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ABSTRACT

Process Reward Models (PRMs), which provide step-level feedback on reason-
ing traces generated by Large Language Models (LLMs), are receiving increasing
attention. However, two key research gaps remain: creating PRM training data
requires costly human annotation to label accurate step-level errors, and existing
PRMs are limited to math reasoning domains. In response to these gaps, this paper
aims to enable automatic synthesis of accurate PRM training data and the gener-
alization of PRMs to diverse reasoning tasks beyond math reasoning. We propose
FOVER, an approach to synthesize PRM training data with accurate step-level
error labels automatically annotated by formal verification tools, such as Z3 and
Isabelle. To show the practical effectiveness of FOVER, we synthesize a training
dataset by annotating step-level error labels on LLM responses to formal logic
and theorem proving tasks, without relying on human annotation. While FOVER
creates training data with symbolic tasks compatible with formal verification, our
experiments show that PRMs trained on our dataset exhibit cross-task general-
ization, enabling a single PRM to effectively perform verification across diverse
reasoning tasks. Specifically, LLM-based PRMs trained with FOVER significantly
outperform PRMs based on the original LLMs and achieve competitive or superior
results compared to state-of-the-art PRMs, as measured by step-level verification
on ProcessBench and Best-of-K performance across 12 reasoning benchmarks,
including MATH, AIME, ANLI, MMLU, and BBH. The dataset and code are in
the supplementary material and will be made public.

1 INTRODUCTION

Process Reward Models (PRMs), which provide step-level feedback on reasoning traces generated
by Large Language Models (LLMs), have been increasingly used to improve LLMs by providing
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Figure 1: FOVER Overview. Left: We create PRM training data using accurate step-level error
labels automatically annotated by formal verifiers. Right: We use synthesized data to train PRMs,
and the resulting PRM can be applied to broad reasoning tasks.
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Table 1: Comparison of FOVER with prior PRM research. Earlier work relies on costly human
annotations or noisy synthetic labels to create training data and is largely limited to math reasoning.
In contrast, FOVER leverages formal verification to automatically generate accurate error labels,
producing synthetic training data that improves PRM performance across diverse reasoning tasks.

Research on PRMs

Training Data Creation Training Domain Evaluation Domain

Automatic Accurate Math
(informal)

Formal
Logic

Formal
Proving

Math
(informal)

Academic
Exams

Logic
Reasoning BBH

PRM800K (2024) – ✓ ✓ – – ✓ ✓ – –
Math-Shepherd (2024a) ✓ – ✓ – – ✓ – – –

Qwen2.5-Math-PRM (2025) ✓ – ✓ – – ✓ ✓ – –

FOVER (Ours) ✓ ✓ – ✓ ✓ ✓ ✓ ✓ ✓

supervision during training and inference (Uesato et al., 2022; Lightman et al., 2024). PRMs are
typically created by fine-tuning LLMs on the task of classifying whether each step in LLM-generated
reasoning is correct, using training data annotated with step-level error labels (correct or incorrect)
on reasoning traces (Wang et al., 2024a; Zhang et al., 2025).

However, there are two major research gaps as shown in Table 1. First, prior work employs costly
human annotation (Uesato et al., 2022; Lightman et al., 2024) or noisy step-level error labels (Wang
et al., 2024a; Luo et al., 2024) to create training data for PRMs. Second, PRMs have often been
studied only on mathematical reasoning, and thus the verification capabilities of PRMs outside of
math reasoning are not well studied (Zeng et al., 2025; Yin et al., 2025). To address these gaps, this
work advances the state-of-the-art of PRMs in two directions: (1) automatic, accurate creation of
training data for PRMs, and (2) generalization of PRMs to diverse reasoning tasks.

We propose FOVER (Figure 1), a novel approach to create PRM training data using formal verifi-
cation tools, such as Z3 (de Moura & Bjørner, 2008) and Isabelle (Nipkow et al., 2002). FOVER
creates PRM training data by using these tools to provide accurate step-level error labels on LLM
responses to symbolic logic tasks like formal theorem proving, without requiring human annotation.

To show the practical effectiveness of FOVER, we create PRM training data by annotating step-level
error labels on LLM responses to formal logic and theorem proving tasks using formal verification
tools, which we refer to as FOVER-80K. Then, we fine-tune Llama 3.1 8B (Llama Team, 2024) and
Qwen 2.5 7B (Qwen Team, 2024) on FOVER-80K to use them as PRMs. We evaluate these PRMs
in two settings, Best-of-K (Cobbe et al., 2021; Li et al., 2023) on diverse reasoning tasks (§4.2)
and step-level verification on ProcessBench (Zheng et al., 2025) (§4.3), both of which are standard
practices for assessing PRMs (Lightman et al., 2024; Wang et al., 2024a).

Our experiments show that the LLM-based PRMs fine-tuned on FOVER-80K significantly outper-
form baseline PRMs based on the original LLMs and are competitive with or better than state-of-
the-art PRMs built on the same LLMs (Xiong et al., 2024; Zheng et al., 2025; Zhang et al., 2025).
Surprisingly, our experiments on 12 reasoning benchmarks show that training on FOVER-80K—
comprising of error labels on formal logic and theorem proving tasks—exhibits cross-task general-
ization and enhances Best-of-K performance of PRMs across diverse out-of-distribution reasoning
tasks, including MATH (Hendrycks et al., 2021), AIME (Art of Problem Solving, 2025), ANLI (Nie
et al., 2020), MMLU-PRO (Wang et al., 2024b), and BBH (Suzgun et al., 2023) (Figure 2).

Our main contributions are as follows:

• We propose FOVER, a novel method to generate PRM training data with step-level error labels
annotated by formal verification. FOVER is the first approach to synthesize PRM training data
that is both automatic and accurate.

• We create FOVER-80K, a novel training dataset for PRMs consisting of reasoning traces generated
from Llama 3.1 and Qwen 2.5 for formal logic and theorem proving tasks, with step-level error
labels annotated by Z3 and Isabelle.

• While FOVER creates PRM training data with formal reasoning tasks, we demonstrate that train-
ing on FOVER-80K improves PRMs on broad out-of-distribution reasoning tasks, showing the
practical effectiveness of FOVER. Our PRMs perform competitively with state-of-the-art PRMs,
as measured in 12 reasoning benchmarks.
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NoMath
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49.3 48.2 50.4
56.4

73.3

49.8
54.4 55.8 57.2

76.4Original
Ours

(a) PRMs based on Llama 3.1 8B

Math
Reasoning
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Reasoning

NLI MMLU-Pro
NoMath

BBH

61.6
54.4 58.4 58.8

69.3
63.7

57.2 58.8 60.8
70.8

(b) PRMs based on Qwen 2.5 7B

Figure 2: Best-of-5 results across 5 categories of 12 reasoning benchmarks. FOVER generates
synthetic training data (FOVER-80K) from formal reasoning verification. PRMs trained on FOVER-
80K (Ours) generalize to diverse reasoning tasks and consistently outperform baseline PRMs based
on the original LLM (Original). Full results are in Table 3.

2 RELATED WORK

Process Reward Models. PRMs are models that provide feedback for each step in reasoning traces.
Compared to Outcome Reward Models (ORMs), which generate a score for the entire solution,
PRMs provide fine-grained feedback and often achieve better performance in downstream applica-
tions (Uesato et al., 2022; Lightman et al., 2024). PRMs are typically created by fine-tuning LLMs
on the task of detecting errors in LLM reasoning at the step level, and a key challenge lies in obtain-
ing step-level error labels for training data. Human annotation (Uesato et al., 2022; Lightman et al.,
2024) is a primary approach, but it is costly in this step-level task. Recent studies explore synthetic
annotations, such as perturbations (Yang et al., 2022; Ma et al., 2023; Paul et al., 2024) and Monte
Carlo roll-outs (Wang et al., 2024a; Luo et al., 2024). However, they can produce unnatural or inac-
curate error labels, resulting in noisy training data. In contrast, FOVER leverages formal verification
tools to automatically and accurately annotate step-level error labels for PRM training data.

Training LLMs with symbolic tasks. Recent work shows that training data created with sym-
bolic reasoning tasks enhances the general reasoning abilities of LLMs even on out-of-distribution
tasks (Morishita et al., 2024; Xie et al., 2025). These studies motivate us to hypothesize that LLM-
based PRMs can acquire generalizable verification capabilities using training data created with
FOVER, which includes error labels on symbolic tasks.

Formal logic. Formal logic tasks, such as logical entailment, have been used for evaluating (Clark
et al., 2021; Tafjord et al., 2021) or improving (Morishita et al., 2024) reasoning capabilities of
LLMs. However, much of prior work uses these tasks without fully leveraging their verifiability, de-
spite the availability of automatic solvers such as Z3 (de Moura & Bjørner, 2008), Vampire (Kovács
& Voronkov, 2013), and E (Schulz, 2002), which can verify logical correctness. Our work is the
first to use these tools for step-level verification of reasoning traces on formal logic tasks.

Formal theorem proving. Using LLMs as a tool for automatic theorem proving is a popular re-
search topic (Polu & Sutskever, 2020; Yang et al., 2023; Xin et al., 2024). Recent work also uses
formal theorem proving to improve the math reasoning of LLMs during inference (Zhou et al., 2024).
These studies use proof assistants such as Isabelle/HOL (Nipkow et al., 2002), Coq (The Coq De-
velopment Team, 2024), and Lean (Moura & Ullrich, 2021) to provide solution-level feedback. Our
work is the first to use these tools to annotate step-level error labels on formal proofs.

3 FOVER

We propose FOVER, a method to create PRM training data using step-level error labels automatically
annotated by formal verification tools, such as Z3 and Isabelle. FOVER creates PRM training data
that includes accurate step-level error labels on LLM responses to symbolic logic tasks, without
relying on human annotation. For example, we can create PRM training data with first-order logical
reasoning tasks using Z3 and with formal theorem proving tasks using Isabelle.

3.1 STEP-LEVEL FORMAL VERIFICATION

Background: Formal verification in formal reasoning tasks. Formal reasoning tasks (or symbolic
reasoning tasks), including formal logic and formal theorem proving, are problems defined and
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Training Data Creation of FoVer

$hypothesis$: ({D}{b} & ¬{C}{b})
$context$:
fact1: {AA}{b} -> {D}{a}
fact2: (x): ¬{C}x -> (¬{B}x v ¬{A}x) [...]

Formal Reasoning Task Formal Solution
fact10 -> int1: {D}{b}

int1 & fact3 -> int2: ¬{C}{b}
int2 & int1 -> int3: ({D}{b} & ¬{C}{b}); int3 -> hypothesis

The final answer is PROVED

❌

❌

✅

❌

Formal
Verification Tool

Step-level Error Labels

Training of PRM

LLM

LLM-based PRM

Fine-tuning

(1) Formal Solution
Generation

(2) Automatic
Error Annotation

Figure 3: Top: FOVER creates PRM training data using formal verification tools. Bottom: Using the
training data, we fine-tune PRMs on the task of step-level verification.

solved using formal syntax and rules (Nawaz et al., 2019; Clark et al., 2021). Formal verification
tools, such as automated solvers and theorem provers, are used to formally verify solutions to formal
reasoning tasks (Zhou et al., 2024; Yang et al., 2024). Formal verification tools differ in the methods
they use and in the groups of tasks to which they apply. For example, Z3 (de Moura & Bjørner, 2008)
is an SMT solver, which extends a SAT solver with background theories, applicable to decidable
subsets of first-order logic. Isabelle/HOL (Nipkow et al., 2002) is an interactive theorem prover
applicable to higher-order logic.

To illustrate the process of formal verification, we present an example of a first-order reasoning
task (logical entailment) that can be verified using a SAT solver:

Context: A → B, B → C, A Hypothesis: C

Assume that the predicted answer is ‘entailment,” meaning the hypothesis is logically entailed by
the context. We want to verify whether this prediction is correct, which is equivalent to showing that
the following implication is valid:(

(A → B) ∧ (B → C) ∧A
)

→ C.

We can check this with a SAT solver using resolution: combine the premises with the negation of
the hypothesis and test its satisfiability in Conjunctive Normal Form (CNF):

(¬A ∨B) ∧ (¬B ∨ C) ∧A ∧ ¬C.

If the solver reports this formula unsatisfiable, then the entailment is confirmed. SAT solvers such
as Z3 automate this process and thus can formally verify the correctness of the prediction.

Step-level formal verification. In this paper, we propose using formal verification tools to verify
solutions at the step level. As illustrated above, these tools have primarily been applied to solution-
level verification. Our key idea is that, for certain tasks, they can also be employed to verify the
correctness of individual reasoning steps. For instance, for the above problem, suppose the model
produces the following step-by-step solution:

Step 1:
(
(B → C) ∧A

)
→ B. Step 2:

(
B ∧ (B → C)) → C.

It can be verified at the step level: we adopt a simple strategy that evaluates the logical correctness
of each step independently, assuming that all preceding intermediate results are correct. Once we
check that each step only uses the provided context and preceding results, we can verify it by testing
the satisfiability of:

Step 1: (¬B ∨ C) ∧A ∧ ¬B. Step 2: B ∧ (¬B ∨ C) ∧ ¬C.

The SAT solver will show that the first formula is satisfiable, indicating Step 1 is incorrect, and the
second is unsatisfiable, indicating Step 2 is correct. This procedure provides step-level verification
for the solution to the logical entailment task.

In this work, we implement step-level verification for formal logic (logical entailment) using Z3 and
theorem-proving tasks using Isabelle to create PRM training data.
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Table 2: Statistics of the FOVER-80K dataset.

Tasks Source Datasets Formal Verification
Tools

Step-by-step
Solutions

Step-level Error Labels

# of Steps % Error

Formal Logic FLDx2 Z3 Llama 3.1 8B 20,000 50%
Qwen 2.5 7B 20,000 50%

Formal Theorem Proving GSM8K, MetaMathQA,
Big-Math Isabelle Llama 3.1 8B 20,000 50%

Qwen 2.5 7B 20,000 50%

Formal Logic Formal Theorem Proving

$hypothesis$: ({D}{b} & ¬{C}{b})
$context$:
fact1:   {AA}{b} -> {D}{a}
fact2:   (x): ¬{C}x -> (¬{B}x v ¬{A}x)  [...]
fact10: {A}{b} -> ({D}{b} & ¬{C}{b})  [...]

assumes "(total_pencils::nat) = 1500"
    and "(cost_per_pencil::real) = 0.10"
    and "(sell_price_per_pencil::real) = 0.25"
    and "(profit::real) = 100.00 [...]
shows "pencils_to_sell = 1000"

Formal Statement Formal Statement

Formal Solution Formal Solution
have "total_pencils * cost_per_pencil = 150" ✅

then have "profit + (total_pencils * cost_per_pencil) = 250"
then have "(profit + (total_pencils * cost_per_pencil)) / [...]

then have "(profit + (total_pencils * cost_per_pencil)) / sell_price_per_pencil = 1000

then have "pencils_to_sell = 1000"

✅

❌

✅

✅

fact10 -> int1: {D}{b}
int1 & fact3 -> int2: ¬{C}{b}

int2 & int1 -> int3: ({D}{b} & ¬{C}{b}); int3 -> hypothesis
The final answer is PROVED

❌

❌

✅

❌

have "total_pencils * cost_per_pencil / sell_price_per_pencil = 600"
✅

Figure 4: Examples from FOVER-80K.

3.2 FOVER FRAMEWORK

As shown in Figure 3, FOVER synthesizes PRM training data in two stages. In the first stage, given a
problem p ∈ P from a symbolic task that is compatible with formal verification, an LLM generates
a step-by-step formal solution s = [s1, s2, . . . , sk] ∈ S consisting of k steps:

[s1, s2, . . . , sk] = LLM(p).

The solution s may contain logical errors but is required to follow the format compatible with a
formal verification tool. We can make LLMs to generate formal solutions either by specifying the
required formats in prompts or by using models trained for specific formal verification tools (Yang
et al., 2023; Xin et al., 2024). In this work, we provide a few-shot demonstration to guide LLMs.
LLMs can generate solutions in an invalid format, so we generate multiple solutions until we obtain
one with a valid format, which can be verified using the formal verification tool.

In the second stage, the formal verification tool assigns step-level error labels [ys1 , ys2 , . . . , ysk ] ∈
{0, 1}K , without the need for human annotation:

[ys1 , ys2 , . . . , ysk ] = FormalVerification(p, [s1, s2, . . . , sk]),

where FormalVerification(, ) accurately outputs label ysk = 1 if the solution step sk is correct,
ysk = 0 otherwise.

Using training data created with FOVER, we train PRMs (P × S → [0, 1]K) on a step-level binary
classification task, which is the standard approach for training PRMs (Wang et al., 2024a; Zhang
et al., 2025). The cross-entropy training objective for PRMs is given by:

LPRM =

K∑
i=1

(ysi log rsi + (1− ysi) log(1− rsi)) ,

where rsi is the step-level score for step si predicted by the PRM. In our implementation, we fine-
tune LLMs to serve as PRMs, training them in a text generation task to output the token “correct”
or “wrong” for each step.

3.3 FOVER-80K DATASET

To demonstrate the practical effectiveness of FOVER, we synthesize PRM training data that includes
step-level binary error labels on the formal logic and formal theorem proving tasks, which we refer to
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as FOVER-80K. As shown in Table 2, FOVER-80K includes 80K steps in reasoning traces generated
by Llama 3.1 8B (Llama Team, 2024) and Qwen 2.5 7B (Qwen Team, 2024) with error labels
annotated by formal verification tools, Z3 and Isabelle. Figure 4 shows examples from the dataset.

Specifically, the FOVER-80K dataset is created using FLDx2 (Morishita et al., 2023; 2024) and
GSM8K-level mathematical reasoning tasks. We select these tasks based on diversity, simplic-
ity, and generalization considerations. For the formal logic task, we selected FLDx2 among logic
datasets because it offers the greatest diversity among those expressible via deduction rules (Mor-
ishita et al., 2024). For mathematical reasoning, we selected GSM8K-level datasets to simplify the
verification pipeline. The choices of these simple tasks also allow us to evaluate the easy-to-difficult
generalization of our approach (§4.5).

Formal logic. We use the logical entailment task in FLDx2 (Morishita et al., 2023; 2024), a dataset
for multi-step first-order logic deduction, in which the goal is to determine whether a hypothesis is
entailed by a given set of premises. We generate step-by-step formal solutions with the LLMs and
annotate step-level error labels using Z3.

Formal theorem proving. We use the task of formal theorem proving for verifying solutions for
math word problems (Wu et al., 2022; Zhou et al., 2024). Specifically, the conditions of a math word
problem are presented as premises, a candidate final answer is formulated as a hypothesis, and the
task is to generate a proof for this statement. We generate formal proofs with the LLMs in the task of
verifying the solutions to GSM8K-level problems, including GSM8K (Cobbe et al., 2021), GSM8K-
based cases in MetaMathQA (Yu et al., 2024), and math word problems in Big-Math (Albalak et al.,
2025). We then annotate step-level error labels using Isabelle.

4 EXPERIMENTS

We evaluate LLM-based PRMs trained on FOVER-80K on broad reasoning benchmarks. We com-
pare our PRMs with various PRMs in Best-of-K on 12 reasoning benchmarks (§4.2) and step-level
verification on ProcessBench (Zheng et al., 2025) (§4.3). The results are summarized as follows:

• LLM-based PRMs trained on FOVER-80K significantly improve verification capabilities on a
broad range of reasoning tasks compared to baseline PRMs based on the same LLMs without
additional training, demonstrating effective cross-task generalization of FOVER (§4.2, 4.3).

• LLM-based PRMs trained on FOVER-80K are competitive with or better than state-of-the-art
PRMs. The state-of-the-art PRMs, which are trained on math datasets, tend to perform better
on math reasoning tasks, but FOVER-PRMs often outperform them on other tasks. This result
suggests that FOVER is effective at improving PRMs on out-of-distribution tasks (§4.2, 4.3).

• We evaluate PRMs trained on a combination of FOVER and PRM800K (Lightman et al., 2024),
and show that FOVER can effectively complement other datasets (§4.4).

4.1 EXPERIMENTAL SETTING

Datasets. We use two evaluation tasks. First, we evaluate PRMs using Best-of-K, a popular ap-
proach to assess PRMs (Cobbe et al., 2021; Li et al., 2023; Zhang et al., 2024b). In Best-of-
K, PRMs select the best solution from multiple candidates generated by LLMs for the same in-
put. We evaluate Best-of-K performance of PRMs on 12 reasoning datasets, including math rea-
soning: GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), AQuA-RAT (Ling et al.,
2017), AIME (2016-2024) (Art of Problem Solving, 2025), logic reasoning: FOLIO (Han et al.,
2024), LogicNLI (Tian et al., 2021), NLI: ANLI (Nie et al., 2020), HANS (McCoy et al., 2019),
MMLU: MMLU-Pro-NoMath (Paech, 2024), BIG-Bench Hard: temporal sequences, tracking shuf-
fled objects (three objects), word sorting (Suzgun et al., 2023) (§4.2). For large datasets, we use
250 randomly sampled examples from each dataset for evaluation. Second, we evaluate step-level
verification performance on ProcessBench (Zheng et al., 2025) (§4.3).

PRMs. To demonstrate the applicability of FOVER, we use two LLMs, Llama 3.1 8B (Llama Team,
2024) and Qwen 2.5 7B (Qwen Team, 2024), as base LLMs for PRMs. We fine-tunes these LLMs
on FOVER-80K training data of its own responses, which we refer to as FOVER-PRMs. Baseline
PRMs: We compare with baselines that use the base LLMs as PRMs. State-of-the-art PRMs: We
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Table 3: Best-of-K (K=5) performance of PRMs. FOVER-PRMs (the bottom row) significantly out-
perform the baseline PRMs in the first row. Compared to the state-of-the-art PRMs in the following
rows, FOVER-PRMs are frequently better in tasks other than math reasoning, on which the state-of-
the-art PRMs are trained on. µ: Trained on math reasoning tasks. †: Trained on human annotated
labels. ‡: Trained on labels annotated by stronger models. ∗: Statistically significant improvement
over the baseline in the first row (p < 0.05, paired bootstrap (Koehn, 2004)). Best values in each
column are shown in bold.

(a) PRMs based on Llama 3.1 8B select the best solution from K = 5 solutions generated by Llama 3.1 8B.

PRMs
Math Logic NLI MMLU BBH

Average
GSM8K MATH AQuA AIME FOLIO LogicNLI ANLI HANS Pro-NoMath Temporal Tracking Sorting

Llama 3.1 8B 86.8 42.4 65.0 3.2 57.6 38.8 27.2 73.6 56.4 90.0 90.0 40.0 55.9

RLHFlow-Llama3.1-8B-Mµ‡ 92.8∗ 45.2 64.6 2.8 59.1 44.0 29.2 79.2∗ 54.0 92.0 91.2 38.0 57.7∗

RLHFlow-Llama3.1-8B-Dµ‡ 91.6∗ 46.8∗ 67.7 4.4 60.6 39.6 29.2 76.0 57.2 98.8∗ 92.0 38.4 58.5∗

FOVER-Llama3.1-8B-PRM (ours) 86.4 43.2 65.7 4.0 64.0∗ 44.8∗ 28.8 82.8∗ 57.2 97.6∗ 93.2∗ 38.4 58.8∗

(b) PRMs based on Qwen 2.5 7B select the best solution from K = 5 solutions generated by Qwen 2.5 7B.

PRMs
Math Logic NLI MMLU BBH

Average
GSM8K MATH AQuA AIME FOLIO LogicNLI ANLI HANS Pro-NoMath Temporal Tracking Sorting

Qwen 2.5 7B 90.4 64.4 79.5 12.0 62.1 46.8 32.0 84.8 58.8 90.0 89.2 28.8 61.6

Qwen2.5-7B-Skywork-PRMµ 96.0∗ 68.8∗ 78.0 13.6 62.6 44.8 30.0 82.0 60.0 82.4 90.8 30.8 61.6
Qwen2.5-Math-7B-PRM800Kµ† 94.8∗ 68.8∗ 81.1 13.2 66.5∗ 47.6 34.0 83.6 58.8 81.6 90.4 28.4 62.4
Qwen2.5-Math-PRM-7Bµ‡ 94.8∗ 69.2∗ 82.7 15.2∗ 65.5 48.8 28.0 84.8 58.4 84.4 92.0∗ 29.6 62.8∗

FOVER-Qwen2.5-7B-PRM (ours) 92.8∗ 66.4 82.3 13.2 65.5 48.8 32.4 85.2 60.8 91.6 89.6 31.2 63.3∗

Table 4: Step-level binary classification performance of PRMs on ProcessBench (AUROC). The first
two rows represent PRMs based on LLMs without additional training. The next set of rows contains
PRMs trained on math reasoning tasks. The last row shows our FOVER-PRMs. FOVER-PRMs
exhibit easy-to-difficult generalization, improving verification performance on tasks that are more
complex than those seen during training. ∗: Statistically significant improvement over the baseline
PRMs in the first row (p < 0.05, paired bootstrap).

(a) Llama 3.1 as PRMs

PRMs GSM8K MATH Olympiad Omni Ave.

Llama 3.1 8B 70.9 68.8 67.3 59.0 66.5
Llama 3.1 70B 92.0 82.2 83.4 80.5 84.5

RLHFlow-Llama3.1-8B-Mµ‡ 91.2∗ 75.2∗ 68.2 60.7 73.8∗

RLHFlow-Llama3.1-8B-Dµ‡ 88.5∗ 77.2∗ 73.6∗ 63.1∗ 75.6∗

FOVER-Llama3.1-8B-PRM (ours) 80.0∗ 74.1∗ 74.8∗ 74.7∗ 75.9∗

(b) Qwen 2.5 as PRMs

PRMs GSM8K MATH Olympiad Omni Ave.

Qwen 2.5 7B 77.9 76.0 74.9 73.6 75.6
Qwen 2.5 72B 87.5 83.5 81.8 80.9 83.4

Qwen2.5-7B-Skywork-PRMµ 92.3∗ 82.6∗ 72.6 64.8 78.1
Qwen2.5-Math-7B-PRM800Kµ† 94.3∗ 91.7∗ 91.5∗ 90.3∗ 92.0∗

Qwen2.5-Math-PRM-7Bµ‡ 97.7∗ 95.3∗ 94.8∗ 93.2∗ 95.3∗

FOVER-Qwen2.5-7B-PRM (ours) 90.8∗ 89.1∗ 84.6∗ 86.0∗ 87.6∗

also compare with five state-of-the-art PRMs that are built on the same LLMs. Among PRMs
based on Llama 3.1 8B, we evaluate RLHFlow-Llama3.1-8B trained on the DeepSeek or Mistral
data (Xiong et al., 2024), which include error labels on solutions generated by stronger models on
GSM8K and MATH acquired via Monte Carlo roll-outs (Wang et al., 2024a). Among PRMs based
on Qwen 2.5 7B, we evaluate Qwen2.5-Math-7B-PRM800K (Zheng et al., 2025), which is trained
on human-annotated labels on MATH, and Qwen2.5-Math-PRM-7B (Zhang et al., 2025), which is
trained on labels synthesized using Monte Carlo roll-outs and verification by a stronger model. We
also evaluate Qwen2.5-7B-Skywork-PRM (He et al., 2024), which is trained on math and coding.

Implementation Details. We create inputs to LLM-based PRMs by preprocessing step-by-step
solutions into a conversation format where each input contains a single step, and the expected output
is a single token: “correct” or “incorrect”. To obtain step-level scores, we extract logits for the two
words and apply the softmax function to compute the prediction probability for “correct”. This
is a popular approach to use LLMs as PRMs (Xiong et al., 2024). As the baseline PRMs are not
fine-tuned, we provide zero-shot instructions about this format. Refer to Appendix H for details.
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4.2 RESULTS OF BEST-OF-K ON REASONING

For each input, we first use a temperature of 0.5 and few-shot demonstrations to generate K = 5
solutions from Llama 3.1 8B and Qwen 2.5 7B. The few-shot demonstrations enable models to
generate solutions in a step-by-step format. Following existing work (Lightman et al., 2024; Wang
et al., 2024a), we then use PRMs to score each step in a solution, and the solution score is the
minimum score across all steps. The solution with the highest solution score is selected.

Table 3 compares the Best-of-K performance of PRMs. Remarkably, our FOVER-PRMs trained
on FOVER-80K—consisting of formal logic and theorem proving tasks—significantly improve per-
formance on broad out-of-distribution reasoning tasks compared to the baseline PRMs. This result
demonstrates that our training data created with FOVER, which includes error labels annotated by
formal verification tools on symbolic tasks, exhibits cross-task generalization and enhances PRMs
across a broad range of informal reasoning tasks written in natural language.

We also observe that FOVER-PRMs achieve performance competitive with that of state-of-the-art
PRMs. The state-of-the-art PRMs, which are trained to detect mistakes in mathematical reasoning,
tend to perform better on math reasoning, as expected. However, FOVER-PRMs often outperform
them on other reasoning tasks that are out-of-distribution for both FOVER and the state-of-the-
art PRMs. This result suggests that FOVER is advantageous for generalization and is effective in
improving PRMs on out-of-distribution reasoning tasks.

4.3 RESULTS OF STEP-LEVEL VERIFICATION ON PROCESSBENCH

We evaluate PRMs on the step-level binary classification task in ProcessBench (Zheng et al., 2025),
which includes human-annotated step-level error labels (correct vs. incorrect) for responses from
multiple LLMs on four math reasoning tasks (GSM8K, MATH, Olympiad-Bench, and Omni-Math).
ProcessBench includes labels only for the earliest error in each response, so we evaluate PRMs on
steps up to the first error in each solution.

Table 4 shows the step-level verification performance of PRMs, measured in AUROC. The result
shows that training on FOVER-80K, based on GSM8K-level problems, significantly improves step-
level verification performance in more complex math reasoning tasks (MATH, Olympiad-Bench,
and Omni-Math) when compared to the baseline PRMs. Furthermore, we observe that FOVER-
PRM based on Llama 3.1 8B is competitive to PRMs that are trained on GSM8K and MATH, and
FOVER-PRM based on Qwen 2.5 7B is better than PRMs based on Qwen 2.5 72B. These results
demonstrate that training on FOVER-80K exhibits easy-to-difficult generalization, improving PRMs
on reasoning tasks that are more complex than those seen during training.

4.4 COMBINING FOVER WITH EXISTING DATASETS

Table 5: Best-of-K performance of PRMs trained
on FOVER-80K and PRM800K.

Training Data
Llama 3.1 8B Qwen 2.5 7B

GSM8K MATH HANS GSM8K MATH HANS

FOVER-80K 86.4 43.2 82.8 92.8 66.4 85.2
PRM800K 89.2 41.2 80.0 92.8 64.8 85.2

FOVER-80K + PRM800K 90.0 44.8 83.2 93.6 66.8 85.6

FOVER offers a unique approach for creat-
ing PRM training data using tasks different
from those used in existing methods like Monte
Carlo roll-outs (Wang et al., 2024a), which are
mainly designed for math reasoning tasks. This
enables our training data to complement other
datasets, increasing the diversity of PRM train-
ing data. To demonstrate its practical effec-
tiveness when combined with other datasets,
we evaluate PRMs trained on a combination of
FOVER-80K and PRM800K (Lightman et al.,
2024). As shown in Table 5, PRMs trained on FOVER-80K and PRM800K are often competitive
with or better than PRMs trained on either dataset alone, especially on math reasoning tasks. This
result indicates that FOVER can be effectively used in combination with existing datasets.

4.5 GENERALIZATION IN PRMS TRAINED ON FOVER

FOVER creates PRM training data using symbolic tasks, whose properties differ from those of pop-
ular tasks to which PRMs are applied. However, our results demonstrate that PRMs trained with
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Table 6: Case study of the generalization of FOVER-PRMs to out-of-distribution tasks.

(a) Verification of an LLM response to the temporal sequence task in BBH by PRMs based on Qwen 2.5 7B.
FOVER-PRM successfully detects the wrong step (Step 7), while the baseline PRM fails.

Problem: Today, Thomas went to the football field. Between what times could they have gone? Thomas woke up at 8am. [...] Lisa
saw Thomas walking towards the Statue of Liberty from 12pm to 2pm. [...] (A) 12pm to 2pm [...] (D) 5pm to 6pm
Ground truth answer: (D) 5pm to 6pm

Step Solution steps generated by Qwen 2.5 7B Baseline FOVER

Step 3 Lisa saw Thomas walking towards the Statue of Liberty from 12pm to 2pm, so Thomas did not go to the
football field from 12pm to 2pm. 1.00 0.98

Step 7 Im summary, the only time when Thomas could have gone to the football field was 12pm to 2pm. 0.96 0.38

Step 9 So the answer is (A). 0.98 1.00

(b) Verification of an LLM response to MMLU-Pro by PRMs based on Llama 3.1 8B. FOVER-PRM success-
fully detects the wrong step (Step 1), while the baseline PRM fails.

Problem: Nagel clarifies that absolutism is the view that we should (A) [...] (B) never prevent murder [...] (I) avoid murder at all costs
Ground truth answer: (I) avoid murder at all costs

Step Solution steps generated by Llama 3.1 8B Baseline FOVER

Step 0 [...] In the context of morality, absolutism is the view that a particular action, such as murder, is always
right or always wrong, regardless of the circumstances. 0.84 0.91

Step 1 Option (B) “never prevent murder” is the correct interpretation of absolutism in this context, as it implies
that murder is always wrong and should never be prevented, which is a characteristic of an absolutist view. 0.99 0.47

Step 2 The answer is (B). 0.98 0.99

FOVER generalize effectively, showing its practical usefulness. First, FOVER exhibits symbol-to-
text generalization. FOVER-80K includes symbolic solutions that are compatible with Z3 and
Isabelle, but training on this dataset improves PRMs on informal tasks whose solutions are written
in natural language. Furthermore, our results show easy-to-difficult generalization. Our dataset,
created using GSM8K-level problems, improves PRMs on more complex math reasoning tasks, in-
cluding MATH, Olympiad-Bench, and Omni-Math (§4.3). Finally, FOVER exhibits cross-task gen-
eralization and improves PRMs on tasks that are largely different from those in training data (§4.2).
Surprisingly, FOVER improves verification performance of PRMs on MMLU-Pro and BBH, whose
properties differ substantially from those of our training tasks.

Table 6a shows an example from the temporal sequence task in BBH. The task is to find a free time
slot that does not overlap with any events in a given list of past time intervals, which is distinct from
logical reasoning and theorem proving tasks in FOVER-80K. This example shows that FOVER-PRM
properly understands the task and solutions described in natural language and correctly detects a
logical error in Step 7. Table 6b shows an example from MMLU-Pro. In this example, FOVER-PRM
correctly understands the concept of “absolutism” in Step 0 and detects a logical mistake in Step 1.
Although FOVER-80K does not include knowledge-intensive tasks, it makes PRMs generalize to
tasks that require reasoning over domain knowledge. These examples demonstrate effective text-to-
symbol and cross-task generalization in PRM training with FOVER.

5 CONCLUSION

We introduce FOVER, a method to create PRM training data using step-level error labels annotated
by formal verification tools. In contrast to existing methods that rely on human annotation or inac-
curate synthetic labels, FOVER is the first method to automatically generate accurate PRM training
data. Using FOVER, we create PRM training data with accurate error labels on formal logic and
theorem proving tasks. While FOVER generates PRM training data using symbolic tasks that can
be formally verified, PRMs trained on our dataset improve the verification capabilities across broad
out-of-distribution reasoning tasks, showing its practical usefulness.
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ETHICS STATEMENT

This research does not involve human subjects or private data. This paper proposes a method for
improving PRMs, which detect mistakes made by LLMs. We do not expect any harmful impact.

REPRODUCIBILITY STATEMENT

We provide code and datasets in the supplementary material and provide detailed settings in the
appendix. We will release these materials and models evaluated in this paper to the public.
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A THE USE OF LARGE LANGUAGE MODELS

In paper writing, we used LLMs to polish writing and for retrieval and discovery (e.g., finding related
work). Specifically, we used ChatGPT-4o and ChatGPT-5 via OpenAI’s web interface.

B LIMITATIONS

Model size. Following PRMs introduced in prior work (Zheng et al., 2025; Zhang et al., 2025; He
et al., 2024), our experiments focus on PRMs based on LLMs with less than 8B parameters.

Tasks in FOVER-80K. Our training data in this paper targets improving PRMs at the verification of
responses from 8B-class LLMs and includes tasks that may not be difficult for larger LLMs. When
applying our approach to improve PRMs based on stronger models, we need to use more difficult
tasks to make the larger LLMs introduce meaningful mistakes. This is not a limitation of FOVER,
and we can create training data using more complex tasks with FOVER. Appendix D discusses how
we can apply FOVER to create PRM training data based on more complex tasks.

C ADDITIONAL RELATED WORK

PRMs for non-mathematical tasks. Similar to our work, recent work has started working on PRMs
for non-mathematical tasks. Zeng et al. (2025) train PRMs on their dataset created using MMLU-
Pro (Wang et al., 2024b) by annotating error labels using strong LLMs and show performance im-
provement in diverse domains like law and philosophy. Yin et al. (2025) propose a method to adap-
tively select evaluation criteria from a reward tree that includes evaluation criteria extracted from
training data. Our work, which demonstrates that training data generated with formal verification
can effectively leverage the inherent generalization capability of LLM-based PRMs, is orthogonal
to these studies.

Outcome-based training for PRMs. Provided the difficulty of collecting step-level error labels,
recent work proposes methods to train PRMs without using step-level labels. Yuan et al. (2025)
proposes implicit PRMs that can be trained only using final answers. They theoretically show that
ORMs trained with the reward that is parameterized by the log-likelihood ratio of two causal lan-
guage models (e.g., DPO (Rafailov et al., 2023)) implicitly learns a Q function and can be used as
PRMs. In addition, recent work (Feng et al., 2025; Kim et al., 2025) reports that existing Large
Reasoning Models like DeepSeek-R1 (DeepSeek-AI, 2025) have strong process-level rewarding ca-
pabilities on mathematical reasoning tasks, while they are not explicitly trained for process-level
rewarding. However, these studies rely on outcome-based reward and can only be applied to tasks
like mathematical reasoning. FOVER, which enables training data creation using tasks other than
mathematical reasoning, is orthogonal to these recent studies and can also be used in combination
with them to increase the diversity of training data for PRMs.

Applications of PRMs. PRMs can be used to supervise LLM reasoning during training and in-
ference. For training, PRMs can generate reward signals, particularly in reinforcement learning
settings (Pan et al., 2023; Zhang et al., 2024a). They can be applied either to re-rank candidate re-
sponses from the policy or to provide direct reward (Uesato et al., 2022). For inference, PRMs can
guide response selection and refinement through Best-of-K (Li et al., 2023), self-correction (Saun-
ders et al., 2022; Madaan et al., 2023), and step-level search (Ma et al., 2023; Snell et al., 2025).

Cross-task generalization in LLMs. Our work is the first to conduct an in-depth analysis of
cross-task generalization in LLM-based PRMs. However, cross-task generalization in LLMs has
been widely studied in general tasks. Early studies of LLMs, such as T5 (Raffel et al., 2020) and
FLAN (Wei et al., 2022), already observe their generalization to unseen tasks. Easy-to-hard general-
ization (Burns et al., 2023; Hase et al., 2024; Sun et al., 2024) is a challenging type of generalization,
where LLMs trained on simpler tasks show improved performance on more complex ones. Directly
related to our work, recent work (Morishita et al., 2024; Xie et al., 2025) shows that synthetic and
symbolic training data can improve general reasoning capabilities of LLMs. These observations mo-
tivate our hypothesis that step-level errors annotated by formal verification tools on symbolic logical
tasks can improve LLM-based PRMs on diverse out-of-distribution reasoning tasks.
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D FUTURE WORK: EXTENDING FOVER TO OTHER TASKS AND TOOLS

In this paper, as the first work towards this direction, we evaluate FOVER by creating PRM training
data using relatively simple tasks with a minimal pipeline to keep the evaluation focused and clear.
Our experiments show that training data created using these relatively simple tasks by FOVER ef-
fectively improve PRMs on a broad range of reasoning tasks, demonstrating the effectiveness and
generalization ability of FOVER.

However, FOVER is not limited to the tasks and tools we used in this paper and can be extended
to create training data using more complex tasks. When applying FOVER to create PRM training
data using more complex tasks, there are two potential challenges: generating formal solutions from
LLMs in a valid format compatible with formal verification tools and verifying step-level correctness
using the tools.

First, formal solutions should be in a syntactically valid format compatible with the formal ver-
ification tools we use for verification. Following complex syntactical rules and formats of some
formal verification tools, like theorem provers, can be challenging for LLMs. Recent LLMs are
increasingly capable of generating formal solutions in valid formats, showing strong performance in
first-order logic (Olausson et al., 2023) and a growing ability to produce syntactically valid formal
proofs (Ren et al., 2025). We expect future models to further improve their capabilities to generate
formal solutions and be more suitable for creating PRM training data with FOVER.

Second, we need to make formal verification tools verify step-level correctness. The tools are often
designed for solution-level verification, so we often need to write wrapper code to adapt them for
step-level verification, as we did in this paper for creating FOVER-80K. When creating PRM training
data using more complex tasks, we may need to further modify the verification pipeline to support
new operations.

For example, to keep the verification pipeline simple, we did not use problems that involve assump-
tions in the formal logic task (FLDx2), such as proofs by contradiction, when creating FOVER-80K.
However, we can extend our verification pipeline to support such cases as well. Existing verifica-
tion tools are already capable of performing solution-level verification for proofs by contradiction.
Therefore, we can make use of it to provide step-level verification. When handling assumptions in
our framework, the type of mistake that cannot be detected through our current step-independent
verification alone is illustrated by the following example, because the step-independent verification
assumes that preceding intermediate results are correct:

• Premises: fact1: B; fact2: B→C; fact3: C→A;
• Hypothesis: A
• fact1 and fact2 → C; Assume A; A → Hypothesis; Therefore, the hypothesis is proved.

In this case, the existing solution-level verification will identify this solution as an error because
the assumption is not properly discharged. Thus, by combining step-independent verification with
solution-level verification, we can identify and label the final step as erroneous.

We also explain an approach to extend our verification pipeline to more complex formal theorem
proving tasks in Appendix G.2.3.
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E MODEL ACCESS AND SOFTWARE LIBRARIES

This section provides details of LLMs and libraries used in our experiments.

E.1 MODELS

We use models that are provided at Hugging Face Hub.

Base models. We use meta-llama/Llama-3.1-8B-Instruct and
Qwen/Qwen2.5-7B-Instruct as base models for our PRMs. We also use these models
to generate initial responses used in creating FOVER-80K, and also for generating K = 5 responses
in the Best-of-K evaluation (§4.2).

Informal-to-formal conversion in the formal theorem proving task. As explained in Appendix G,
we use meta-llama/Llama-3.3-70B-Instruct for converting informal statements and so-
lutions to the Isabelle format (autoformalization).

E.2 STATE-OF-THE-ART PRMS COMPARED

This section provides details of state-of-the-art PRMs we evaluate in Section 4. Table 7 shows
the details of the models we evaluate. We acquire these models at Hugging Face Hub and use
vLLM (Kwon et al., 2023) to generate reward scores.1

Table 7: State-of-the-art PRMs we evaluate in Section 4.2.

PRMs Source Base Datasets Error Annotation

RLHFlow-Llama3.1-8B-DeepSeek (2024) RLHFlow/Llama3.1-8B-PRM-Deepseek-Data GSM8K, MATH Math-Shepherd (2024a)

RLHFlow-Llama3.1-8B-Mistral (2024) RLHFlow/Llama3.1-8B-PRM-Mistral-Data GSM8K, MATH Math-Shepherd (2024a)

Qwen2.5-Math-7B-PRM800K (2025) Qwen/Qwen2.5-Math-7B-PRM800K MATH Human annotation

Qwen2.5-Math-PRM-7B (2025) Qwen/Qwen2.5-Math-PRM-7B Private Data Math-Shepherd (2024a) &
LLM-as-a-Judge

Qwen2.5-7B-Skywork-PRM (2024) Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B Hidden Hidden

E.3 SOFTWARE LIBRARIES

Inference Code. We use vLLM (Kwon et al., 2023) for accelerating LLM inference.

Training Code. We use LLaMA-Factory (Zheng et al., 2024) for training.

1https://docs.vllm.ai/en/latest/models/supported_models.html#
reward-modeling-task-reward
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F DETAILS OF FOVER-80K

This section provides details of our FOVER-80K dataset.

F.1 STATISTICS OF RAW VERIFICATION RESULTS

Table 8 shows the statistics of the raw verification results before balancing the label distribution. To
create FOVER-80K, we extracted 40K steps with the balanced label distribution for each model, as
shown in Table 2.

Table 8: Statistics of the raw data for FOVER-80K befor balancing the label distribution.

Responses Tasks

Train Validation Test

Solution-level Step-level Solution-level Step-level Solution-level Step-level

# % Error # % Error # % Error # % Error # % Error # % Error

Llama 3.1 8B Formal Logic 10000 70.0% 43082 43.8% 360 70.0% 1428 44.5% 360 70.0% 1417 45.2%
Formal Proof 10000 70.0% 69532 13.3% 360 70.0% 2286 14.0% 360 70.0% 2499 13.8%

Qwen 2.5 7B Formal Logic 10000 70.0% 34879 41.3% 360 70.0% 1208 39.2% 360 70.0% 1225 41.5%
Formal Proof 10000 70.0% 69452 14.1% 360 70.0% 2297 16.7% 360 70.0% 2501 16.6%

F.2 EXAMPLES

We provide examples from FOVER-80K.

Formal logic. Here is an example of the data in the formal logic task based on the initial responses
from Llama 3.1 8B.

{
'id': 'fldx2-train-058709_Llama-3.1-8B-Instruct',
'error_labels': [True, False, False, True, False],
'messages': [
{

'role': 'user',
'content': '** Problem **

Based on the provided facts ($context$), either prove or disprove the hypothesis or
state that it is unknown. The facts and the hypothesis are written in logical
formulas as follows: capital letters such as "{A}", "{B}", "{AB}" are predicates,
small letters such as "{a}", "{b}", "{ab}" are constants, "&" is logical
conjunction, "v" is logical disjunction, "¬" is negation, "->" is implication,
"(x)" is "for all x", and "(Ex)" is "for some x".

↪→
↪→
↪→
↪→
↪→

$hypothesis$: {AB}{a}

$context$:
fact1: (¬{B}{a} & ¬{A}{a}) -> ¬{A}{dk}
fact2: (¬{AQ}{et} & ¬{DF}{et})
fact3: ¬{CO}{a} -> (¬{DR}{a} & ¬{CK}{a})
fact4: ¬{HS}{a}
fact5: (x): {C}x -> (¬{B}x & ¬{A}x)
fact6: ¬{JF}{a} -> ¬{AA}{a}
fact7: (¬{JJ}{du} & ¬{AA}{du})
fact8: (¬{BB}{a} & ¬{HQ}{a})
fact9: ¬{AA}{a}
fact10: ¬{A}{a} -> ¬{AA}{a}
fact11: ¬{DK}{a}
fact12: ¬{E}{b} -> ¬(¬{D}{b} & ¬{C}{b})
fact13: ¬(¬{D}{b} & ¬{C}{b}) -> {C}{a}
fact14: ¬{A}{ci}
fact15: ¬{JC}{a}
fact16: ¬{A}{r} -> ¬{DQ}{r}
fact17: ¬{A}{a} -> (¬{AA}{a} & ¬{AB}{a})
fact18: (¬{HP}{a} & ¬{C}{a})
fact19: ¬{A}{jg}

** Task **
Your task is to evaluate the accuracy of each step in the provided solution to the

above question. For each step, respond with "correct" if the reasoning is
logically valid and mathematically sound, or if the step is a general statement
or transition that does not contain reasoning. Respond with "incorrect" if the
step includes any errors or flawed logic.

↪→
↪→
↪→
↪→
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** Sotluion **
fact17 & fact10 -> int1: ¬{A}{a} -> ¬{AB}{a}'

},
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': 'fact10 -> int2: ¬{A}{a}'},
{'role': 'assistant', 'content': 'incorrect'},
{'role': 'user', 'content': 'int2 -> int3: ¬{AB}{a}'},
{'role': 'assistant', 'content': 'incorrect'},
{'role': 'user', 'content': 'int3 -> ¬hypothesis'},
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': 'The final answer is DISPROVED'},
{'role': 'assistant', 'content': 'incorrect'}

]

Formal theorem proving. Here is an example of the data in the formal proof task based on the
initial responses from Llama 3.1 8B.

{
'id': 'bigmath_orca_math_138943_Llama-3.1-8B-Instruct',
'error_labels': [True, False, True, True, True],
'messages': [
{
'role': 'user',
'content': '** Problem **

Generate a proof for the following theorem in the Isabelle proof assistant format.

theorem example:
assumes "(Stella_Artois_speed::real) = 150"

and "(total_distance::real) = 500"
and "(total_time::real) = 1.694915254237288"
and "(first_car_speed::real) = (total_distance - Stella_Artois_speed *

total_time) / total_time"↪→
shows "first_car_speed = 145.2"

** Task **
Your task is to evaluate the accuracy of each step in the provided solution to the

above question. For each step, respond with "correct" if the reasoning is logically
valid and mathematically sound, or if the step is a general statement or transition
that does not contain reasoning. Respond with "incorrect" if the step includes any
errors or flawed logic.

↪→
↪→
↪→
↪→

** Sotluion **
have "Stella_Artois_speed * total_time = 150 * total_time"'

},
{'role': 'assistant', 'content': 'correct'},
{
'role': 'user',
'content': 'then have "Stella_Artois_speed * total_time = 254.1794318175"

then have "total_distance - Stella_Artois_speed * total_time = 245.8205681825"'
},
{'role': 'assistant', 'content': 'incorrect'},
{'role': 'user', 'content': 'then have "(total_distance - Stella_Artois_speed * total_time)

/ total_time = 145.2"'},↪→
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': 'then have "first_car_speed = 145.2"'},
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': 'thus ?thesis'},
{'role': 'assistant', 'content': 'correct'}

]
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G DATASET CREATION PROCESS OF FOVER-80K

We provide details of the formal logic task in FOVER-80K, which is outlined in Section 3.3.

Formal Logic Formal Theorem Proving

$hypothesis$: ({D}{b} & ¬{C}{b})
$context$:
fact1: {AA}{b} -> {D}{a}
fact2: (x): ¬{C}x -> (¬{B}x v ¬{A}x) [...]

assumes "(total_pencils::nat) = 1500"
    and "(cost_per_pencil::real) = 0.10"
    and "(sell_price_per_pencil::real) = 0.25" [...]
shows "pencils_to_sell = 1000"

Formal Statement Formal Statement

LLM Target LLM

Informal Problems
(e.g., GSM8K)

Automatic Verifier
(Isabelle)

Formal Solution Formal Solution
have "total_pencils * cost_per_pencil = 150" ✅

then have "profit + (total_pencils * cost_per_pencil) = 250"
then have "(profit + (total_pencils * cost_per_pencil)) / [...]

then have "(profit + (total_pencils * cost_per_pencil)) / sell_price_per_pencil = 1000

then have "pencils_to_sell = 1000"

✅

❌

✅

✅

fact10 -> int1: {D}{b}
int1 & fact3 -> int2: ¬{C}{b}

int2 & int1 -> int3: ({D}{b} & ¬{C}{b}); int3 -> hypothesis
The final answer is PROVED

❌

❌

✅

❌

(2) Automatic
Error Annotation

Informal to Formal
Conversion by LLM

Informal Solution

(1) Formal Solution Generation(2) Automatic
Error Annotation

(1) Formal Solution
Generation Automatic Verifier

(Z3)

have "total_pencils * cost_per_pencil / sell_price_per_pencil = 600"

✅

Figure 5: Creation process of FOVER-80K. (1) We first generate LLM reasoning in the format
compatible with formal verification tools: Z3 and Isabelle. (2) We use the formal verification tools
to automatically annotate step-level error labels, without involving human annotation.

int2 & int1 -> int3: ({D}{b} & ¬{C}{b});
Formal Step generated from LLM Postprocessed Step

¬{C}{b} & {D}{b} -> ({D}{b} & ¬{C}{b}); Automatic Verifier (Z3) ✅

(a) Formal logic task.

A store owner bought 1500
pencils at $0.10 each. If he sells
them for $0.25 each, how many
of them must he sell to make a

profit of exactly $100.00?

The store bought 1500 pencils for 0.10 each.
So he spent 1500 x 0.10 = 150 dollars.
He wants to make a profit of 100 dollars, so [...]

LLM
Informal Question Informal Solution

assumes "(total_pencils::nat) = 1500"
  and "(cost_per_pencil::real) = 0.10"
  and "(sell_price_per_pencil::real) = 0.25" [...]
shows "pencils_to_sell = 1000"

Conversion LLM

Formal Statement Formal Proof
Conversion LLM

Therefore, he needs to sell 1000 pencils.

have "total_pencils * cost_per_pencil = 150"
then have "profit + (total_pencils * cost_per_pencil) = 250"
then have "(profit + (total_pencils * cost_per_pencil)) / [...]
have "total_pencils * cost_per_pencil / [...]

Final Answer
Automatic Verifier (Isabelle)

✅

(b) Formal theorem proving task.

Figure 6: Automatic step-level error annotation for FOVER-80K by formal verification tools.

To create FOVER-80K, we demonstrate two types of training data creation processes of FOVER, as
in Figure 5. First, for the formal logic task, we directly generate formal solutions from Llama 3.1 8B
and Qwen 2.5 7B, and these models often can generate solutions in a valid format compatible with
Z3. Second, in the formal theorem proving task, we find that these small LLMs often generate syn-
tactically invalid proofs because the syntax of Isabelle is complex. Although using stronger LLMs
to generate formal proofs directly is a possible option, the resulting training data will include errors
whose properties are different from those made by the small LLMs. To show the applicability of
FOVER to the situation where we want to train PRMs on mistakes made by small LLMs, we convert
informal solutions (i.e., solutions in natural language) generated by the small LLMs to formal proofs
using a strong LLM. In both tasks, syntactically invalid solutions are removed using the tools, and
all formal solutions in our training data are in a valid format compatible with the verification tools.

FORMAL LOGIC.

Formal solution generation. We prompt Llama 3.1 8B and Qwen 2.5 7B to generate step-by-step
formal solutions to FLDx2 in a format compatible with Z3. We use a few-shot instruction to guide
LLMs to follow the format and filter out syntactically invalid solutions using Z3.
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Automatic error annotation. Z3 is designed for verification at the solution level, but we use it
at the step level by supplying Z3 with the premises and conclusion for the target step to determine
logical validity, as in Figure 6a. Refer to Appendix G.1.2 for details.

FORMAL THEOREM PROVING.

Informal solution generation. We first generate informal solutions (i.e., solutions in natural lan-
guage) from Llama 3.1 8B and Qwen 2.5 7B to GSM8K-level problems, including GSM8K (Cobbe
et al., 2021), GSM8K-based cases in MetaMathQA (Yu et al., 2024), and math word problems in
Big-Math (Albalak et al., 2025). Refer to Appendix G.2.1 for details.

Informal-to-formal conversion. We convert the informal solutions into formal proofs using
Llama 3.3 70B, as in Figure 6b. We filter out syntactically invalid proofs using Isabelle, so this
process generates valid formal proofs compatible with Isabelle. Refer to Appendix G.2.2 for details.

The resulting training data includes pairs of formal proofs and the step-level errors annotated by
Isabelle, and we train PRMs on the task of detecting logical mistakes in the formal proofs. There-
fore, the informal solutions are not included in training data, and our training data is valid if the
error labels are accurate with respect to the formal proofs. While the conversion may occasionally
generate formal proofs that are unfaithful to the informal solutions, the accuracy of our training data
is not negatively affected because error labels are annotated for the formal proofs using Isabelle.

Automatic error annotation. Isabelle is designed for solution-level verification. To obtain step-
level error labels, we implement wrapper code for step-level verification. Our code assumes that the
other steps are correct when evaluating the target step. Refer to Appendix G.2.3 for details.
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G.1 FORMAL LOGIC

G.1.1 BASE DATASET AND INITIAL RESPONSE GENERATION FOR FORMAL LOGIC

First, we need to generate symbolic solutions from LLMs, which may include logical mistakes, but
they should be in a valid format compatible with Z3 (de Moura & Bjørner, 2008).

We use FLDx2 (Morishita et al., 2023; 2024) as a base dataset for our formal logic task. We use
the symbolic version of the dataset. To simplify the verification pipeline, we removed cases whose
reasoning steps include “assump,” which is used in cases such as proof by contradiction.

We generate formal solutions from Llama 3.1 8B and Qwen 2.5 7B. The following is an example
of a few-shot demonstration for the initial generation. We provide six examples as a demonstration.
After generating the formal solutions, we filter out those with an invalid format using Z3.

{
'role': 'user',
'content':
'Based on the provided facts ($context$), either prove or disprove the hypothesis or

state that it is unknown. The facts and the hypothesis are written in logical
formulas as follows: capital letters such as "{A}", "{B}", "{AB}" are predicates,
small letters such as "{a}", "{b}", "{ab}" are constants, "&" is logical conjunction,
"v" is logical disjunction, "¬" is negation, "->" is implication, "(x)" is "for all
x", and "(Ex)" is "for some x".

↪→
↪→
↪→
↪→
↪→

Don't generate anything other than the proof and proof_label.
Don't generate the proof by contradiction. If the hypothesis is disproved, provide a

direct counterexample. If the proof_label is PROVED, your proof should end with the
'hypothesis'. If the proof_label is DISPROVED, your proof should end with
'¬hypothesis'.

↪→
↪→
↪→

$hypothesis$: ({AB}{c} & ¬{B}{c})

$context$:
fact1: (x): ¬{D}x -> ({A}x & {C}x)
fact2: ¬({B}{a} & ¬{A}{a})
fact3: ¬{AB}{b} -> ¬{C}{d}
fact4: ¬{C}{a} -> ¬{A}{d}
fact5: ¬{A}{a}
fact6: ({AB}{c} & ¬{B}{c}) -> {C}{d}
fact7: ¬({F}{b} v {D}{b}) -> ¬{D}{a}
fact8: {A}{a} -> ({AB}{c} & ¬{B}{c})
fact9: ({AB}{c} & ¬{AA}{c}) -> {B}{b}
fact10: ({AB}{c} & ¬{B}{c}) -> {C}{b}'

},
{
'role': 'assistant',
'content':
'$proof$:
fact6 -> int1: ¬{C}{d} -> ¬({AB}{c} & ¬{B}{c});
fact3 & int1 -> int2: ¬{AB}{b} -> ¬({AB}{c} & ¬{B}{c});

$proof_label$: UNKNOWN'
}

G.1.2 AUTOMATIC STEP-LEVEL VERIFICATION IN FORMAL LOGIC

Second, we automatically annotate step-level error labels, which will be used to train PRMs.

We use Z3 (de Moura & Bjørner, 2008) for step-level verification of the formal logic task. Specif-
ically, we use the checker provided by the FLDx2 paper (Morishita et al., 2024) based on Z3.2 Z3
is originally designed for solution-level verification, so we need to write code to use it for step-level
verification. As explained in Figure 6a, we first postprocess each step in solutions to an independent
logical step and check the validity using Z3.

2https://github.com/hitachi-nlp/FLD-generator/blob/
00d12c4a9132a4fb43cd77f24db03ea7f5b27877/FLD_generator/formula_checkers/
z3_logic_checkers/checkers.py#L179
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G.2 FORMAL THEOREM PROVING

G.2.1 BASE DATASETS AND INITIAL RESPONSE GENERATION FOR FORMAL PROOF

First, we need to generate symbolic solutions (formal proofs) from LLMs, which may include log-
ical mistakes, but they should be in a valid format compatible with Isabelle (Nipkow et al., 2002).
However, we find that it is difficult for Llama 3.1 8B and Qwen 2.5 7B to generate formal theorem
proofs in a valid format because Isabelle’s syntax is complex. We can generate formal proofs using
larger LLMs, but such proofs may include mistakes that have different properties from those made
by the small LLMs. To show the applicability of FOVER in the situation where we want to cre-
ate PRM training data that includes solutions and mistakes generated by the small LLMs, we take
an approach to first generate informal solutions from the small models and convert them to formal
proofs using a larger model (i.e., autoformalization).

We use informal responses from LLMs to GSM8K-level math word problems: GSM8K (Cobbe
et al., 2021), GSM8K-based cases in MetaMathQA (Yu et al., 2024), and math word problems in
Big-Math (Albalak et al., 2025). We select these relatively simple math reasoning problems to keep
our pipelines for the informal-to-formal conversion and step-level verification simple, but we can
also use more complex tasks, as explained in Appendix G.2.3.

The following is an example of a few-shot demonstration for the initial generation from GSM8K.
We use a different set of few-shot demonstrations for each dataset. Refer to our code for details.

[
{
'role': 'user',
'content': 'There are 15 trees in the grove. Grove workers will plant trees in the grove

today. After they are done, there will be 21 trees. How many trees did the grove
workers plant today?'

↪→
↪→

},
{
'role': 'assistant',
'content': 'There were originally 15 trees in the grove.

After the grove workers planted trees today, there are now 21 trees.
So, the grove workers planted 21 - 15 = 6 trees today.
Therefore, the answer (arabic numerals) is 6.'

}
]

G.2.2 INFORMAL TO FORMAL CONVERSION IN FORMAL PROOF

As explained in Section 3.3, we use meta-llama/Llama-3.3-70B-Instruct with few-shot
prompting for converting the informal solutions from LLMs into the Isabelle format. Our conversion
is based on the ideas in prior work (Wu et al., 2022; Zhou et al., 2024).

We employ LLM-based conversion, so the informal-to-formal conversion is not always perfect. We
can remove syntactically invalid formal proofs using Isabelle, but it is difficult to remove unfaithful
conversion, which results in formal proofs that are semantically different from the original infor-
mal solutions. However, this unfaithful conversion does not negatively influence the quality of our
training data because we train PRMs on the task of detecting mistakes in the formal proofs using
step-level error labels annotated using Isabelle, and we do not use the informal solutions during
training. We expect that the converted formal proofs are often semantically identical or similar to
the original informal solutions, but the converted formal proofs do not need to be always identical
to the informal solutions.

The following is an example of a few-shot demonstration for the conversion.

Few-Shot Demonstration for Statement Conversion

{
'role': 'user',
'content': 'Your task is to convert the following informal statement into a formal

statement in Isabelle 2022.↪→
* Make your formal statement consistent with the provided Informal Statement.

* The final answer can be wrong, but your formal statement should be faithful to the
informal statement and should not correct the mistakes in the informal statement.↪→

* You should not use new variables in "shows".
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* The "shows" part is expected to be formatted as "variable = number" (e.g., "x = 3").

** Informal Statement **
Gloria wants to buy the $129,000 mountain cabin that her friend Alfonso is selling. She

only has $150 in cash. She intends to raise the remaining amount by selling her
mature trees for lumber. She has 20 cypress trees, 600 pine trees, and 24 maple
trees. She will get $100 for each cypress tree, $300 for a maple tree, and $200 per
pine tree. After paying Alfonso for the cabin, how much money will Gloria have left?'

↪→
↪→
↪→
↪→

},
{
'role': 'assistant',
'content': 'theorem example:

(* Gloria wants to buy the $129,000 mountain cabin that her friend Alfonso is
selling. *)↪→

assumes "(Cabin_cost::nat) = 129000"
(* She only has $150 in cash. *)

and "(Gloria_cash::nat) = 150"
(* She intends to raise the remaining amount by selling her mature trees for lumber.

*)↪→
(* She has 20 cypress trees, 600 pine trees, and 24 maple trees. *)

and "(Cypress_count::nat) = 20"
and "(Pine_count::nat) = 600"
and "(Maple_count::nat) = 24"

(* She will get $100 for each cypress tree, $300 for a maple tree, and $200 per pine
tree. *)↪→
and "(Cypress_price::nat) = 100"
and "(Maple_price::nat) = 300"
and "(Pine_price::nat) = 200"

(* After paying Alfonso for the cabin, how much money will Gloria have left? *)
and "(After_paying_Alfonso::nat) = Gloria_cash + Cypress_count * Cypress_price +

Maple_count * Maple_price + Pine_count * Pine_price - Cabin_cost"↪→
(* Final Answer -- The answer is 200. *)
shows "After_paying_Alfonso = 200"'

}

Few-Shot Demonstration for Proof Conversion

{
'role': 'user',
'content': 'Your task is to convert the following informal proof into a formal proof in

Isabelle 2022.↪→
* The input informal proof can be wrong, but your formal proof should be faithful to the

informal proof and should not correct the mistakes in the informal proof.↪→
* In your formal proof, use variables defined in the provided Formal Statement.

* Use sledgehammer.

* You should use defined variables whenever possible and should not write equations that
only contain numbers.↪→

* The last step is expected to be the same as the equation shown in the \shows" section
of the Formal Statement.↪→

* Include informal statements and proof as comments.

** Informal Statement **
Gloria wants to buy the $129,000 mountain cabin that her friend Alfonso is selling. She

only has $150 in cash. She intends to raise the remaining amount by selling her
mature trees for lumber. She has 20 cypress trees, 600 pine trees, and 24 maple
trees. She will get $100 for each cypress tree, $300 for a maple tree, and $200 per
pine tree. After paying Alfonso for the cabin, how much money will Gloria have left?

↪→
↪→
↪→
↪→
Final Answer -- The answer is 200.

** Informal Proof **
Gloria needs 129,000 dollars for the cabin, but she only has 150 dollars.
So she needs 129,000 - 150 = 128,850 dollars.
She will get 100 dollars for each of the 20 cypress trees, which is 20 x 100 = 2,000

dollars.↪→
She will get 300 dollars for each of the 24 maple trees, which is 24 x 300 = 7,200

dollars.↪→
She will get 200 dollars for each of the 600 pine trees, which is 600 x 200 = 120,000

dollars.↪→
In total, she will get 2,000 + 7,200 + 120,000 = 129,200 dollars from selling the trees.
After selling the trees, she will have 129,200 dollars.
She will pay 129,000 dollars for the cabin, so she will have 129,200 - 129,000 = 200

dollars left.↪→
Therefore, the answer (arabic numerals) is 200.

** Formal Statement **
theorem example:

(* Gloria wants to buy the $129,000 mountain cabin that her friend Alfonso is
selling. *)↪→

assumes "(Cabin_cost::nat) = 129000"
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(* She only has $150 in cash. *)
and "(Gloria_cash::nat) = 150"

(* She intends to raise the remaining amount by selling her mature trees for lumber.

*)↪→
(* She has 20 cypress trees, 600 pine trees, and 24 maple trees. *)

and "(Cypress_count::nat) = 20"
and "(Pine_count::nat) = 600"
and "(Maple_count::nat) = 24"

(* She will get $100 for each cypress tree, $300 for a maple tree, and $200 per pine
tree. *)↪→
and "(Cypress_price::nat) = 100"
and "(Maple_price::nat) = 300"
and "(Pine_price::nat) = 200"

(* After paying Alfonso for the cabin, how much money will Gloria have left? *)
and "(After_paying_Alfonso::nat) = Gloria_cash + Cypress_count * Cypress_price +

Maple_count * Maple_price + Pine_count * Pine_price - Cabin_cost"↪→
(* Final Answer -- The answer is 200. *)
shows "After_paying_Alfonso = 200"'

},
{
'role': 'assistant',
'content': 'theorem example:

(* Gloria wants to buy the $129,000 mountain cabin that her friend Alfonso is
selling. *)↪→

assumes "(Cabin_cost::nat) = 129000"
(* She only has $150 in cash. *)

and "(Gloria_cash::nat) = 150"
(* She intends to raise the remaining amount by selling her mature trees for lumber.

*)↪→
(* She has 20 cypress trees, 600 pine trees, and 24 maple trees. *)

and "(Cypress_count::nat) = 20"
and "(Pine_count::nat) = 600"
and "(Maple_count::nat) = 24"

(* She will get $100 for each cypress tree, $300 for a maple tree, and $200 per pine
tree. *)↪→
and "(Cypress_price::nat) = 100"
and "(Maple_price::nat) = 300"
and "(Pine_price::nat) = 200"

(* After paying Alfonso for the cabin, how much money will Gloria have left? *)
and "(After_paying_Alfonso::nat) = Gloria_cash + Cypress_count * Cypress_price +

Maple_count * Maple_price + Pine_count * Pine_price - Cabin_cost"↪→
(* Final Answer -- The answer is 200. *)
shows "After_paying_Alfonso = 200"

proof -
(* Gloria needs 129,000 dollars for the cabin, but she only has 150 dollars. *)
(* So she needs 129,000 - 150 = 128,850 dollars. *)
have "Cabin_cost - Gloria_cash = 128850"

sledgehammer
(* She will get 100 dollars for each of the 20 cypress trees, which is 20 × 100 =

2,000 dollars. *)↪→
then have "Cypress_count * Cypress_price = 2000"

sledgehammer
(* She will get 300 dollars for each of the 24 maple trees, which is 24 × 300 = 7,200

dollars. *)↪→
then have "Maple_count * Maple_price = 7200"

sledgehammer
(* She will get 200 dollars for each of the 600 pine trees, which is 600 × 200 =

120,000 dollars. *)↪→
then have "Pine_count * Pine_price = 120000"

sledgehammer
(* In total, she will get 2,000 + 7,200 + 120,000 = 129,200 dollars from selling the

trees. *)↪→
then have "Cypress_count * Cypress_price + Maple_count * Maple_price + Pine_count *

Pine_price = 129200"↪→
sledgehammer

(* After selling the trees, she will have 129,200 dollars. *)
(* She will pay 129,000 dollars for the cabin, so she will have 129,200 - 129,000 =

200 dollars left. *)↪→
then have "(Cypress_count * Cypress_price + Maple_count * Maple_price + Pine_count *

Pine_price) - Cabin_cost = 200"↪→
sledgehammer

(* Therefore, the answer (arabic numerals) is 200. *)
then have "After_paying_Alfonso = 200"

sledgehammer
show ?thesis

sledgehammer
qed'

}
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G.2.3 AUTOMATIC STEP-LEVEL PROOF VERIFICATION IN ISABELLE

Second, we automatically annotate step-level error labels using Isabelle. Isabelle is designed for
solution-level verification, so we need to write wrapper code to use it for step-level verification. We
also explain how we used the Sledgehammer function in Isabelle.

Lemmas and Sledgehammer in Isabelle. In Isabelle, we need to manually specify lemmas and
theorems to construct proofs. For example, in the following toy example, we need to manually
specify rule add assoc to properly prove the theorem.

theory Addition_Assoc_Manual
imports Main

begin

lemma add_assoc_manual: "(a + b) + c = a + (b + c)"
proof -
show ?thesis
by (rule add_assoc)

qed

end

We can instruct the conversion LLMs to generate proper lemmas, but this makes the conversion
LLMs make more syntax errors. To make the conversion easier, we make use of Isabelle’s Sledge-
hammer tool (Paulson & Blanchette, 2012). Sledgehammer automates the process of specifying
lemmas by invoking external automated theorem provers (ATPs) to suggest proof steps or entire
proofs. It translates the current proof state into a form suitable for ATPs, runs them, and then at-
tempts to reconstruct the suggested proof within Isabelle’s logical framework. This significantly
reduces the manual effort required, improves productivity, and bridges the gap between interactive
and automated proving. Using Sledgehammer, we can simplify the above theorem as follows to
verify it using Isabelle. We use a wrapper for Isabelle (Welleck, 2023) for using Sledgehammer.

theory Addition_Assoc_Sledgehammer
imports Main

begin

lemma add_assoc_manual: "(a + b) + c = a + (b + c)"
proof -
show ?thesis
sledgehammer

qed

end

Nevertheless, it is not guaranteed that Sledgehammer can always find a lemma when the statement is
correct. In other words, verification using Sledgehammer does not cause false negatives (i.e., over-
look mistakes in proofs), but it can false-positively classify a correct step as a mistake when we
use lemmas generated by Sledgehammer. In this work, we focused on GSM8K-level questions, for
which Isabelle’s Sledgehammer can often reliably provide correct lemmas when they exist. There-
fore, we annotate steps as incorrect when Sledgehammer fails to find the lemma, and this process
yields reasonably reliable training data. However, we need to be careful when we use Sledgehammer
with more complex tasks.

For future work, we can extend our framework to more complex mathematical reasoning tasks,
without using Sledgehammer. In complex tasks, even when Sledgehammer fails to find the lemma, it
does not mean the statement is incorrect. Therefore, we cannot reliably annotate whether a statement
is correct. In this case, one possible approach is to use a training task of verifying whether a pair of
a statement and a lemma is correct. Specifically, each step of initial responses consists of a pair of
a statement and a lemma like ”(a + b) + c = a + (b + c) by (rule add assoc)”, which can be reliably
verified by Isabelle.

Format verification. As we use LLMs for the conversion, it is possible that the conversion generates
proofs in an invalid format. To filter out theorems in the invalid format, we use the “sorry” keyword
of Isabelle. The “sorry” keyword serves as a placeholder for incomplete or unproven proofs, allow-
ing the theorem to be accepted by the system without a formal justification. By inserting “sorry”
into all generated proof steps, we can isolate and verify only the syntactic correctness theorems.
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For example, if the following theorem gets errors from Isabelle, we can detect syntax errors and
filter this theorem out from our dataset. In this case, the expression babysitting minutes ×
(Weng hourly wage / 60) contains the symbol ×, which is not a valid multiplication operator
in Isabelle syntax.

theorem example:
assumes "(Weng_hourly_wage::real) = 12"

and "(babysitting_minutes::real) = 50"
and "(babysitting_hours::real) = babysitting_minutes / 60"
and "(Weng_earnings::real) = Weng_hourly_wage * babysitting_hours"

shows "Weng_earnings = 10"
proof -

have "Weng_hourly_wage / 60 = 0.20"
sorry

then have "babysitting_minutes × (Weng_hourly_wage / 60) = 10"
sorry

then have "Weng_earnings = 10"
sorry

thus ?thesis
sorry

qed

For this input, Isabelle returns the following error.

Step error: Inner syntax error (line 1)\nat \"? ( Weng_hourly_wage / 60 ) = 10\"\nFailed to
parse prop\nAt command \"have\" (line 1)↪→

Step-level verification. By default, Isabelle halts at the first encountered error and does not provide
a step-by-step verification of a proof. To enable independent verification of each step in a multi-step
proof, we insert the “sorry” keyword in all but one step. This allows Isabelle to type-check and parse
each step individually, even if other steps are incomplete or invalid.

The following example is for verifying the third step independently. For each theorem, we run
Isabelle once per step to isolate and validate its correctness.

theorem example:
assumes "(wallet_cost::nat) = 100"

and "(betty_savings::nat) = wallet_cost div 2"
and "(parent_contribution::nat) = 15"
and "(grandparent_contribution::nat) = 2 * parent_contribution"
and "(total_savings::nat) = betty_savings + parent_contribution +

grandparent_contribution"↪→
and "(additional_needed::nat) = wallet_cost - total_savings"

shows "additional_needed = 5"
proof -

have "betty_savings = wallet_cost div 2"
sorry

then have "betty_savings = 50"
sorry

have "grandparent_contribution = 2 * parent_contribution"
sledgehammer

then have "grandparent_contribution = 30"
sorry

then have "parent_contribution + grandparent_contribution = 45"
sorry

then have "total_savings = 95"
sorry

then have "additional_needed = wallet_cost - total_savings"
sorry

then have "additional_needed = 5"
sorry

thus ?thesis
sorry
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H INPUT FORMAT AND POSTPROCESSING FOR LLM-BASED PRMS

This section provides details of the input format and postprocessing of LLM-based PRMs.

H.1 FOVER-PRMS AND THE BASELINE PRMS

First, we describe the input format for FOVER-PRMs and the baseline LLM-based PRMs, which are
based on Llama 3.1 8B and Qwen 2.5 7B. FOVER-PRMs are trained on FOVER-80K, so the input
format has the same format as the training data. The only difference is that we replace all step-level
labels with “correct” in the input. This preprocessing allows us to provide the whole input once to
get the step-level predictions for all steps. The following is an example input for GSM8K.

[
{
'role': 'user',
'content': '** Problem **

Alice is 7 years older than Beth, who is 5 years older than Erica. What is the
difference between the ages of Alice and Erica, if Erica is 30 years old?↪→

** Task **
Your task is to evaluate the accuracy of each step in the provided solution to the

above question. For each step, respond with "correct" if the reasoning is logically
valid and mathematically sound, or if the step is a general statement or transition
that does not contain reasoning. Respond with "incorrect" if the step includes any
errors or flawed logic.

↪→
↪→
↪→
↪→

** Sotluion **
Since Erica is 30 years old, and Beth is 5 years older than Erica, Beth is 30 + 5 = 35

years old.'↪→
},
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': 'Alice is 7 years older than Beth, who is 35 years old. '},
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': 'So, Alice is 35 + 7 = 42 years old.'},
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': "The difference between Alice's age and Erica's age is 42 - 30

= 12 years."},↪→
{'role': 'assistant', 'content': 'correct'},
{'role': 'user', 'content': 'Therefore, the answer (arabic numerals) is 12.'},
{'role': 'assistant', 'content': 'correct'}

]

Next, we describe the postprocessing for FOVER-PRMs and the baseline LLM-based PRMs.

Extracting logits. Since we use causal LLMs as PRMs, we extract the model’s predictions for the
tokens immediately preceding the dummy step-level labels (e.g., “correct”) in the input.

Computing step-level scores. At each identified position, we extract the logits corresponding to
the tokens “correct” and “incorrect”. We then apply the softmax function over these two logits to
compute the probability assigned to “correct”. This probability serves as the step-level score.

H.2 EXISTING PRMS

PRMs based on Llama 3.1 8B. In RLHFlow-Llama3.1-8B-DeepSeek and RLHFlow-Llama3.1-
8B-Mistral (Xiong et al., 2024), the input format is mostly similar to ours, with the key difference
being the use of “+” and “-” instead of “correct” and “incorrect”.3 For these models, we apply our
input format and postprocessing procedures with a simple substitution of “correct” with “+”.

PRMs based on Qwen 2.5 7B. Qwen2.5-Math-7B-PRM800K (Zheng et al., 2025) and Qwen2.5-
Math-PRM-7B (Zhang et al., 2025) are supported by vLLM (Kwon et al., 2023). We follow the input
format specified in their respective model descriptions and adopt the reward modeling in vLLM.4
For Qwen2.5-7B-Skywork-PRM (He et al., 2024), we use a code provided by the authors.5

3https://github.com/RLHFlow/RLHF-Reward-Modeling/tree/main/math-rm
4https://docs.vllm.ai/en/latest/models/pooling_models.html
5https://github.com/SkyworkAI/skywork-o1-prm-inference
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I TRAINING SETTINGS

This section provides details of the training settings for our FOVER-PRMs.

Training Data Format FOVER-80K includes balanced step-level error labels of 50% of “correct”
and “incorrect” labels. To balance the step-level error labels, we set mask history: True in
LLaMA-Factory (Zheng et al., 2024), which configures the model to use only the last step of each
conversation during training. We postprocess the training data by truncating reasoning steps so that
the final steps are balanced between “correct” and “incorrect” labels. This process is functionally
equivalent to selectively masking certain steps to achieve balanced labels, but is easier to implement
within LLaMA-Factory.

For example, from the case in Appendix F.2, we can make a training case for the “incorrect” label. In
each instance, models are only trained on the prediction for a single token, “correct” or “incorrect”
in the last step, and the other tokens are masked.

{
'id': 'bigmath_orca_math_138943_Llama-3.1-8B-Instruct',
'error_labels': [True, False, True, True, True],
'messages': [
{
'role': 'user',
'content': '** Problem **

Generate a proof for the following theorem in the Isabelle proof assistant format.

theorem example:
assumes "(Stella_Artois_speed::real) = 150"

and "(total_distance::real) = 500"
and "(total_time::real) = 1.694915254237288"
and "(first_car_speed::real) = (total_distance - Stella_Artois_speed *

total_time) / total_time"↪→
shows "first_car_speed = 145.2"

** Task **
Your task is to evaluate the accuracy of each step in the provided solution to the

above question. For each step, respond with "correct" if the reasoning is logically
valid and mathematically sound, or if the step is a general statement or transition
that does not contain reasoning. Respond with "incorrect" if the step includes any
errors or flawed logic.

↪→
↪→
↪→
↪→

** Sotluion **
have "Stella_Artois_speed * total_time = 150 * total_time"'

},
{'role': 'assistant', 'content': 'correct'},
{
'role': 'user',
'content': 'then have "Stella_Artois_speed * total_time = 254.1794318175"

then have "total_distance - Stella_Artois_speed * total_time = 245.8205681825"'
},
{'role': 'assistant', 'content': 'incorrect'},

]

Training Parameters We fine-tune all model parameters and do not use parameter-efficient tech-
niques. We use the AdamW optimizer (Loshchilov & Hutter, 2019) and select the learning rate
based on the average Best-of-K performance on the validation tasks: Orca-Math (Mitra et al., 2024)
and two tasks in BBH (Suzgun et al., 2023) (Logical Deduction (three objects) and Boolean Expres-
sions). We evaluate models trained with the learning rate 1e-6, 2e-6, 5e-6, and 1e-5, and select the
model with the best average performance on the validation tasks.

We use the parameters in Table 9 in all models, and we did not conduct hyperparameter tuning for
these parameters. Please refer to the configuration files in our code for further details.

Table 9: Hyperparameters in training on FOVER

Parameter Value

Number of Epochs 1
Batch size 32

Learning Rate Warm up and Decay Strategy Linear
Learning Rate Warm up Ratio 0.5
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J EVALUATION SETTINGS OF BEST-OF-K

This section provides details of the evaluation settings for Best-of-K in Section 4.

Benchmarks. Table 10 shows sources of reasoning benchmarks evaluated in Best-of-K in Section 4.

Table 10: Reasoning benchmarks evaluated in the Best-of-K experiments.

Dataset Source

GSM8K https://huggingface.co/datasets/openai/gsm8k
MATH https://github.com/hendrycks/math

AQuA-RAT https://huggingface.co/datasets/deepmind/aqua_rat
AIME (2016-2024) https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024

FOLIO https://huggingface.co/datasets/yale-nlp/FOLIO
LogicNLI https://huggingface.co/datasets/tasksource/LogicNLI

ANLI https://huggingface.co/datasets/facebook/anli
HANS https://github.com/tommccoy1/hans

MMLU https://huggingface.co/datasets/sam-paech/mmlu-pro-nomath-sml

BBH https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh

Initial generation prompts. Table 11 shows detailed settings of generating K = 5 responses
for the Best-of-K evaluation in Section 4.2. We create new few-shot examples or modify few-
shot demonstrations used in prior work to enhance the quality and to simplify the post-processing
procedure. For example, we add line breaks between reasoning steps in all tasks. An example
prompt for GSM8K is provided in Appendix G.1.1. Please also refer to our code for further details.

Table 11: Detailed settings for Best-of-K downstream evaluation

Dataset Few-shot Examples for Initial Generation Answer Matching

GSM8K (Kojima et al., 2022) 6 Exact match after extraction and conversion to integer
MATH (Lewkowycz et al., 2022, Appendix D.2) (Lewkowycz et al., 2022, Appendix G)

AQuA-RAT Made by us (3-shot) Exact match after extraction
AIME Made by us (3-shot) Exact match after extraction and conversion to integer

FOLIO Made by us (2-shot) Exact match after extraction
LogicNLI Made by us (3-shot) Exact match after extraction

ANLI Made by us (3-shot) Exact match after extraction
HANS Made by us (2-shot) Exact match after extraction

MMLU Made by us (4-shot) Exact match after extraction

BBH (Suzgun et al., 2023)7 Exact match after extraction

6https://github.com/kojima-takeshi188/zero_shot_cot/blob/
5ef330fcdeec0cd26aee27943504f91f8ec1c33c/utils.py#L328

7https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/cot-prompts
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K ADDITIONAL RESULTS

This section provides additional experimental results.

K.1 ABLATION STUDY OF TRAINING TASKS OF FOVER-80K

We evaluate PRMs trained on three variants (subsets) of FOVER-80K: formal logic only, formal
theorem proving only, and a combination of both (i.e., the original FOVER-80K). Table 12 and 13
show results of Best-of-K on 12 reasoning datasets and step-level verification in ProcessBench. We
observe that both formal logic and theorem proving tasks independently yield statistically significant
improvements over the baseline PRMs, verifying that both of these tasks are effective at improving
PRMs on broad reasoning tasks.

Table 12: Ablation study of PRMs trained on different versions of FOVER-80K in Best-of-K (K=5).
∗: Statistically significant improvement over the baseline (p < 0.05, paired bootstrap).

Training Dataset Math Logic NLI MMLU BBH
Average

Formal Logic Formal Proof GSM8K MATH AQuA AIME FOLIO LogicNLI ANLI HANS Pro-NoMath Temporal Tracking Sorting

PRMs based on Llama 3.1 8B select the best response from K = 5 responses generated by Llama 3.1 8B
✓ – 88.4 40.8 69.7∗ 4.4 65.5∗ 43.6 30.8∗ 83.6∗ 55.2 89.2 96.0∗ 40.8 59.0∗

– ✓ 89.2 41.2 70.1∗ 2.0 61.1 39.2 28.8 77.2 55.6 97.2∗ 94.0∗ 40.0 58.0∗

✓ ✓ 86.4 43.2 65.7 4.0 64.0∗ 44.8∗ 28.8 82.8∗ 57.2 97.6∗ 93.2∗ 38.4 58.8∗

PRMs based on Qwen 2.5 7B select the best response from K = 5 responses generated by Qwen 2.5 7B
✓ – 92.8∗ 65.2 81.1 10.8 61.6 46.8 31.2 87.2∗ 61.2 90.8 89.2 32.8∗ 62.6∗

– ✓ 91.6 66.0 81.5 12.4 62.1 50.4 32.0 84.0 60.4 91.6 90.8 30.4 62.8∗

✓ ✓ 92.8∗ 66.4 82.3 13.2 65.5 48.8 32.4 85.2 60.8 91.6 89.6 31.2 63.3∗

Table 13: Ablation study of FOVER-PRMs on step-level verification on ProcessBench (AUROC).
∗: Statistically significant improvement over the baseline PRMs (p < 0.05, paired bootstrap).

(a) Llama 3.1 as PRMs

Logic Proof GSM8K MATH Olympiad Omni Average

✓ – 79.2∗ 79.8∗ 81.2∗ 76.5∗ 79.2∗

– ✓ 87.9∗ 82.5∗ 82.7∗ 80.9∗ 83.5∗

✓ ✓ 80.0∗ 74.1∗ 74.8∗ 74.7∗ 75.9∗

(b) Qwen 2.5 as PRMs

Logic Proof GSM8K MATH Olympiad Omni Average

✓ – 84.9∗ 83.3∗ 83.5∗ 82.5∗ 83.5∗

– ✓ 90.5∗ 87.9∗ 84.3∗ 84.8∗ 86.9∗

✓ ✓ 90.8∗ 89.1∗ 84.6∗ 86.0∗ 87.6∗
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K.2 ABLATION STUDY OF TRAINING HYPERPARAMETERS

We analyze training hyperparameters that may influence cross-task generalization of FOVER. We
train PRMs on FOVER-80K with different learning rates, label distributions, and dataset sizes,
and evaluate performance on the validation tasks: Orca-Math (Mitra et al., 2024) and two tasks
in BBH (Suzgun et al., 2023) (Logical Deduction (three objects) and Boolean Expressions).

In summary, we observe that training on FOVER-80K is reasonably robust to these training hyper-
parameters. Since the influence of the learning rate on the final performance is relatively large, we
perform hyperparameter search only over the learning rate using the validation tasks for FOVER-
PRMs. We use the label distribution of 0.5 and use the dataset size of 40k in our experiments.

Learning rate. We evaluate PRMs trained on FOVER-80K using different learning rates: 1e-6, 2e-
6, 5e-6, and 1e-5. Figure 7a reports the average accuracy on the validation tasks for PRMs trained
on the 40k-instance training set. We observe that the learning rate has a relatively substantial impact
on the transferability and that the optimal learning rate varies across models and evaluation tasks.

Label distribution. We evaluate PRMs trained on FOVER with varying proportions of correct
and incorrect step-level labels. Specifically, we construct variants of training datasets that include
both formal logic and proof tasks, with 25%, 50%, and 75% correct labels, each containing 20k
instances. Figure 7b reports the average accuracy on the validation tasks. The influence of the label
distribution is relatively small, and we do not observe a consistent trend across label distributions;
different models and evaluation datasets exhibit varying behavior.

Dataset size. We evaluate PRMs trained on different sizes of FOVER-80K, which includes both
formal logic and proof tasks. Specifically, we train models on 5k, 10k, 20k, and 40k instances.
To isolate the effect of training data diversity, all models are trained for the same number of steps.
Figure 7c presents the accuracy on the validation tasks, showing that larger and more diverse training
data often improves cross-task generalization.

(a) Learning rate. (b) Label distribution. (c) Dataset size.

Figure 7: Influence of hyperparameters on the cross-task generalization of PRMs trained on FOVER.
The thick lines represent the average accuracy in the validation tasks. The dashed lines represent
performance on validation tasks: Orca-Math, Logical Deduction, and Boolean Expressions.
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K.3 INFERENCE-TIME SCALING OF FOVER-PRMS

In Section 4.2, we evaluate Best-of-K performance with K = 5. To show that our PRMs exhibit
inference-time scaling, we evaluate performance with larger K. Table 14 shows the performance
of PRMs based on Llama 3.1 8B with larger K up to K = 30 on four tasks. In this table, to more
effectively leverage a larger number of responses, we selected the final answer using a weighted
majority vote for the final answer, where the weight for each solution is determined by instance-
level score assigned by PRMs.

FOVER-PRM based on Llama 3.1 8B exhibits inference-time scaling, and FOVER-PRM consistently
outperforms the original model, except on MATH.

Table 14: Inference-scaling of FOVER-PRMs based on Llama 3.1 8B in Best-of-K performance
with weighted majority vote

K MATH FOLIO HANS Tracking

Original FOVER Original FOVER Original FOVER Original FOVER

5 46.0 45.6 59.1 64.5 73.6 80.0 94.0 94.8
10 46.8 46.0 61.6 63.1 73.6 80.8 94.8 96.0
15 49.2 47.6 64.5 67.0 73.6 80.4 94.8 95.6
30 49.2 49.2 65.5 68.5 74.0 80.0 94.8 96.0
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K.4 PRMS TRAINED ON A COMBINATION OF FOVER-80K AND PRM800K

This section provides details of the experiment in Section 4.4 showing the performance of PRMs
trained on a combination of FOVER-80K and PRM800K.

Settings. We use PRM800K (Lightman et al., 2024), a popular and one of the few publicly available
training datasets for PRMs. Similar to FOVER-80K, we preprocess it and make a dataset of 20K
steps with balanced step-labels.

Results. Table 15 reports the Best-of-K performance of PRMs trained on FOVER-80K and
PRM800K across 12 benchmarks. First, before combining the two datasets, we observe that PRMs
trained on PRM800K perform worse than PRMs trained on FOVER-80K on nearly all tasks. How-
ever, combining FOVER-80K and PRM800K generally yields better or competitive performance
compared to PRMs trained solely on FOVER-80K. Notably, PRMs trained in the combined dataset
outperform FOVER-PRM on GSM8K, MATH, AQuA, and the tracking task of BBH. In short,
PRM800K, which consists of mathematical reasoning tasks, enhances the verification capabilities
of PRMs in mathematics when combined with FOVER. Although PRMs trained on the combined
dataset show degraded performance compared to FOVER-PRMs on a few tasks, including FOLIO
and LogicNLI for Llama 3.1 8B and MMLU for Qwen 2.5 7B, these results indicate that integrating
FOVER with other datasets can improve their performance or alter PRM properties.

Table 15: Best-of-K (K=5) performance of PRMs trained on FOVER-80K and PRM800K.

(a) PRMs based on Llama 3.1 8B select the best response from K = 5 responses generated by Llama 3.1 8B

Training Data
Math Logic NLI MMLU BBH

Average
GSM8K MATH AQuA AIME FOLIO LogicNLI ANLI HANS Pro-NoMath Temporal Tracking Sorting

FOVER-80K 86.4 43.2 65.7 4.0 64.0 44.8 28.8 82.8 57.2 97.6 93.2 38.4 58.8
PRM800K 89.2 41.2 65.0 2.4 58.6 39.2 32.0 80.0 56.8 89.6 91.2 37.2 56.9
FOVER-80K + PRM800K 90.0 44.8 68.5 3.6 60.1 40.0 31.6 83.2 57.2 96.8 95.2 36.8 59.0

(b) PRMs based on Qwen 2.5 7B select the best response from K = 5 responses generated by Qwen 2.5 7B

Training Data
Math Logic NLI MMLU BBH

Average
GSM8K MATH AQuA AIME FOLIO LogicNLI ANLI HANS Pro-NoMath Temporal Tracking Sorting

FOVER-80K 92.8 66.4 82.3 13.2 65.5 48.8 32.4 85.2 60.8 91.6 89.6 31.2 63.3
PRM800K 92.8 64.8 81.5 13.2 62.6 48.4 32.4 85.2 60.4 90.0 89.6 32.2 62.8
FOVER-80K + PRM800K 93.6 66.8 83.1 13.2 62.6 49.2 32.4 85.6 58.0 91.6 89.6 32.2 63.2
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K.5 REFERENCE METHODS FOR BEST-OF-K: MAJORITY-OF-K AND PASS@K.

Table 16 shows the performance of reference methods on datasets evaluated in Section 4.2.

Majority@K. Majority@K (or self-consistency) (Wang et al., 2023), which takes the majority vote
of the final answers. It is known to be a strong baseline (Zhang et al., 2025) and is competitive with
the Best-of-K performance of FOVER-PRMs.

Oracle Verification. Oracle Verification (or Pass@K) is the performance when we always select
the solution with the correct final answer if it exists, which is the upper-bound of Best-of-K.

Table 16: Performance of reference methods on datasets in Table 3.

(a) PRMs based on Llama 3.1 8B select the best response from K = 5 responses generated by Llama 3.1 8B

Methods
Math Logic NLI MMLU BBH

Average
GSM8K MATH AQuA AIME FOLIO LogicNLI ANLI HANS Pro-NoMath Temporal Tracking Sorting

FOVER-PRM 86.4 43.2 65.7 4.0 64.0 44.8 28.8 82.8 57.2 97.6 93.2 38.4 58.8

Majority@K 89.2 44.4 66.1 4.8 62.6 46.0 33.2 76.4 58.8 92.8 94.0 42.4 59.2
Oracle Verification 97.2 58.4 83.9 8.8 90.1 83.6 54.4 94.4 75.2 100.0 98.4 60.0 75.4

(b) PRMs based on Qwen 2.5 7B select the best response from K = 5 responses generated by Qwen 2.5 7B

Methods
Math Logic NLI MMLU BBH

Average
GSM8K MATH AQuA AIME FOLIO LogicNLI ANLI HANS Pro-NoMath Temporal Tracking Sorting

FOVER-PRM 92.8 66.4 82.3 13.2 65.5 48.8 32.4 85.2 60.8 91.6 89.6 31.2 63.3

Majority@K 91.6 65.2 83.9 12.8 65.0 50.0 32.4 84.0 61.6 88.4 86.4 31.2 62.7
Oracle Verification 96.8 73.2 91.7 19.2 78.3 80.0 49.6 89.2 75.2 93.2 93.2 38.8 73.2
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K.6 MANUAL ANALYSIS OF IMPROVEMENTS BY FOVER

We manually analyze step-level scores for cases where FOVER-PRMs improves or degrades re-
ranking in Best-of-K from baseline PRMs (§4.2). As Best-of-K evaluates the final answers of se-
lected solutions without directly evaluating step-level verification by PRMs, we conduct manual
analysis to verify that FOVER-80K actually improves the step-level verification of PRMs. We ana-
lyze step-level scores in GSM8K, ANLI, and the temporal sequence and word sorting task in BBH.

We analyze cases where FOVER-PRMs improve or degrade re-ranking in Best-of-K with regard to
the final answers from the baseline PRMs based on the original LLMs. We categorize the reasoning
for the improvement and degradation of the final answers into the following categories:

The baseline PRMs assign wrong step-level scores, although FOVER-PRMs assign reasonable
step-level scores, which represent the genuine improvement by FOVER.
The original questions are ambiguous or the ground-truth labels are incorrect.
The selected solutions with the correct final answers include incorrect intermediate steps. PRMs
are expected to assign low scores to those solutions, although they produce the correct final an-
swers.
Both PRMs assign incorrect step-level scores, with the baseline selecting the correct answer by
chance.
FOVER-PRMs assign wrong step-level scores, although the baseline PRMs assign reasonable step-
level scores, which represent the genuine improvement by FOVER.

Only the first and last categories represent cases where FOVER-PRMs genuinely improve or
degrade step-level verification performance compared to the baseline PRMs.

Figure 8 shows the results of the manual analysis. Our manual analysis shows that FOVER-80K
often genuinely improve step-level verification and rarely leads to degradation compared to
the baseline PRMs. Among cases where FOVER-80K improved final answers in Best-of-K, we
observe that FOVER-80K often improves the step-level verification, particularly in GSM8K and the
temporal sequence task, where over 50% of cases are improved. Among cases where FOVER-80K
degrades the final answers in Best-of-K, we observe that FOVER-80K degrades the step-level scores
in less than 20% of the cases on most of the tasks.

Our analysis shows that much of the degradation in the final answers does not represent a decline in
step-level verification. For example, there are many cases where solutions selected by the baselines
included incorrect steps, although they produced the correct final answers by chance. When inter-
mediate steps are wrong, PRMs should reject such solutions even if the final answers are correct, so
this case does not represent degradation by FOVER.

(a) FOVER-PRMs select solutions with correct final answers while baseline PRMs select incorrect ones.

(b) FOVER-PRMs select solutions with incorrect final answers while baseline PRMs select correct ones.

Figure 8: Manual analysis of step-level scores in cases where FOVER-PRMs improve (8a) or de-
grade (8b) re-ranking in Best-of-K with regard to the final answers. The blue and red areas represent
the cases in which FOVER genuinely improves and degrades the step-level verification scores.
The other cases do not represent genuine improvement or degradation. : The original questions are
ambiguous or the ground-truth labels are incorrect. : The selected solutions with the correct final
answers contain incorrect intermediate steps. : Both PRMs assign incorrect step-level scores.
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We provide an example for each category.

The baseline PRMs assign wrong step-level scores, although FOVER-PRMs assign reason-
able step-level scores. The following example shows a response from Qwen 2.5 7B on ANLI. In
this example, Step 1 of the above solution is wrong, which is correctly identified by FOVER-PRMs
while the baseline PRM wrongly put a high score. In addition, in the second solution, the baseline
PRM puts a low score to Step 2, which is correct. This case shows an example FOVER improves
step-level verification.

Problem:

Premise: Cooper Manning SWAG-JACKED Don ’Magic’ Juan??? Call the fashion police
... ’cause Cooper Manning straight-up STOLE his Super Bowl swag from Snoop’s spiritual
adviser, Bishop Don ””Magic”” Juan! Peyton and Eli’s older bro was cruisin’ around Super
Bowl media night this week in a money suit – the same kind of outfit we’ve seen The Bishop
rockin’ for years. Twinsies.
Hypothesis: Payton and Eli Manning are both older than Cooper Manning.
Question: do the premises derive the hypothesis? Provide reasoning and answer with either
””entailment””, ””contradiction”” or ””neutral””.

Ground truth: neutral

Step Explanation Baseline
PRM

FOVER-
PRM

Solution selected by the baseline PRM (wrong final answer)

Step 0
Premise states, ”Peyton and Eli’s older bro was cruisin’ around Super Bowl media night
this week in a money suit,” implying that Cooper Manning is the brother of Peyton and Eli
Manning.

1.0000 0.9609

Step 1 Since Cooper Manning is described as the brother, it follows that Peyton and Eli Manning
are older than Cooper Manning. 1.0000 0.5625

Step 2 Therefore, the premise supports the hypothesis that Peyton and Eli Manning are both older
than Cooper Manning. 1.0000 0.9961

Step 3 The final answer is entailment. 1.0000 1.0000

Solution-level Score 1.0000 0.5625

Solution selected by FOVER-PRMs (correct final answer)

Step 0
Premise states: ”Peyton and Eli’s older bro was cruisin’ around Super Bowl media night
this week in a money suit.” This implies that Cooper Manning is the older brother of
Peyton and Eli Manning.

0.9922 0.9258

Step 1 Given that Cooper Manning is the older brother, it follows that Peyton and Eli Manning are
both younger than Cooper Manning. 1.0000 0.9922

Step 2 Therefore, the hypothesis ”Peyton and Eli Manning are both older than Cooper Manning”
is contradicted by the premise. 0.0000 0.9844

Step 3 The final answer is contradiction. 0.9531 0.9961

Solution-level Score 0.0000 0.9258
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The original questions are ambiguous or the ground-truth labels are incorrect. The following
example shows a response generated from Llama 3.1 8B on ANLI. In this case, the ground truth
answer is “neutral”. However, this problem is ambiguous, and both neutral and entailment are
reasonable final answers. Therefore, this case does not represent a degradation by FOVER.

Problem:

Premise: Trying Tofu¡br¿Alicia was feeling a little adventurous. She wanted to try Tofu. She
had never had it before. So she took a small bite. To her delight it was delicious.
Hypothesis: Tofu contains the letters to
Question: do the premises derive the hypothesis? Provide reasoning and answer with either
””entailment””, ””contradiction”” or ””neutral””.

Ground truth: neutral

Step Explanation Baseline
PRM

FOVER-
PRM

Solution selected by the baseline PRM (correct final answer)

Step 0 The premise does not mention the letters in the word ”tofu” at all. It talks about Alicia
trying tofu and enjoying it. 0.3496 0.7773

Step 1 The premise does not provide any information about the letters in the word ”tofu.” 0.9922 0.9922
Step 2 Therefore, the final answer is neutral. 0.9453 0.9766

Solution-level Score 0.3496 0.7773

Solution selected by FOVER-PRMs (wrong final answer)
Step 0 The premise mentions the word ”tofu”, which contains the letters ”to”. 0.2813 0.9805

Step 1
The premise does not say anything about the taste, nutritional content, or any other
properties of tofu, but it does provide evidence that the word ”tofu” contains the letters
”to”.

0.9922 0.9727

Step 2 Therefore, the final answer is entailment. 0.5313 0.9570

Solution-level Score 0.2813 0.9570
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Solutions selected by the baseline contain incorrect intermediate steps, although producing
the correct final answers. The following example shows a response generated from Llama 3.1 8B
on the word sorting task in BBH. In the first solution, the final answer is correct; however, the first
step includes ["farther" "insolent"] in the sorted list, which is incorrect. When inter-
mediate steps contain such errors, PRMs are expected to assign lower scores, potentially causing
them to fail in selecting solutions with correct final answers. This behavior is expected and does not
indicate that FOVER degrades verification performance.

Problem:

Sort the following words alphabetically: List: stephen amperage protocol crimea farther
raillery tech insolent ping

Ground truth: amperage crimea farther insolent ping protocol raillery stephen tech

Step Explanation Baseline
PRM

FOVER-
PRM

Solution selected by the baseline PRM (correct final answer)

Step 0

First, we look at the first letters of each word. ”stephen”: ”s” (19th letter). ”amperage”:
”a” (1st letter). ”protocol”: ”p” (16th letter). ”crimea”: ”c” (3rd letter). ”farther”: ”f” (6th
letter). ”raillery”: ”r” (18th letter). ”tech”: ”t” (20th letter). ”insolent”: ”i” (9th letter).
”ping”: ”p” (16th letter). We now have: [”amperage”] ¡ ”crimea” ¡ [”farther” ”insolent”] ¡
[”ping” ”protocol”] ¡ ”raillery” ¡ ”stephen” ¡ ”tech”.

0.5938 0.1641

Step 1
Now let’s sort this subpart [”farther” ”insolent”] by looking at their second letters. The
second letter: ”farther”: ”a” (1st letter). ”insolent”: ”n” (14th letter). We now have:
”farther” ¡ ”insolent” ¡ [”ping” ”protocol”] ¡ ”raillery” ¡ ”stephen” ¡ ”tech”.

0.9883 0.6523

Step 2
Now let’s sort this subpart [”ping” ”protocol”] by looking at their second letters. The
second letter: ”ping”: ”i” (9th letter). ”protocol”: ”r” (18th letter). We now have: ”ping” ¡
”protocol” ¡ ”raillery” ¡ ”stephen” ¡ ”tech”.

0.9844 0.9258

Step 3 So the answer is amperage ¡ crimea ¡ farther ¡ insolent ¡ ping ¡ protocol ¡ raillery ¡ stephen
¡ tech. 0.9961 0.7305

Solution-level Score 0.5938 0.1641

Solution selected by FOVER-PRMs (wrong final answer)

Step 0

First, we look at the first letters of each word. ”stephen”: ”s” (19th letter). ”amperage”:
”a” (1st letter). ”protocol”: ”p” (16th letter). ”crimea”: ”c” (3rd letter). ”farther”: ”f” (6th
letter). ”raillery”: ”r” (18th letter). ”tech”: ”t” (20th letter). ”insolent”: ”i” (9th letter).
”ping”: ”p” (16th letter). We now have: [”amperage”] ¡ ”crimea” ¡ ”farther” ¡ [”protocol”
”ping”] ¡ ”insolent” ¡ ”raillery” ¡ ”stephen” ¡ ”tech”.

0.5625 0.1826

Step 1

Now let’s sort this subpart [”protocol” ”ping”] by looking at their second letters. The
second letter: ”protocol”: ”r” (18th letter). ”ping”: ”i” (9th letter). We now have:
”amperage” ¡ ”crimea” ¡ ”farther” ¡ ”ping” ¡ ”protocol” ¡ ”insolent” ¡ ”raillery” ¡ ”stephen”
¡ ”tech”.

0.9961 0.7305

Step 2
Now let’s sort this subpart [”ping” ”protocol”] by looking at their third letters. The third
letter: ”ping”: ”n” (14th letter). ”protocol”: ”o” (15th letter). We now have: ”amperage” ¡
”crimea” ¡ ”farther” ¡ ”ping” ¡ ”protocol” ¡ ”insolent” ¡ ”raillery” ¡ ”stephen” ¡ ”tech”.

0.9727 0.9844

Step 3 So the answer is amperage ¡ crimea ¡ farther ¡ ping ¡ protocol ¡ insolent ¡ raillery ¡ stephen
¡ tech. 0.9922 0.8672

Solution-level Score 0.5625 0.1826
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Both PRMs assign incorrect step-level scores, with the baseline selecting the correct answer
by chance. The following example shows a response generated from Llama 3.1 8B on GSM8K.
In this case, both PRMs assign high scores to both solutions, indicating that neither effectively
distinguishes correctness. The baseline PRM happens to select the better solution, but this is due to
chance rather than meaningful score differences. Since both PRMs are unsuccessful, this case does
not show the degradation by FOVER.

Problem:

Mark is a copy-editor. He edits an equal number of sentences each week for two different
publishers, who each pay him a different rate per sentence. Publisher B pays Mark twice what
Publisher A pays. Mark edits a total number of 1000 sentences each week, and Publisher A
pays him 5 cents per sentence. How much does Mark make in a week, in cents?

Ground truth: 7500

Step Explanation Baseline
PRM

FOVER-
PRM

Solution selected by the baseline PRM (correct final answer)
Step 0 Mark edits a total of 1000 sentences each week. 0.9922 1.0000

Step 1 He edits an equal number of sentences for both Publisher A and Publisher B, so he edits
1000 / 2 = 500 sentences for Publisher A and 500 sentences for Publisher B. 1.0000 0.9258

Step 2 Publisher A pays 5 cents per sentence, so Mark earns 500 * 5 = 2500 cents from Publisher
A. 1.0000 0.9961

Step 3 Publisher B pays twice what Publisher A pays, so Publisher B pays 2 * 5 = 10 cents per
sentence. Mark earns 500 * 10 = 5000 cents from Publisher B. 1.0000 0.9922

Step 4 In total, Mark earns 2500 + 5000 = 7500 cents per week. 1.0000 0.9922
Step 5 Therefore, the answer (arabic numerals) is 7500. 1.0000 0.9727

Solution-level Score 0.9922 0.9258

Solution selected by FOVER-PRMs (wrong final answer)
Step 0 Mark edits 1000 sentences each week. 0.9922 1.0000

Step 1 Publisher A pays him 5 cents per sentence, so Publisher A pays him 1000 x 5 = 5000 cents
per week. 1.0000 0.9883

Step 2 Since Publisher B pays twice what Publisher A pays, Publisher B pays 2 x 5000 = 10,000
cents per week. 0.9961 0.9766

Step 3 The total amount Mark makes in a week is 5000 + 10,000 = 15,000 cents. 0.9961 0.9453
Step 4 Therefore, the answer (arabic numerals) is 15000. 1.0000 0.9453

Solution-level Score 0.9922 0.9453
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FOVER-PRMs assign wrong step-level scores, although the baseline PRMs assign reason-
able step-level scores. The following example shows a response generated by Llama 3.1 8B on
GSM8K. In this case, the FOVER-PRM assigns a relatively low score to Step 3 of the first solution,
even though the step is correct. It also fails to assign a low score to Step 0 of the second solu-
tion, which contains an error. This represents a relatively rare instance in which the FOVER-PRM
genuinely degrades step-level verification performance.

Problem:

Each person in a certain household consumes 0.2 kg of rice every meal. Supposing 5 members
of the household eat rice every lunch and dinner, how many weeks will a 42 kg bag of rice last?

Ground truth: 3

Step Explanation Baseline
PRM

FOVER-
PRM

Solution selected by the baseline PRM (correct final answer)

Step 0 Each person consumes 0.2 kg of rice per meal. There are 2 meals per day (lunch and
dinner), so each person consumes 0.2 * 2 = 0.4 kg of rice per day. 0.9688 0.9961

Step 1 There are 5 members in the household, so the total rice consumption per day is 0.4 * 5 = 2
kg. 1.0000 0.9961

Step 2 There are 7 days in a week, so the total rice consumption per week is 2 * 7 = 14 kg. 0.9961 1.0000
Step 3 A 42 kg bag of rice will last for 42 / 14 = 3 weeks. 0.9922 0.8516
Step 4 Therefore, the answer (arabic numerals) is 3. 1.0000 0.9961

Solution-level Score 0.9688 0.8516

Solution selected by FOVER-PRMs (wrong final answer)

Step 0 Each person consumes 0.2 kg of rice per meal, and there are 3 meals a day (breakfast,
lunch, and dinner). 0.7656 0.8945

Step 1 So, each person consumes 0.2 * 3 = 0.6 kg of rice per day. 1.0000 1.0000
Step 2 Since there are 5 members, the total rice consumption per day is 0.6 * 5 = 3 kg. 1.0000 0.9961
Step 3 A 42 kg bag of rice will last for 42 / 3 = 14 days. 0.9609 0.9531
Step 4 Since there are 7 days in a week, the rice will last 14 / 7 = 2 weeks. 0.9961 0.9805
Step 5 Therefore, the answer (arabic numerals) is 2. 1.0000 0.9883

Solution-level Score 0.7656 0.8945
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L LICENSE

We release our dataset under Creative Commons Attribution 4.0 International and our code under
Apache License 2.0. Our dataset and code are based on the following resources. We consider our
license to be (one-way) compatible with all licenses listed below.

Datasets. FOVER-80K is based on the following datasets.

• FLDx2 (Morishita et al., 2024): Creative Commons Attribution 4.0 International 8

• GSM8K (Cobbe et al., 2021): MIT9

• MetaMathQA (Yu et al., 2024): MIT10

• Big-Math (Albalak et al., 2025): Apache License 2.011

Code and packages. Our code is partially based on the following resources.

• FLD (Morishita et al., 2024): Apache License 2.012

• Isabelle: BSD-style regulations13

• Neural theorem proving tutorial (Welleck, 2023): MIT14

• DTV (Zhou et al., 2024): MIT15

M COMPUTATIONAL RESOURCES AND EXECUTION TIME

LLM training and inference. We use four NVIDIA A100 SXM4 80GB GPUs for training and
inference. Training each 8B-class model on our dataset takes approximately one hour using our
training data, FOVER-80K. Evaluation requires considerably more time because of the Best-of-K
evaluation, and reproducing all the evaluation in this paper will take approximately three days.

Dataset Creation. Dataset creation in the formal logic tasks is efficient, and the verification for our
dataset takes a few hours. However, verification of formal proofs using Isabelle is CPU-intensive and
takes a long time. We run 40 parallel Isabelle processes across four servers, verifying approximately
200 proofs per hour. The servers have different CPUs, with the most powerful one equipped with
two AMD EPYC 7763 64-Core Processors. The verification of our formal proof dataset takes about
two weeks in total. We can accelerate the verification by running more Isabelle processes in parallel.

8https://github.com/hitachi-nlp/FLD-corpus/blob/neurips_2025/LICENSE
9https://github.com/openai/grade-school-math/blob/master/LICENSE

10https://huggingface.co/datasets/meta-math/MetaMathQA/blob/main/README.
md

11https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified/blob/
main/README.md

12https://github.com/hitachi-nlp/FLD/blob/neurips_2025/LICENSE
13https://isabelle.in.tum.de/
14https://github.com/wellecks/ntptutorial/blob/main/LICENSE
15https://github.com/jinpz/dtv/blob/main/LICENSE
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