design223

the TSSL-BP algorithm, reducing the number of time steps (and thus224

computation and data) needed to train deep SNNs effectively.225

226

No. The work focuses solely on training deep spiking neural networks227

via backpropagation and does not employ any large language models for228

incorporating expert domain knowledge.229

Table 1 contains the numeric results of our analysis, representing the proportion of papers falling230

into each response category for each year. We can observe that studies which incorporate human231

domain expertise into specialized ML models (“Yes–No” and “Yes–Yes”) consistently account for232

only 12–18.5% of the sample, with no clear upward or downward trend over time. In contrast,233

the proportion of papers leveraging LLMs to encode expert knowledge (“No–Yes” and “Yes–Yes”)234

increases noticeably following GPT-3’s debut in mid-2020 and ChatGPT’s release in late 2022, rising235

from just 1% in 2022 to 8% by 2024.236

Despite our efforts to sample broadly, our analysis has several limitations. First, examining only 200237

papers per year may yield estimates that deviate from the true prevalence of each trend across the238

entire NeurIPS corpus. Second, focusing exclusively on NeurIPS as the only conference introduces a239

potential bias, as NeurIPS submissions may not fully reflect developments in other leading venues or240

subfields. Third, we were only able to extensively validate the accuracy of results for small samples of241

studies during the iterative optimization of our prompt; for the overall experiments, we simply had to242

rely on the high performance of the optimized prompt and only skimmed each answer for its accuracy.243

For this, we evaluated the correctness of the provided one-sentence explanation with the content244

of the abstract of each paper, but did not (have to) change any answer given by the model. Finally,245

by excluding this year’s conference submissions (NeurIPS 2025), whose acceptance outcomes still246

remain unknown, we are missing important continuing directions that either alter or, more likely,247
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Table 1: Numeric results of our quantitative analysis. Entries represent percentage of answer pairs to
the following questions: 1. Does the study incorporate domain-specific expert knowledge about a
problem into machine learning models to reduce the demand for computation and/or data? 2. Are
large language models (LLMs) used for incorporating domain-specific expert knowledge as training
or context data into problem solving?

Response NeurIPS 2020 NeurIPS 2021 NeurIPS 2022 NeurIPS 2023 NeurIPS 2024

No - No 88 81.5 83 84.5 78
Yes - No 12 18.5 16 11 14
No - Yes 0 0 0 3.5 5.5
Yes - Yes 0 0 1 1 2.5

amplify our observed trends once it is clear which papers are accepted. Appendix A contains further248

detail about our conducted experiments.249

6 Expanding on Sutton’s Bitter Lesson under a decline in Moore’s Law250

The observations we present are not to be simply understood as a contradiction to Sutton’s Bitter251

Lesson. In fact, they highlight the importance of general-purpose computation and the utilization of252

large amounts of data for advanced problem-solving with ML, as for example LLMs themselves are a253

product of these principles. However, one aspect of Sutton’s Bitter Lesson we do want to contradict,254

is his perspective on expert domain knowledge being unimportant in light of growing computational255

resources and general-purpose learning and search. Instead, we highlight that the expanding scope of256

data, and in particular the emergence of powerful LLMs and multi-modal transformers, is increasingly257

turning human-like thinking and domain expertise themselves into valuable data for problem-solving.258

Sutton leans his perspective on exponentially falling costs of computation due to Moore’s Law. Today,259

however, we observe a clear slowdown and an approaching end to Moore’s Law for digital computers,260

driven by insurmountable physical limitations, escalating costs, and diminishing performance returns261

from further miniaturizing silicon-based transistors. This challenge underscores the crucial need and262

increasing motivation for integrating expert domain knowledge in problem-solving with ML, in order263

to enhance computation and data efficiency in future solution methods.264

A more subtle implication of Sutton’s Bitter Lesson that we want to contradict, is the notion that265

simply increasing computational power and data consistently yields better results in ML-driven266

problem-solving. While this often holds under idealized conditions, such as assuming that data is267

independent and identically distributed (i.i.d.), perfectly balanced, and noise-free, these assumptions268

are rarely met in real-world scenarios. Given the law of large numbers, larger datasets help us align269

sample distributions with true distributions, but this principle is far less applicable outside some of270

the well-structured domains like board games that Sutton discusses. In many real-world applications,271

such as the wide range of ML tasks related to tackling climate change [17], data is often non-i.i.d.,272

noisy and highly imbalanced. In many of these applications, the presence of complex physical273

relationships between variables and spatio-temporal dependencies render simple assumptions about274

data and computation that is uninformed about these domain-specific relationships insufficient [18].275

Other evolving areas of ML research like active learning also challenge the idea that more data276

alone leads to better outcomes, while supporting the importance of general-purpose computation277

[19]. Active learning focuses on the question of which data to collect for training a model that makes278

the best possible predictions when given a limited budget for data. For example, in the previously279

discussed study on electric load profile forecasting, an active learning approach achieves 26–81%280

higher accuracy while using 29–46% less data compared to traditional passive learning methods,281

without integrating any type of deep domain expertise about the problem into the ML model [11].282

In a modern era of AI and ML, simply seeking more data and compute may increasingly become a283

naive approach.284

Lastly, it is worth noting that our quantitative analysis reveals that only 12–18.5% of studies actively285

integrate problem-specific domain expertise beyond general-purpose learning and search. This is286

substantially less than one would expect in light of Sutton’s Bitter Lesson and the attention that it has287

received by the AI and ML community.288
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7 Alternative views: consistencies and inconsistencies with other opinions289

The interplay between human domain expertise and the scope of data in AI has long been contested,290

producing a rich tapestry of, and at times contradictory, perspectives [13, 14, 20–23]. As AI and291

ML research accelerates at an unprecedented rate, it becomes even more crucial to situate our292

perspective within this broader discourse, extending the conversation beyond Sutton’s Bitter Lesson.293

In synthesizing these viewpoints, we see a landscape where data, expertise, and computational power294

are not opposing forces but complementary dimensions. Recognizing their interplay, and designing295

AI systems that integrate them thoughtfully, will be critical for advancing both the efficiency and the296

responsibility of future AI and ML research.297

Expert knowledge reduces data and compute requirements. Our first observation emphasizes that298

integrating problem-specific expert knowledge into ML models can reduce the need for extensive299

computation and data. This view aligns with the principles of informed ML, which argue that prior300

knowledge, when judiciously integrated, enhances sample efficiency and directs learning toward more301

relevant abstractions [13]. It also echoes with Rodney Brooks’ environmental critique of Sutton’s302

stance, articulated in A Better Lesson, where he emphasizes that leveraging problem-specific structure303

can yield dramatic savings in data collection and training cost [22].304

Data’s expanding boundaries via LLMs and multimodal models. Our second key observation305

focuses on the historic expansion of the boundaries of what constitutes data for problem-solving306

in ML, and that the rise of powerful LLMs and multi-modal transformer architectures has notably307

contributed to this trend, allowing us to integrate increasing forms of expert domain knowledge and308

task contexts as data. This is supported by Dash et al. [14], who argue that domain knowledge can309

be represented not only through logical or numeric constraints but also through natural language310

statements and conversations, aligning with our view on the growing importance of LLMs for311

processing expert domain knowledge as data. However, our observation remains mostly different312

from that of Von Rueden et al. [13] who view ‘prior knowledge’ as something that accompanies data313

and who strictly separate its treatment from that of data.314

Chomsky’s challenge and a human–AI synergy. Another interesting counterpoint is Noam Chom-315

sky’s critique of concurrent LLMs, which he argues lack the capacity for human-like reasoning,316

explanation, and moral consideration [23]. Chomsky et al. [23] assert that LLMs fail to generate317

explanations and instead merely describe and predict, often incorrectly. While we share Chomsky’s318

concerns about the limitations of ML systems more broadly, including LLMs, in addressing complex319

issues of morality and ethics, we diverge in our views that these systems, when combined with320

validated human domain expertise, can still significantly enhance our efficiency for solving critical321

problems with positive outcomes for humanity, such as tackling a wide range of climate change322

related ML tasks [17]. Consequently, we believe that concurrent LLMs merit the attention they are323

receiving for their potential to complement human reasoning and drive innovation.324

Contextualizing Data and “Situated Knowledge”. Our stance aligns with Boyd and Crawford’s325

viewpoint about the importance of context in which data is collected and analyzed, and that the326

reduction of data to numeric values for fitting into a rather narrow model can strip it of the nuances327

that are critical for meaningful analysis [21]. It further resonates with Haraway’s notion of ‘situated328

knowledge’, which presents the idea that knowledge is always partial and shaped by the context and329

position of the ’knower’. Haraway emphasizes that expertise is not just a static body of knowledge330

but is constructed and meaningful within specific contexts, thereby supporting the importance of331

incorporating context information as data for more sophisticated ML solutions [20].332

8 Conclusion333

In the rapidly evolving landscape of AI and ML, we advocate that it is essential to recognize human334

expertise as data. This is information that often resides in the form of mathematical equations,335

computer code, or natural language descriptions of domain insights that are critical for solving tasks.336

Such information is typically not recognized as first-class data by our current conventions.337

We emphasize that incorporating human expertise into problem-solving in ML often provides valuable338

structure to solution methods and is integral to reducing our demand for computation and data, as well339

as enhancing out-of-distribution generalization. Additionally, we emphasize that the scope of data in340

ML is expanding over time and typically enhances the inductive power of ML models. In this context,341
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we highlight the emergence of LLMs as the latest leap forward in this trend, which increasingly342

allows us to use human expertise as data for general-purpose computation and problem-solving.343

In order to fully realize the potential of AI and ML models in light of these advancements, we call344

upon the AI and ML community to rethink our existing approaches to data collection and model345

architecture design. Much of our efforts in improving the collection and documentation of data with346

standards like the FAIR principles [24] or the newer Croissant format [25] focus on enhancing the347

standardized structure and comprehensiveness of metadata, with the primary goal of making datasets348

more interoperable and discoverable by tools and platforms. This is attributed to the assumption349

that “. . . data documentation written in natural language, without a standard machine-readable350

representation . . . makes data documentation challenging for machines to read and process” [25], a351

clearly outdated view in light of the capability of concurrent LLMs.352

In addition to suggested data documentation standards, we encourage practitioners to include detailed353

contextual information and task-specific insights as an integral part of their datasets. This information354

should be accessible via the same Application Programming Interface (API) that provides dataset355

features and labels. We propose that such contextual information could encompass some of the356

metadata fields introduced in recent standards, such as those in the "semantic" and "structural" layers357

of Croissant [25]. Rather than adhering to a rigid format, this context can be effectively communicated358

in natural language, compiled into a single text file referred to as a "task description", and thereby359

provide valuable flexibility for data documentation alongside well-structured metadata standards.360

The advancement of LLMs and multimodal architectures in using human expertise as general-purpose361

computational data simultaneously creates a strong dependence on the availability of validated,362

well-curated datasets representing domain-specific expertise. Expanding the number of these curated363

repositories, containing validated expert knowledge and targeted insights, can significantly reduce the364

cost and dependency on human input, particularly during model training and fine-tuning with RLHF.365

The increasing availability of these datasets can shift more computational burden towards supervised366

and unsupervised learning components of the training pipeline, and decrease the relative burden on367

human feedback within the overall training workflow of advanced models.368

We envision these changes to give rise to powerful domain-expert ML models, as well as mixtures369

of these, and to deepen the integration of human expertise into automated problem-solving. By370

embedding LLMs within streamlined, multi-modal architectures that consistently combine language371

with task-specific numeric data, we envision that a significant number of conventional ML solution372

methods will be enhanced.373
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Table 2: Detailed results of our quantitative analysis by response and subcategory across NeurIPS
2020–2024. Entries represent either percentage or extrapolated count of answers to the following pair
of questions: 1. Does the study incorporate domain-specific expert knowledge about a problem into
machine learning models to reduce the demand for computation and/or data? 2. Are large language
models (LLMs) used for incorporating domain-specific expert knowledge as training or context data
into problem solving?

Response 2020 2021 2022 2023 2024

Papers 1–500
No – No 88 80 85 84 78
Yes – No 12 20 15 10 11
No – Yes 0 0 0 4 7
Yes – Yes 0 0 0 2 4

Papers 501–1000
No – No 88 83 81 85 78
Yes – No 12 17 17 12 17
No – Yes 0 0 0 3 4
Yes – Yes 0 0 2 0 1

Percentage
No – No 88 81.5 83 84.5 78
Yes – No 12 18.5 16 11 14
No – Yes 0 0 0 3.5 5.5
Yes – Yes 0 0 1 1 2.5

Extrapolated
No – No 1687.84 1902.21 2411.15 3028.48 3539.64
Yes – No 230.16 431.79 464.80 394.24 635.32
No – Yes 0.00 0.00 0.00 107.52 249.59
Yes – Yes 0.00 0.00 29.05 35.84 113.45

A Additional details about conducted experiments436

We have conducted our experiments in two batches, each containing 100 studies per year. Table 2437

shows the results for these splits and their overall percentages. The table further contains results that438

were extrapolated by the total number of papers published in each conference. These numbers are439

deduced by multiplying percentages with 19.18 for NeurIPS 2020, 23.34 for NeurIPS 2021, 29.05440

for NeurIPS 2022, 35.84 for NeurIPS 2023, and 45.38 for NeurIPS 2024. Figure 1 further shows a441

visualization of percentages and extrapolated results. The supplementary material further contains a442

documentation of responses for each study, organized in the same batches as seen in Table 2.443
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Figure 1: Results of our quantitative analysis of NeurIPS 2020-2024 papers. Upper figure bars show
percentage and lower figure bars extrapolated count of total studies, of answers to the following
questions: 1. Does the study incorporate domain-specific expert knowledge about a problem into
machine learning models to reduce the demand for computation and/or data? 2. Are large language
models (LLMs) used for incorporating domain-specific expert knowledge as training or context data
into problem-solving?
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