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ABSTRACT

We present Aurelius, a new framework that enables relation aware text-to-
audio (TTA) generation research at scale. Given the lack of essential audio event
and relation corpora, Aurelius contributes a large-scale audio event corpus Au-
dioEventSet and another large-scale relation corpus AudioRelSet. Comprising
110 event categories, AudioEventSet maximally covers all commonly heard audio
events and each event is unique, realistic and of high-quality. AudioRelSet con-
sists of 100 relations, comprehensively covering the relations that present in the
physical world or can be neatly described by text. As the two corpora provide
audio event and relation independently, they can be combined to create massive
<text,audio> pairs with our pair generation strategy to support relation aware
TTA investigation at scale. We comprehensively benchmark all existing TTA
models from both general and relation aware evaluation perspective. We further
provide in-depth investigation on scaling up existing TTA models’ relation aware
generation by either training from scratch or leveraging cross-domain general TTA
knowledge. The introduced corpora and the findings through investigation in this
work potentially facilitate future research on relation aware TTA generation.

1 INTRODUCTION

Text-to-audio (hereinafter TTA) generation task aims at generating acoustically high-fidelity audio
with the content inferred by the input text. Owing to the success of generative modeling (e.g.,
diffusion based (Ho et al., 2020; Xue et al., 2024), score based (Vahdat et al., 2021) and flow
matching based (Lipman et al., 2023; Guan et al., 2024) methods) and the availability of large
<text,audio> pair dataset (e.g., AudioCaps (Kim et al., 2019), AudioSet (Gemmeke et al.,
2017)), we have witnessed significant advancement in general TTA task in recent years (Ghosal
et al., 2023; Hung et al., 2024; Liu et al., 2024). Despite these achievements, the relation aware
TTA generation still remains as a challenging task as it jointly requires audio event generation and
relation modeling. Audio events and their relation are two fundamental elements humans rely on for
holistic acoustic scene understanding or engaging communication (Zacks et al., 2007; Hirsh et al.,
1967; Lake et al., 2015). We humans can interpret the relation and audio events within the textual
description with ease to decide how the target audio looks like. Enabling TTA models with similar
relational reasoning and event interpretation capability is therefore essential for bridging the gap
between relation aware TTA model quality and human-level crossmodal reasoning.

The recent preliminary investigation by RiTTA (He et al., 2025) already shows the incapability of
existing TTA models in relation aware generation, but the investigation runs on top of small relation
and audio event corpora. The data corpora small scale issue naturally hinders further investigation.
To enable relation aware TTA at scale, we introduce Aurelius, a novel framework that contributes
to relation aware TTA from both dataset benchmark and technical methodology aspects. From
the dataset benchmark aspect, we meticulously curate two large-scale corpora: AudioEventSet and
AudioRelSet. AudioEventSet is an audio event corpus that comprises 110 across fine-grained event
classes across 7 main acoustic categories we commonly hear in our daily lives. In contrast to existing
audio event datasets (Gemmeke et al., 2017; Kim et al., 2019; Fonseca et al., 2022) that are either
noisy, polyphonic or label-missing, AudioEventSet provides a coarse-to-fine tree structured audio
event corpus that is both internally distinctive and externally comprehensive. Each individual audio
event in AudioEventSet is high-quality, realistic and intra-class diverse. AudioRelSet is the large-scale
relation corpus with up to 100 detailed relations completely covering the potential relations audio
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events may present in the 3D physical world or text can describe succinctly. AudioRelSet is also tree
structured and can be further scaled up to incorporate more relations. Each relation in AudioRelSet
has an “arity” property that is further used to combine relation and audio events together to create
<text,audio> pairs for relation aware TTA task. AudioEventSet and AudioRelSet are orders of
magnitude larger than existing relevant dataset, enabling thorough and in-depth investigation for
relation aware TTA task.

AudioEventSet
1. 110 events
2. 7 main cate
3. hierarchical
…

AudioRelSet

<Text,Audio>
1. unlimited size
2. highly diverse
3. customizable
…

1. 100 relations
2. 6 main cate
3. scalable
…

urelius

Figure 1: Aurelius contributes to relation aware
TTA by introducing an audio event corpus Au-
dioEventSet, a relation corpus AudioRelSet and
<text,audio> pair generation strategy.

Based on the introduced audio event corpus Au-
dioEventSet and relation corpus AudioRelSet,
we further introduce a <text, audio> pair
generation strategy that is capable of generating
essential <text,audio> pairs highlighted by
both audio event based and textual description
diversity. As the audio event corpus is disentan-
gled from relation corpus, our proposed strategy
can generate nearly unlimited <text,audio>
pairs tailored for various training requirements.
In summary, as illustrated in Fig. 1, Aurelius
advances relation aware TTA research by con-
tributing large-scale corpora of audio events and
relations, together with a dedicated framework
for relation aware generation. The explicit dis-
entanglement of audio events and relations, the
hierarchical tree-structured design of each cor-
pus, and the systematic <text,audio> creation strategy collectively provide a strong foundation
for curating essential datasets in this domain. Building on this foundation, our proposed AudioRelGen
framework tackles relation aware TTA by decoupling audio event modeling from relation modeling,
offering an essential first step toward structured audio generation. We believe this work will not
only establish a new benchmark for relation aware TTA but also inspire future research on modeling
complex event–relation dynamics in sound.

2 RELATED WORK

Text-to-Audio Generation aims at generating the audio waveform that semantically aligns well with
the input text. The fast development of generative modeling techniques (Ho et al., 2020; Vahdat
et al., 2021; Lipman et al., 2023) in recent years has largely advanced the TTA generation in terms
of high-fidelity and high-intelligibility (Liu et al., 2024; 2023; Kreuk et al., 2023; Yang et al., 2022;
Ghosal et al., 2023; Liao et al., 2024), alongside other crossmodal generation tasks including but not
limited to text-to-music (TTM, e.g., MusicGen (Copet et al., 2023) and MusicLM (Agostinelli et al.,
2023)), image-to-audio (I2A, e.g., RegNet (Chen et al., 2020), Img2Wav (Sheffer & Adi, 2023) and
SpecVQGAN (Iashin & Rahtu, 2021) and text-to-image (T2I). Although the promising achievement
in generating realistic and semantically text-aligned audio, existing TTA methods still perform poorly
in relation aware TTA generation. Prior work like RiTTA (He et al., 2025) and CompA (Ghosh
et al., 2024) have preliminarily explored relation aware TTA and shown the incapability of existing
TTA methods through limited audio event and relation corpora, which inevitably hinders future
investigation at scale. Moreover, publicly available audio event corpora (AudioSet) are directly
collected from either online video data or audio sharing platform without proper quality check,
resulting in the audio events label-missing, noisy and ambiguous. Our work circumvents these
barriers by introducing a meticulously curated audio event corpus AudioEventSet that is of high-
quality, distinctive and realistic, potentially covering all commonly heard audio events.

Relation Modeling has been widely discussed within modalities, including image (Liu et al., 2022;
Zerroug et al., 2022), natural language processing (Wadhwa et al., 2023) and acoustics (Xie et al.,
2025a; Ghosh et al., 2024; He et al., 2025). In the context of 2D image, the objects of interest can
exhibit compositional and spatial relation (Liu et al., 2022; Zerroug et al., 2022). In the context of
3D physical world, audio event is the most fundamental acoustic signal and multiple audio events
join together to represent the 3D physical world via more sophisticated relations than image-based
relations, ranging from basic spatial, temporal, perceptual relation to their nested combination. Prior
works (Xie et al., 2025a; Ghosh et al., 2024; He et al., 2025; Xie et al., 2025b) have discussed
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audio event relations in small-scale and with minimal complexity, making them hard to scale up to
accommodate the potential relation complexity that present in either 3D physical environment or
textual description. To fill in this gap, we curate AudioRelSet, a large-scale relation corpus that reflect
the relation potentially present in the physical world and can be neatly describe by text.

Text-to-Audio Generation Techniques. Existing TTA methods can be technically divided into two
main categories: while the early methods are diffusion based (Liu et al., 2024; 2023; Kreuk et al.,
2023; Yang et al., 2022; Ghosal et al., 2023; Liao et al., 2024; Xue et al., 2024), the latest methods are
flow-matching based (He et al., 2025; Hung et al., 2024; Guan et al., 2024). The flow-matching based
methods are usually faster during both training and inference, and can give better performance than
diffusion based methods. We completely benchmark all these methods on our introduced corpora,
and further provide in-depth investigation to reveal potential ways scale up existing TTA methods’
relation aware TTA capability.

3 AURELIUS BENCHMARK: AUDIOEVENTSET AND AUDIORELSET

3.1 AUDIO EVENT CORPUS:

Unary Binary Ternary N-ary

Nested Combination

Audio Event

Different Relations

AudioEventSet

AudioRelSet
Table 1: Audio Event Dataset Comparison.

Dataset Characteristic

AudioSet (2017) polyphonic,
ambiguous,

noisy, label-missing

FSD50K (2022)
AudioCaps (2019)

AudioTime (2025a)

AudioEventSet

distinctive, high-quality,
clean, hierarchical

coarse-to-fine
intra-class diversity

inter-class discriminative

An audio event refers to an auditory signal oc-
curring over a specific period of time, typically
representing an independent, human-recognizable
sound. To support the relation aware TTA re-
search, the desired audio event corpus should be:
1. diverse enough so as to maximally accommo-
date the wide variety of audio events potentially
present in the 3D physical world; 2. clean and
of high-fidelity so as to enable reliable in-depth
technical investigation; 3. distinctive so that they
can be easily distinguished without any ambiguity;
4. hierarchically organized w.r.t. their genre so as
to enable investigation at different granularity. Af-
ter thorough investigation on existing audio event
related dataset, however, we find all existing datasets fall short in exhibiting the four properties.
As is shown in Table 1, existing audio event dataset (e.g., AudioSet (Gemmeke et al., 2017), Au-
dioCaps (Kim et al., 2019), AudioTime (Xie et al., 2025a) and FSD50K (Fonseca et al., 2022))
are either noisy, label-missing, polyphonic (multiple events temporally overlap) or semantically
ambiguous (where multiple event classes correspond to the same audio). To address this dilemma,
we introduce AudioEventSet, a meticulously curated audio event corpus that is intrinsically clean,
diverse, distinctive and hierarchically organized.

AudioEventSet ontology is tree-structured and the tree depth is three. From the root node to the
leaf node, each audio event is organized in coarse-to-fine granularity. As is shown in Fig. 2 and
Table I in Appendix, we base on RiTTA (He et al., 2025) to categorize AudioEventSet into seven
main categories: five singular-source categories Animal, Human, Machinery, Music and Nature, two
interaction-based categories Human-Object and Object-Object interactions. The seven categories
maximally cover the commonly heard audio events in the 3D physical world. Each main category
associates with multiple subcategories, each of which is further associated with multiple fine-grained
event classes. For example, the Human main category contains human voice, human speech, hands
action, group action and locomotion subcategories, comprehensively categorizing the human centered
audio event from various aspects.

During AudioEventSet ontology construction, we guarantee each curated audio event is distinctive,
unique, and human-distinguishable. Audio event emitting ambiguous or nondistinctive audio is
discarded. For example, engine idling in AudioSet (Gemmeke et al., 2017) audio differs significantly
by various engines, and it easily confuses with another audio event such as working fan and hairdryer.
We thus exclude all of them from the corpus. Moreover, we account for both audio event source
origin, event category and the audio generation physical mechanism for AudioEventSet ontology
construction. For example, in the Object-Object main category, we exhaustively consider the impact,
friction, dropping and explosion audio generation mechanism. In summary, we have curated 110
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Unary Binary Ternary

N-ary

?

Nested Relation

Combination

Audio Event Audio Event

AudioRelSetAudioEventSet

Human

Animal MachineryHuman-Obj

Interaction

Music

Obj-Obj

Interaction

Nature

tool work

domesticwild

water

weather
voice

speech
friction

dropping

instrument

singing

alarmmechanism

Count

Perceptuality

Compositionality

Nested Combination

Spatiality

Temporality

negation implication

blending succession

count

implication + succession

farness

A.AudioEventSet Corpus Ontology Visualization

accordion

harmonica

car horn

door bell

B.AudioRelSet Corpus Ontology Visualization C. Relation Arity Illustration

Figure 2: AudioEventSet and AudioRelSet corpora illustration: we visualize the AudioEventSet
ontology in sub-figure A. It is tree-structured with depth 3 and contains 7 main categories and 110
event categories (leaf node) in total. We just show part of the leaf nodes (with red dotted arrow) for
the sake of clear visualization. The detailed event ontology in given in Table I in Appendix. The
AudioRelSet ontology in sub-figure B, it is tree-structured with depth 2. It contains 6 main categories
and 100 categories in total. The detailed relation ontology is given in Table II in Appendix. In
sub-figure C, we conceptually illustrate the relation “arity”, which is used to connects relation and
audio event to generate audios.

audio events, which is four times larger than audio event corpus proposed in RiTTA (He et al., 2025),
each leaf audio event is associated with around 75 realistic audio snippets ranging from 1 s to 5 s

For each leaf node audio event, we collect exemplar audios from either copyright-free
freesound.org platform or FSD50K (Fonseca et al., 2022). As most audios from
freesound.org and FSD50K 1 real audios shared by volunteers across the globe, the collected
audios for each audio event are diverse and realistic enough to reflect the audio event we can hear in
the physical world. Manually verification is adopted to ensure the collected exemplar audios content
correctness, label consistency. We argue that the curated AudioEventSet can be potentially applied to
other tasks other than TTA, we anticipate much wider usage of the curated dataset.

3.2 RELATION CORPUS: AudioRelSet

Unary Binary Ternary N-ary

Nested Combination

Audio Event

Different Relations

AudioEventSet

AudioRelSet

Prior works (Xie et al., 2025a; He et al., 2025; Ghosh et al., 2024) have explored audio events
relation from various perspectives, but only on a small scale. For example, AudioTime (Xie et al.,
2025a) and CompA (Ghosh et al., 2024) have discussed temporal relations. RiTTA (He et al., 2025)
has additionally introduced spatial, compositional and count relations, resulting in a total of 11
relations. In this section, we introduce AudioRelSet, a meticulously curated large-scale relation corpus
with up to 100 distinct relations. To ensure AudioRelSet to exhibit both real scenario practicability,
text-manageable complexity and relation scalability, we follow 3 guidelines to curate AudioRelSet: 1.
maximally cover the potential relations audio events can present in the 3D physical world; 2. enough
relation complexity but can still be efficiently and neatly described by text; 3. the relation corpus
can be scaled up to accommodate more sophisticated relations. To this end, we construct 6 main
fundamental relations, in which 4 main relations describe the relations present in the 3D physical
world, one main relation focuses on TTA model’s logical reasoning capability and last one relation
derives from the nested combination of the five main relations.

AudioRelSet ontology is tree-structured and the tree depth is 2, the root node connects 6 main relations,
each of which further associates with multiple sub-relations. Let E “ tE1, E2, . . . , Emu denote the
audio events in AudioEventSet introduced in Sec. 3.1, R “ tR1, R2, . . . , Rnu denote the relations to
be constructed. AudioRelSet is represented as follows,

1. Temporality describes the sequence or overlap of audio events in time domain, it contains 4
sub-relations: Precedence: E1 ă E2 (event E1 occurs before E2); Succession: E1 ą E2 (event E1

occurs before E2); Simultaneity: E1 ∥ E2 (E1 and E2 occur concurrently); Repetitiveness: „ E1

(event E1 occur repetitively in the time domain).

2. Spatiality defines the relative spatial positions or motion status between or within audio events,
it contains 5 sub-relations: Proximity: dpE1, E2q ď τ (E1 E2 are within distance τ ); Closeness:

1FSD50K (Fonseca et al., 2022) data is also sourced from freesound.org
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dpE1q ă dpE2q (E1 is closer than E2); Farness: dpE1q ą dpE2q (E1 is further than E2); Approach-
ing: d

dtdE1
ptq ă 0 (E1 is moving close); Departuring: d

dtdE1
ptq ą 0 (E1 is moving away).

3. Count focuses on the number of audio events take place within a period of time: Count: |E | “
N,N P Z`. (cardinality E is the number).

4. Perceptuality introduces 6 acoustic effects to an audio event,

• Balancing: RbalancepE1, E2, σq (level balance between E1 and E2 by balancing factor σ, so that
one event dominates and the other serves as the background audio).

• Blending: RblendpE1, E2, θq (mix E1 and E2 together by factor θ so as to be indistinguishable).
• Reverberation: RreverbpE1q applies reverberation effect to E1, as if it is heard in the canyon.
• Time-stretching: RstretchpE1, αq, where α is the time-stretching factor and E1 listens slowly.
• Amplification: RamppE1, βq, where β is the amplification factor and E1 listens to be louder.
• Attenuation: RattpE1, γq, where γ is the attenuation factor and E1 listens to be quieter.

5. Compositionality indicates the logical operation within audio events TTA models need to reason
before deciding what audio events to generate. It contains 5 sub-relations.

• Conjunction: E1 ^ E2 (both events occur).
• Disjunction: E1 _ E2 (at least one event occurs, or both occur).
• Negation: ␣E1 (the absence of the event E1 in the generated audio).
• Exclusive Or: pE1 _ E2q ^ ␣pE1 ^ E2q (either E1 or E2 occur, but not both).
• Implication: E1 ñ E2,␣E1 ñ E3 (if E1 occur, then E2 occur, else E3 occur).

6. Nested Combination is a hierarchical structuring of multiple basic relations (e.g., the aforemen-
tioned Temporality, Spatiality), such that the output of one relation serves as the input or context
for another, forming a directed acyclic relation structure. Nested combination allows for capturing
complex relation interactions among audio events. For example, by nesting Implication, Approaching
and Conjunction, we can generate a more complex text prompt showing below,

Nest Combination Example: Implication, Approaching and Conjunction

If generated both {A} event and {B} event,Ñ Conjunction
then continue to generate {C} audio event,
else just generate {D} audio event that is gradually approaching close. ÑApproaching

Mathematically, the relation RnestedpEq resulting from nested combination can be represented as,

RnestedpEq “ RnpRn´1p. . . R2pR1pEqq . . . qq (1)

Temporality

Spatiality

Count

Perceptuality

Compositionality

Nested Combination

Un
ary

Bin
ary

Ter
nar
y

Qu
ate
rna
ry

Qu
ina
ry

9

40

17 12
26

more relations with
higher arity by

nested combination

Sen
ary

Sep
ten
ary

Arity

Relation

main-relation arity
coverage

sub-relation number
w.r.t. arity

Figure 3: Arity coverage in AudioRelSet.

where E “ te1, e2, . . . , emu represents a finite
set of audio events. We combine relations aris-
ing from the introduced 5 basic relations to con-
struct nested combination relations and have cre-
ated 79 nested combination relations.

It is worth noting that the nested combination is
scalable and we can theoretically construct more
complex nested relations (even infinite relations)
by simply involving more basic relations into the
nested combination process. In this work, we
constrain the nested combination up to involving
5 audio events at most (Quinary), it remains as
future research topic to explore more complex
nested combination, and the key challenge re-
mains on how to construct the corresponding concise and precise textual description for the given
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highly complex nested relation. Moreover, during the nested combination process, we explicitly run
internal nested relations logic correctness and feasibility check before accepting the nested relations
as a new relation, any nested relation violating the correctness and feasibility rule is abandoned. For
example, the combination of Count and Conjugation internally equals to Count.

Relation Arity. each relation in AudioRelSet is associated with an “arity” property, which indicates
the audio event number it requires to represent the relation. The visual illustration of arity is shown
in Fig. 2 C. The arity coverage across AudioRelSet main relation categories is given in Fig, 3, from
which we can see that the arity ranges from 1 to 5 (unary to quinary) and most main relation cuts
across multiple arities. Moreover, the construction of more complex relations introduces higher arity.
We use “arity” to create <text,audio> pairs (see Sec. 3.3) and experiment evaluation (see Sec. 4).

3.3 TEXT-AUDIO PAIR CREATION: <Text, Audio>

or

rel2text templatization

Spatiality

AudioRelSet

Compositionality

implication closeness

AnimalMachinery

mechanism livestock

AudioEventSet

paper printing cow mooing

1. if generated {A}, then generate

{B}, else generate {C};

5. should {A} be created, proceed

to create {B}, otherwise create {C}

audio 1

audio 3

audio n

audio 2

audio m

create paper printing if cow mooing is

created; otherwise, create goat bleating.

audio 1 audio 2

audio 3

<Text, Audio>

event instantiation

instantiated text instantiated audio

Figure 4: <text,audio> pair generation illus-
tration, which can generate nearly unlimited pairs
with high diversity.

With the constructed audio event corpus in
Sec. 3.1 and relation corpus in Sec. 3.2,
we can further construct relation aware
<text,audio> pairs. Specifically, as is
shown in Fig. 4, we first associate each of the
100 relations in the relation corpus with metic-
ulously curated 5 text description templates. We
either manually write or query GPT-4o to gen-
erate 5 text prompt templates precisely describ-
ing the relation and accommodating the large
language usage variation (see Fig. 4 line 4-8).
Each template contains audio events name place-
holder, we instantiate the template by replacing
the placeholder with real audio event name to
obtain the text prompt. To accommodate the
synonymy of audio event name, we maintain a
synonym list for each audio event name, and ran-
domly select one each time when instantiating
the template. For example, the audio event name “hammer nailing” can be synonymously replaced
by one of [hitting, slapping, smacking, punching].

To accurately describe the audio event with text, we adopt the “Head-Modifier Structure with
Progressive Verb Form” approach. In this approach, the description begins with the subject or entity
producing the audio (e.g., “food”) as the head, emphasizing the primary source of the sound. The
action is then specified using its present participle form (e.g., “frying”) as the modifier to convey a
sense of immediacy and highlight that the audio event is ongoing. For instance, instead of describing
a sound as “frying food” or “fry food” it is labeled as “food frying audio,” where the subject (“food”)
is foregrounded, and the action (“frying”) contextualizes the nature of the audio. This approach
ensures clarity, aligns with the temporal context of the audio, and effectively captures the dynamic
nature of the event. With the same audio events name, we can retrieve its relevant audio waveform
data and generate the audio by following the relation (He et al., 2025).

4 EXPERIMENT

4.1 DATASET CONSTRUCTION

Following the common setup in existing TTA model, the created audio is 10 second long with
sampling rate 16 kHz. Based on the data creation method introduced in Sec. 3.3, in the training phase,
we randomly construct 360 <text,audio> pairs for each relation, and in total we have created
36,000 pairs. In testing phase, we randomly construct 100 <text, audio> pairs for each relation,
ensuring no constructed pairs appear in the training dataset. As we follow the prior TTA models
setting to create the audio to be 10 seconds long with sampling rate 16 kHz, the training audio dataset
is 100 hours, and testing audio dataset is 28 hours. Since we decouple relation from audio events
during dataset construction and the texts in training dataset are different from the texts in the testing
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dataset, the constructed training and testing <text,audio> pairs have no overlap and differ from
each other significantly.

4.2 EVALUATION METRIC

We accommodate both classic general evaluation metrics and relation aware evaluation metrics. For
general evaluation, we follow traditional TTA works (Liu et al., 2024; 2023; Ghosal et al., 2023;
Majumder et al., 2024) and adopt three metrics: Fréchet Audio Distance (FAD), Fréchet Distance
(FD) (Heusel et al., 2017), Kullback–Leibler (KL) divergence. These three metrics measure the
overall similarity in embedding space between reference audio and generated target audio without
explicitly taking relation into account. Specifically, following the practice in prior TTA works,
we extract the embeddings from VGGish (Hershey et al., 2017) model for FAD and KL metrics,
embeddings from PANNs (Kong et al., 2020) model for FD metric.

For relation aware evaluation, we adopt the multi-stage relation aware (MSR) evaluation protocol
introduced in RiTTA (He et al., 2025). In MSR protocol, we first explicitly extract out audio events
and relations pE1, R1q from generated audio, then further compare them with reference audio events
and relations pE,Rq. To reflect if the model has generated but generated only the designated audio
events and relations, MSR adopts Presence, Relation correctness and Parsimony score to gauge the
quality of generated audio from different perspectives. Specifically, we report mAPre, mARel and
mAPar scores for either separate relations or across all relations. More detailed information about
MSR metric refers to RiTTA (He et al., 2025). To extract out audio event from generated audio, we
finetune an audio event detection and tagging model on top of the pre-trained PANNs (Kong et al.,
2020) model with 1 million training dataset. The mAP on 100,000 testing dataset achieves 0.91 for
audio event detection, ensuring the finetuned model can extract out all potential audio events with
high precision. To classify acoustic effect, we train another 7 acoustic effects classification model
on top of the pre-trained PANNs model with 1 million training dataset. The accuracy rate on 100 k
testing dataset achieves 95%.

4.3 BENCHMARKING METHODS

We exhaustively benchmark 9 most recent general TTA models: AudioLDM (Liu et al., 2023),
AudioLDM 2 (Liu et al., 2024), MakeAnAudio (Huang et al., 2023), AudioGen (Kreuk et al.,
2023), Tango (Ghosal et al., 2023), Tango 2 Majumder et al. (2024), LAFMA (Guan et al., 2024),
Affusion (Xue et al., 2024) and TangoFlux (Hung et al., 2024). They are pretrained on general TTA
dataset (Gemmeke et al., 2017; Kim et al., 2019). For benchmarking, we choose their released model
to generate a 10 second audio from the text prompt, detailed configuration is in Table III in Appendix.

We further benchmark two agentic workflow based methods, in which we leverage open-sourced
Qwen family LLM acting as an agent to analyze the input text and output the separate audio events
an TTA model needs to generate. At the same time, the same LLM works as the third agent to output
the python code that merges the audios generated by the TTA model. The reason of experimenting
agentic flow is to see if we can decompose the relation aware generation task into simple single audio
event generation task. Detailed implementation of our agentic workflow is provided in Appendix .1.

4.4 BENCHMARKING RESULT ON EXISTING TTA MODELS

The benchmarking result is given in Table 2, from which we can observe that all existing TTA models
perform poorly on relation aware TTA generation. Similar to RiTTA (He et al., 2025), we also find the
contradictory evaluation result between general evaluation and relation aware evaluation, which shows
the speciality of relation aware TTA task. Among all the benchmarking methods, AudioGen (Kreuk
et al., 2023) and TangoFlux (Hung et al., 2024) perform the best. While AudioGen (Kreuk et al.,
2023) achieving the best in mAPar (relation parsimony) and mAMSR, TangoFlux (Hung et al., 2024)
stays the best-performing in mAPre and mARel which mean it excels at accurately generating the
target audio events and corresponding relation. However, almost all benchmarking methods achieves
less than 10% percent accuracy rate across all relation aware evaluation metrics, which in turn verify
the necessity to introduce new large-scale benchmark tailored for relation aware TTA research.

Furthermore, both the two comparing agentic flow baselines perform poorly, they perform substan-
tially worse than most existing existing TTA approaches. This poor performance highlights a critical
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Table 2: Quantitative benchmarking result on our introduced benchmark. mAPre, mARel and mAPar
are in 10´2. mAPre and mARel can be treated as presence, relation correctness percentage ratio,
they lie in range r0, 100s. mAPar score also lies within r0, 100s. mAMSR (%) lies in range r0, 1s

.
Eval
Way Model #Param General Evaluation Relation Aware Evaluation %(Ò)

FAD Ó KL Ó FD Ó mAPre mARel mAPar mAMSR

Z
er

o-
Sh

ot

AudioLDM (s-full) 2023 185 M 4.02 21.23 22.36 3.47 0.91 2.95 0.73
AudioLDM (l-full) 2023 739 M 4.13 22.05 23.03 3.10 0.79 2.63 0.63
AudioLDM 2 (l-full) 2024 844 M 4.54 22.90 30.53 0.35 0.04 0.31 0.03
MakeAnAudio 2023 452 M 5.10 50.97 30.49 4.75 0.88 4.05 0.73
AudioGen 2023 1.5 B 7.97 25.19 32.29 11.3 2.84 9.13 2.22
LAFMA 2024 272 M 25.85 269.54 65.27 0.96 0.15 0.45 0.07
Affusion 2024 1.1 B 4.13 42.59 31.17 6.71 1.41 4.07 0.79
Tango 2023 866 M 7.47 64.10 28.28 4.46 0.98 3.67 0.79
Tango 2 2024 866 M 9.59 65.24 35.50 9.68 2.48 5.49 1.29
TangoFlux 2024 576 M 6.01 26.73 30.00 12.38 3.34 7.28 1.77

Agen
tic

Qwen2 7B+TangoFlux - 9.98 142.87 39.20 3.53 0.77 2.25 0.04
Qwen2.5 32B+TangoFlux - 9.70 140.56 38.65 3.79 0.96 2.41 0.60

limitation: simply scaling up current TTA methods without fundamentally enhancing their relation
aware modeling capability is unlikely to succeed. In this light, the benchmark introduced in this paper
is not merely a comparison tool but a catalyst—providing the necessary structure, evaluation, and
motivation to drive genuine advances in relation aware TTA research.

4.5 TWO INTUITIVE WAYS TO IMPROVE RELATION AWARE MODELING

Table 3: Quantitative result comparison on testset between finetuning (ft) and training from
scratch (scratch) on curated 100 hours dataset.

.

Train
Way Model #Param General Evaluation Relation Aware Evaluation %(Ò)

FAD Ó KL Ó FD Ó mAPre mARel mAPar mAMSR

ft
Tango 2023 866 M 3.88 33.26 21.30 14.58 4.18 10.16 2.73
Tango 2 2024 866 M 4.06 22.39 20.32 15.53 4.63 10.21 2.86
TangoFlux 2024 576 M 1.29 9.68 16.44 28.57 8.02 20.84 5.58

scratch Tango 2023 866 M 3.63 22.34 20.16 14.89 3.69 10.98 2.64
TangoFlux 2024 576 M 1.64 17.82 11.72 16.68 3.82 12.01 2.58

Method Waveform Spectrum

Reference

TangoFlux

finetuned

TangoFlux

zero-shot

Text Prompt: At the beginning, generate applause sound that

is spatially distant, then continue to generate the same

applause sound that is spatially close.

Figure 5: Qualitative comparison be-
tween zero-shot and finetune based Tan-
goFlux inference on one text prompt.

Two intuitive strategies to enhance relation aware mod-
eling in existing TTA methods are (i) finetuning on our
curated dataset and (ii) training from scratch. This dual per-
spective not only tests the feasibility of our benchmark but
also evaluates the potential of transferring general TTA do-
main knowledge into relation aware settings. To this end,
we apply both training strategies to three representative
baselines: Tango (Ghosal et al., 2023), Tango 2 (Majumder
et al., 2024), and TangoFlux (Hung et al., 2024). The re-
sults in Table 3 reveal a clear trend: both finetuning and
training from scratch substantially improve relation aware
performance, validating the effectiveness of our bench-
mark as a testing ground for relation aware TTA. Notably,
TangoFlux benefits the most from finetuning, indicating
that cross-domain TTA knowledge can be effectively trans-
ferred to relation aware tasks. In contrast, Tango shows
little difference between the two strategies, suggesting that
model architecture and inductive bias may affect the extent
to which general TTA knowledge can be leveraged. These findings highlight our benchmark’s unique
role in uncovering such model-specific behaviors and point to an open research direction: how to
best exploit general TTA knowledge to scale up relation aware TTA, and conversely, how relation
aware training can reciprocate general TTA advances. We visualize the generated audio comparison
between TangoFlux in zero-shot and finetuned base inference mode in Fig. 5, from this figure we can
clearly see that finetuning on our curated dataset benefits relation aware modeling.
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Compositionality

Perceptuality

Arity 1

TangoFluxAudioGen Tango 2

Figure 7: mAMSR regarding 6 main relation cat-
egory and 5 relation Arity in Zero-shot setting.

Compositionality

Perceptuality

TangoFluxTango Tango 2

Arity 1

Figure 8: mAMSR regarding 6 main relation cat-
egory and 5 relation Arity in finetuning setting.

mAMSR % 

Hours 

100 200 300

2.0

3.0

4.0

5.0

6.0

Scratch
Finetune

Figure 6: mAMSR variation w.r.t. train-
ing datasize (100 h, 200 h and 300 h).

To further investigate the role of training datasize, we ex-
tend both finetuning and training from scratch experiments
to larger datasets of 200 hours and 300 hours. As is shown
in Fig. 6, the mAMSR trend reveals two distinct behaviors:
finetuning yields strong early gains but quickly saturates
when the datasize approaches 300 hours, whereas training
from scratch continues to improve substantially with in-
creasing data. This divergence underscores an important
insights: scaling relation aware TTA models ultimately
requires massive datasets, and reliance on finetuning alone
may be insufficient for long-term progress. Our bench-
mark is therefore essential: it not only provides the con-
trolled scaling environment needed to expose these trends,
but also offers the first practical platform to systematically
study how training strategy and datasize interact in advancing relation aware TTA.

We visualize mAMSR regarding 5 main relations and relation Arity of three strong methods in Zero-
shot setting (Fig. 7) and finetuning based setting (Fig. 8). From these two figures, we can observe
that finetuning can improve the relation aware modeling capability in general. In zero-shot setting,
AudioGen (Kreuk et al., 2023) performs better than the other two on main categories including
Temporality, Count and Perceptuality. While in finetuning setting, TangoFlux (Hung et al., 2024)
becomes the best-performing method. However, all methods in both setting perform terrible in Nested
Combination or Arity larger than 1. Our proposed benchmark enables researchers to tackle these
challenges at scale.

4.6 MORE INVESTIGATION ON EXISTING TTA MODEL ANALYSIS

Table 4: Audio event and relation accuracy of
TangoFlux generation under different setting.

Description Accu.

Event (single event, no relation) 75%

Event ( multi-event, relation aware) 12%
Relation (multi-event, relation aware) 3%

Relation aware TTA demands not only the correct
presence of target audio events but also the faithful
preservation of their underlying relations. However,
current TTA methods (Hung et al., 2024; Ghosal et al.,
2023; Xue et al., 2024) remain narrowly focused on
single-event generation, leaving them ill-equipped
to handle multi-event, relation aware prompts. Ta-
ble 4 makes this gap explicit: while TangoFlux (Hung
et al., 2024), the state-of-the-art general TTA model,
achieves 75% accuracy on single-event prompts, its performance collapses to just 12% for multi-event
correctness and a mere 3% for relation fidelity. This dramatic degradation exposes a fundamental
blind spot in existing approaches—relation aware modeling is virtually unaddressed. Our benchmark
directly targets this deficiency, offering the first systematic platform to quantify and dissect these
failures. By doing so, it not only diagnoses the shortcomings of current TTA methods but also
establishes the essential foundation for driving genuine advances in relation aware TTA.

Conclusion. By curating AudioEventSet (110 events) and AudioRelSet (100 relations) with a
systematic pair-generation strategy, Aurelius enables large-scale benchmarking and analysis. Our
evaluations expose the sharp limitations of existing TTA models in relation fidelity. Aurelius
establishes the first comprehensive benchmark for relation aware TTA and paves the way for future
research on modeling complex event–relation dynamics in sound.
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A APPENDIX

.1 AGENTIC AUDIO SCENE GENERATION WORKFLOW

We design an agentic workflow that integrates large language model (LLM) reasoning with state-of-
the-art text-to-audio (TTA) generation. The workflow operates in three stages:

1. Scene Planning Given a natural-language description and a target duration, we guide a reasoning-
capable LLM (Qwen) with a structured system prompt to decompose the input into a JSON plan. The
prompt enforces JSON-only output, concise event descriptions in “head + present participle” style,
and relation aware scheduling rules. The full system prompt is provided below:

Audio Scene Planner Prompt

You are an audio scene planner for relation-aware text-to-audio (TTA) generation. Perform
all reasoning INTERNALLY and output ONLY valid JSON with the final scheduling results.
Never include explanations or chain-of-thought. Your JSON MUST be parsable and follow
the schema exactly.

OBJECTIVE

Given (1) a natural-language text prompt describing an audio scene with multiple events
and relations, and (2) a target total duration in seconds, decompose the scene into concise
sub-prompts (each corresponds to one independent audio event to be synthesized by a TTA
model), and schedule them on the global timeline with start times and durations.

OUTPUT CONTRACT (JSON ONLY)

{
"total_duration_sec": <float>,

// equals the requested total duration
"sub_prompts": [
{
"id": "E1", // short unique id
"text": "<short English sub-prompt>",

// head + present participle; may include light modifiers
"start_sec": <float>, // >= 0
"duration_sec": <float>

// > 0, and start_sec + duration_sec <= total_duration_sec
}
// ... typically <= items total

]
}

LANGUAGE FOR SUB-PROMPTS

• Use concise English in “head + present participle” style: e.g., “door bell ringing
audio”, “footsteps running audio”.

• Add light, meaningful modifiers when clearly implied by text: “as background”,
“approaching”, “departing”, “slight reverberation”, “time-stretched”, “amplified”,
“attenuated”, “balanced against X”, “blended with Y”.

• Avoid redundant words; keep each sub-prompt single-sentence and ď 18 words.

RELATIONS AND HOW TO REFLECT THEM (IMPLICITLY VIA SCHEDULING + WORDING)
• Sequencing: “then/after/next/first. . . then. . . ” Ñ schedule sequentially with a small

gap « 0.1s.
• Simultaneity / Mix / BackgroundÑ allow overlaps; backgrounds can span large

portions of the timeline.
• Approaching / Departing Ñ keep in wording (“approaching”/“departing”). No

mandatory duration change.

13
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• OR / XORÑ choose the most natural option; do not include the unchosen one.
• NOT / prohibitÑ exclude that event entirely.
• IF. . . THEN. . . ELSEÑ choose the most sensible branch; output only the chosen

branch.
• CountÑ if an explicit number of items/events is requested, match it.
• RepetitionÑ instantiate repeated events (e.g., bell ringing three times) as multiple

sub-segments or one sustained segment if implied.
• Proximity / Closeness / Farness Ñ reflect via wording only (“distant thunder”,

“near crowd”). No strict timing rules.

DURATION AND SCHEDULING RULES

• Respect total duration: sum of all segments should match the requested duration
(˘0.25s); if off, adjust proportionally.

• Each segment duration sec MUST be integer.
• Choose reasonable segment durations:

– transient cues (e.g., bell, door knock, gunshot)Ñ 1–2s
– medium actions (e.g., footsteps, typing, sawing)Ñ 2–6s
– ambient backgrounds (e.g., rain, wind, crowd murmur) Ñ long spans (often

entire duration)
• start sec ě 0; end ď total duration.
• On conflicts, preserve explicit relations first; compress lightly but keep segments ě

0.5s.
• Keep the number of sub-prompts concise (typically ď 5).

FORMATTING RULES

• Output VALID JSON only. No comments, no trailing commas, no text outside
JSON.

• Floats may be given with 1–2 decimals.
• Ensure “start sec + duration sec ď total duration sec” for all

segments.

2. Segment Synthesis Each sub-prompt is independently synthesized into audio using Tan-
goFlux (Hung et al., 2024), a flow-matching-based TTA model. We enforce consistency between the
planned duration and the generated waveform length.

3. Timeline Stitching All generated audio segments are placed on a global timeline according to
their planned start times. Overlapping segments are blended with linear crossfades, and amplitude
normalization is applied to prevent clipping. This yields a coherent audio scene that respects both
semantic relations (e.g., sequencing, simultaneity) and global duration constraints.

.2 AUDIO EVENT CATEGORY CURATION DETAIL

.3 AUDIO EVENTS RELATION CORPUS

.4 BENCHMARKING MODEL INFERENCE SETTING

14
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Table I: AudioEventSet corpus detail. We list all 110 event classes, which are deriving from 7 main
categories and 23 sub-categories.

Main Category Sub-Category Names Description

Animal
(22)

wild ground animal
lion roaring, wolf howling,

donkey braying, cricket chirping,
frog croaking, horse neighing

live in the wild

domestic animal dog barking, cat meowing,
dog growling, cat spurring live in domestic setting

livestock
pig oinking, sheep bleating,

cow mooing,
rooster crowing, duck quacking

domesticated livestock

wild animal

cuckoo calling, birds chorus,
seagull cawing, peacock rattling

blue jay whistling,
nightingale singing, fly buzzing

animals in the wild

Human
(21)

human voice
baby crying, laughing, shouting,

whistling, coughing, snoring,
sneezing, chewing, burping, farting

human use vocal tract

human speech male speech, female speech,
child speech, group talk speech audio

hands action finger snapping, clapping audio by action

group action group clapping,
cheering, group talking audio by a group

locomotion running, footsteps audio by movement

Machinery
(13)

alarm
siren, door bell, car horn,

bicycle bell, telephone ringing,
telephone dialing, boat horn

machinery alarming

mechanism

ratchet and pawl clicking,
camera shuttering,

printer printing, engine revving,
clock ticking, paper shredding

mechanism audio

Human-Obj
Interaction

(18)

tools hammer nailing, wood sawing,
pen writing, wood chopping, rasping human use tools

culinary dish audio, silverware audio,
food frying, vegetable chopping in kitchen setting

work

toilet flushing, pouring water,
keyboard typing, door slamming,

cupboard open or close,
drawer open or close, packing tape,

dentist drilling, door knocking

audio during work

Obj-Obj
Interaction

(15)

impact audio key jingling, ball bouncing,
pen clicking, wind chime impact effect

friction audio
car emergency braking

knife sharpening, sandpaper scraping,
plastic scratching, string rubbing

friction effect

dropping audio coin dropping, glass clinking,
metal dropping dropping effect

explosion gunshot, firework, artillery fire explosion effect

Music
(11)

music instrument
plucked string, piano keyboard,
bowed string, wind string, brass,

harmonica, accordion
musical instruments

singing female singing, male singing,
child singing, group singing singing audio

Nature
(10)

water
water bubbling, ocean wave,

water dripping, water flowing,
water boiling

water movement

weather thunder, wind, rain nature weather
nature change wood cracking, rustling leaves natural change
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Table II: AudioRelSet corpus detail. We introduce 21 basic relations, and advanced 79 nested
combination relations, resulting in a total of 100 relations – 9 times larger than the relation corpus
proposed in RiTTA (He et al., 2025). AudioRelSet maximumly covers all potential relations that
audio events may exhibit in either the physical world or linguistic description. It is worth noting that
AudioRelSet is open-ended. By nesting existing relations, we can potentially construct massive new
relations.

Category Relation Name Explanation Event Arity Sample prompt

Temporality
(4)

precedence before binary audio {A} followed by {B}
succession after binary create audio {A} after {B}

simultaneity same time binary {A} and {B} simultaneously
periodicity cyclic unary create audio {A} periodically

Spatiality
(5)

closeness spatial close binary {A} is closer than {B}
farness spatial far binary {A} is farther than audio {B}

proximity equal-dist binary {A} and {B} the same dist
approaching moving close unary {A} is moving closer
departuring moving away unary {A} is moving further away.

Count (1) count number n-ary 3 audios: {A}, {B} and {C}

Perceptuality
(6)

balancing level balance binary {A} dominates, {B} fades
blending mix audios binary {A} and {B} are mixed

reverberation reverberant unary generate audio {A} in canyon
time-stretching speed manipulate unary stretch audio {A} in time scale

amplification become louder unary amplify {A} to be louder
attenuation less loudly unary attenuate {A} to be quieter

Composition-
ality
(5)

conjunction logical AND binary create both {A} and {B}
disjunction logical OR binary create {A} or {B}, or both

negation logical NOT unary do not generate audio {A}
exclusive-or logical XOR binary generate {A} or {B}, not both
implication if-then-else ternary if {A}, then {B}, else just {C}

Nested
Combination

(79)

Temp + Spat (4) Temp + Spat

binary

{A} before approaching {B}
Temp + Percep (8) Temp + Percep reverb. {A}, succeeded by {B}

Percep + Comp (12) Percep + Comp stretched {A} or {B}, not both

Spat + Comp (4) Spat + Comp approaching {A} or {B},
not both

Temp + Comp (6) Temp + Comp

ternary

{A} first, then {B} or {C}
Percep + Comp (1) Percep + Comp mix {A} with {B}, or {C}
Comp + Comp (1) Comp + Comp {A} and {B}, or {A} and {C}
Spat + Comp (5) Comp + Comp {A} and {B}, or {A} and {C}

Spat + Comp
+ Percep (2) Comp + Comp {A} and {B}, or {A} and {C}

Temp + Comp (4) Temp + Comp quaternary
audio {A} or {B} first,
followed by {C} or {D}

Comp + Comp (7) Comp + Comp {A} or {B} first,
then {C} or {D}

Temp + Comp (3) Temp + Comp

quinary

{A} before {B} first, then {C}
before {D} or {E}

Spat + Comp (9) Spat + Comp if {A} closer than {B}, then
{C} closer than {D}, else {E}

Comp + Comp (9) Comp + Comp if {A} and {B}, then {C}
and {D} else {E}

Count + Comp (4) Count + Comp if {A}, {B}, {C}, then {D},
else {E}
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Methods Setting
AudioLDM (S-Full) (2023) guidance scale=5, random seed=42, n candidates=3
AudioLDM (L-Full) (2023) guidance scale=5, random seed=42, n candidates=3
AudioLDM 2 (L-Full) (2023) guidance scale=3.5, random seed=45, n candidates=3
MakeAnAudio (2023) ddim steps = 100, scale = 3.0
AudioGen (2023) model name: audiogen-medium
Auffusion (2024) num steps = 100, guidance=7.5, num samples=1
LAFMA (2024) num steps = 200, guidance=3, num samples=1
Tango (2023) num steps = 200, guidance=3, num samples=1
Tango 2 (2024) num steps = 200, guidance=3, num samples=1
TangoFlux (2024) num steps = 50, guidance=3, num samples=1

Table III: Detail setting for each TTA method.
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