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Abstract

Artificial intelligence (AI) and machine learning (ML) have long treated data as
clean numeric features and labels, with progress driven by ever-larger models and
datasets, a view that is crystallized in Sutton’s “Bitter Lesson”. In this paper, we
contend that human expertise, often encoded in natural language, mathematical
formalisms, and software, should itself be regarded as a vital form of data. First,
we survey physics-informed ML, geometric deep learning, and safe reinforcement
learning to show how embedding expert knowledge narrows hypothesis spaces,
reduces sample and computational complexity, and improves out-of-distribution
generalization. Next, we trace the expanding scope of data in ML, demonstrating
how integrating text, images, actions, and other data modalities can transform
previously transductive learners into increasingly inductive ones. We then highlight
large language models (LLMs) as the nexus of these trends, illustrating how
reinforcement learning with human feedback and in-context learning let LLMs
integrate human expertise as data for general-purpose computation. To measure
current practice, we analyze 1,000 NeurIPS papers between 2020-2024, finding
that explicit domain-expert integration remains low with 12—-18%, while LLM-
based methods for expert incorporation are surging from 1% in 2022 to 8% in 2024.
We revisit the Bitter Lesson amid slowing Moore’s Law and real-world, non-i.i.d.
data challenges, survey alternative perspectives, and propose new directions for
dataset documentation, model design, and curated knowledge repositories. By
recognizing human domain expertise and insights about tasks as first-class data,
we envision a foundation for the development of more efficient and powerful Al

1 Introduction

When we think about data in the context of artificial intelligence (Al) and its subfield of machine
learning (ML), we often perceive these as clean numerical representations of features and labels. We
often utilize such data in substantial volumes to effectively train prediction models that can solve a
wide range of important real-world problems. Even when tackling complex scenarios involving audio,
video, or natural language, we can represent our data through structured numeric frameworks, and
increasingly also process them all at the same time using a combination of multiple specialized neural
network architectures. To facilitate a stable training process, we typically normalize or standardize
our data into a consistent numeric scale while maintaining essential information.

In this article, we argue that established practices like these often prevent us from recognizing
alternative forms of information as crucial to effective problem-solving with ML. We argue that our
growing ability to handle diverse data types has paved the way for a new era in Al In this era, we
can do more than merely leverage increased computational power and larger datasets; we can also
incorporate contextual information and insights about a task as data. Often, such information consists
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of human expertise residing in natural, mathematical, or programmed languages that provide valuable
structure for solving more complex problems with ML than has previously been possible.

We emphasize that integrating problem-specific insights into problem-solving with ML can
significantly reduce the demand for computation and data. In this context, we highlight the
emergence of large language models (LLMs) as powerful tools capable of integrating a diverse
range of human expertise and context information about a task as data. We ultimately conclude
that these advancements may require new data collection strategies and model architecture designs,
in order to unlock the full potential for a new, more sophisticated era of problem-solving in Al

Our arguments become pivotal in light of Richard Sutton’s influential perspective, The Bitter Lesson,
published in 2019 [1]]. Sutton contends that in the history of Al research, general computational
methods have consistently outperformed approaches heavily reliant on human domain expertise.
This trend is largely attributed to the exponentially decreasing cost of computation as described by
Moore’s Law. Sutton illustrates his point with examples from computer chess, Go, speech recognition,
and computer vision, highlighting that strategies emphasizing deep search and learning eventually
surpassed methods that incorporated human knowledge.

While we agree with Sutton’s argument about major breakthroughs in Al predominantly resulting
from scaling computational resources rather than mimicking human cognitive processes, we argue
that his dismissal of human domain expertise as insignificant for Al-driven problem-solving is
increasingly outdated, especially under a clear slow-down and approaching end to Moore’s Law for
digital computers. We base our counterargument on both the emerging capability and growing reliance
of contemporary LLMs on expert domain knowledge as integral to general-purpose computation,
alongside the rapid progress in ML models’ abilities to digest and generate multiple data types
simultaneously. These recent developments represent a paradigm shift unforeseen by Sutton and
other prominent Al researchers, and surface an intrinsic limitation in their original perspectives.

In the following sections, we begin by emphasizing two key trends in Al and ML research. First,
infusing ML models with problem-specific knowledge can reduce the need for computation and data,
while often improving out-of-distribution generalization. Second, as the scope of data in ML grows,
models gain the capacity to make more sophisticated predictions. We then show how LLMs unite
these two trends by utilizing human domain expertise as data for general-purpose computation. Next,
we offer a quantitative survey of NeurIPS papers from 2020-2024, reconsider Sutton’s Bitter Lesson
in an era of slowing Moore’s Law, and survey alternative perspectives on these developments. We
conclude our position with important implications that these developments have for existing data
collection strategies and model architecture designs.

2 Human expertise can reduce the need for computation and data, and
improve out-of-distribution generalization

A recurring theme in ML research is that integrating expert domain knowledge significantly reduces
the number of data points required for solving a given problem. Technically speaking, incorporating
such knowledge reduces the sample complexity or equivalently, increases sample efficiency, meaning
that fewer data points are needed to achieve a particular level of model performance. When we apply
these principles to deep learning or search-based methods, this typically results in a decrease of
computational demand and thereby enhances our computational efficiency.

Integrating problem-specific knowledge into solution methods often also improves a model’s ability
to generalize beyond the training data distribution. Technically speaking, this enhancement reduces
epistemic uncertainty, the uncertainty stemming from limited knowledge about novel conditions in
which we want to solve a problem, and strengthens out-of-distribution generalization capabilities.

In the following, we illustrate these principles through three example areas of modern ML research:
physics-informed ML, geometric deep learning (geometric DL), and safe reinforcement learning (safe
RL).

Physics-informed ML refers to the integration of physical properties of a prediction task directly
into the design of ML algorithms [2]]. Current approaches utilize three distinct strategies: inductive
bias, observational bias, and learning bias. Methods employing inductive bias embed physical
knowledge directly into the structure of ML models, for instance, through specialized neural network
architectures and implicit layers [3]. By encoding such physical knowledge, physics-informed ML
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effectively narrows the hypothesis space that models must explore to fit patterns in the training data,
leading to faster convergence and enhanced learning efficiency with fewer training samples.

An illustrative example of this is the application of physics-informed RL to optimize the freeform
design of nanophotonic devices, a combinatorial optimization problem encompassing approximately
107 candidate solutions [4]]. Given a fixed budget for computation and data, Park et al. [4] show that
physics-informed RL can reduce sample complexity by roughly 50% to match the performance of
the best conventional RL approach. Furthermore, under an equivalent data usage, physics-informed
RL outperforms conventional RL models by 7.8% in terms of deflection efficiency of the predicted
nanophotonic designs.

Geometric DL is an emerging field of ML research that studies geometric properties of ML tasks
and datasets [5]. Given a set of group symmetry transformations towards which we want data
representations and predictions of a task to be either invariant or equivariant, geometric DL explores
how we can incorporate these symmetries into neural network architectures. By exploiting domain-
specific knowledge about prevalent symmetries in a task, we are able to shrink the problem volume
space by choosing the right model architecture [6].

A concrete example that illustrates this well are Group Equivariant Convolutional Neural Networks
(G-CNNs), which consider rotation and reflection symmetries for processing images. G-CNNs
effectively learn robust representations with fewer samples compared to standard Convolutional
Neural Networks (CNNs), which inherently handle only translation symmetries [[7]. In an image
classification task, for instance, G-CNNs enable robust detection of objects irrespective of their
orientation, eliminating the need for extensive data augmentation with rotated images, which is a
common practice when using traditional CNNs. Similarly, graph neural networks (GNNs) [8]] and
attention mechanisms in transformer architectures [9] capture permutation symmetries, and can
thereby reduce the sample complexity of different sets of tasks where such symmetries are prevalent.

Analogous to physics-informed ML, we often observe that incorporating symmetry into ML models
also enables better generalizations outside the distribution of data we are able to collect and use for
training. Although a theoretical relationship is yet to be established, geometric DL methods appear to
be closely related to physics-informed ML methods.

Safe RL is another pivotal yet distinct field of modern ML where expert domain knowledge can
improve sample efficiency. Safe RL is a subfield of RL that deals with algorithms for decision-making
and learning in complex and unpredictable environments while ensuring safety and minimizing
the risk of harmful actions during the learning process, known as exploration. Methods typically
incorporate domain-specific knowledge about ethical guidelines, physical limitations, and other
criteria that constitute ‘safe’ behavior in a given task. These rules can often be incorporated into
simulation models that provide a safe environment for the RL agent to explore and learn with less
real-world data and fewer safety violations for performing a task.

A concrete application that illustrates this well is the training of RL policies for autonomous systems
in simulated environments before real-world deployment, where safety violations are reduced by up
to 77% when agents operate in novel environments [10]. In this context, the interactions of an RL
agent with a previously unseen environment represent the generalization performance of the agent’s
actions to data that lies outside the distribution that the agent was able to encounter during training.

3 The scope of data in ML is growing, and increases the inductive power of
models

The scope of what constitutes data in ML has been consistently expanding over time. As a result, ML
models are evolving as not just being able to effectively process increasingly large amounts of data,
but also effectively process increasingly diverse types and combinations of information as data, i.e.,
the modality of data associated with a given task.

By integrating diverse data sources into a prediction task, we can also assemble richer constellations
of inputs and outputs for a markedly greater predictive power. In practice, this integration often
converts transductive models, which may only predict a target when that same quantity has been
observed, into inductive models, which can generalize in the absence of observations of that quantity.
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A concrete application that illustrates this well is electric load profile forecasting. Traditionally, ML
methods for this task are auto-regressive, meaning that they forecast future values of a load time
series solely from its historical data using a model that is able to process sequential data only. As
a result, these models are transductive and limited to making predictions for load that has historic
measurements available as features. By contrast, recent multi-modal approaches integrate diverse
data sources, like meteorological observations and satellite imagery, using specialized neural network
architectures for each modality. These models take only remote-sensing inputs as features and
metered load profiles as labels [[L1]. As a result, they can form inductive models that generalize to
load profiles at unmetered locations using only readily available, remotely sensed meteorological and
satellite data, without requiring ground truth load measurements to be available as features.

A more general example of this trend is the rise of multi-modal transformer architectures, which
convert diverse inputs, such as text, images, actions, audio, and more into a unified sequence of tokens
processed by a single model. The Gato model by Reed et al. [[12]], for instance, is trained on over 600
distinct tasks spanning dialogue, vision and robotic control, yet executes any of them through the
same transformer backbone. By aligning different modalities in a shared representation space, these
models demonstrate how broadening the notion of data empowers inductive learning, where a single
model can generalize across tasks and domains far beyond the scope of single-modality models.

4 LLMs can utilize human expertise as data for general-purpose computation

The increasing capability of ML models to simultaneously process multiple data modalities as both
inputs and outputs is also pivotal to incorporating human expertise as data for general-purpose
computation. Human expert knowledge often resides in mathematical formulas, software, or natural
language descriptions of important relationships [[13]]. This is information that we traditionally do not
recognize as data for problem-solving when focusing on more conventional numeric values associated
with training our ML models. In particular, we observe how LLMs have emerged as a powerful tool
for integrating various types of human domain knowledge [14]] and thereby expanded our scope of
data for problem-solving with ML in an unprecedented way. Today, there are two approaches in
which we observe this integration to unfold, namely through training and context data.

Human expertise as training data. The first approach involves Reinforcement Learning with Human
Feedback (RLHF) [15]]. Advanced language models such as ChatGPT owe much of their success to
this technique. The training process of these models begins with a transformer architecture trained in
an unsupervised manner on a large corpus of text to produce a Generative Pretrained Transformer
(GPT). This model is then fine-tuned using supervised learning on a curated dataset of labeled
question-answer pairs to form an initial dialogue agent. Subsequently, human feedback is introduced,
typically by ranking or evaluating multiple model responses to the same prompt, to guide the model’s
behavior. Finally, the model’s policy, its strategy for generating outputs, is optimized using RL to
align with human preferences.

This pipeline highlights the essential role of human expertise as data at every stage, starting with
unsupervised pre-training on carefully curated, high-quality text corpora, through supervised fine-
tuning on labeled question-answer pairs, and culminating in RL guided by expert feedback.

Human expertise as context data. The second approach involves in-context learning. This is an
approach in which an LLM learns to perform a task based on examples of solutions provided as
input data in the prompt. A benefit of this method is that LLMs do not need explicit retraining or
fine-tuning for that specific task and can usually learn from a few examples included in the prompt.

An example that illustrates this well is the use of in-context learning for mathematical optimization
[16]. By providing several numeric samples that specify the task, along with a previously generated
set of solutions and a corresponding score that captures how well the objective is satisfied, LLMs
can leverage the optimization trajectory for recognizing patterns that guide the generation of new
solutions along that trajectory. Experiments show that concurrent LLMs can solve a problem with
fractions of only 3.5% and 20% of the available numeric datasets. This is notably also consistent
with our observation that expert domain knowledge can reduce the need for computation and data.

We can expect that in-context learning reduces sample complexity either when tapping into interrelated
patterns and domain knowledge that is included in an LLM’s training data, or when these are explicitly
provided as context data in a prompt.
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S A quantitative analysis of NeurIPS 2020 to 2024 studies

We want to quantifying how frequently practitioners weave problem-specific domain expertise
into their ML models for more efficient solutions, and how often they employ LLMs to do so. A
quantitative answer to these questions provides us with further insight about the trends we observe
across the broader ML research landscape. We therefore conducted a representative survey of 1,000
NeurIPS papers published from 2020 through 2024, randomly sampling 200 papers per year. This
interval spans both the advancement of domain expert integration methods and the adoption of LLMs,
marked by the launch of GPT-3 in mid-2020 and ChatGPT in late 2022. For each paper, we provide
its full text in PDF format to OpenAI’s ChatGPT 04-mini-high model, and prompt this model as
follows:

Review the attached research paper and address the following two questions:

1. Does the study incorporate domain-specific expert knowledge about a
problem into machine learning models to reduce the demand for computation
and/or data?

2. Are large language models (LLMs) used for incorporating domain-specific
expert knowledge as training or context data into problem solving?

Provide a "yes" or "no" answer and a one sentence explanation.

The requested one sentence explanation for each answer allows us to more easily examine the accuracy
of each answer. We manually validate the correctness of all responses by checking the consistency of
binary responses and provided explanations with the content of each paper. Additionally, we have
iteratively improved our prompt in an LLM-driven optimization procedure, and ultimately selected
the above prompt for its low false-positive and false-negative rates. To ensure that each evaluation is
uncontaminated by prior context, we disable both memory and cross-chat references. An example of
the model’s dual-question response is:

Yes. The authors leverage neuroscience-inspired domain knowledge-
specifically the all-or-none firing characteristics and inter-/
intra-neuron temporal dependencies of spiking neurons-to design
the TSSL-BP algorithm, reducing the number of time steps (and thus
computation and data) needed to train deep SNNs effectively.

No. The work focuses solely on training deep spiking neural networks
via backpropagation and does not employ any large language models for
incorporating expert domain knowledge.

Table [T] contains the numeric results of our analysis, representing the proportion of papers falling
into each response category for each year. We can observe that studies which incorporate human
domain expertise into specialized ML models (“Yes—No” and “Yes—Yes”’) consistently account for
only 12-18.5% of the sample, with no clear upward or downward trend over time. In contrast,
the proportion of papers leveraging LLMs to encode expert knowledge (“No—Yes” and “Yes—Yes”)
increases noticeably following GPT-3’s debut in mid-2020 and ChatGPT’s release in late 2022, rising
from just 1% in 2022 to 8% by 2024.

Despite our efforts to sample broadly, our analysis has several limitations. First, examining only 200
papers per year may yield estimates that deviate from the true prevalence of each trend across the
entire NeurIPS corpus. Second, focusing exclusively on NeurIPS as the only conference introduces a
potential bias, as NeurIPS submissions may not fully reflect developments in other leading venues or
subfields. Third, we were only able to extensively validate the accuracy of results for small samples of
studies during the iterative optimization of our prompt; for the overall experiments, we simply had to
rely on the high performance of the optimized prompt and only skimmed each answer for its accuracy.
For this, we evaluated the correctness of the provided one-sentence explanation with the content
of the abstract of each paper, but did not (have to) change any answer given by the model. Finally,
by excluding this year’s conference submissions (NeurIPS 2025), whose acceptance outcomes still
remain unknown, we are missing important continuing directions that either alter or, more likely,
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Table 1: Numeric results of our quantitative analysis. Entries represent percentage of answer pairs to
the following questions: 1. Does the study incorporate domain-specific expert knowledge about a
problem into machine learning models to reduce the demand for computation and/or data? 2. Are
large language models (LLMs) used for incorporating domain-specific expert knowledge as training
or context data into problem solving?

Response  NeurIPS 2020 NeurIPS 2021  NeurIPS 2022  NeurIPS 2023  NeurIPS 2024

No - No 88 81.5 83 84.5 78
Yes - No 12 18.5 16 11 14
No - Yes 0 0 0 3.5 5.5
Yes - Yes 0 0 1 1 2.5

amplify our observed trends once it is clear which papers are accepted. Appendix [A]contains further
detail about our conducted experiments.

6 Expanding on Sutton’s Bitter Lesson under a decline in Moore’s Law

The observations we present are not to be simply understood as a contradiction to Sutton’s Bitter
Lesson. In fact, they highlight the importance of general-purpose computation and the utilization of
large amounts of data for advanced problem-solving with ML, as for example LLMs themselves are a
product of these principles. However, one aspect of Sutton’s Bitter Lesson we do want to contradict,
is his perspective on expert domain knowledge being unimportant in light of growing computational
resources and general-purpose learning and search. Instead, we highlight that the expanding scope of
data, and in particular the emergence of powerful LLMs and multi-modal transformers, is increasingly
turning human-like thinking and domain expertise themselves into valuable data for problem-solving.

Sutton leans his perspective on exponentially falling costs of computation due to Moore’s Law. Today,
however, we observe a clear slowdown and an approaching end to Moore’s Law for digital computers,
driven by insurmountable physical limitations, escalating costs, and diminishing performance returns
from further miniaturizing silicon-based transistors. This challenge underscores the crucial need and
increasing motivation for integrating expert domain knowledge in problem-solving with ML, in order
to enhance computation and data efficiency in future solution methods.

A more subtle implication of Sutton’s Bitter Lesson that we want to contradict, is the notion that
simply increasing computational power and data consistently yields better results in ML-driven
problem-solving. While this often holds under idealized conditions, such as assuming that data is
independent and identically distributed (i.i.d.), perfectly balanced, and noise-free, these assumptions
are rarely met in real-world scenarios. Given the law of large numbers, larger datasets help us align
sample distributions with true distributions, but this principle is far less applicable outside some of
the well-structured domains like board games that Sutton discusses. In many real-world applications,
such as the wide range of ML tasks related to tackling climate change [17]], data is often non-i.i.d.,
noisy and highly imbalanced. In many of these applications, the presence of complex physical
relationships between variables and spatio-temporal dependencies render simple assumptions about
data and computation that is uninformed about these domain-specific relationships insufficient [[18]].

Other evolving areas of ML research like active learning also challenge the idea that more data
alone leads to better outcomes, while supporting the importance of general-purpose computation
[L9]. Active learning focuses on the question of which data to collect for training a model that makes
the best possible predictions when given a limited budget for data. For example, in the previously
discussed study on electric load profile forecasting, an active learning approach achieves 26-81%
higher accuracy while using 29-46% less data compared to traditional passive learning methods,
without integrating any type of deep domain expertise about the problem into the ML model [11]].
In a modern era of Al and ML, simply seeking more data and compute may increasingly become a
naive approach.

Lastly, it is worth noting that our quantitative analysis reveals that only 12—18.5% of studies actively
integrate problem-specific domain expertise beyond general-purpose learning and search. This is
substantially less than one would expect in light of Sutton’s Bitter Lesson and the attention that it has
received by the Al and ML community.
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7 Alternative views: consistencies and inconsistencies with other opinions

The interplay between human domain expertise and the scope of data in Al has long been contested,
producing a rich tapestry of, and at times contradictory, perspectives [13} 14} 20523]. As Al and
ML research accelerates at an unprecedented rate, it becomes even more crucial to situate our
perspective within this broader discourse, extending the conversation beyond Sutton’s Bitter Lesson.
In synthesizing these viewpoints, we see a landscape where data, expertise, and computational power
are not opposing forces but complementary dimensions. Recognizing their interplay, and designing
Al systems that integrate them thoughtfully, will be critical for advancing both the efficiency and the
responsibility of future Al and ML research.

Expert knowledge reduces data and compute requirements. Our first observation emphasizes that
integrating problem-specific expert knowledge into ML models can reduce the need for extensive
computation and data. This view aligns with the principles of informed ML, which argue that prior
knowledge, when judiciously integrated, enhances sample efficiency and directs learning toward more
relevant abstractions [[13]]. It also echoes with Rodney Brooks’ environmental critique of Sutton’s
stance, articulated in A Better Lesson, where he emphasizes that leveraging problem-specific structure
can yield dramatic savings in data collection and training cost [22]].

Data’s expanding boundaries via LLLMs and multimodal models. Our second key observation
focuses on the historic expansion of the boundaries of what constitutes data for problem-solving
in ML, and that the rise of powerful LLMs and multi-modal transformer architectures has notably
contributed to this trend, allowing us to integrate increasing forms of expert domain knowledge and
task contexts as data. This is supported by Dash et al. [14], who argue that domain knowledge can
be represented not only through logical or numeric constraints but also through natural language
statements and conversations, aligning with our view on the growing importance of LLMs for
processing expert domain knowledge as data. However, our observation remains mostly different
from that of Von Rueden et al. [[13] who view ‘prior knowledge’ as something that accompanies data
and who strictly separate its treatment from that of data.

Chomsky’s challenge and a human—AlI synergy. Another interesting counterpoint is Noam Chom-
sky’s critique of concurrent LLMs, which he argues lack the capacity for human-like reasoning,
explanation, and moral consideration [23]. Chomsky et al. [23] assert that LLMs fail to generate
explanations and instead merely describe and predict, often incorrectly. While we share Chomsky’s
concerns about the limitations of ML systems more broadly, including LLMs, in addressing complex
issues of morality and ethics, we diverge in our views that these systems, when combined with
validated human domain expertise, can still significantly enhance our efficiency for solving critical
problems with positive outcomes for humanity, such as tackling a wide range of climate change
related ML tasks [[17]. Consequently, we believe that concurrent LLMs merit the attention they are
receiving for their potential to complement human reasoning and drive innovation.

Contextualizing Data and “Situated Knowledge”. Our stance aligns with Boyd and Crawford’s
viewpoint about the importance of context in which data is collected and analyzed, and that the
reduction of data to numeric values for fitting into a rather narrow model can strip it of the nuances
that are critical for meaningful analysis [21]]. It further resonates with Haraway’s notion of ‘situated
knowledge’, which presents the idea that knowledge is always partial and shaped by the context and
position of the ’knower’. Haraway emphasizes that expertise is not just a static body of knowledge
but is constructed and meaningful within specific contexts, thereby supporting the importance of
incorporating context information as data for more sophisticated ML solutions [20].

8 Conclusion

In the rapidly evolving landscape of Al and ML, we advocate that it is essential to recognize human
expertise as data. This is information that often resides in the form of mathematical equations,
computer code, or natural language descriptions of domain insights that are critical for solving tasks.
Such information is typically not recognized as first-class data by our current conventions.

We emphasize that incorporating human expertise into problem-solving in ML often provides valuable
structure to solution methods and is integral to reducing our demand for computation and data, as well
as enhancing out-of-distribution generalization. Additionally, we emphasize that the scope of data in
ML is expanding over time and typically enhances the inductive power of ML models. In this context,
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we highlight the emergence of LLMs as the latest leap forward in this trend, which increasingly
allows us to use human expertise as data for general-purpose computation and problem-solving.

In order to fully realize the potential of AI and ML models in light of these advancements, we call
upon the Al and ML community to rethink our existing approaches to data collection and model
architecture design. Much of our efforts in improving the collection and documentation of data with
standards like the FAIR principles [24]] or the newer Croissant format [25] focus on enhancing the
standardized structure and comprehensiveness of metadata, with the primary goal of making datasets
more interoperable and discoverable by tools and platforms. This is attributed to the assumption
that “...data documentation written in natural language, without a standard machine-readable
representation . .. makes data documentation challenging for machines to read and process” [25]], a
clearly outdated view in light of the capability of concurrent LLMs.

In addition to suggested data documentation standards, we encourage practitioners to include detailed
contextual information and task-specific insights as an integral part of their datasets. This information
should be accessible via the same Application Programming Interface (API) that provides dataset
features and labels. We propose that such contextual information could encompass some of the
metadata fields introduced in recent standards, such as those in the "semantic" and "structural” layers
of Croissant [25]. Rather than adhering to a rigid format, this context can be effectively communicated
in natural language, compiled into a single text file referred to as a "task description", and thereby
provide valuable flexibility for data documentation alongside well-structured metadata standards.

The advancement of LLMs and multimodal architectures in using human expertise as general-purpose
computational data simultaneously creates a strong dependence on the availability of validated,
well-curated datasets representing domain-specific expertise. Expanding the number of these curated
repositories, containing validated expert knowledge and targeted insights, can significantly reduce the
cost and dependency on human input, particularly during model training and fine-tuning with RLHF.
The increasing availability of these datasets can shift more computational burden towards supervised
and unsupervised learning components of the training pipeline, and decrease the relative burden on
human feedback within the overall training workflow of advanced models.

We envision these changes to give rise to powerful domain-expert ML models, as well as mixtures
of these, and to deepen the integration of human expertise into automated problem-solving. By
embedding LLMs within streamlined, multi-modal architectures that consistently combine language
with task-specific numeric data, we envision that a significant number of conventional ML solution
methods will be enhanced.
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Table 2: Detailed results of our quantitative analysis by response and subcategory across NeurIPS
2020-2024. Entries represent either percentage or extrapolated count of answers to the following pair
of questions: 1. Does the study incorporate domain-specific expert knowledge about a problem into
machine learning models to reduce the demand for computation and/or data? 2. Are large language
models (LLMs) used for incorporating domain-specific expert knowledge as training or context data
into problem solving?

Response 2020 2021 2022 2023 2024
Papers 1-500

No - No 88 80 85 84 78
Yes — No 12 20 15 10 11
No - Yes 0 0 0 4 7

Yes — Yes 0 0 0 2 4

Papers 501-1000

No - No 88 83 81 85 78
Yes — No 12 17 17 12 17
No - Yes 0 0 0 3 4

Yes — Yes 0 0 2 0 1

Percentage

No - No 88 81.5 83 84.5 78
Yes — No 12 18.5 16 11 14
No - Yes 0 0 0 3.5 55
Yes — Yes 0 0 1 1 2.5

Extrapolated

No-No  1687.84 1902.21 2411.15 3028.48 3539.64
Yes—No  230.16 431.79 46480 39424 63532
No - Yes 0.00 0.00 0.00 107.52  249.59
Yes — Yes 0.00 0.00 29.05 35.84 113.45

A Additional details about conducted experiments

We have conducted our experiments in two batches, each containing 100 studies per year. Table 2]
shows the results for these splits and their overall percentages. The table further contains results that
were extrapolated by the total number of papers published in each conference. These numbers are
deduced by multiplying percentages with 19.18 for NeurIPS 2020, 23.34 for NeurIPS 2021, 29.05
for NeurIPS 2022, 35.84 for NeurIPS 2023, and 45.38 for NeurIPS 2024. FigureE]further shows a
visualization of percentages and extrapolated results. The supplementary material further contains a
documentation of responses for each study, organized in the same batches as seen in Table[2]

10



I NeurlPS 2020 [ NeurlPS 2021 W NeurlPS 2022 [ NeurlPS 2023 W NeurlPS 2024

_—
No-No Yes-No No-Yes Yes-Yes
B NeurlPS 2020 [ NeurlPS 2021 I NeurlPS 2022 [l NeurlPS 2023 B NeurlPS 2024
4000
3000
2000
1000
0 B

No-No Yes-No No-Yes Yes-Yes

Figure 1: Results of our quantitative analysis of NeurIPS 2020-2024 papers. Upper figure bars show
percentage and lower figure bars extrapolated count of total studies, of answers to the following
questions: 1. Does the study incorporate domain-specific expert knowledge about a problem into
machine learning models to reduce the demand for computation and/or data? 2. Are large language
models (LLMs) used for incorporating domain-specific expert knowledge as training or context data
into problem-solving?
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