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ABSTRACT
We present a smoothly broken power law functional form that accurately mod-

els and extrapolates the scaling behaviors of deep neural networks (i.e. how
the evaluation metric of interest varies as the amount of compute used for train-
ing, number of model parameters, training dataset size, or upstream performance
varies) for various architectures and for various tasks within a large and diverse
set of upstream and downstream tasks, in zero-shot, prompted, and fine-tuned
settings. This set includes large-scale vision, language, audio, video, diffusion
generative modeling, multimodal learning, contrastive learning, Al alignment,
robotics, arithmetic, unsupervised/self-supervised learning, and reinforcement
learning (single agent and multi-agent). When compared to other functional forms
for neural scaling behavior, this functional form yields extrapolations of scaling
behavior that are considerably more accurate on this set. Moreover, this functional
form accurately models and extrapolates scaling behavior that other functional
forms are incapable of expressing such as the non-monotonic transitions present in
the scaling behavior of phenomena such as double descent and the delayed, sharp
inflection points present in the scaling behavior of tasks such as arithmetic. Lastly,
we use this functional form to glean insights about the limit of the predictability
of scaling behavior. See arXiv| for longer version. Code is available at https:
//github.com/ethancaballero/broken_neural_scaling_laws

1 INTRODUCTION
The amount of compute used for training, number of model parameters, and training dataset size of

the most capable artificial neural networks keeps increasing and will probably keep rapidly increas-
ing for the foreseeable future. However, no organization currently has direct access to these larger
resources of the future; and it has been empirically verified many times that methods which perform
best at smaller scales often are no longer the best performing methods at larger scales (e.g., one of
such examples can be seen in Figure 2 (right) of [Tolstikhin et al.[(2021)). To work on, identify, and
steer the methods that are most probable to stand the test-of-time as these larger resources come on-
line, one needs a way to predict how all relevant performance evaluation metrics of artificial neural
networks vary in all relevant settings as scale increases.

Neural scaling laws (Cortes et al., [1994; Hestness et al.,|2017; Rosenfeld et al., 2019; Kaplan et al.,
2020; [Zhai et al., [2021; |Abnar et al.| [2021; |Alabdulmohsin et al., 2022 |Brown et al., [2020) aim to
predict the behavior of large-scale models from smaller, cheaper experiments, allowing to focus on
the best-scaling architectures, algorithms, datasets, and so on. The upstream/in-distribution test loss
typically (but not always!) falls off as a power law with increasing data, model size and compute.
However, the downstream/out-of-distribution performance, and other evaluation metrics of interest
(even upstream/in-distribution evaluation metrics) are often less predictable, sometimes exhibiting
inflection points (on a linear-linear plot) and non-monotonic behaviors. Discovering universal scal-
ing laws that accurately model a wide range of potentially unexpected behaviors is clearly important
not only for identifying that which scales best, but also for Al safety, as predicting the emergence of
novel capabilities at scale could prove crucial to responsibly developing and deploying increasingly
advanced Al systems. The functional forms of scaling laws evaluated in previous work are not up to
this challenge.

One salient defect is that they can only represent monotonic functions. They thus fail to model the
striking phenomena of double-descent (Nakkiran et al, [2021), where increased scale temporarily
decreases test performance before ultimately leading to further improvements. Many also lack the
expressive power to model inflection points (on a linear-linear plot), which can be observed empir-
ically for many downstream tasks, and even some upstream tasks, such as our N-digit arithmetic
task, or the modular arithmetic task introduced by [Power et al.| (2022)) in their work on “grokking”.
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To overcome the above limitations, we present broken neural scaling laws (BNSL) - a functional
form that generalizes power laws (linear in log-log plot) to “smoothly broken” power laws, i.e.
a smoothly connected piecewise (approximately) linear function in a log-log plot. An extensive
empirical evaluation demonstrates that BNSL accurately model and extrapolate the scaling behav-
iors for various tasks within a large and diverse set of upstream and downstream tasks, in zero-shot,
prompted, and fine-tuned settings. This set includes large-scale vision, language, audio, video, diffu-
sion generative modeling, multimodal learning, contrastive learning, Al alignment, robotics, arith-
metic, unsupervised/self-supervised learning, and reinforcement learning (single agent and multi-
agent). When compared to other functional forms for neural scaling behavior, this functional form
yields extrapolations of scaling behavior that are considerably more accurate on this set. It captures
well the non-monotonic transitions present in the scaling behavior of phenomena such as double
descent and the delayed, sharp inflection points present in the scaling behavior of tasks such as
arithmetic.

2 THE FUNCTIONAL FORM OF BROKEN NEURAL SCALING LAWS

A Broken Neural Scaling Law (BNSL) with Annotations
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Figure 1: A Broken Neural Scaling Law (BNSL) (dark black solid line) (with 3 breaks where purple
dotted lines intersect with dark black solid line) that contains 4 individual power law segments
(where the dashed lines that are yellow, blue, red, and green overlap with the dark black solid line).
The 1st and 2nd break are very smooth; the 3rd break is very sharp. See Section 2 for more details.

The general functional form of a broken neural scaling law (BNSL) is given as follows:
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where y represents the performance evaluation metric (e.g. prediction error, cross entropy, BLEU
score percentage, reward, Elo rating, or FID score) (downstream or upstream) and z repre-
sents a quantity that is being scaled (e.g. number of model parameters, amount of compute
used for training, training dataset size, or upstream performance). The remaining parameters
a,b,co,c1...cp,dy...dy, f1...fr, are unknown constants that must be estimated by fitting the above
functional form to the (z,y) data points. (In our experiments, SciPy curve-fitting library (Virtanen
et al.,[2020) was used.)

The constants in equation|[T]are interpreted as follows. Constant n represents the number of (smooth)
“breaks” (i.e. transitions) between n 4 1 consecutive approximately linear (on a log-log plot) seg-
ments, for a total of n + 1 approximately linear segments (on a log-log plot). Constant a represents
the limit as to how far the value of y (performance evaluation metric) can be reduced (or maximized)
even if x (the quantity being scaled) goes to infinity. Constant b represents the offset of functional
form on a log-log plot (analogous to the intercept b in y = max + b on a linear-linear plot). Constant
co represents the slope of the first approximately linear region on a log-log plot. Constant ¢; rep-
resents the difference in slope of the (¢)th approximately linear region and (7 4 1)th approximately
linear region on a log-log plot. Constant d; represents where on the x-axis the break between the
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(7)th and the (7 + 1)th approximately linear region (on a log-log plot) occurs. Constant f; represents
the sharpness of break between the (i)th and the (¢ + 1)th approximately linear region on a log-log
plot; smaller (nonnegative) values of f; yield a sharper break and intervals (before and after the (7)th
break) that are more linear on a log-log plot; larger values of f; yield a smoother break and intervals
(before and after the (i)th break) that are less linear on a log-log plot.

For mathematical analysis and explanation of why Equation [I]is smoothly piece-wise (approxi-
mately) linear function on a log-log plot, see Appendix [A.2] For mathematical decomposition of
Equation [T]into the power law segments it is composed of (e.g. as in Figure[I)), see Appendix

Note that, while an intuition for using such smoothly connected approximately piece-wise linear (in
log-log plot) function was that, with enough segments, it could fit well any smooth univariate scaling
function, it remained unclear whether BNSL would also extrapolate well; as we demonstrate below,
it does extrapolate quite accurately in our experiments. Additionally, we find that the number of
breaks needed to accurately model an entire scaling behavior is often quite small.

3  EMPIRICAL RESULTS: FITS AND EXTRAPOLATIONS OF FUNCTIONAL
FORMS

We now show the fits and extrapolations of various functional forms. In all plots here and onward
and in the appendix, black points are points used for fitting a functional form, green points
are the held-out points used for evaluating extrapolation of a functional form fit to the black
points, and a red line is the BNSL that has been fit to black points. See Section [A.7)for further
experimental details on fitting BNSL and determining the number of breaks.

Except when stated otherwise, each plot contains a single break of a BNSL fit to black points that
are smaller (along the x-axis) than the green points.

In the tables and elsewhere, M1 refers to functional form y = az®, M2 refers to functional form
y = ax® + ¢, M3 refers to functional form y = a(z~! + d)~° + ¢, M4 refers to functional form
(y — €x0)/((e0 — y)*) = bx® . For a detailed history and related work concerning these functional
forms, see section[A.1] See section[A.§]for a mathematical explanation of the theoretical limitations
of previously proposed scaling laws.

All the extrapolation evaluations reported in the tables are reported in terms of root mean squared log
error (RMSLE) # root standard log error. See Appendix [A.4]for definition of RMSLE and Appendix
[A.3]for definition of root standard log error.

See appendix for plots of extrapolation results on large-scale vision, language, audio, video, diffu-
sion generative modeling, multimodal learning, contrastive learning, Al alignment, robotics, arith-
metic, unsupervised/self-supervised learning, and reinforcement learning (single agent and multi-
agent). See section[A.T2]for example of BNSL modeling and extrapolating a non-monotonic scaling
behavior with 2 breaks.

Domain MI1 | M271 | M31 M4 1 | BNSL 1
Downstream Image Classification 278% | 4.17% | 9.72% | 13.89% | 69.44%
Language 10% 5% 10% 0% 75 %

Table 1: Percentage of tasks by domain where each functional form is the best for extrapolation of
scaling behavior. Numbers for M1, M2, M3, and M4 were obtained via correspondence with authors
of |Alabdulmohsin et al.|(2022). See Sections and for more details.

3.1 INFLECTION POINTS

We show that BNSL is capable of modeling and extrapolating the scaling behavior of tasks that
have an inflection point on a linear-linear plot such as the task of arithmetic (4-digit addition). Here
we model and extrapolate the scaling behavior of a transformer model (Vaswani et al.[(2017)) with
respect to the training dataset size on the 4-digit addition task. Various other functional forms are
mathematically incapable of expressing inflection points on a linear-linear plot (as shown in Section
and as a result, are mathematically incapable of expressing and modeling inflection points (on
a linear-linear plot) that are present in the scaling behavior of 4-digit addition. In Figure [2|left, we
show that BNSL expresses and accurately models the inflection point present in the scaling behavior
of 4-digit addition and as a result accurately extrapolates the scaling behavior of 4 digit addition.
For further details about the hyperparameters please refer to the Appendix Section

3
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Figure 2: Extrapolation of BNSL on 4 Digit Addition. Note that these plots are linear-linear. Each
point in the left plot is the mean of greater than 1000 seeds at that dataset size. In the left plot, each
point is gathered from a model trained to do the task of 4 digit addition. In the right plot, each point
is gathered from a noiseless simulation of the BNSL of the task of 4 digit addition. See Sections[3.1}
for more details.

4 THE LIMIT OF THE PREDICTABILITY OF SCALING BEHAVIOR

We use BNSL to glean insights about the limit of the predictability of scaling behavior. Recent
papers (Ganguli et al.| [2022; |Wei et al.,|2022) have advertised many tasks as having “unpredictable”
“emergent” “phase transition/change” scaling behavior, the most famous of which is the task of
arithmetic. In the previous section and in Figure [2|left, we successfully predicted (i.e. extrapolated)
the scaling behavior of 4-digit addition (arithmetic). However, we are only able to accurately ex-
trapolate the scaling behavior if given some points from training runs with a training dataset size
of at least 720, and the break in which the scaling behavior of 4-digit addition transitions from one
power law to another steeper power-law happens at around training dataset size of 415.

Ideally, one would like to be able to extrapolate the entire scaling behavior by fitting only points
from before the break. In Figure 2] right, we use a noiseless simulation of the BNSL of 4-digit
addition to show what would happen if one had infinitely many training runs / seeds to average out
all the noisy deviation between runs such that one could recover (i.e. learn via a curve-fitting library
such as SciPy (Virtanen et al., [2020)) the learned constant of the BNSL as well as possible. When
using this noiseless simulation, we find that we are only able to accurately extrapolate the scaling
behavior if given some points from training runs with a training dataset size of at least 415, which is
very close to the break.

This has a few implications:

1) When the scaling behavior exhibits greater than zero breaks that are sufficiently sharp, there is
a limit as to how small the maximum (along the x-axis) of the points used for fitting can be if one
wants to perfectly extrapolate the scaling behavior, even if one has infinitely many seeds / training
runs. 2) If an additional break of sufficient sharpness happens at a scale that is sufficiently larger
than the maximum (along the x-axis) of the points used for fitting, there does not (currently) exist
a way to extrapolate the scaling behavior after that additional break. 3) If a break of sufficient
sharpness happens at a scale sufficiently smaller than the maximum (along the x-axis) of the points
used for fitting, points smaller (along the x-axis) than that break are often useless for improving
extrapolation.

5 CONCLUSIONS

Summary. We have presented a smoothly broken power law functional form that accurately models
and extrapolates the scaling behaviors of artificial neural networks for various architectures and for
various tasks from a very large and diverse set of upstream and downstream tasks. This set includes
large-scale vision, language, audio, video, diffusion generative modeling, multimodal learning, con-
trastive learning, Al alignment, robotics, arithmetic, unsupervised/self-supervised learning, and re-
inforcement learning (single agent and multi-agent). When compared to other functional forms
for neural scaling behavior, this functional form yields extrapolations of scaling behavior that are
considerably more accurate on this set. Additionally, this functional form accurately models and
extrapolates scaling behavior that other functional forms are incapable of expressing such as the
non-monotonic transitions present in the scaling behavior of phenomena such as double descent and
the delayed, sharp inflection points present in the scaling behavior of tasks such as arithmetic. Fi-
nally, we used this functional form to obtain insights about the limit of the predictability of scaling
behavior. See arXiv for longer version of this paper.
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A APPENDIX

A.1 RELATED WORK

To the best of our knowledge, |Cortes et al.| (1994) was the first paper to model the scaling of multi-
layer neural network’s performance as a power law (also known as a scaling law) (plus a constant) of
the form i = ax® + ¢ in which z refers to training dataset size and y refers to test error; we refer to
that functional form as M2. [Hestness et al. (2017} showed that the functional form, M2, holds over
many orders of magnitude. Rosenfeld et al.|(2019) demonstrated that the same functional form, M2,
applies when x refers to model size (number of parameters). [Kaplan et al.| (2020)) brought “neural”
scaling laws to the mainstream and demonstrated that the same functional form, M2, applies when
x refers to the amount of compute used for training. |Abnar et al.|(2021) proposed to use the same
functional form, M2, to relate downstream performance to upstream performance. [Zhai et al.|(2021)
introduced the functional form y = a(x + d)® + ¢, (referred to by us as M3) where d represents
the scale at which the performance starts to improve beyond the random guess loss (a constant) and
transitions to a power law scaling regime. |Alabdulmohsin et al.| (2022) proposed functional form
(y — €00)/((e0 — y)*) = ba®, (referred to by us as M4) where €, is irreducible entropy of the data
distribution and ¢( is random guess performance, for relating scale to performance and released a
scaling laws benchmark dataset that we use in our experiments.

Hernandez et al.| (2021) described a smoothly broken power law functional form (consisting of 5
constants after reducing redundant variables) in equation 6.1 of their paper, when relating scale and
downstream performance. While this functional form can be summed with an additional constant
representing unimprovable performance to obtain a functional form that is mathematically equiva-
lent to our BNSL with a single break, it is important to note that (i)|Hernandez et al.| (2021) describes
this form only in the specific context, when exploring how fine-tuning combined with transfer learn-
ing scales as a function of the model size - thus, their functional form contains a break only with
respect to number of model parameters but not with respect to other input quantities which we do
explore such as dataset size, amount of compute, and upstream performance; (ii) [Hernandez et al.
(2021) mentioned this equation in passing and as a result did not try to fit or verify this functional
form on any data; (iii) they arrived at it simply via combining the scaling law for transfer (that was
the focus of their work) with a scaling law for pretraining data; (iv) they did not identify it as a
smoothly broken power law, or note any qualitative advantages of this functional form; (v) they did
not discuss the family of functional forms with multiple breaks.

Finally, we would like to mention that smoothly broken power law functional forms, equivalent to
equation |1} are commonly used in the astrophysics literature (e.g. [dam| (2017)) as they happen to
model well a variety of physical phenomena. This inspired us to investigate their applicability to a
wide range of deep neural scaling phenomena as well.
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A.2 ANALYSIS AND EXPLANATION OF WHY BNSL IS SMOOTHLY CONNECTED PIECEWISE
(APPROXIMATELY) LINEAR FUNCTION ON A LOG-LOG PLOT

Analysing Equation [I]reveals why BNSL is smoothly connected piecewise (approximately) linear
function on a log-log plot. Considering y as a function of z := log(x), applying logarithms to both
sides and setting a = 0 yields:

n 1/fi
log(y) = log(b) — coz — Zcifi log <1 n <6X2.(Z)) ) ‘ )
i—1 i

We can now see the terms in the sum resemble the well-known softplus function: softplus(z) :=
log(1 + exp(z)), which smoothly interpolates between the constant 0 function and the identity. By
plotting one such term for different values of ¢;, d;, f;, it is easy to confirm that they influence the
shape of the curve as described in Section[2]

A.3 DECOMPOSITION OF BROKEN NEURAL SCALING LAW INTO POWER LAW SEGMENTS
THAT IT IS COMPOSED OF

We now show a way to decompose a BNSL (Equation[T)) with 3 breaks into the power law segments
that it is composed of. This decomposition is what we used to produce segments 1-4 overlaid in
Figure[I]and is usable when values of f in Equation [I)are not too large. This decomposition pattern
is straight-forward to extend to n breaks.

segmenty = bx ()~ (c0)
( (c0) s (z /dy)~(crteo)

segments = b x (d1)~(0) x (dg/dy)~(c1700) & (x /dg)~(c2terteo)
(

segmenty = bx (dy)~(0) x (dy/dy)~(e1H€0) & (d3/dg)~(c2Fterteo) x (x /dg)~(cateaterteo)

segmenty = bx (dy)~

A.4 DEFINITION OF ROOT MEAN SQUARED LOG ERROR

Root_Mean_Squared_Log_Error = RMSLE = (Z(log(yi) —1og(9:))?)/n
i=1

A.5 DEFINITION OF ROOT STANDARD LOG ERROR

error = (log(y;) — log(4;))?)

1 N
Herror = N Z error

i=1

1

N
Oerror = E (67’7“07’1‘ - Merror)2
N —1¢4 -
i=

UETTOT

,U/error + TV lffer'r‘or
Vien(y)

Root_Standard_Log_Error =

A.6 EXPERIMENTAL DETAILS OF SECTION[3.1]

We perform an extensive set of experiments to model and extrapolate the scaling behavior for the
4-digit arithmetic addition task with respect to the training dataset size. Our code is based on the
minGPT implementation (Karpathy, 2020). We set the batch size equal to the training dataset size.
We do not use dropout or a learning rate decay here. Each experiment was run on a single V100
GPU and each run took less than 2 hours. For our experiments we train the transformer model using
the following set of hyperparameters:
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Dimodel 128
D MLP 512
Number of heads 2
Number of transformer blocks (i.e. layers) 1
Learning rate 0.0001
Weight Decay 0.1
Dropout Probability 0.0
Dataset sizes 144-1008
Vocab Size 10

Table 2: Hyperparameters for 4-digit addition task

A.7 EXPERIMENTAL DETAILS OF FITTING BNSL AND DETERMINING THE NUMBER OF
BREAKS

We fit BNSL as follows: We first use scipy.optimize.brute to do a grid search of the values of the
constants (a, b, cg, €1...Cn, d1...dy, f1... fr,) of BNSL that best minimize the mean squared log error
(MSLE) between the real data and the output of BNSL. We then use the values obtained from the
grid search as the initialization of the non-linear least squares algorithm of scipy.optimize.curve_fit.
We then use the non-linear least squares algorithm of scipy.optimize.curve_fit to minimize the mean
squared log error (MSLE) between the real data and the output of BNSL.

The version of MSLE we use for such optimization is the following numerically stable variant:

N
Numerically_Stable MSLE = Z((log(yi + 1) —log(g; + 1))*)/N

i=1

With regards to determining the number of breaks n in the BNSL, one way to go about doing so is
to hold out the last few largest (along the x-axis) points used for fitting (not the green points used
for evaluating extrapolation) as a validation set. The value of n with lowest validation error when
fitting on the remaining smaller (along the x-axis) points is then used. As mentioned in implication
3 of Section[d] there are many scenarios in which a break of sufficient sharpness happens at a scale
sufficiently smaller than the maximum (along the x-axis) of the points used for fitting such that
points smaller (along the x-axis) than that break are often useless for improving extrapolation. For
example, if a full scaling behavior contains a very sharp break and then a very smooth break, one
can crop out the smaller (along the x-axis) points that contain the sharp break and fit a BNSL with
a single break (i.e. with n = 1) if one only cares about extrapolation accuracy. To determine where
the crop point is, one can employ the same validation set strategy mentioned at the beginning of this
paragraph, but selecting for crop point instead of number of breaks.

10
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A.8 THEORETICAL LIMITATIONS OF PREVIOUSLY PROPOSED SCALING LAWS

Our use of BNSLs is inspired by the observation that scaling is not always well predicted by a simple
power law; nor are many of the modifications which have been applied in previous works sufficient
to capture the qualitative properties of empirical scaling curves. Here we show mathematically two
qualitative defects of these functional forms:

1. They are strictly monotonic (first-order derivative does not change its sign) and thus unable
to fit double descent phenomena.

2. They cannot express inflection points (second-order derivative does not change its sign),
which are frequently observed empirically. An exception to this is M4, proposed by |Alab-
dulmohsin et al.| (2022).

Note that these functional forms can exhibit inflection points on the log-log axes which are com-
monly used for plotting scaling data (as it was observed in several prior works). However, for inflec-
tion points on a linear-linear plot, the extra expressiveness of broken neural scaling laws appears to
be necessary (and sufficient). Figure [d] and Figure [2] provide examples of BNSLs producing non-
monotonic behavior and inflection points, respectively, establishing the capacity of this functional
form to model these phenomena that occur in real scaling behavior.

wame | @) | f@) | 7(@)
‘ az® ‘ abg®? ‘ ab(b — 1)zb=2
M2 | az® 4 ¢ ‘ abz®~? ‘ ab(b — 1)z~
M3 ‘ a(z™' +d)” ‘ W ‘ abz®=D (1 + da) "2 (b — 1 — 2dx)

Table 3: Previously proposed functional forms M1, M2, M3 and their (first and second order)
derivatives. See Equation [3]for M4.

M1, M2, M3 functional forms cannot model non-monotonic behavior or inflection points: First,
recall that expressions of the form m™ can only take the value O if m = 0. We now examine the
expressions for the first and second derivatives of M1, M2, M3, provided in Table E], and observe
that they are all continuous and do not have roots over the relevant ranges of their variables, i.e.
x > 0 in general and b < 0 in the case of M3 (we require z > 0 because model size, dataset size,
and compute are always non-negative). This implies that, for any valid settings of the parameters
a, b, c,d, x, these functional forms are monotonic (as the first derivative never changes sign), and
that they lack inflection points (since an inflection point must have f”(x) = 0).

M4 functional form cannot model non-monotonic behavior. The case of M4 is a bit different,
since the relationship between y and « in this case is expressed as an inverse function, i.e.

r=ot = (5 Z)a)ua (3)

However, non-monotonicity of 4 as an inverse function y = g~1(x) is ruled out, since that would
imply two different values of & = g(y) can be obtained for the single value of y — this is impossible,
since f(y) maps each y deterministically to a single value of x. As a result, M4 cannot express
non-monotonic functions.

M4 functional form can model inflection points. It is easy to see that if y = g~ !(z) had an
inflection point, then = ¢(y) would have it as well. This is because an inflection point is defined as
a point x where f(x) changes from concave to convex, which implies that g(y) changes from convex
to concave, since the inverse of a convex function is concave; the root(s) of ¢”(y) are the point(s)
at which this change occurs. Using Wolfram Alph‘ '|and matplotlib (Hunter 2007), we observe that
M4 is able to express inflection points, e.g. (a, b, ¢, €9, €00, 2, y) = (1,1, —2,3/4,1/4,1//3,5/8),

or (a,b, ¢, €0, €00, 2,y) = (2,1,-3,2/3,1/3,(—5/6 + \/§/2)1/3, 1/\/3)

'https://www.wolframalpha.com/

11
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A.9 VISION

Using the scaling laws benchmark of |Alabdulmohsin et al.| (2022)), we evaluate how well various
functional forms extrapolate performance on vision tasks as training dataset size increases. In this
large-scale vision subset of the benchmark, the tasks that are evaluated are error rate on each of
various few-shot downstream image classification (IC) tasks; the downstream tasks are: Birds 200
(Welinder et al., [2010), Caltech101 (Fei-Fei et al., 2004), CIFAR-100 (Krizhevsky et al.,|2009), and
ImageNet (Deng et al.,[2009). The following architectures of various sizes are pretrained on subsets
of JFT-300M (Sun et al. 2017): big-transfer residual neural networks (BiT) (Kolesnikov et al.,
2020), MLP mixers (MiX) (Tolstikhin et al., 2021), and vision transformers (ViT) (Dosovitskiy
et al.,[2020). As can be seen in Tables [I|and 4] BNSL yields extrapolations with the lowest RMSLE
(Root Mean Squared Logarithmic Error) for 69.44% of tasks of any of the functional forms, while
the next best functional form performs the best on only 13.89% of the tasks.

To view all plots of BNSL on each of these tasks, see figures [T6] [I7] [I8] [I9]in Appendix [A.24] To
view all plots of M1, M2, M3, and M4 on each of these tasks, see Appendix A.4 of Alabdulmohsin
et al.[(2022).

In Section [A.T3] we additionally show that BNSL yields accurate extrapolations of performance
on large-scale downstream vision tasks when amount of compute used for (pre-)training is on the
x-axis and compute is scaled in the manner that is Pareto optimal with respect to the performance
evaluation metric on the y-axis (downstream accuracy in this case).

In Section we additionally show that BNSL yields accurate extrapolations of the scaling be-
havior of diffusion generative models of images when amount of compute used for (pre-)training is
on the x-axis and compute is scaled in the manner that is Pareto optimal with respect to the perfor-
mance evaluation metric on the y-axis (NLL and FID score in this case).

In Section we additionally show that BNSL yields accurate extrapolations of the scaling be-
havior of generative models of video.

In Section[A.21] we show that BNSL accurately extrapolates the scaling behavior of the downstream
performance of multimodal contrastive learning (i.e. non-generative unsupervised learning).

In Section [A.T6] we additionally show that BNSL yields accurate extrapolations of the scaling be-
havior when data is pruned Pareto optimally (such that each point along the x-axis uses the subset
of the dataset that yields the best performance (y-axis value) for that dataset size (x-axis value)).

In Section we additionally show that BNSL yields accurate extrapolations when upstream
performance is on the x-axis and downstream performance is on the y-axis.

In Section[A.23] we additionally show that BNSL accurately extrapolates to scales that are an order
of magnitude larger than the maximum (along the x-axis) of the points used for fitting.

12
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Task Model M1 | M2 | M3 | M4 | BNSL |

Birds 200 10-shot ~ BiT/101/3 | 9.13e-2£2.8¢-3 | 9.13e-2+2.8e-3 | 9.13e-2+2.8e-3 |2.95e-2+1.3e-3 | 1.76e-2 +1.1e-3
Birds 200 10-shot ~ BiT/50/1 6.88¢-2 £7.5e-4 | 6.88e-2+7.5¢-4 |5.24e-2+£62e-4 |2.66e-2+53e-4 |1.19e-2+3.5¢-4
Birds 200 10-shot ~ MiX/B/16 | 9.15e-2 £ 1.1e-3 | 9.15e-2+ 1.1e-3 | 3.95e-2 +7.0e-4 | 4.62e-2 +£8.2e-4 | 3.04e-2 + 6.9e-4
Birds 200 10-shot ~ MiX/L/16 5.51e-2 £ 1.4e-3 5.51e-2 + 1.4e-3 5.51e-2 £ 1.4e-3 5.15e-2 £ 1.7e-3 1.85e-2 + 8.9e-4
Birds 200 10-shot  ViT/B/16 6.77e-2 £ 1.1e-3 | 6.77e-2+ 1.1e-3 | 3.52e-2+8.1e-4 | 1.51e-2 +6.2¢-4 | 1.69¢-2 + 7.0e-4
Birds 200 10-shot ~ ViT/S/16 3.95e-2+1.2e-3 |3.95e-2+1.2e-3 |3.74e-2+1.1e-3 | 1.85e-2+7.9e-4 | 1.09e-2 + 6.1e-4
Birds 200 25-shot ~ BiT/101/3 | 9.4le-2 +3.2e-3 | 9.4le-2+32e-3 | 9.4le-2+3.2e-3 |6.38¢-2+2.0e-3 | 1.55e-2+1.3e-3
Birds 200 25-shot ~ BiT/50/1 1.10e-1 £1.0e-3 | 7.29¢e-2 + 8.0e-4 | 1.52e-2+4.9¢e-4 | 1.97e-2£5.6e-4 | 1.33e-2 + 4.4e-4
Birds 200 25-shot ~ MiX/B/16 1.40e-1£1.9e-3 | 1.40e-1+19e-3 | 6.93e-2+1.2e-3 |2.11e-2+6.9e-4 | 1.64e-2 + 6.6e-4
Birds 200 25-shot ~ MiX/L/16 1.12e-1 + 2.0e-3 1.12e-1 + 2.0e-3 1.12e-1 % 2.0e-3 5.44e-2 +1.8e-3 2.08e-2 +1.1e-3
Birds 200 25-shot  ViT/B/16 9.02e-2 £ 1.6e-3 | 9.02e-2+1.6e-3 | 3.75e-2+1.0e-3 | 1.51e-2+5.7e-4 | 1.62e-2+6.1e-4
Birds 200 25-shot  ViT/S/16 5.06e-2 £ 1.4e-3 | 5.06e-2+ 1.4e-3 | 4.96e-2 + 1.4e-3 | 4.02e-2+1.2e-3 | 1.03e-2 + 6.6e-4
Birds 200 5-shot BiT/101/3 | 8.17e-2+2.0e-3 | 8.17e-2+2.0e-3 | 8.17e-2£2.0e-3 | 3.38e-2+ 1.3e-3 | 1.81e-2 + 8.2¢-4
Birds 200 5-shot BiT/50/1 5.44e-2 £5.6e-4 | 544e-2+56e-4 | 544e-2+5.6e-4 |2.5%-2+54e-4 | 1.34e-2+3.7e-4
Birds 200 5-shot MiX/B/16 | 8.27e-2+1.0e-3 | 8.27e-2+1.0e-3 |5.49¢e-2+7.8e-4 |2.14e-2+53e-4 | 1.39%-2+4.1e-4
Birds 200 5-shot MiX/L/16 | 5.68e-2 + 1.4e-3 | 5.68e-2+ 1.4e-3 | 5.68e-2+1.4e-3 |3.20e-2+9.7e-4 | 1.85e-2 + 6.4e-4
Birds 200 5-shot ViT/B/16 3.40e-2 £8.9e-4 | 3.40e-2+89e-4 | 3.40e-2+89e-4 | 1.65e-2+6.7e-4 | 1.36e-2+5.8e-4
Birds 200 5-shot ViT/S/16 2.75e-2+79e-4 | 275e-2+79e-4 |2.75e-2+£79e-4 | 1.20e-2+52e-4 |7.39-3+4.5¢e-4
CIFAR-100 10-shot BiT/101/3 | 8.57e-2+3.8¢-3 |8.57e-2+3.8e-3 | 8.25e-2+3.7e-3 |4.77e-2+3.0e-3 | 2.58e-2+2.3e-3
CIFAR-100 10-shot BiT/50/1 7.44e-2 £1.5e-3 | 1.24e-2+58e-4 | 2.08e-2+7.2¢e-4 |1.24e-2+5.8e-4 | 1.83e-2+8.3e-4
CIFAR-100 10-shot MiX/B/16 | 8.77e-2+1.9e-3 | 8.77e-2+19e-3 | 2.71e-2+1.2e-3 | 2.37e-2+9.9e-4 | 2.44e-2+9.5¢e-4
CIFAR-100 10-shot MiX/L/16 1.05e-1+£3.1e-3 | 1.05e-1 +3.1e-3 | 4.85e-2+2.6e-3 |4.97e-2+1.6e-3 |4.75e-2 +2.6e-3
CIFAR-100 10-shot  ViT/B/16 8.98e-2£2.0e-3 | 8.98e-2+2.0e-3 | 898e-2+2.0e-3 |4.98e-2+1.7e-3 | 3.71e-2 +1.4e-3
CIFAR-100 10-shot  ViT/S/16 6.84e-2 £ 1.1e-3 | 2.11e-2 + 6.6e-4 | 3.35e-2 +8.6e-4 | 2.54e-2+7.5e-4 |2.57e-2+75e-4
CIFAR-100 25-shot BiT/101/3 | 8.77e-2 £5.6e-3 | 8.77e-2+5.6e-3 | 4.44e-2+3.5¢-3 | 3.40e-2+2.7e-3 | 2.88e-2 + 3.0e-3
CIFAR-100 25-shot  BiT/50/1 7.31e-2£2.0e-3 |235e-2+1.5e-3 | 3.65e-2+1.8e-3 |2.35e-2+1.5e-3 |1.8%-2+1.1e-3
CIFAR-100 25-shot MiX/B/16 1.08e-1£2.3e-3 | 4.75¢-2+1.6e-3 | 2.10e-2 +9.4e-4 | 2.24e-2£9.9e-4 |2.67e-2+1.1e-3
CIFAR-100 25-shot MiX/L/16 | 9.79e-2 £2.2e-3 | 9.79e-2+22e-3 | 3.67e-2+1.7e-3 | 2.98¢-2 + 1.4e-3 | 3.45¢-2 + 1.6e-3
CIFAR-100 25-shot  ViT/B/16 1.07e-1£1.9e-3 | 1.07e-1+1.9e-3 | 6.54e-2 + 1.6e-3 | 4.80e-2 +1.4e-3 | 3.02e-2 +4.5e-3
CIFAR-100 25-shot  ViT/S/16 8.03e-2£1.2e-3 |2.19e-2+7.4e-4 |3.13e-2+84e-4 |227e-2+7.1e-4 | 2.14e-2+6.9e-4
CIFAR-100 5-shot ~ BiT/101/3 | 5.94e-2 £3.2¢-3 | 5.94e-2+3.2e-3 | 594e-2+3.2e-3 | 3.30e-2 +2.4e-3 | 3.78e-2 +2.6e-3
CIFAR-100 5-shot ~ BiT/50/1 4.87e-2+13e-3 |4.87e-2+13e-3 | 1.69e-2+88e-4 | 1.87e-2+89¢e-4 |1.45e-2+8.7e-4
CIFAR-100 5-shot  MiX/B/16 | 7.07e-2 £ 1.2e-3 | 7.07e-2+1.2e-3 | 2.78e-2 +8.4e-4 | 1.76e-2 £ 6.6e-4 | 1.70e-2 + 6.3e-4
CIFAR-100 5-shot  MiX/L/16 | 7.06e-2 £ 1.6e-3 | 7.06e-2 + 1.6e-3 | 4.17e-2 + 1.4e-3 | 3.32e-2+1.2e-3 | 2.77e-2 +1.0e-3
CIFAR-100 5-shot  ViT/B/16 6.27e-2 £1.6e-3 | 6.27e-2+1.6e-3 | 6.27e-2+ 1.6e-3 | 4.30e-2+1.3e-3 | 2.82e-2 +1.0e-3
CIFAR-100 5-shot  ViT/S/16 6.93¢-2 £ 1.2¢-3 |2.84e-2+82e-4 |3.88e-2+8.0e-4 |3.16e-2+7.5e-4 |3.50e-2+9.2e-3
Caltech101 10-shot BiT/101/3 | 3.07e-1£2.0e-2 | 3.07e-1+2.0e-2 | 1.5le-1+1.3e-2 | 1.00e-1+1.1e-2 | 4.75e-2 +8.1e-3
Caltech101 10-shot  BiT/50/1 3.29¢e-1+1.6e-2 | 7.68e-2+5.0e-3 | 1.13e-1+6.0e-3 | 6.0le-2+44e-3 | 1.77e-2 +2.5e-3
Caltech101 10-shot MiX/B/16 | 1.35e-1 + 1.4e-2 | 1.35e-1+ 1.4e-2 | 1.35e-1 = 1.4e-2 | 1.92e-1+1.6e-2 | 2.04e-1+9.7e-3
Caltech101 10-shot MiX/L/16 1.25¢-1 +1.3e-2 | 1.25e-1 £ 1.3e-2 | 1.25e-1 £ 1.3e-2 | 1.30e-1+1.2e-2 | 2.13e-1 + 1.5e-2
Caltech101 10-shot  ViT/B/16 7.76e-2 £4.3e-3 | 7.76e-2+4.3e-3 | 3.11e-2+3.0e-3 | 5.75e-2+4.4e-3 | 4.02e-2+39e-3
Caltech101 10-shot  ViT/S/16 1.95e-1 £6.0e-3 | 3.4le-2+29¢e-3 | 2.40e-2+2.0e-3 |3.4le-2+29e-3 |2.40e-2+2.0e-3
Caltech101 25-shot  BiT/101/3 1.15e-1 £6.5¢-3 | 1.15e-1 £6.5e-3 | 1.15e-1 £6.5¢-3 | 1.15e-1£6.5¢-3 | 9.86e-2 + 8.0e-3
Caltech101 25-shot  BiT/50/1 3.60e-1+1.9e-2 |8.80e-2+55e-3 | 1.43e-1+7.6e-3 |4.76e-2+3.6e-3 | 1.55e-2+1.6e-3
Caltech101 25-shot MiX/B/16 | 8.28e-2 + 1.2¢-2 | 8.28e-2+ 1.2e-2 | 8.28e-2+1.2e-2 | 1.65e-1+1.7e-2 | 1.93e-1 + 1.3e-2
Caltech101 25-shot  MiX/L/16 | 9.66e-2 + 1.0e-2 | 9.66e-2 + 1.0e-2 | 9.66e-2 + 1.0e-2 | 9.66e-2 + 1.0e-2 | 1.49-1 + 1.3e-2
Caltech101 25-shot  ViT/B/16 1.03e-1 £5.6e-3 | 3.33e-2 +2.5e-3 | 4.46e-2 +3.6e-3 |3.33e-2+2.5¢-3 | 3.95e-2 +5.4e-3
Caltech101 25-shot  ViT/S/16 1.77e-1 £5.4e-3 | 3.79e-2 +3.1e-3 | 2.80e-2 +1.8e-3 | 3.79e-2+3.1e-3 | 3.29e-2 +2.1e-3
Caltech101 5-shot ~ BiT/101/3 2.12e-1 £ 1.2e-2 2.12e-1 £ 1.2e-2 2.12e-1 £ 1.2e-2 1.65e-1 £ 9.4e-3 1.87e-2 + 4.3e-3
Caltech101 5-shot ~ BiT/50/1 2.34e-1+6.1e-3 | 4.13e-2+2.1e-3 | 1.6le-2+1.3e-3 | 4.69¢-2+2.1e-3 | 4.10e-2+2.1e-3
Caltech101 5-shot ~ MiX/B/16 | 2.43e-1+1.2e-2 |243e-1+12e-2 |235e-1+1.1e2 |7.28e-2+4.3e-3 |1.92e-2+19e-3
Caltech101 5-shot ~ MiX/L/16 1.38e-1+£9.7¢-3 | 1.38e-1+9.7e-3 | 1.38e-1+£9.7e-3 | 1.37e-1 £9.9¢-3 | 1.63e-1 + 1.1e-2
Caltech101 5-shot ~ ViT/B/16 1.10e-1 £6.3e-3 | 1.10e-1 +6.3e-3 | 6.02e-2 +4.7e-3 | 6.81e-2+4.8¢-3 | 3.87e-2 + 3.4e-3
Caltech101 5-shot ~ ViT/S/16 1.90e-1 £4.7¢-3 | 3.82e-2+2.6e-3 | 5.04e-2+29e-3 |3.82e-2+2.6e-3 |2.78e-2 +1.8e-3
ImageNet 10-shot ~ BiT/101/3 1.27e-1£2.0e-3 | 1.27e-1 +2.0e-3 | 7.36e-2 + 1.1e-3 | 3.06e-2 +7.0e-4 | 6.65e-3 + 3.8e-4
ImageNet 10-shot  BiT/50/1 9.54e-2 £7.2e-4 |9.54e-2+£7.2e-4 | 5.75e-3 +2.0e-4 1.86e-2 £2.8e-4 | 3.84e-3 + 1.5¢-4
ImageNet 10-shot ~ MiX/B/16 9.34e-2 +£7.9¢-4 9.34e-2 £ 7.9¢-4 3.37e-2 £2.9e-4 2.32e-2 £ 3.0e-4 4.22¢-3 + 1.5¢-4
ImageNet 10-shot ~ MiX/L/16 9.83e-2 £+ 1.3e-3 9.83e-2 £ 1.3e-3 9.83e-2+1.3e-3 | 4.01e-3 +1.9e-4 | 4.33e-3 +1.8e-4
ImageNet 10-shot ~ ViT/B/16 4.62e-2+7.1e-4 | 4.62e-2+7.1e-4 | 4.62e-2+7.1e-4 | 1.44e-2+3.0e-4 | 5.70e-3 +2.0e-4
ImageNet 10-shot ~ ViT/S/16 4.74e-2 £5.6e-4 | 4.74e-2 £ 5.6e-4 1.66e-2 £2.5e-4 | 7.18e-3 £2.0e-4 | 3.71e-3 + 1.4e-4
ImageNet 25-shot ~ BiT/101/3 1.42e-1+£2.3e-3 | 1.42e-1+23e-3 | 6.67e-2+9.1e-4 | 3.3le-2+8.7e-4 |4.76e-3 +2.8e-4
ImageNet 25-shot ~ BiT/50/1 1.17e-1£9.2e-4 | 1.17e-1 +9.2e-4 | 4.06e-3 +1.7e-4 | 1.84e-2£2.6e-4 | 4.67e-3 + 1.6e-4
ImageNet 25-shot ~ MiX/B/16 | 9.59e-2 +9.3e-4 | 9.59¢-2+9.3¢-4 | 539%-2+49e-4 |2.04e-2+3.1e-4 |4.17e-3+1.7e-4
ImageNet 25-shot ~ MiX/L/16 1.03e-1+1.3e-3 | 1.03e-1 £ 1.3e-3 | 1.03e-1£1.3e-3 | 6.33e-3+2.2e-4 | 7.60e-3 +2.6e-4
ImageNet 25-shot ~ ViT/B/16 5.17e-2 + 8.8e-4 5.17e-2 + 8.8e-4 5.17e-2 + 8.8e-4 1.52e-2 £ 3.8e-4 | 4.96e-3 + 2.0e-4
ImageNet 25-shot  ViT/S/16 5.52e-2 £44e-4 | 4.12e-2+3.4e-4 | 9.65e-3+23e-4 |7.78e-3+2.1e-4 | 6.11e-3 +2.4e-4
ImageNet 5-shot BiT/101/3 | 9.24e-2 + 1.4e-3 | 9.24e-2+ 1.4e-3 | 9.24e-2+14e-3 |2.09-2+79e-4 | 8.05e-3+5.0e-4
ImageNet 5-shot BiT/50/1 8.95e-2 £6.7e-4 | 8.95e-2+6.7e-4 | 1.53e-2+2.2e-4 | 1.1le-2+23e-4 |7.94e-3+2.1e-4
ImageNet 5-shot MiX/B/16 | 9.09¢e-2 +7.2e-4 | 9.09¢-2 +7.2e-4 |3.0le-2+2.8¢-4 | 1.95e-2+2.7e-4 | 6.49e-3 +2.2¢-4
ImageNet 5-shot MiX/L/16 7.99e-2£9.7e-4 |7.99%-2+9.7e-4 |799%-2+9.7e-4 |9.92e-3+4.5¢-4 |5.68e-3+2.4e-4
ImageNet 5-shot ViT/B/16 4.11e-2+£6.3e-4 | 4.1le-2+£6.3e-4 |4.1le-2+63e-4 | 1.55e-2+2.8¢-4 |1.29¢-2 +2.7e-4
ImageNet 5-shot ViT/S/16 4.20e-2 + 4.1e-4 4.20e-2 + 4.1e-4 2.40e-2 + 2.6e-4 8.02e-3 + 1.9e-4 4.72¢-3 + 1.6e-4

Table 4: Extrapolation Results on scaling behavior of Downstream Vision Tasks. See Section[A.9]
for more details. Numbers for M1, M2, M3, and M4 obtained via correspondence with authors of
Alabdulmohsin et al.|(2022).
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A.10 LANGUAGE

Using the scaling laws benchmark of |Alabdulmohsin et al.[ (2022), we evaluate how well various
functional forms extrapolate performance on language tasks as the training dataset size increases.
In this large-scale language subset of the benchmark, the tasks that are evaluated are error rates on
each of the various downstream tasks from the BIG-Bench (BB) (Srivastava et al.,|2022) benchmark
and upstream test cross-entropy of various models trained to do language modeling (LM) and neural
machine translation (NMT). All LM and BB tasks use a decoder-only language model. As can be
seen in Tables [T] and 5] BNSL yields extrapolations with the lowest RMSLE (Root Mean Squared
Logarithmic Error) for 75% of tasks of any of the functional forms, while the next best functional
form performs the best on only 10% of the tasks.

To view all plots of the BNSL on each of these tasks, see Figures[20] 21} 22]in Appendix[A.24]
To view plots of M1, M2, M3, and M4 on these tasks, see Figure 8 of |Alabdulmohsin et al.|(2022).

In Section [A.18] we additionally show that BNSL yields accurate extrapolations of performance on
large-scale downstream language tasks when number of model parameters is on the x-axis.

In Section [A.22] we additionally show that BNSL yields accurate extrapolations of performance on

large-scale downstream audio (speech recognition) tasks.

Domain

Task

Model

Ml |

M2 |

M3

M4 |

BNSL |

BB
BB
BB

LM

date understanding, 1-shot
date understanding, 2-shot
linguistic mappings, 1-shot
linguistic mappings, 2-shot
mult data wrangling, 1-shot
mult data wrangling, 2-shot
qa wikidata, 1-shot

qa wikidata, 2-shot

unit conversion, 1-shot
unit conversion, 2-shot
upstream test cross-entropy
upstream test cross-entropy
upstream test cross-entropy
upstream test cross-entropy
upstream test cross-entropy

NMT upstream test cross-entropy
NMT upstream test cross-entropy
NMT upstream test cross-entropy
NMT upstream test cross-entropy
NMT upstream test cross-entropy

2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
2.62e+8 Param
1.07e+9 Param
4.53e+8 Param
2.62e+8 Param
1.34e+8 Param
1.68e+7 Param
28 Enc, 6 Dec
6 Enc, 28 Dec
6 Enc, 6 Dec
Dec-only, LM
Transformer-
Enc, LSTM-
Dec

3.19e-2 +9.6e-4
2.86e-2 + 6.2e-4
1.66e-2 +5.5¢-4
1.70e-2 + 6.5¢-4
1.07e-2 + 1.0e-3
1.57e-2 + 1.5¢-3
4.27¢-3 +8.9e-4
4.39¢-3 +7.0e-4
8.30e-3 +4.4e-4
1.07e-2 +4.4e-4
1.71e-2 £ 6.0e-4
1.65¢-2 + 6.6e-4
1.55e-2 +7.2e-4
1.43e-2 +4.8e-4
6.37e-3 £9.4e-5
1.71e-1 £0

2.34e-1+0

2.62e-1+0

2.52e-1+0

1.90e-1+0

3.19e-2 +9.6e-4
2.86e-2 + 6.2¢e-4
1.62e-2 +5.4e-4
1.70e-2 + 6.5¢-4
1.07e-2 + 1.0e-3
1.57e-2 + 1.5¢-3
4.32¢-3 £8.2¢-4
4.66e-3 + 6.4e-4
8.30e-3 +4.4e-4
1.07e-2 +4.4e-4
1.66e-3 +5.1e-5
7.41e-4 £9.8e-5
9.20e-4 £9.7e-5
1.46e-3 + 6.8¢e-5
3.03e-4 +1.2e-5
5.64e-2+0

5.27e-2+0

3.84e-2+0

1.03e-2+0

1.26e-2 0

4.67e-3 + 1.4e-4
4.83e-3+4.1e-4
1.66e-2 +5.5¢-4
1.70e-2 + 6.5¢-4
1.07e-2 + 1.0e-3
1.57e-2 +1.5¢-3
4.27¢e-3 £8.9¢e-4
4.39¢-3 £7.0e-4
1.48e-3 +2.7e-4
7.50e-3 £ 5.5¢-4
4.50e-3 £5.9e-5
6.58¢-4 + 6.6e-5
3.97e-3+1.3e-4
6.46e-4 +5.1e-5
1.56e-3 +3.5e-5
3.37e-2+0

1.65e-2 0

8.92e-2+0

3.28e-2+0

6.32e-2+0

3.19e-2 +9.6e-4
2.86e-2 + 6.2¢e-4
1.33e-2+3.8¢-4
1.06e-2 +5.1e-4
6.66e-3 +7.3e-4
5.79¢-3 +7.0e-4
4.32e-3+8.2¢-4
9.02e-3 +6.9¢-4
4.79¢-3 +3.4e-4
7.55e-3+5.1e-4
1.28e-3 +3.9¢-5
7.41e-4 +£9.8¢-5
9.20e-4 +9.7e-5
1.46e-3 + 6.8¢-5
3.03e-4 +1.2e-5
1.81e-2+0

4.44e-2+0

2.05e-2£0

8.43e-3+0

1.26e-2 £ 0

3.40e-3 £7.9e-5
4.38e-3 £ 4.0e-4
1.13e-2 +2.2¢-4
9.51e-3+5.1e-4
6.39¢-3 + 4.6¢e-4
2.67e-3 +2.7¢-4
4.68e-3 £7.3e-4
8.05e-3 +7.3e-4
1.07e-2 +2.5e-4
7.02¢-3 +3.9¢-4
9.71e-4 +3.2¢-5
5.86e-4 +7.7e-5
7.90e-4 +5.1e-5
9.01e-4 +5.5¢-5
4.34e-4 £ 1.8e-5
1.69¢-2 + 0

1.56e-2 + 0

1.37e-3+0

7.33e-3+0

8.30e-3+0

Table 5: Extrapolation Results on scaling behavior of Language Tasks. See Section[A.T0]for more
details. Numbers for M1, M2, M3, and M4 were obtained via correspondence with authors of
Alabdulmohsin et al.| (2022). BB stands for BIG-Bench (Srivastava et al., 2022)). NMT stands for
Neural Machine Translation. LM stands for Language Modeling.
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A.11 REINFORCEMENT LEARNING

We show that BNSL accurately models and extrapolates the scaling behaviors of various multi-agent
and single-agent reinforcement learning algorithms trained in various environments. In the top left
plot and top right plot and bottom left plot of Figure 3] BNSL accurately models and extrapolates
the scaling behavior of the AlphaZero algorithm trained to play the game Connect Four from Figure
4 and Figure 5 and Figure 3 respectively of Neumann & Gros| (2022); the x-axes respectively are
compute (FLOPs) used for training, training dataset size (states), and number of model parameters.
In Figure |3| bottom right, BNSL accurately models and extrapolates the scaling behavior of the
Proximal Policy Optimization (PPO) algorithm (Schulman et al.l[2017)) trained to play the Procgen
(Cobbe et al.,[2020) game called Heist.

In Section[A.T9] we find BNSL accurately extrapolates the scaling behavior of a pretrained language
model finetuned (i.e. aligned) via Reinforcement Learning from Human Feedback (RLHF) to be
helpful from Figure 1 of|Bai et al.| (2022).

Method: AlphaZero ; Environment: Connect Four Method: AlphaZero ; Environment: Connect Four
900
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800 4
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700 4 700
600
600 4
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& s00 w
500
400
300 4 400
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100 T T T T T T T
101 108 103 101 10% 108 107
Compute (FLOPs) used for Training Training Dataset Size (States)
Method: AlphaZero ; Environment: Connect Four 10 Method: PPO ; Environment: Procgen Heist
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Figure 3: Extrapolation of BNSL on Reinforcement Learning Scaling Experimental Data. Experi-
mental data of the top left plot and top right plot and bottom left plot is from Figure 4 and Figure 5
and Figure 3 respectively of Neumann & Gros|(2022). Experimental Data of the bottom right plot
is from Figure 2 of |Cobbe et al.[(2020). Top left plot is the compute-optimal Pareto frontier. See
Section [A.11]for more details.
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A.12 NON-MONOTONIC SCALING

We show that BNSL accurately models and extrapolates non-monotonic scaling behaviors that are
exhibited by Transformers (Vaswani et al.| (2017)) in double descent (Nakkiran et al.,2021)) in Fig-
ure ] Various other functional forms are mathematically incapable of expressing non-monotonic
behaviors (as shown in Section [A-g).

Double Descent (Model Size) Double Descent (Training Dataset Size)

5.0 4

Test Cross-Entropy
»
&

Test Cross-Entropy

100 200 300 400 500 10000 20000 30000 40000 50000
Model Width Training Dataset Size

Figure 4: Extrapolation of BNSL on Double Descent. Both plots are of transformers trained to do
neural machine translation via minimizing cross-entropy. Experimental data of left figure is obtained
from Figure 8 top of [Nakkiran et al.| (2021); “Model Width” on the x-axis refers to embedding
dimension d,,,qe; Of the transformer. Experimental data of the right figure is obtained from Figure
11b of Nakkiran et al.| (2021)). The plot on the left contains two breaks of a BNSL fit to the black
points. See Section |[A.I2|for more details.
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A.13 EXTRAPOLATION RESULTS FOR DOWNSTREAM VISION TASKS WHEN TRAINING RUNS
ARE SCALED TO BE COMPUTE-OPTIMAL.

Task Model M3 | BNSL |
ImageNet 10-Shot ViT 1.91e-2 £ 6.48¢e-3 | 9.79e-3 + 4.70e-3
ImageNet Finetune  ViT 1.14e-2 £2.42e-3 | 9.37e-3 + 2.60e-3

Table 6: Extrapolation Results for Downstream Vision Tasks when training runs are scaled using
the compute-optimal scaling (i.e. Pareto frontier) with respect to downstream performance. Experi-
mental data obtained from Figure 2 of [Zhai et al.| (2021)). See Section[A.T3|for more details.

Task: ImageNet Finetune ; Model: ViT Task: ImageNet 10-Shot ; Model: ViT

6x1071

6x107!
4x1071

3x1071

Test Error Rate

2x1071

Test Error Rate

2x107t

1071

1012 1020 102! 1022 1023
FLOPs

1012 1020 102! 1022
FLOPs

Figure 5: Extrapolation Results of BNSL for Downstream Vision Tasks when training runs are
scaled to be compute-optimal. Experimental data obtained from Figure 2 of |Zhai et al.[(2021)). See

Section [A. 13| for more details.

In Figure [5] via fitting BNSL, we additionally obtain accurate extrapolations of scaling behavior
of large-scale downstream vision tasks when compute (FLOPs) used for (pre-)training is on the x-
axis and compute is scaled in the manner that is Pareto optimal with respect to the performance
evaluation metric (downstream accuracy in this case). The experimental scaling data was obtained
from Figure 2 of [Zhai et al.| (2021), and a result in Table E] we compare extrapolation of BNSL to
the extrapolation of M3 (which was proposed in|Zhai et al.| (2021)); we find that BNSL that yields
extrapolations of scaling behavior that are more accurate on these tasks.
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A.14 EXTRAPOLATION RESULTS FOR DIFFUSION GENERATIVE MODELS OF IMAGES

Method: Diffusion Model ; Evaluation Dataset: ImageNet 64x64

Method: Diffusion Model ; Evaluation Dataset: ImageNet 64x64

3.7 x 107
3x10!

3.65 x 10°

FID
NLL (bits/dim)

3.6 % 10°

2x10!

3.55x10°

101 10% 1018 101
Compute (FLOPs) used for Training Compute (FLOPs) used for Training

Figure 6: Extrapolation Results of BNSL for scaling behavior of Diffusion Generative Models
of Images. Frechet Inception Distance (FID) score is on the y-axis in the left plot. Negative log-
likelihood (NLL) is the y-axis in the right plot. For both plots, compute used for training is on the
x-axis and Imagenet 64x64 is the evaluation dataset. Experimental data of scaling behavior obtained
from Figure 10 of [Nichol & Dhariwal (2021). See Section [A.14]for more details.

In Figure[6] we show that BNSL accurately extrapolates the scaling behavior of Diffusion Generative
Models of Images from Figure 10 of Nichol & Dhariwal| (2021)) when Negative Log-likelihood
(NLL) or Frechet Inception Distance (FID) score is on the y-axis and compute used for training is
on the x-axis; compute is scaled in the manner that is Pareto optimal with respect to the performance
evaluation metric on the y-axis.

A.15 EXTRAPOLATION RESULTS FOR GENERATIVE MODELS OF VIDEO

Video Scaling

1.7 x 100

1.6 % 10°

1.5x% 10°

1.4x 10°

Test Cross-Entropy

1.3x 10°

1.2x10°

T T T T
1017 1018 1019 1020
Compute (FLOPs) used for Training

Figure 7: Extrapolation Results of BNSL for scaling behavior of Generative Models of Video.
Upstream Test Cross-Entropy is on the y-axis. Videos scraped from the web are the evaluation
dataset. During training, compute (used for training autoregressive transformer) on the x-axis is
scaled in the manner that is Pareto optimal with respect to the performance evaluation metric on the
y-axis. Experimental data of scaling behavior obtained from top right plot of Figure 5 of |Henighan
et al| (2020). See Section [A.T5|for more details.

In Figure [/, we show that BNSL accurately extrapolates the scaling behavior of generative models
of video. Each frame is downsampled to a pixel resolution of 64x64; each frame is then tokenized
via a pretrained 16x16 VQVAE (Van Den Oord et al., [2017) to obtain 256 tokens per frame. 16
consecutive frames are then input to an autoregressive transformer as a length 4096 (16x16x16)
sequence. The dataset is 100 hours of videos scraped from the web. See section 2 of Henighan et al.
(2020) for more details.
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A.16 EXTRAPOLATION RESULTS WHEN DATA IS PRUNED PARETO OPTIMALLY

Model: Resnet50 ; Dataset: ImageNet

6x1071

4x107!

3x107!

Test Error Rate

2x1071

1071 :
10% 10°
Training Dataset Size

Figure 8: Extrapolation Results of BNSL for scaling behavior when data is pruned Pareto optimally
(such that each point along the x-axis uses the subset of the dataset that yields the best performance
(y-axis value) for that dataset size (x-axis value)). Experimental data of scaling behavior obtained
from Figure 3D of[Sorscher et al.| (2022). See Section[A.16]for more details.

In Figure |8} we show that BNSL accurately extrapolates the scaling behavior when data is pruned
Pareto optimally (such that each point along the x-axis uses the subset of the dataset that yields the
best performance (y-axis value) for that dataset size (x-axis value)) from Figure 3D of|Sorscher et al.
(2022).

A.17 EXTRAPOLATION RESULTS WHEN UPSTREAM PERFORMANCE IS ON THE X-AXIS

Task: ImageNet 20-Shot

5x107%

4x107!

Downstream Error Rate

3x1071

4x107! 5x107%
Upstream Accuracy Rate

Figure 9: Extrapolation Results of BNSL for scaling behavior when Upstream Performance is on
the x-axis and Downstream Performance is on the y-axis. Experimental data of scaling behavior
obtained from Figure 5 of |Abnar et al|(2021). The upstream task is supervised pretraining of ViT
(Dosovitskiy et al.,|2020) on subsets of JFT-300M (Sun et al., 2017). The Downstream Task is 20-
shot ImageNet classification. See Section[A.T7]for more details.

In Figure[9] we show that BNSL accurately extrapolates the scaling behavior when upstream perfor-
mance is on the x-axis and downstream performance is on the y-axis. The upstream task is super-
vised pretraining of ViT (Dosovitskiy et al., [2020) on subsets of JFT-300M (Sun et al., 2017). The
downstream task is 20-shot ImageNet classification. The experimental data of this scaling behavior
is obtained from Figure 5 of |Abnar et al.|(2021).
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A.18 EXTRAPOLATION RESULTS FOR DOWNSTREAM LANGUAGE TASKS WHEN NUMBER OF
MODEL PARAMETERS IS ON THE X-AXIS.

Task: LAMBADA (Error) ; Shots: Zero-Shot Task: Ro—En 16 (Multi-BLEU) ; Shots: One-Shot

107 1

9% 10!

ax10-! 8x 10!

Test Error Rate

7x 10!

3x107!

100 minus BLEU-mb Score Percentage

6x 101

T T T T T T
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Number of Model Parameters Number of Model Parameters

Task: TriviaQA ; Shots: Few-Shot
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Figure 10: Extrapolation Results of BNSL for Downstream Language Tasks when Number of
Model Parameters is on the x-axis. “Few-Shot” in plot title means few-shot prompting is used
(and “One-Shot” in plot title means one-shot prompting is used) for that downstream evaluation as
described in GPT-3 arXiv paper (Brown et al.,[2020)). Experimental data obtained from Table H.1 of
the GPT-3 arXiv paper (Brown et al., 2020). See Section@ for more details.

We find in general for each of every modality that the variance between seeds is higher when number
of model parameters is on x-axis (as opposed to e.g. training dataset size on the x-axis). Table H.1 of
the GPT-3 arXiv paper (Brown et al., [2020) release includes results for 8 numbers of model param-
eters. In Figure[T0] we include examples of when 8 numbers of model parameters (7 for fitting, and
largest held-out to evaluate extrapolation) are sufficient for obtaining accurate downstream extrap-
olation from BNSL due to variance between seeds being low enough. For many other downstream
tasks with number of model parameters on the x-axis, the variance between seeds is much higher
such that a number considerably larger than 7 points along the curve is needed to obtain an accurate
extrapolation.
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A.19 EXTRAPOLATION RESULTS FOR Al ALIGNMENT VIA RLHF

Method: RLHF (Reinforcement Learning from Human Feedback) ;
Task: Helpfulness (Al Alignment)

2x10?

Elo Score

6x 101

10° 101
Number of Model Parameters

Figure 11: Extrapolation Results for Downstream AI Alignment when Number of Model Parame-
ters is on the x-axis. Experimental data obtained from the Static HH RLHF results from Figure 1 of
Bai et al| (2022). See Section[A.T9|for more details.

In Figure [TT} we find BNSL accurately extrapolates the scaling behavior of a pretrained language
model finetuned (i.e. aligned) via Reinforcement Learning from Human Feedback (RLHF) to be
helpful from Figure 1 of|Bai et al.|(2022)). The y-axis is Elo score based on crowdworker preferences.
The x-axis is the number of model parameters that the language model contains.
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A.20 EXTRAPOLATION RESULTS FOR ROBOTICS
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3x10!
102 4
g 2x10! g
S S
¥ ¥
o Y ex 10!
a &
[ o
& I+
I+ I+
5 5
@A @
o @
o o
o o 1
3 5 4% 10
2 E
10!
3% 10t
100 10! 102 103 10 10! 102 10°
Number of Training Demonstrations Number of Training Demonstrations

Task: towers-of-hanoi seg-unseen-colors

6x 101

4x10!

Average Success Score

3x10!

T T T T
10° 10t 10? 10°
Number of Training Demonstrations

Figure 12: Extrapolation Results for Robotic control. Experimental data obtained from the trans-
porter (Zeng et al., 2021) model results from Table 1 of |Shridhar et al.| (2021). X-axis is number
training demonstrations. Y-axis is task success score (mean percentage) obtained via 100 evalua-
tions. See Section[A20] for more details.

In Figure[I2] we find BNSL accurately extrapolates the scaling behavior of a transporter (Zeng et al.|
2021)) model trained via imitation learning to do robotic control tasks.
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A.21 EXTRAPOLATION RESULTS FOR DOWNSTREAM PERFORMANCE OF MULTIMODAL
CONTRASTIVE LEARNING (I.E. NON-GENERATIVE UNSUPERVISED LEARNING)

Method: CLIP ; Task: Imagenet Zero-Shot Method: CLIP ; Task: Imagenet Finetuned Linear Probe
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Figure 13: Extrapolation Results of BNSL for Downstream Performance of Multimodal Contrastive
Learning (i.e. Non-Generative Unsupervised Learning). Experimental data of scaling behavior
obtained from Table 10 and Table 11 in arXiv version of Radford et al.|(2021)). The upstream task is
“Contrastive Image Language Pretraining” (a.k.a. CLIP) of ResNets on a training dataset consisting
of hundreds of millions of image-text pairs. The x-axis is GFLOPs/image (GigaFLOPs/image) of
the forward-pass of model. The Downstream Task is ImageNet classification (i.e. the y-axis of plot).
The y-axis of left plot is Zero-Shot Downstream. The y-axis of right plot is performance of model
with finetuned linear probe on it. See Section [A.2T]for more details.

In Figure [T4] we show that BNSL accurately extrapolates the scaling behavior of the Downstream
Performance of Multimodal Contrastive Learning (i.e. Non-Generative Unsupervised Learning).

A.22 EXTRAPOLATION RESULTS FOR DOWNSTREAM PERFORMANCE ON AUDIO TASKS

Method]: Whisper ; Task: Multilingual Speech Recognition (Fleurs) ; Zero Shot
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Figure 14: Extrapolation Results of BNSL for Downstream Audio Tasks when Number of Model
Parameters is on the x-axis. Experimental data obtained from the second plot of Figure 6 of Whisper
paper (Radford et al., 2022). The downstream task in the plot is downstream zero shot multilingual
speech recognition performance on the FLEURS dataset of “Whisper” speech recognition model
pretrained on a dataset of 681,070 hours of audio. See Section for more details.

In Figure we show that BNSL accurately extrapolates the scaling behavior of the Downstream
Performance on Audio Tasks.
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A.23 EXTRAPOLATION TO SCALES THAT ARE AN ORDER OF MAGNITUDE LARGER THAN
THE MAXIMUM (ALONG THE X-AXIS) OF THE POINTS USED FOR FITTING
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Figure 15: Extrapolation Results of BNSL to Scales that are an Order of Magnitude larger than the
maximum (along the x-axis) of the points used for fitting. Experimental data of scaling behavior
obtained from Figure 5 of |Abnar et al.[(2021)). The upstream task is supervised pretraining of MLP
mixers (MiX) (Tolstikhin et al [2021) on subsets (i.e. the x-axis of plot) of JFT-300M (Sun et al.,
2017). The Downstream Task is n-shot ImageNet classification (i.e. the y-axis of plot). See Section
[A.23] for more details.

In Figure [T3] we show that BNSL accurately extrapolates to scales that are an order of magnitude
larger than the maximum (along the x-axis) of the points used for fitting. The upstream task is
supervised pretraining of MLP mixers (MiX) (Tolstikhin et al., 2021) on subsets (i.e. the x-axis of
plot) of JFT-300M (Sun et al., 2017). The downstream task is n-shot ImageNet classification (i.e.
the y-axis of plot). The experimental data of this scaling behavior is obtained from |Alabdulmohsin

et al.[(2022).
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A.24 PLOTS OF BNSL EXTRAPOLATIONS ON SCALING LAWS BENCHMARK OF
[ALABDULMOHSIN ET AL.|(2022))
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Figure 17: CIFAR-100

26



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Task:_Caltech101_5-Shot_;_Model: BIT/S0/1

Task:_Caltech101 5-Shot_; Model: BIT/101/3

Task:_Caltech101_5-Shot_; Model: MX/B/16

Task:_Caltech101_5-Shot_; Model: MX/LI16

.
x10
26x10 ox
3 2axion 2 a0 H
2 H £
i F a0 §
£ 22020 # ®ax
2x10- e 2x -
o w0 100 w P 0 P
training Ostaset size Taining Datase Size Tainng Dataset Size Taining Datase Size
Task: Caltech101, 5-Shot_;_ Model: ViT/S/16 Tosk: Caltach101_ 10 Shot ;_Model: BiT/50/1 Task: Caltech101 10-Shot ; Model: BIT/101/3
Task_Caltech1015-Shot_; Model: VIT/B/16 10
ax101
ax10- J
10
3x10°
: H £ 30100
1 3 3x10- £
i & £
S < B
Gas h 210
230 ot e
&, ALy
a0 0 A a0 axa 20¢ 00 w 100
maiing Dataset ize Taining Dataset Size Tainng Dataset Size Taining Datase Size
Task: Caltech101_10-Shot_;_ Model: MX/B/16 Tesk: Caltach101_10 Shot ;_Model: MX/LI16 Task: Caltech101 10-Shot;_Modsl: ViT/5/16 Task;_Caltech101_10-Shot_j_Model: ViT/S/16
ax10 = e
ex10 x10
a0
£ o 4 a0 ] 3
g g B
§ 3x100 § a0 § H
2x10 g 2x10° N 210 :
- - 2
e ~ o~
10
o o w 00 o0 00 a0 e 2100 100
Taining Dataset Size Taining Dataset Size Tainng Dataset Size Taining
Task: Caltech101 25 -Shot_;_ Model: BT/50/1 Task: Caltech101, 25 Shot,;_Model: BIT/101/3 Tosk: Caltech101 25 Shot ; Model: MiX/5/16 Task: Caltech101, 25 Shot;_Model: MiX/L/16
x10
6x10
ox
ax10-
o s PRE
2 £ 3x10 H
§ 3x107 5 5,
i & 2520 i
2x10 2x
D% -,
0 100 w 0 0
Taining Dataset Size Taining Oataset Sie i
Task: Caltech101 25 -Shot_;_ Model: ViT/B/16
s
x10
24
Fs
g B2
2 sxi0n H
d H
210
20¢

Figure 18:

Training Dataset size

Caltech101. From eyeballing, we think the subset of Caltech101 with unsatisfactory

extrapolations has unsatisfactory extrapolations due to the maximum (along the x-axis) of the black
point used for fitting being near or before a break; this is accentuated by not having enough points
for fitting for the SciPy fitter to be able to determine whether the break is an actual break or just
noisy deviation. See Section []for more details on this explanation.
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Figure 20: BIG-Bench (BB). From eyeballing, we think the subset of BIG-Bench with unsatisfac-
tory extrapolations has unsatisfactory extrapolations due to the maximum (along the x-axis) of the
black point used for fitting being near or before a break; this is accentuated by not having enough
points for fitting for the SciPy fitter to be able to determine whether the break is an actual break or
just noisy deviation. See Section 4 for more details on this explanation.
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Figure 21: Neural Machine Translation (NMT)
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Figure 22: Language Modeling (LM)
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