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ABSTRACT

We present Aurelius, a new framework that enables relation aware text-to-
audio (TTA) generation research at scale. Given the lack of essential audio event
and relation corpora, Aurelius contributes a large-scale audio event corpus Au-
dioEventSet and another large-scale relation corpus AudioRelSet. Comprising
110 event categories, AudioEventSet maximally covers all commonly heard audio
events and each event is unique, realistic and of high-quality. AudioRelSet con-
sists of 100 relations, comprehensively covering the relations that present in the
physical world or can be neatly described by text. As the two corpora provide
audio event and relation independently, they can be combined to create massive
<text, audio> pairs with our pair generation strategy to support relation aware
TTA investigation at scale. We comprehensively benchmark all existing TTA
models from both general and relation aware evaluation perspective. We further
provide in-depth investigation on scaling up existing TTA models’ relation aware
generation by either training from scratch or leveraging cross-domain general TTA
knowledge. The introduced corpora and the findings through investigation in this
work potentially facilitate future research on relation aware TTA generation.

1 INTRODUCTION

Text-to-audio (hereinafter TTA) generation task aims at generating acoustically high-fidelity audio
with the content inferred by the input text. Owing to the success of generative modeling (e.g.,
diffusion based (Ho et al., 2020; Xue et al., 2024), score based (Vahdat et al., 2021) and flow
matching based (Lipman et al., 2023; Guan et al., 2024) methods) and the availability of large
<text,audio> pair dataset (e.g., AudioCaps (Kim et al., 2019), AudioSet (Gemmeke et al.,
2017)), we have witnessed significant advancement in general TTA task in recent years (Ghosal
et al., 2023; Hung et al., 2024; Liu et al., 2024). Despite these achievements, the relation aware
TTA generation still remains as a challenging task as it jointly requires audio event generation and
relation modeling. Audio events and their relation are two fundamental elements humans rely on for
holistic acoustic scene understanding or engaging communication (Zacks et al., 2007; Hirsh et al.,
1967; Lake et al., 2015). We humans can interpret the relation and audio events within the textual
description with ease to decide how the target audio looks like. Enabling TTA models with similar
relational reasoning and event interpretation capability is therefore essential for bridging the gap
between relation aware TTA model quality and human-level crossmodal reasoning.

The recent preliminary investigation by RiTTA (He et al., 2025) already shows the incapability of
existing TTA models in relation aware generation, but the investigation runs on top of small relation
and audio event corpora. The data corpora small scale issue naturally hinders further investigation.
To enable relation aware TTA at scale, we introduce Aurelius, a novel framework that contributes
to relation aware TTA from both dataset benchmark and technical methodology aspects. From
the dataset benchmark aspect, we meticulously curate two large-scale corpora: AudioEventSet and
AudioRelSet. AudioEventSet is an audio event corpus that comprises 110 across fine-grained event
classes across 7 main acoustic categories we commonly hear in our daily lives. In contrast to existing
audio event datasets (Gemmeke et al., 2017; Kim et al., 2019; Fonseca et al., 2022) that are either
noisy, polyphonic or label-missing, AudioEventSet provides a coarse-to-fine tree structured audio
event corpus that is both internally distinctive and externally comprehensive. Each individual audio
event in AudioEventSet is high-quality, realistic and intra-class diverse. AudioRelSet is the large-scale
relation corpus with up to 100 detailed relations completely covering the potential relations audio
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events may present in the 3D physical world or text can describe succinctly. AudioRelSet is also tree
structured and can be further scaled up to incorporate more relations. Each relation in AudioRelSet
has an “arity” property that is further used to combine relation and audio events together to create
<text, audio> pairs for relation aware TTA task. AudioEventSet and AudioRelSet are orders of
magnitude larger than existing relevant dataset, enabling thorough and in-depth investigation for
relation aware TTA task.

Based on the introduced audio event corpus Au-

dioEventSet and relation corpus AudioRelSet, -

we further introduce a <text, audio> pair
generation strategy that is capable of generating
essential <text, audio> pairs highlighted by
both audio event based and textual description

diversity. As the audio event corpus is disentan- . —

1. 100 relations
2. 6 main cate
3. scalable

gled from relation corpus, our proposed strategy 1. 110 events \. unlimited size
can generate nearly uplimiteq <text, .audio> 2 7 main cate w 2 highly diverse
pairs tailored for various training requirements. 3. pierarchical & 3. customizable

In summary, as illustrated in Fig. 1, Aurelius Aurelius

advances relation aware TTA research by con-

tributing large-scale corpora of audio events and  pigyre 1: Aurelius contributes to relation aware
relations, together with a dedicated framework  TTA by introducing an audio event corpus Au-

for relation aware generation. The explicit dis- i EventSer, a relation corpus AudioRelSet and
entanglement of audio events and relations, the . oyt , audio> pair generation strategy.

hierarchical tree-structured design of each cor-

pus, and the systematic <text, audio> creation strategy collectively provide a strong foundation
for curating essential datasets in this domain. Building on this foundation, our proposed AudioRelGen
framework tackles relation aware TTA by decoupling audio event modeling from relation modeling,
offering an essential first step toward structured audio generation. We believe this work will not
only establish a new benchmark for relation aware TTA but also inspire future research on modeling
complex event—relation dynamics in sound.

2 RELATED WORK

Text-to-Audio Generation aims at generating the audio waveform that semantically aligns well with
the input text. The fast development of generative modeling techniques (Ho et al., 2020; Vahdat
etal., 2021; Lipman et al., 2023) in recent years has largely advanced the TTA generation in terms
of high-fidelity and high-intelligibility (Liu et al., 2024; 2023; Kreuk et al., 2023; Yang et al., 2022;
Ghosal et al., 2023; Liao et al., 2024), alongside other crossmodal generation tasks including but not
limited to text-to-music (TTM, e.g., MusicGen (Copet et al., 2023) and MusicLM (Agostinelli et al.,
2023)), image-to-audio (I2A, e.g., RegNet (Chen et al., 2020), Img2Wav (Sheffer & Adi, 2023) and
SpecVQGAN (lashin & Rahtu, 2021) and text-to-image (T2I). Although the promising achievement
in generating realistic and semantically text-aligned audio, existing TTA methods still perform poorly
in relation aware TTA generation. Prior work like RiTTA (He et al., 2025) and CompA (Ghosh
et al., 2024) have preliminarily explored relation aware TTA and shown the incapability of existing
TTA methods through limited audio event and relation corpora, which inevitably hinders future
investigation at scale. Moreover, publicly available audio event corpora (AudioSet) are directly
collected from either online video data or audio sharing platform without proper quality check,
resulting in the audio events label-missing, noisy and ambiguous. Our work circumvents these
barriers by introducing a meticulously curated audio event corpus AudioEventSet that is of high-
quality, distinctive and realistic, potentially covering all commonly heard audio events.

Relation Modeling has been widely discussed within modalities, including image (Liu et al., 2022;
Zerroug et al., 2022), natural language processing (Wadhwa et al., 2023) and acoustics (Xie et al.,
2025a; Ghosh et al., 2024; He et al., 2025). In the context of 2D image, the objects of interest can
exhibit compositional and spatial relation (Liu et al., 2022; Zerroug et al., 2022). In the context of
3D physical world, audio event is the most fundamental acoustic signal and multiple audio events
join together to represent the 3D physical world via more sophisticated relations than image-based
relations, ranging from basic spatial, temporal, perceptual relation to their nested combination. Prior
works (Xie et al., 2025a; Ghosh et al., 2024; He et al., 2025; Xie et al., 2025b) have discussed
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audio event relations in small-scale and with minimal complexity, making them hard to scale up to
accommodate the potential relation complexity that present in either 3D physical environment or
textual description. To fill in this gap, we curate AudioRelSet, a large-scale relation corpus that reflect
the relation potentially present in the physical world and can be neatly describe by text.

Text-to-Audio Generation Techniques. Existing TTA methods can be technically divided into two
main categories: while the early methods are diffusion based (Liu et al., 2024; 2023; Kreuk et al.,
2023; Yang et al., 2022; Ghosal et al., 2023; Liao et al., 2024; Xue et al., 2024), the latest methods are
flow-matching based (He et al., 2025; Hung et al., 2024; Guan et al., 2024). The flow-matching based
methods are usually faster during both training and inference, and can give better performance than
diffusion based methods. We completely benchmark all these methods on our introduced corpora,
and further provide in-depth investigation to reveal potential ways scale up existing TTA methods’
relation aware TTA capability.

3 AURELIUS BENCHMARK: AUDIOEVENTSET AND AUDIORELSET

3.1 AUDIO EVENT CORPUS: FaUlello]aV ]

An audio event refers to an auditory signal oc-

curring over a specific period of time, typically Table 1: Audio Event Dataset Comparison.
representing an independent, human-recognizable

sound. To support the relation aware TTA re- Dataset \ Characteristic

search, the desired audio event corpus should be: AudioSet (2017) phoni

1. diverse enough so as to maximally accommo- FSD50K (2022) potyphonic,
ambiguous,

date the wide variety of audio events potentially AudioCaps (2019)

. . 1ot isy, label-missi
present in the 3D physical world; 2. clean and  AudioTime (2025a) HowY, HDETISSIng

of high-fidelity so as to enable reliable in-depth distinctive, high-quality,
technical investigation; 3. distinctive so that they clean, hierarchical
can be easily distinguished without any ambiguity; AudioEventSet coarse-to-fine

4. hierarchically organized w.r.t. their genre so as intra-class diversity
to enable investigation at different granularity. Af- inter-class discriminative

ter thorough investigation on existing audio event

related dataset, however, we find all existing datasets fall short in exhibiting the four properties.
As is shown in Table 1, existing audio event dataset (e.g., AudioSet (Gemmeke et al., 2017), Au-
dioCaps (Kim et al., 2019), AudioTime (Xie et al., 2025a) and FSD50K (Fonseca et al., 2022))
are either noisy, label-missing, polyphonic (multiple events temporally overlap) or semantically
ambiguous (where multiple event classes correspond to the same audio). To address this dilemma,
we introduce AudioEventSet, a meticulously curated audio event corpus that is intrinsically clean,
diverse, distinctive and hierarchically organized.

AudioEventSet ontology is tree-structured and the tree depth is three. From the root node to the
leaf node, each audio event is organized in coarse-to-fine granularity. As is shown in Fig. 2 and
Table I in Appendix, we base on RiTTA (He et al., 2025) to categorize AudioEventSet into seven
main categories: five singular-source categories Animal, Human, Machinery, Music and Nature, two
interaction-based categories Human-Object and Object-Object interactions. The seven categories
maximally cover the commonly heard audio events in the 3D physical world. Each main category
associates with multiple subcategories, each of which is further associated with multiple fine-grained
event classes. For example, the Human main category contains human voice, human speech, hands
action, group action and locomotion subcategories, comprehensively categorizing the human centered
audio event from various aspects.

During AudioEventSet ontology construction, we guarantee each curated audio event is distinctive,
unique, and human-distinguishable. Audio event emitting ambiguous or nondistinctive audio is
discarded. For example, engine idling in AudioSet (Gemmeke et al., 2017) audio differs significantly
by various engines, and it easily confuses with another audio event such as working fan and hairdryer.
We thus exclude all of them from the corpus. Moreover, we account for both audio event source
origin, event category and the audio generation physical mechanism for AudioEventSet ontology
construction. For example, in the Object-Object main category, we exhaustively consider the impact,
friction, dropping and explosion audio generation mechanism. In summary, we have curated 110
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A. AudioEventSet Corpus Ontology Visualization B. AudioRelSet Corpus Ontology Visualization C. Relation Arity Illustration

Figure 2: AudioEventSet and AudioRelSet corpora illustration: we visualize the AudioEventSet
ontology in sub-figure A. It is tree-structured with depth 3 and contains 7 main categories and 110
event categories (leaf node) in total. We just show part of the leaf nodes (with red dotted arrow) for
the sake of clear visualization. The detailed event ontology in given in Table I in Appendix. The
AudioRelSet ontology in sub-figure B, it is tree-structured with depth 2. It contains 6 main categories
and 100 categories in total. The detailed relation ontology is given in Table II in Appendix. In
sub-figure C, we conceptually illustrate the relation “arity”, which is used to connects relation and
audio event to generate audios.

audio events, which is four times larger than audio event corpus proposed in RiTTA (He et al., 2025),
each leaf audio event is associated with around 75 realistic audio snippets ranging from 1 sto 5 s

For each leaf node audio event, we collect exemplar audios from either copyright-free
freesound.org platform or FSD50K (Fonseca et al.,, 2022). As most audios from
freesound.org and FSD50K ! real audios shared by volunteers across the globe, the collected
audios for each audio event are diverse and realistic enough to reflect the audio event we can hear in
the physical world. Manually verification is adopted to ensure the collected exemplar audios content
correctness, label consistency. We argue that the curated AudioEventSet can be potentially applied to
other tasks other than TTA, we anticipate much wider usage of the curated dataset.

3.2 RELATION CORPUS: AudioRelSet [EAVCIOREINES

Prior works (Xie et al., 2025a; He et al., 2025; Ghosh et al., 2024) have explored audio events
relation from various perspectives, but only on a small scale. For example, AudioTime (Xie et al.,
2025a) and CompA (Ghosh et al., 2024) have discussed temporal relations. RiTTA (He et al., 2025)
has additionally introduced spatial, compositional and count relations, resulting in a total of 11
relations. In this section, we introduce AudioRelSet, a meticulously curated large-scale relation corpus
with up to 100 distinct relations. To ensure AudioRelSet to exhibit both real scenario practicability,
text-manageable complexity and relation scalability, we follow 3 guidelines to curate AudioRelSet: 1.
maximally cover the potential relations audio events can present in the 3D physical world; 2. enough
relation complexity but can still be efficiently and neatly described by text; 3. the relation corpus
can be scaled up to accommodate more sophisticated relations. To this end, we construct 6 main
fundamental relations, in which 4 main relations describe the relations present in the 3D physical
world, one main relation focuses on TTA model’s logical reasoning capability and last one relation
derives from the nested combination of the five main relations.

AudioRelSet ontology is tree-structured and the tree depth is 2, the root node connects 6 main relations,
each of which further associates with multiple sub-relations. Let £ = {F1, E», ..., E,,} denote the
audio events in AudioEventSet introduced in Sec. 3.1, R = {R1, Ra, ..., R, } denote the relations to
be constructed. AudioRelSet is represented as follows,

1. Temporality describes the sequence or overlap of audio events in time domain, it contains 4
sub-relations: Precedence: E1 < E5 (event E/y occurs before E5); Succession: E1 > E5 (event Fq
occurs before Es); Simultaneity: Ey || Eo (B and Ey occur concurrently); Repetitiveness: ~ E;
(event F/; occur repetitively in the time domain).

2. Spatiality defines the relative spatial positions or motion status between or within audio events,
it contains 5 sub-relations: Proximity: d(E1, E2) < 7 (E1 Es are within distance 7); Closeness:

'FSD50K (Fonseca et al., 2022) data is also sourced from freesound. org
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d(E7) < d(E9) (E1 is closer than Es); Farness: d(E1) > d(Es) (Fy is further than Es); Approach-
ing: Ldp, (t) < 0 (E; is moving close); Departuring: %dp, (t) > 0 (E is moving away).

3. Count focuses on the number of audio events take place within a period of time: Count: |E| =
N, N € Z*. (cardinality £ is the number).

4. Perceptuality introduces 6 acoustic effects to an audio event,

* Balancing: Ryatance (E1, E2, o) (level balance between F4 and E; by balancing factor o, so that
one event dominates and the other serves as the background audio).

* Blending: Ryjena(E1, F2,0) (mix E; and Es together by factor 6 so as to be indistinguishable).
* Reverberation: Reven(E1) applies reverberation effect to Ey, as if it is heard in the canyon.
o Time-stretching: Ryyech(E1, ), where « is the time-stretching factor and E listens slowly.
* Amplification: Ramp(E1, 3), where 3 is the amplification factor and E listens to be louder.

o Attenuation: R, (E1,y), where « is the attenuation factor and E} listens to be quieter.

5. Compositionality indicates the logical operation within audio events TTA models need to reason
before deciding what audio events to generate. It contains 5 sub-relations.

* Conjunction: E1 A Fy (both events occur).

* Disjunction: F1 v FE5 (at least one event occurs, or both occur).

* Negation: —E; (the absence of the event I; in the generated audio).

* Exclusive Or: (Ey1 v E3) A =(E71 A Es) (either Ey or Ey occur, but not both).

e Implication: £y, = FEo,—~F, = FEj3 (if F1 occur, then E5 occur, else E3 occur).

6. Nested Combination is a hierarchical structuring of multiple basic relations (e.g., the aforemen-
tioned Temporality, Spatiality), such that the output of one relation serves as the input or context
for another, forming a directed acyclic relation structure. Nested combination allows for capturing
complex relation interactions among audio events. For example, by nesting Implication, Approaching
and Conjunction, we can generate a more complex text prompt showing below,

If generated both {A} event and {B} event,
then continue to generate {C} audio event,
else just generate {D} audio event that is gradually approaching close. —Approaching

Mathematically, the relation Ryegeq(E) resulting from nested combination can be represented as,

Riested(E) = Ry (Rp—1(... Re(R1(E))...)) )
where E = {ej, e, ..., e, } represents a finite
set of audio events. We combine relations aris- — mai“;jj:g;a“‘y |:| S“b'rjjif:é:nﬁ;mbe'
ing from the introduced 5 basic relations to con-
struct nested combination relations and have cre- Relation 1 2%
ated 79 nested combination relations. Q),,,E“%% 9 1. 12 []

255 U | F=——

It is worth noting that the nested combination is '%»o;‘;"%z R é Z
scalable and we can theoretically construct more " g’/@ more relations with
complex nested relations (even infinite relations) %‘YQ; %,IZ‘/'{zf ne;‘fj‘mﬁgﬂl ;’Iyi‘m
by simply involving more basic relations into the ”’6(;,6[’_@
nested combination process. In this work, we "” Arity
constrain the nested combination up to involving & & & & ¢ %&’d &5
5 audio events at most (Quinary), it remains as T e
future research topic to explore more complex Figure 3: Arity coverage in AudioRelSet.

nested combination, and the key challenge re-
mains on how to construct the corresponding concise and precise textual description for the given
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highly complex nested relation. Moreover, during the nested combination process, we explicitly run
internal nested relations logic correctness and feasibility check before accepting the nested relations
as a new relation, any nested relation violating the correctness and feasibility rule is abandoned. For
example, the combination of Count and Conjugation internally equals to Count.

Relation Arity. each relation in AudioRelSet is associated with an “arity” property, which indicates
the audio event number it requires to represent the relation. The visual illustration of arity is shown
in Fig. 2 C. The arity coverage across AudioRelSet main relation categories is given in Fig, 3, from
which we can see that the arity ranges from 1 to 5 (unary to quinary) and most main relation cuts
across multiple arities. Moreover, the construction of more complex relations introduces higher arity.
We use “arity” to create <text, audio> pairs (see Sec. 3.3) and experiment evaluation (see Sec. 4).

3.3 TEXT-AUDIO PAIR CREATION: [RIEAATA[[exs

With the constructed audio event corpus in

Sec. 3.1 and relation corpus in Sec. 3.2, AudioEventSet

we can further construct relation aware AudoRelSet Machindy - Animal
<text,audio> pairs. Specifically, as is C"'“P‘f)*“““\ﬁ‘/y """" Spatiallyy mocliaism e livemock
shown in Fig. 4, we first associate each of the = implication oo closeness Wc‘r/mm;; ....... X mmcing
100 relations in the relation corpus with metic- rchtcxlltcmpluti7ution I
ulously curated 5 text description templates. We T, B il (), (0 iy - lemmmm“m
either manually write or query GPT-40 to gen- 3} "), che sencrae | ;‘r‘ww‘}
erate 5 text prompt templates precisely describ- =t create (B}, otherwise create (€}
ing the relation and accommodating the large | |

language usage variation (see Fig. 4 line 4-8). {mm e iy T cow mooa B }
Each template contains audio events name place-  ereated: otherwise, create goat bleating.

holder, we instantiate the template by replacing instantiated text - instantiated audio

the placeholder with real audio event name to

obtain the text prompt. To accommodate the
synonymy of audio event name, we maintain a
synonym list for each audio event name, and ran-
domly select one each time when instantiating
the template. For example, the audio event name “hammer nailing” can be synonymously replaced
by one of [hitting, slapping, smacking, punching].

Figure 4: <text, audio> pair generation illus-
tration, which can generate nearly unlimited pairs
with high diversity.

To accurately describe the audio event with text, we adopt the “Head-Modifier Structure with
Progressive Verb Form” approach. In this approach, the description begins with the subject or entity
producing the audio (e.g., “food”) as the head, emphasizing the primary source of the sound. The
action is then specified using its present participle form (e.g., “frying”) as the modifier to convey a
sense of immediacy and highlight that the audio event is ongoing. For instance, instead of describing
a sound as “frying food” or “fry food” it is labeled as “food frying audio,” where the subject (“food”)
is foregrounded, and the action (“frying”) contextualizes the nature of the audio. This approach
ensures clarity, aligns with the temporal context of the audio, and effectively captures the dynamic
nature of the event. With the same audio events name, we can retrieve its relevant audio waveform
data and generate the audio by following the relation (He et al., 2025).

4 EXPERIMENT
4.1 DATASET CONSTRUCTION

Following the common setup in existing TTA model, the created audio is 10 second long with
sampling rate 16 kHz. Based on the data creation method introduced in Sec. 3.3, in the training phase,
we randomly construct 360 <text, audio> pairs for each relation, and in total we have created
36,000 pairs. In testing phase, we randomly construct 100 <text, audio> pairs for each relation,
ensuring no constructed pairs appear in the training dataset. As we follow the prior TTA models
setting to create the audio to be 10 seconds long with sampling rate 16 kHz, the training audio dataset
is 100 hours, and testing audio dataset is 28 hours. Since we decouple relation from audio events
during dataset construction and the texts in training dataset are different from the texts in the testing



Under review as a conference paper at ICLR 2026

dataset, the constructed training and testing <text, audio> pairs have no overlap and differ from
each other significantly.

4.2 EVALUATION METRIC

We accommodate both classic general evaluation metrics and relation aware evaluation metrics. For
general evaluation, we follow traditional TTA works (Liu et al., 2024; 2023; Ghosal et al., 2023;
Majumder et al., 2024) and adopt three metrics: Fréchet Audio Distance (FAD), Fréchet Distance
(FD) (Heusel et al., 2017), Kullback-Leibler (KL) divergence. These three metrics measure the
overall similarity in embedding space between reference audio and generated target audio without
explicitly taking relation into account. Specifically, following the practice in prior TTA works,
we extract the embeddings from VGGish (Hershey et al., 2017) model for FAD and KL metrics,
embeddings from PANNs (Kong et al., 2020) model for FD metric.

For relation aware evaluation, we adopt the multi-stage relation aware (MSR) evaluation protocol
introduced in RiTTA (He et al., 2025). In MSR protocol, we first explicitly extract out audio events
and relations (E’, R") from generated audio, then further compare them with reference audio events
and relations (E, R). To reflect if the model has generated but generated only the designated audio
events and relations, MSR adopts Presence, Relation correctness and Parsimony score to gauge the
quality of generated audio from different perspectives. Specifically, we report mAPre, mARe 1 and
mAPar scores for either separate relations or across all relations. More detailed information about
MSR metric refers to RiTTA (He et al., 2025). To extract out audio event from generated audio, we
finetune an audio event detection and tagging model on top of the pre-trained PANNs (Kong et al.,
2020) model with 1 million training dataset. The mAP on 100,000 testing dataset achieves 0.91 for
audio event detection, ensuring the finetuned model can extract out all potential audio events with
high precision. To classify acoustic effect, we train another 7 acoustic effects classification model
on top of the pre-trained PANNs model with 1 million training dataset. The accuracy rate on 100 k
testing dataset achieves 95%.

4.3 BENCHMARKING METHODS

We exhaustively benchmark 9 most recent general TTA models: AudioLDM (Liu et al., 2023),
AudioLDM 2 (Liu et al., 2024), MakeAnAudio (Huang et al., 2023), AudioGen (Kreuk et al.,
2023), Tango (Ghosal et al., 2023), Tango 2 Majumder et al. (2024), LAFMA (Guan et al., 2024),
Affusion (Xue et al., 2024) and TangoFlux (Hung et al., 2024). They are pretrained on general TTA
dataset (Gemmeke et al., 2017; Kim et al., 2019). For benchmarking, we choose their released model
to generate a 10 second audio from the text prompt, detailed configuration is in Table III in Appendix.

We further benchmark two agentic workflow based methods, in which we leverage open-sourced
Qwen family LLM acting as an agent to analyze the input text and output the separate audio events
an TTA model needs to generate. At the same time, the same LLM works as the third agent to output
the python code that merges the audios generated by the TTA model. The reason of experimenting
agentic flow is to see if we can decompose the relation aware generation task into simple single audio
event generation task. Detailed implementation of our agentic workflow is provided in Appendix .1.

4.4 BENCHMARKING RESULT ON EXISTING TTA MODELS

The benchmarking result is given in Table 2, from which we can observe that all existing TTA models
perform poorly on relation aware TTA generation. Similar to RiTTA (He et al., 2025), we also find the
contradictory evaluation result between general evaluation and relation aware evaluation, which shows
the speciality of relation aware TTA task. Among all the benchmarking methods, AudioGen (Kreuk
et al., 2023) and TangoFlux (Hung et al., 2024) perform the best. While AudioGen (Kreuk et al.,
2023) achieving the best in mAPar (relation parsimony) and mAMSR, TangoFlux (Hung et al., 2024)
stays the best-performing in mAPre and mARel which mean it excels at accurately generating the
target audio events and corresponding relation. However, almost all benchmarking methods achieves
less than 10% percent accuracy rate across all relation aware evaluation metrics, which in turn verify
the necessity to introduce new large-scale benchmark tailored for relation aware TTA research.

Furthermore, both the two comparing agentic flow baselines perform poorly, they perform substan-
tially worse than most existing existing TTA approaches. This poor performance highlights a critical
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Table 2: Quantitative benchmarking result on our introduced benchmark. mAPre, mARel and mAPar
are in 10~2. mAPre and mARel can be treated as presence, relation correctness percentage ratio,
they lie in range [0, 100]. mAPar score also lies within [0, 100]. mAMSR (%) lies in range [0, 1]

Eval Model #Param General Evaluation Relation Aware Evaluation %(1)
Way FAD| KL | FD|] | mAPre mARel mAPar] mAMSR
AudioLDM (s-full) 2023 185 M | 4.02 21.23 2236 | 347 0.91 2.95 0.73
AudioLDM (1-full) 2023 739M | 413 2205 23.03 | 3.10 0.79 2.63 0.63
AudioLDM 2 (I-full) 2024 | 844 M | 454 2290 30.53 | 0.35 0.04 0.31 0.03
E MakeAnAudio 2023 452M | 5.10 50.97 3049 | 4.75 0.88 4.05 0.73
2 AudioGen 2023 1.5B 797 2519 3229 | 113 2.84 9.13 2.22
g LAFMA 2024 272M | 25.85 269.54 6527 | 0.96 0.15 0.45 0.07
N Affusion 2024 1.1B 413 4259 31.17 | 6.71 1.41 4.07 0.79
Tango 2023 866 M | 7.47 64.10 2828 | 4.46 0.98 3.67 0.79
Tango 2 2024 866 M | 9.59 6524 3550 | 9.68 2.48 5.49 1.29
TangoFlux 2024 576 M | 6.01 26.73 30.00 | 12.38 3.34 7.28 1.77
Agen| Qwen2 7B+TangoFlux - 9.98 14287 39.20 | 3.53 0.77 2.25 0.04
tic | Qwen2.5 32B+TangoFlux - 9.70 140.56 38.65 | 3.79 0.96 241 0.60

limitation: simply scaling up current TTA methods without fundamentally enhancing their relation
aware modeling capability is unlikely to succeed. In this light, the benchmark introduced in this paper
is not merely a comparison tool but a catalyst—providing the necessary structure, evaluation, and
motivation to drive genuine advances in relation aware TTA research.

4.5 Two INTUITIVE WAYS TO IMPROVE RELATION AWARE MODELING

Table 3: Quantitative result comparison on testset between finetuning (ft) and training from
scratch (scratch) on curated 100 hours dataset.

Train Model #Param General Evaluation Relation Aware Evaluation %(1)
Way FAD] KL | FD] | mAPre mARel mAPar] mAMSR

Tango 2023 866 M | 3.88 3326 2130 | 1458 4.18 10.16 2.73

ft Tango 2 2024 866 M | 4.06 2239 2032 | 1553 4.63 1021 2.86

TangoFlux 2024 | 576 M | 1.29 9.68 1644 | 2857 8.02 20.84 5.58

scratch | Tango 2023 866 M | 3.63 2234 20.16 | 1489 3.69 10.98 2.64

TangoFlux 2024 | 576 M 1.64 17.82 11.72 | 16.68 3.82 12.01 2.58

Two intuitive strategies to enhance relation aware mod-

ehng m eXlStlng TTA methOdS are (1) ﬁnetunlng on our Text Prompt: At the beginning, generate applause sound that

curated dataset and (11) training from scratch. This dual per- is spatially distant, then continue to generate the same
spective not only tests the feasibility of our benchmark but ~ @pplause sound that is spatiatly close.
also evaluates the potential of transferring general TTA do-  weroa Waveform Spectrum

main knowledge into relation aware settings. To this end,
we apply both training strategies to three representative
baselines: Tango (Ghosal et al., 2023), Tango 2 (Majumder
et al., 2024), and TangoFlux (Hung et al., 2024). The re-
sults in Table 3 reveal a clear trend: both finetuning and TangoFlux
training from scratch substantially improve relation aware '
performance, validating the effectiveness of our bench-

. . TangoFlux
mark as a testing ground for relation aware TTA. Notably, finctuncd
TangoFlux benefits the most from finetuning, indicating
that cross-domain TTA knowledge can be effectively trans-
ferred to relation aware tasks. In contrast, Tango shows
little difference between the two strategies, suggesting that
model architecture and inductive bias may affect the extent
to which general TTA knowledge can be leveraged. These findings highlight our benchmark’s unique
role in uncovering such model-specific behaviors and point to an open research direction: how to
best exploit general TTA knowledge to scale up relation aware TTA, and conversely, how relation
aware training can reciprocate general TTA advances. We visualize the generated audio comparison
between TangoFlux in zero-shot and finetuned base inference mode in Fig. 5, from this figure we can
clearly see that finetuning on our curated dataset benefits relation aware modeling.

Reference

Figure 5: Qualitative comparison be-
tween zero-shot and finetune based Tan-
goFlux inference on one text prompt.
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Figure 7: mAMSR rega.rdir?g 6 main relatior} cat-  Figure 8: mAMSR regarding 6 main relation cat-
egory and 5 relation Arity in Zero-shot setting.  egory and 5 relation Arity in finetuning setting.

To further investigate the role of training datasize, we ex- ™"
tend both finetuning and training from scratch experiments

to larger datasets of 200 hours and 300 hours. As is shown |
in Fig. 6, the mAMSR trend reveals two distinct behaviors:
finetuning yields strong early gains but quickly saturates |
when the datasize approaches 300 hours, whereas training
from scratch continues to improve substantially with in-
creasing data. This divergence underscores an important
insights: scaling relation aware TTA models ultimately
requires massive datasets, and reliance on finetuning alone |
may be insufficient for long-term progress. Our bench- o w0 0
mark is thgrefore ;ssential: it not only provides the con- Figure 6: mAMSR variation w.r.t. train-
trolled scaling environment peeded to expose these tr.ends, ing datasize (100 h, 200 h and 300 h).
but also offers the first practical platform to systematically

study how training strategy and datasize interact in advancing relation aware TTA.

We visualize mAMSR regarding 5 main relations and relation Arity of three strong methods in Zero-
shot setting (Fig. 7) and finetuning based setting (Fig. 8). From these two figures, we can observe
that finetuning can improve the relation aware modeling capability in general. In zero-shot setting,
AudioGen (Kreuk et al., 2023) performs better than the other two on main categories including
Temporality, Count and Perceptuality. While in finetuning setting, TangoFlux (Hung et al., 2024)
becomes the best-performing method. However, all methods in both setting perform terrible in Nested
Combination or Arity larger than 1. Our proposed benchmark enables researchers to tackle these
challenges at scale.

4.6 MORE INVESTIGATION ON EXISTING TTA MODEL ANALYSIS

Relation aware TTA demands not only the correct
presence of target audio events but also the faithful
preservation of their underlying relations. However,
current TTA methods (Hung et al., 2024; Ghosal et al.,
2023; Xue et al., 2024) remain narrowly focused on
single-event generation, leaving them ill-equipped
to handle multi-event, relation aware prompts. Ta- Event ( multi-event, relation aware) 12%
ble 4 makes this gap explicit: while TangoFlux (Hung  Relation (multi-event, relation aware) | 3%
et al., 2024), the state-of-the-art general TTA model,
achieves 75% accuracy on single-event prompts, its performance collapses to just 12% for multi-event
correctness and a mere 3% for relation fidelity. This dramatic degradation exposes a fundamental
blind spot in existing approaches—relation aware modeling is virtually unaddressed. Our benchmark
directly targets this deficiency, offering the first systematic platform to quantify and dissect these
failures. By doing so, it not only diagnoses the shortcomings of current TTA methods but also
establishes the essential foundation for driving genuine advances in relation aware TTA.

Table 4: Audio event and relation accuracy of
TangoFlux generation under different setting.

Description | Accu.

Event (single event, no relation) \ 75%

Conclusion. By curating AudioEventSet (110 events) and AudioRelSet (100 relations) with a
systematic pair-generation strategy, Aurelius enables large-scale benchmarking and analysis. Our
evaluations expose the sharp limitations of existing TTA models in relation fidelity. Aurelius
establishes the first comprehensive benchmark for relation aware TTA and paves the way for future
research on modeling complex event—relation dynamics in sound.
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A APPENDIX

.1 AGENTIC AUDIO SCENE GENERATION WORKFLOW

We design an agentic workflow that integrates large language model (LLM) reasoning with state-of-
the-art text-to-audio (TTA) generation. The workflow operates in three stages:

1. Scene Planning Given a natural-language description and a target duration, we guide a reasoning-
capable LLM (Qwen) with a structured system prompt to decompose the input into a JSON plan. The
prompt enforces JSON-only output, concise event descriptions in “head + present participle” style,
and relation aware scheduling rules. The full system prompt is provided below:

Audio Scene Planner Prompt

You are an audio scene planner for relation-aware text-to-audio (TTA) generation. Perform
all reasoning INTERNALLY and output ONLY valid JSON with the final scheduling results.
Never include explanations or chain-of-thought. Your JSON MUST be parsable and follow
the schema exactly.

OBIJECTIVE

Given (1) a natural-language text prompt describing an audio scene with multiple events
and relations, and (2) a target total duration in seconds, decompose the scene into concise
sub-prompts (each corresponds to one independent audio event to be synthesized by a TTA
model), and schedule them on the global timeline with start times and durations.

OUTPUT CONTRACT (JSON ONLY)

{
"total_duration_sec": <float>,

// equals the requested total duration
"sub_prompts": [

{

Tiglwg WL, // short unique id
"text": "<short English sub-prompt>",

// head + present participle; may include light modifiers
"start_sec": <float>, // >= 0
"duration_sec": <float>

// > 0, and start_sec + duration_sec <= total_duration_sec
}
// ... typically <= items total

LANGUAGE FOR SUB-PROMPTS

» Use concise English in “head + present participle” style: e.g., “door bell ringing
audio”, “footsteps running audio”.

* Add light, meaningful modifiers when clearly implied by text: “as background”,

“approaching”, “departing”, “slight reverberation”, “time-stretched”, “amplified”,
“attenuated”, “balanced against X”, “blended with Y.

* Avoid redundant words; keep each sub-prompt single-sentence and < 18 words.

RELATIONS AND HOW TO REFLECT THEM (IMPLICITLY VIA SCHEDULING + WORDING)

* Sequencing: “then/after/next/first...then...” — schedule sequentially with a small
gap ~ 0.1s.

* Simultaneity / Mix / Background — allow overlaps; backgrounds can span large
portions of the timeline.

* Approaching / Departing — keep in wording (“approaching”/“departing”). No
mandatory duration change.

13



Under review as a conference paper at ICLR 2026

* OR/XOR — choose the most natural option; do not include the unchosen one.
* NOT / prohibit — exclude that event entirely.

e IF...THEN...ELSE — choose the most sensible branch; output only the chosen
branch.

* Count — if an explicit number of items/events is requested, match it.

Repetition — instantiate repeated events (e.g., bell ringing three times) as multiple
sub-segments or one sustained segment if implied.

Proximity / Closeness / Farness — reflect via wording only (“distant thunder”,
“near crowd”). No strict timing rules.
DURATION AND SCHEDULING RULES

* Respect total duration: sum of all segments should match the requested duration
(£0.25s); if off, adjust proportionally.

* Each segment duration_sec MUST be integer.
* Choose reasonable segment durations:

— transient cues (e.g., bell, door knock, gunshot) — 1-2s

— medium actions (e.g., footsteps, typing, sawing) — 2—6s

— ambient backgrounds (e.g., rain, wind, crowd murmur) — long spans (often
entire duration)

e start_sec = 0; end < total duration.

* On conflicts, preserve explicit relations first; compress lightly but keep segments >
0.5s.

* Keep the number of sub-prompts concise (typically < 5).

FORMATTING RULES

e Output VALID JSON only. No comments, no trailing commas, no text outside
JSON.

* Floats may be given with 1-2 decimals.

e Ensure “start_sec + duration_sec < total_duration_sec” for all
segments.

2. Segment Synthesis Each sub-prompt is independently synthesized into audio using Tan-
goFlux (Hung et al., 2024), a flow-matching-based TTA model. We enforce consistency between the
planned duration and the generated waveform length.

3. Timeline Stitching All generated audio segments are placed on a global timeline according to
their planned start times. Overlapping segments are blended with linear crossfades, and amplitude
normalization is applied to prevent clipping. This yields a coherent audio scene that respects both
semantic relations (e.g., sequencing, simultaneity) and global duration constraints.

.2 AuDIO EVENT CATEGORY CURATION DETAIL
.3 AuDIO EVENTS RELATION CORPUS

.4 BENCHMARKING MODEL INFERENCE SETTING

14
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Table I: AudioEventSet corpus detail. We list all 110 event classes, which are deriving from 7 main

categories and 23 sub-categories.

Main Category |  Sub-Category Names | Description
lion roaring, wolf howling,
wild ground animal donkey braying, cricket chirping, live in the wild
Animal frog croaking, horse neighing
22) domestic animal EOg barqug, cat meowing, live in domestic setting
og growling, cat spurring
pig oinking, sheep bleating,
livestock CcOW mooing, domesticated livestock
rooster crowing, duck quacking
cuckoo calling, birds chorus,
wild animal seag ullb(iawi.ng, pegcqck rattling animals in the wild
ue jay whistling,
nightingale singing, fly buzzing
baby crying, laughing, shouting,
human voice whistling, coughing, snoring, human use vocal tract
Human sneezing, chewing, burping, farting
21 human speech male speech, female specch, speech audio
child speech, group talk
hands action finger snapping, clapping audio by action
group action Cheegrri(r)llg ;rlgﬁ gl?ﬁiﬁing audio by a group
locomotion running, footsteps audio by movement
siren, door bell, car horn,
Machinery alarm bicycle bell, telephone ringing, machinery alarming
(13) telephone dialing, boat horn
ratchet and pawl clicking,
. camera shuttering, . .
mechanism . . . . mechanism audio
printer printing, engine revving,
clock ticking, paper shredding
Human-Obj tools hammer nailing, IVIV OOd. sawing, human use tools
Interaction pen writing, yvoqd chopping, rasping
(18) culinary algn maiis, slvemene nudl; in kitchen setting
food frying, vegetable chopping
toilet flushing, pouring water,
keyboard typing, door slamming,
work cupboard open or close, audio during work
drawer open or close, packing tape,
dentist drilling, door knocking
. . key jingling, ball bouncing, .
Obj-Obj impact audio pen clicking, wind chime TrIgRs Gt
Interaction car emergency braking
(15) friction audio knife sharpening, sandpaper scraping, | friction effect
plastic scratching, string rubbing
dropping audio com dr(r)rfl)ggigérilssisnc;mkmg, dropping effect
explosion gunshot, firework, artillery fire explosion effect
plucked string, piano keyboard,
Music music instrument bowed string, wind string, brass, musical instruments
(11) harmonica, accordion
. female singing, male singing, . .
smnging child singing, group singing i o
water bubbling, ocean wave,
Nature water water dripping, water flowing, water movement
(10) water bplhng .
weather thunder, wind, rain nature weather
nature change wood cracking, rustling leaves natural change
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Table II: AudioRelSet corpus detail. We introduce 21 basic relations, and advanced 79 nested
combination relations, resulting in a total of 100 relations — 9 times larger than the relation corpus
proposed in RiTTA (He et al., 2025). AudioRelSet maximumly covers all potential relations that
audio events may exhibit in either the physical world or linguistic description. It is worth noting that
AudioRelSet is open-ended. By nesting existing relations, we can potentially construct massive new

relations.
Category Relation Name Explanation ‘ Event Arity ‘ Sample prompt
precedence before binary audio {a} followed by {B}
Temporalit succession after binary create audio {A} after {B}
I() 4) y simultaneity same time binary {a} and {B} simultaneously
periodicity cyclic unary create audio {A} periodically
closeness spatial close binary {a} is closer than {B}
Spatialit farness spatial far binary {a} is farther than audio {B}
p 15) y proximity equal-dist binary {2} and {B} the same dist
approaching moving close unary {a} is moving closer
departuring moving away unary {a} is moving further away.
Count (1) count number | mn-ary | 3audios: {a}, {B} and {C}
balancing level balance binary {a} dominates, {B} fades
blending mix audios binary {a} and {B} are mixed
Perceptuality reverberation reverberant unary generate audio {A} in canyon
(6) time-stretching speed manipulate unary stretch audio {A} in time scale
amplification become louder unary amplify {A} to be louder
attenuation less loudly unary attenuate {A} to be quieter
conjunction logical AND binary create both {A} and {B}
Composition- disjunction logical OR binary create {A} or {B}, or both
ality negation logical NOT unary do not generate audio {A}
5) exclusive-or logical XOR binary generate {A} or {B}, not both
implication if-then-else ternary if {a}, then {B}, else just {C}
Temp + Spat (4) Temp + Spat {a} before approaching {B}
Temp + Percep (8) Temp + Percep binar reverb. {A}, succeeded by {B}
Percep + Comp (12) | Percep + Comp Y stretched {A} or {B}, not both
approaching {A} or {B},
Spat + Comp (4) Spat + Comp 1ot both
Temp + Comp (6) Temp + Comp {a} first, then {B} or {C}
Nested Percep + Comp (1) Percep + Comp mix {2} with {B}, or {C}
Combination Comp + Comp (1) Comp + Comp ternary {a} and {B}, or {2} and {C}
(79) Spat + Comp (5) Comp + Comp {a} and {B}, or {2} and {C}
Spat + Com
+pPercep (2§) Comp + Comp {a} and {B}, or {A} and {C}
audio {A} or {B} first,
Temp + Comp (4) Temp + Comp quaternary | followed by {C} or {D}
{n} or {B} first,
Comp + Comp (7) Comp + Comp then {C} or {D}
{a} before {B} first, then {C} ~
Temp + Comp (3) Temp + Comp before {D} or {E}
. if {n} closer than {B}, then
Spat + Comp (9) Spat + Comp quinary {C} closer than {D}, else {E}
Comp + Comp (9) Comp + Comp AE ) s 8l e (O

Count + Comp (4)

Count + Comp

and {D} else {E}

if {a}, {B}, {C}, then {D},
else {E}
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Methods

Setting

AudioLDM (S-Full) (2023)
AudioLDM (L-Full) (2023)
AudioLDM 2 (L-Full) (2023)
MakeAnAudio (2023)
AudioGen (2023)

Auffusion (2024)

LAFMA (2024)

Tango (2023)

Tango 2 (2024)

TangoFlux (2024)

guidance_scale=5, random_seed=42, n_candidates=3
guidance_scale=5, random_seed=42, n_candidates=3
guidance_scale=3.5, random_seed=45, n_candidates=3
ddim_steps = 100, scale = 3.0
model name: audiogen-medium
num_steps = 100, guidance=7.5, num_samples=1
num_steps = 200, guidance=3, num_samples=1
num_steps = 200, guidance=3, num_samples=1
num_steps = 200, guidance=3, num_samples=1
num_steps = 50, guidance=3, num_samples=1

Table III: Detail setting for each TTA method.
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