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Abstract

Large vision-language models (LVLMs) excel at multimodal tasks but are prone
to misinterpreting visual inputs, often resulting in hallucinations and unreliable
outputs. We present DROPOUT DECODING, a novel inference-time approach that
quantifies the uncertainty of visual tokens and selectively masks uncertain tokens
to improve decoding. Our method measures the uncertainty of each visual token
by projecting it onto the text space and decomposing it into aleatoric and epis-
temic components. Specifically, we focus on epistemic uncertainty, which captures
perception-related errors more effectively. Inspired by dropout regularization, we
introduce uncertainty-guided token dropout, which applies the dropout principle to
input visual tokens instead of model parameters, and during inference rather than
training. By aggregating predictions from an ensemble of masked decoding con-
texts, we can robustly mitigate errors arising from visual token misinterpretations.
Evaluations on benchmarks including CHAIR, THRONE, and MMBench demon-
strate that DROPOUT DECODING significantly reduces object hallucinations (OH)
and enhances both reliability and quality of LVLM outputs across diverse visual
contexts. Code is released at https://github. com/kigb/DropoutDecoding,

1 Introduction

Recent advancements in large vision-language models (LVLMs) have demonstrated impressive
capabilities [, 2| 3] in tasks such as image captioning, visual question answering (VQA), and
multimodal reasoning [4} 5,16} [7]. However, LVLMs still face challenges in accurately perceiving and
interpreting visual inputs, leading to inaccurate outputs and hallucinations [8]]. These issues often
stem from LVLMs misrepresenting key image elements or overlooking critical details [9,[10]. In
practice, LVLMs typically process visual inputs token by token [[11], which we refer to as visual
tokensE] This can fall short in effectively focusing on the most informative parts of the visual context.
While attention mechanisms are designed to prioritize relevant information, they are not always
perfect [12] [13}[14], especially when the inputs are complex or ambiguous for the model, or in other
words, of high uncertainty. Existing methods to address these challenges in the training stage often
involve fine-tuning on specific tasks [15} [16} [17) 18} [19]], or using additional supervision signals
especially at lower level to guide the model [20, 21]]. However, these approaches are resource-intensive
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3We specifically refer to the tokens that are already in the input prompt to the text decoder. Concrete definition

is in §3.1]
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and not easily extensible to new tasks. Alternative inference-time strategies rely on attention or logits-
based mechanisms but typically use heuristic designs and increase inference cost [22| 23| 24, 25]].
Therefore, enhancing the trustworthiness of LVLMs [26] and reducing hallucinations [24] require
more principled methods that can more effectively emphasize the most informative parts of the visual
mput.

To address this challenge, we propose a novel approach that quantifies uncertainty in visual token
contexts and removes uncertain tokens, both directly at inference time to improve the reliability
of LVLM outputs. Inspired by traditional dropout [27] techniques—typically applied to model
parameters but difficult to implement directly in pretrained LVLMs [28] |29]—we introduce token
dropout, which applies the dropout principle to input context tokens instead of model parameters.
Furthermore, it is applied to regularize the inference process instead of training, by introducing
randomness in decoding contexts to reduce overfitting to noisy visual tokens.

Our method measures the uncertainty of each visual token by projecting it into the text token space
through the text decoder directly, and decomposing this uncertainty into two components: aleatoric
(data-related) and epistemic (model-related) [30, 31, 32]. By focusing on epistemic uncertainty,
which reflects the model’s lack of knowledge, we identify visual tokens with high uncertainty and
selectively target them for suppression. At inference time, we adjust the visual inputs by selectively
suppressing tokens with high epistemic uncertainty. Specifically, we create an ensemble of predictions
by generating multiple subsets of visual inputs, each with different combinations of high-uncertainty
tokens dropped out. These subsets are processed independently, and their corresponding outputs are
aggregated using majority voting to produce the final prediction.

Our method, termed DROPOUT DECODING, enhances the reliability and accuracy of LVLM outputs
without modifying the underlying model parameters or requiring additional training. Experiments on
LVLM decoding benchmarks including CHAIR [33]], THRONE [34]], and MMBench [35]] demon-
strate the effectiveness of our approach. In summary, we make the following contributions. First,
we introduce a novel approach that quantifies and decomposes uncertainty on tokens in the visual
inputs at inference time without additional supervision, by projecting visual input tokens onto text
token interpretations. Second, we propose a decoding strategy that uses epistemic uncertainty mea-
surements to guide the selective dropout of high-uncertainty visual tokens in the context, analogous
to performing dropout on the model but applied to the input tokens and during inference. And finally,
comprehensive experiments are conducted on various benchmarks, showing significant reductions in
OH and improved fidelity in pre-trained LVLMs without additional fine-tuning.

2 Related Work

Reliable Generation. Hallucinations in LLMs—where models generate irrelevant or incorrect
information [36, 37, [38]—arise from data [19]], training, and inference issues [39], with attention
mechanisms exacerbating them [40]. To address this, factual-nucleus sampling [4 1] balances diversity
and accuracy. While [42] guide decoding with quantified uncertainty, our approach quantifies
uncertainty at the visual input level, not requiring model ensembles.

OH in LVLMs. Object hallucination (OH) is common in LVLMs, where models generate incorrect
object descriptions. CHAIR [33]] and POPE [43] evaluate OH, while THRONE [34] offers a more
holistic approach. We use CHAIR and THRONE to assess OH in our work.

OH Reduction. Methods addressing OH in LVLMs include internal signal guidance (e.g.,
OPERA [44]), contrastive decoding (e.g., VCD [45]]), and selective information focusing (e.g.,
HALC [24]). AGLA [46] mitigates hallucinations by enhancing visual grounding through global
and local attention, while Memory-Space Visual Retracing [47] refines multimodal alignment via
iterative visual reference retrieval. In contrast, DROPOUT DECODING 1) selects visual tokens dur-
ing generation, 2) uses uncertainty for token selection without external models, and 3) employs a
token-level majority voting strategy.

3 Preliminaries

3.1 Vision-Language Model Decoding

Widely adopted LVLM architectures [48, 149, [17] typically include a vision encoder, a vision-text
interface module, and a Transformer-based LLM decoder. As we mostly focus on the decoder side
inference, we assume the LLM decoder parameterized by 6.



The visual input, such as an image, is segmented into patches and processed by the vision en-
coderﬂ followed by the vision-text interface module, to produce a sequence of visual tokens

¥ = (z¥,2%,...,2%). Each token z is a contextualized embedding of an image patch, serv-
ing as the direct input to the text decoder. The text input such as a query or instruction is
zt = (zf,2%,...,2%,). The input to the text decoder is denoted as z = [z, z'], which is the

concatenation of visual and text tokens. At this point, the visual and text tokens are aligned and serve
as a sequential input to the LLM decoder. During autoregressive decoding, the decoder generates out-
put text tokens y = (y1, y2, . . .) as continuation from prompt z, following the conditional probability
distribution

h] = fe(xv7xt7y<j)7 pe(yj | Ivvxtay<j) = SOftmaX(Wth) (1)
where y<; = (y1,...,y;—1) is the sequence of previously generated tokens, fp denotes the LLM
forward pass to produce hidden states 7; € R on top of the Transformer layers, Wy, € RIVI*4 js the
output projection matrix onto the text vocabulary V), and y; € V the output token at j-th step.

3.2 Uncertainty Quantification

Our approach quantifies the information uncertainty of visual tokens used for decoding by adapting
the concept of epistemic uncertainty for measurement, as detailed in §5] and drawing inspiration
from classical uncertainty decomposition [31,1504132]]. To provide the necessary background, we first
introduce the concept of uncertainty decomposition.

Uncertainty decomposition separates the total uncertainty of a model’s prediction into two compo-
nents: aleatoric uncertainty, which is inherent to the data, and epistemic uncertainty, which relates
to the model’s lack of knowledge. The Bayesian framework offers a principled way to quantify
uncertainty about some candidate model with weights w, through the posterior estimation over the
hypothesis space for a given dataset D. The Bayesian model average (BMA) predictive distribution
is defined aﬁ]

ply |z, D) = / p(y |z, w)p(w | D) dw. )

w

The total information uncertainty is measured by the entropy of BMA: H[p(y | «, D)], which equals
the posterior expectation of the cross-entropy between the predictive distribution of the candidate
model and the BMA distribution:

Hlp(y | #, D)] = Epwip) [CE[p(y | ,w),p(y | z, D)]]
Total Uncertainty
= Epwip) [H(p(y | 2, 0))] + Epwip) [Pxu(p(y | 2,w) | p(y | 2,D))]

Aleatoric Uncertainty Epistemic Uncertainty

The epistemic uncertainty, expressed as the KL divergence between candidate models’ predictive
distributions and the BMA, has proven effective in various applications [51}152, 28} 153]]. Our approach,
adopts a similar formulation for uncertainty quantification, calculating the KL divergence between
candidate prediction distributions on individual visual tokens and an aggregated average distribution.

4 Textual Interpretation of Visual Tokens

As discussed in §T] identifying the visual tokens that carry significant information and quantifying
their uncertainty is critical for improving the reliability of LVL.Ms. We propose a supervision-free
approach that maps visual tokens to text token space for improving LVLM reliability by identifying
significant visual tokens and quantifying their uncertainty. This mapping leverages the LVLM’s
inherent ability to align visual and textual contexts.

Text-space projection of visual tokens. While LVLMs are trained to generate text only after
processing all visual tokens z¥ and text instruction tokens z¢, the hidden representations h on top
of the text decoder layers inherently capture textual semantics. This is due to their proximity to the
text vocabulary projection, even at visual token positions where the model is not explicitly trained to
generate text.

*We assume a general Transformer architecture for the vision encoder as well. Our approach could also apply
to other types of vision encoders.
>p(y | £, w, D) = p(y | z,w) because of conditional independence.



Building on this intuition, we adopt a heuristic approach to interpret visual tokens by projecting them
onto the text vocabulary at the top Transformer layers. In particular, for each visual token x; at
position ZEl we obtain its textual projected distribution over the vocabulary V from the last layer of
the LLM decoder in the LVLM as:

3

hi = fe(if%i)
proj __

g =pe(- | v%;) = softmax(Wyh;)

22, denotes the visual tokens up until index ¢{’'| This approach is also generally referred to as logit

where h} is the LLM decoder top-layer hidden r[egjresentation aligned at the ¢-th visual token positions,
lens in mechanistic interpretability for LLMs.

Here, ¢, which we refer to as visual-textual distribution, represents the projection of the
visual input onto the text space. It encapsulates the model’s interpretation of the i-th vi-
sual token. This projection offers a text-based summarization, akin to an unordered cap-
tion or a “bag-of-words” [I3] representation of the visual content. As we will demon-
strate in §6] this heuristic method serves as an effective proxy for uncertainty estimation.

An illustrative example with projection uncertainty.
Figure [d] demonstrates our projection method by process-
ing an image into patches and projecting five selected
patches into the text space, retrieving their top-5 text
tokens. Informative patches yield specific tokens like
“Berlin,” “computer,’ or “map,” which are less frequent in
the vocabulary and capture unique visual contexts. In con-
trast, patches producing common words (e.g., “a,” “the,’
“on”) convey less specific information. This suggests that
projected text tokens effectively proxy the information
content of visual tokens.

Leveraging this, we introduce uncertainty measures from

the textual projection distributions ¢} to quantify each
visual token’s uncertainty, as depicted in the figure. Fol-
lowing classical uncertainty quantification (§3.2), we de-
compose total uncertainty into aleatoric (data-related) de-

Figure 1: An illustrative example where vi-

rived directly from ¢¢'”, and epistemic (model-related) by , ,

i Pr0j . J . sual tokens are projected into the text space,
comparing ¢; " to an average distribution (' As illus- pold words indicate highly informative pro-
trated, epistemic uncertainty aligns well with the informa-  jections, and red words mark misalignments.
tion content of visual tokens: high epistemic uncertainty Dotted lines show average uncertainties; high
corresponds to informative patches (e.g., “Berlin”), and epistemic uncertainty correlates with infor-
vice versa (e.g., “the”). In contrast, aleatoric and total —mative patches.
uncertainty do not show this correlation. This finding motivates our focus on epistemic uncertainty as
a reliable indicator of the significance of visual information.

5 Method

We propose DROPOUT DECODING, which leverages visual uncertainty to selectively drop out visual
tokens and guide decoding. As shown in Fig.[2]and Algorithm [I] our approach comprises two stages:
uncertainty quantification (§5.1)) before decoding and uncertainty-guided token generation (§5.2)) for
decoding.

EEEEER.<EEEE

5.1 Uncertainty Quantification Before Decoding

Average visual-textual distribution. We begin by defining the averaged distribution ¢*™, which
represents the overall projection of the entire visual input (e.g. an image) into the text space. Using
the projected distribution defined in Eq. (3, we define the average projection distribution over all

Note that i indexes are only used over visual tokens x”, not text tokens z* or generations v.
"For the models we use, the visual tokens z¥ are all placed before the text tokens 2! in the concatenated
sequence x, so x'<; are purely visual tokens. But our approach also applies to other cases.



e —
Before Decoding Decoding Time -In addition to the book,
. h lapt
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, at each token j Dynamically mask t)g;[li‘zd g;?r?e right of
( AEpistemic Uncertainty Ugp; (i) ) visual tokens ;he boo‘k -
| sample Coy@PRT 7 M
:> Uncertainty’ \ i I ourD t Decodi
Guided Masks :' 7 : ur ropouv ec.o ing
k g (No Hallucination)
Vistall TokenTndex i > | | = “mmmm—m (WERLLOCOCNNNSSSON | | | oot
777777777777777777777777777 i 4 ? LM e
ﬁ Q%Zf\flrf::‘ar:\‘:n Re‘at'g;:r‘z"am il @ Ensemble ~In addition to the book,
Ll predictions there is a laptop and a
1 ProJecmn Distri on Text q - == mouse on the desk:
e elevant 1) Original Generation
===y Tokens S Yi inati “ z
,,,,,, 1 (Hallucination on “mouse”)
‘ ‘ Compare distance (Topka™s Y ey ey - ey
Vlsual Token Index i overiap) ﬂ DR =‘“I‘
""""""""""""""""""""" i init A
Vision-to-text ﬁ % LM decoder in | Preliminary Yj yi e
s T [ prelimin et j ‘
L Forward with only visual input PAN ‘(?pf,-ig,la!) 777777 i t: ) 7@7 o 7/‘
User: Describe the image. Assistant: 1,2, ..., ¥j-1 ..k 1-
{ Visual Inputs )

Text Inputs & Previous Generation

Figure 2: An overview of our DROPOUT DECODING. The method includes uncertainty measurement
of visual tokens (under “Before Decoding”) and uncertainty-guided visual context dropout decoding
algorithm (under “Decoding Time”). The pseudocode is in Algorithm [I]

visual tokens as:

4" = Bl o

E Pr‘)J

where ¢; ' represents the text-space projection of the i-th visual token, and IV is the total number of
visual tokens. Note that the subscript ¢ indicates different distributions rather than elements within
a single distribution. This provides us with a “baseline” representation of the visual input, against
which we can quantify the surprisal of a specific visual token. This idea is grounded in classical
uncertainty decomposition where a Bayesian average distribution is needed to quantify epistemic
uncertainty [31}132].

proj

Uncertainty measurement for visual tokens. We aim to quantify the uncertainty associated with
each visual token at inference time. To distinguish from those uncertainty terms in classical settings as
introduced in §3.2} we refer to ours as perception uncertainty. We start by quantifying the perception
total uncertainty of the visual input as the entropy of the average visual-textual distribution H [qproj]
Then, to attribute this total uncertainty to individual visual tokens, we decompose it (details in

Appendix [A) by:
Ui = 1] = B, [CP (4 )

Further decomposing the cross-entropy (CE), the perception total uncertainty can be expressed as:

s =5[] D, (61 )
=E,; [Uale(i) + Uepi(m

&)

Here we have the perception aleatoric uncertainty of the i-th visual token Uy (i) = {qgroj} ,
capturing the inherent noise or ambiguity of the i-th token, and the perception epistemic uncertainty—

Uei(i) = Dict (o || ™) ©)

quantifying the divergence between the visual token’s textual projection and the overall projection. It
indicates how much the model’s belief about this token differs from its belief about the entire visual
input. A higher Uy;(7) suggests that the i-th visual token conveys information that is surprising or
not well-represented in the overall visual content, which can be critical for identifying tokens that
might introduce uncertainty in the decoding process.

5.2 Uncertainty-Guided Decoding

During the text decoding process, we leverage the computed uncertainty measures to guide the
generation of each token. Our method involves two main steps for each generated text token: (1)
identifying relevant visual tokens (optional), and (2) performing token dropout with uncertainty-
guided masking. The first step is optional, designed to enhance decoding by retaining more relevant
visual tokens.



Identifying relevant visual tokens (optional). We selectively retain only the most relevant visual
tokens from the context, which are excluded for dropout. When generating each output text token, y/;,

we first perform a preliminary forward pass to generate an initial prediction token y;-“i‘:

. .

yi ~pe(- | 2", 2 y<y) @)
Next, we determine the set of visual tokens that are relevant to this initial prediction. Specifically, a
visual token z} is considered relevant if the initial prediction y‘j““ appears among the top-k tokens of

its visual-textual projection qfroj. Formally, the set of relevant visual tokens for the j-th generation is:
S; = {xf Y e TopK(qf“’J)} ®)

where TopK(+) denotes the function returning the top-k entries of a given distribution.

To illustrate the intuition behind this step, consider an image depicting a cat. Suppose the model
correctly predicts the token “cat” during the preliminary forward pass. In that case we retain the
visual tokens associated with “cat” and drop out among the remaining visual content. Conversely, if
the model incorrectly predicts “dog” or unrelated tokens irrelevant to an object, these predictions
will not align with the top text projections of any g5 if the visual interpretation is accurate. In such
cases, no visual tokens are retained due to a lack of clear relevance, and dropout is applied across the
entire visual context as the best alternative.

It is worth noting that this step is optional. Omitting it can improve efficiency by reducing the
computational overhead of the preliminary forward pass. As shown by the ablation studies in
while skipping this step may lower performance on certain benchmarks like THRONE [34]], it still
achieves comparable results on others such as CHAIR [33]].

Visual token dropout with uncertainty guidance. Using the epistemic uncertainty measurements
Uepi(¢) from Eq. @ we introduce dropout masks over visual tokens. As illustrated in Fig. E], the
projected visual-textual distributions sometimes misalign with the image content, and regions of high
information can lead to substantial errors, resulting in hallucinations. Based on this intuition, we
selectively target visual tokens with high epistemic uncertainties for dropout.

Specifically, we formulate a controllable series of sample distributions for visual token dropout based
on Ui (%), for each visual position :

U. 1(1) _ Umiin
Plutat) =1 (0 ) 4 a0 ®
epi epi

where Uer;‘ii“, epiare the minimum and maximum epistemic uncertainty values across all visual
tokens, and 7(*) and §(¥) are hyperparameters controlling the probability range of the dropout. By
adjusting the values of 7(*) and §(*), we can modulate the intensity of visual token dropout. For

further discussion on hyperparameters, see

With the dropout distributions, we can sample dropout masks for each visual token independently.
Denote the binary mask as M(*) € {0,1}", consisting of a binary indicator Mi(k) for each visual
token 7, where the conrresponding visual token is retained if M, i(k) = 1, and dropped if M i(k) =0.
The dropout mask sampling follows P(Mi(k) =0)= p® (x7?), and the sampling is done for each

dropout
visual token position independently. A higher value of Pdmpom(xf) indicates that x7 is more likely to
be dropped out. If we performed the optional preliminary forward pass to identify relevant visual

token set Sj, these visual tokens are never dropped, i.e.,, Vz; € Sj, set Mi(k) = 1 directly.

Ensemble-based reliable generation. Our inference-time context dropout introduces stochasticity,
so we employ an ensemble decoding approach by independently sampling K distinct dropout masks,
{M (k)}szl, to enhance generation quality. Since the masks are independent, the text generative
distribution from K masks can be efficiently computed in a parallel forward pass

k) Decodi v
(P Do (- | 280 2 yey) (10)
where 9 denotes the visual tokens after applying dropout mask M *), and P denotes

/M)
invariance to the decoding algorithm used (e.g., greedy search in our implementation, though others
are applicable).



Algorithm 1 Pseudocode of DROPOUT DECODING.

: Input: visual tokens z*, Text tokens z*, Number of dropout masks /', Generation length L
: Output: Generated sequence y

: Before Decoding:

: Obtain visual text projecting distributions ¢”. {Eq }
: Compute average distribution ¢™*. {Eq. (4))}

: Compute epistemic uncertainty Ui (4). {Eq. (6)}

: for j =1to Ldo

Identifying relevant visual tokens (optional):

10:  Generate preliminary token 3. {Eq. }

11:  Getrelevant tokens S; with y" and ¢©". {Eq. }
12:  Visual token dropout with uncertainty-guidance:
13:  Get K dropout prob P™®) with Uep (7). {Eq. (9)}

14:  Generate K dropout masks M *) based on P'*) while retain relevant tokens S;.
15:  Forward candidates y*) with masks M. (Eq. (10))
16:  Majority voting on ylgk) and get y;.

17: end for

18: Return Generated sequence y

Each yﬁk) serves as a candidate prediction for the next text token, with the final token y; selected
via majority voting among the K masked inputs. In case of a tie, we choose the prediction from
the forward pass with the fewest dropped tokens, as it retains the most information and is deemed
more reliable. By forming an ensemble of predictions derived from various subsets of the visual
input, enabled through token dropout, we diversify the model’s perspective on the visual content.
This diversity mitigates the impact of any single misinterpretation, ultimately leading to more reliable
and robust generation, which is also observed in other ensemble-based methods [24, 155} 156, 57, 158]].

6 Experiments

We evaluate the proposed DROPOUT DECODING from two aspects: OH reduction and overall
generation quality. For OH, we use the CHAIR [33] and THRONE [34] metrics to assess the
performance of different decoding methods on the MSCOCO dataset. Additionally, we employ
MMBench [335] to evaluate the overall generation quality and general ability of these methods.

6.1 Experimental Setup

Base LVLMs. We evaluate all methods on three representative LVLMs: LLaVA-1.5 [49], Instruct-
BLIP [59]] and LLaVA-NEXT [16]. LLaVA-1.5 and LLaVA-NEXT use hundreds to thousands of
visual tokens for detailed representation, while InstructBLIP employs just 32 tokens but with higher
information density. This showcases the flexibility of our approach, effective across models with
varying token counts.

Hallucination reduction baselines. In addition to the original LVLM outputs, we compare our
method with beam search as well as two state-of-the-art decoding methods: VCD [45]], which
contrasts original and distorted visuals to reduce hallucinations, and OPERA [44], which applies
penalties and token adjustments for better grounding.

6.2 CHAIR

CHAIR [33] is a benchmark for evaluating object hallucination in image captioning. It includes two
metrics: the sentence-level CHAIR g, measuring the frequency of captions with hallucinated objects,
and the object-level CHAIR, calculating the proportion of hallucinated objects among all objects.

Results. As shown in Table [[, DROPOUT DECODING consistently outperforms baseline approaches
across various models, demonstrating its reliability and effectiveness in image captioning. Especially
on InstructBLIP, CHAIR; and CHAIR g improve by 16% and 12% respectively over the second-best
method. Furthermore, DROPOUT DECODING reduces the generation of hallucinated objects without
compromising the inclusion of relevant objects. These improvements align with expectations that
token dropout reduces generated objects.



CHAIR THRONE

Model Method
CHAIRg | CHAIR; | Fyt Fy° Pt Rat
Greedy 42201086 12.834036 0.79510.006 0.784+0.009 0.77210.015 0.84710.010
Beam Search 46331110 1394060 0.79040.007 0.77210.004 0.759+0.003 0.862+0.009
LLaVA-1.5 OPERA 4147 992 12374072 0.80210.003 0.79140.00a 0.78240.009 0.85410.011
- VCD 49204088 14874047 0.78610.012 0.77110.017 0.759+0.020 0.85410.015
DROPOUT DECODING 39.80103 11.73. 025 0.804. 002 0.796.10.006 0.790+0.000 0.851+0.005
DROPOUT DECODING (wW/o prelim) 39.73.915 12.201070 0.79940.002 0.79410.004 0.791.+0.007 0.843+0.005
Greedy 278741132 7901063 0.8094+0.001 0.82610.003 0.83210.006 0.80310.007
Beam Search 2587419077 693410569 0.80940.002 0.82710.006 0.83640.005 0.807+0.015
InstructBLIP OFERA 28075175 82310535 0.80510.008 0.824:0.003 0.830:0.001 0.798-0.008
VCD 39.334070 19104030 0.73740.008 0.74610.012 0.75140.020 0.75710.007
DROPOUT DECODING 24531196 6.631065 0.8141(00s 0.83310004 0.838:0002 0.808.0016
DROPOUT DECODING (w/o prelim) 26.21540 7.1040.854 0.80710.008 0.82310.006 0.82710.010 0.80410.010
Greedy 28.8040.12 8.1010.92 0.815410.012 0.83210.000 0.830+0.007 0.799+0.008
Beam Search 28.064130 7104020 0.81640.007 0.83410.006 0.83410.004 0.801+0.002
OPERA 29.06+1.80 8.06+1.07 081440011 0.832140.011 0.831+0.006 0.799+0.007
LLaVA-NEXT

4 VCD 33.194052 8.1040.91 0.81840.00a 0.82210003 0.80810.005 0.822:10.003
DROPOUT DECODING 262654 7391069 0.821.0010 0.840.0009 0.842. 0002 0.805+0.010

DROPOUT DECODING (w/o prelim) 27.01180 7.53+0.643 0.81440.009 0.835+0.007 0.837+0.003 0.793+0.008

Table 1: Comparison of methods on CHAIRs, CHAIR, FJ;, F3;°, Py, and Ry metrics for LLaVA-
1.5, InstructBLIP, and LLaVA-NEXT. Details of the experimental setup and the interpretation of
the standard deviation can be found in the appendix. Details of the experimental setup and the
interpretation of the standard deviation can be found in the appendix.

InstructBLIP @ LLaVA-1.5 e LLaVA-NEXT
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Figure 3: Comparison of CHAIRg, CHAIR;, P,;; and R,,;; scores with standard deviations across
different candidate numbers.

6.3 THRONE

THRONE [34] assesses hallucinations in LVLM-generated responses, covering both “Type I’ (men-
tions of non-existent objects, like CHAIR) and “Type II” (accuracy of object existence, like
POPE [43]]). It uses P,; (Precision), R, (Recall), Faln, and Facl)l"r’. Additionally, it employs Fg,
which combines P, and Ry, with the parameter 8 controlling the weight of R, relative to Py:

B8 _ P X Ry
Fall - (]' + 52) ’ (BQXI}DZI)JIRM :

Results. The test results in Table[T]illustrate that DROPOUT DECODING surpasses nearly all baseline
methods across various metrics, highlighting its effectiveness in reducing both Type I and Type II
hallucinations. Specifically, DROPOUT DECODING demonstrates notable strengths in InstructBLIP,
excelling in the P, metric and achieving the highest performance in Ry;. Across models, P, metric
achieves larger improvement while the R, score also exceeds that of the Greedy method, confirming
that retaining overlap tokens effectively preserves relevant objects. The large increase in FJ;> further
shows its comprehensiveness.

6.4 MMBench

MMBench [35] is a comprehensive benchmark designed to evaluate the multimodal capabilities
of LVLMs across various tasks and data types. Since the prompt length limits in MMBench ex-
ceed InstructBLIP’s token allowance, we report results only on LLaVA-1.5 and LLaVA-NEXT.

Method Original VCD OPERA DROPOUT DECODING
Results. As shown in Table 2} DROPOUT DECODING OUt-  Tivats 7186 7235 7386 7201
performs all the other baselines on LLaVA-1.5, which = LLaVA-NEXT 74.57 69.65 7454 7431

demonstrates its robustness and adaptability across a
broader range of multimodal tasks.

7 Analysis and Ablation Studies

Table 2: Results on MMBench. Higher is
better.

7.1 Efficiency Analysis

We conducted a thorough analysis of computational overhead, measuring throughput and wall-time to
evaluate efficiency. Table[7.]|summarizes these results. Our method introduces additional overhead



primarily in two aspects: (1) a preliminary forward pass for identifying relevant visual tokens, (2)
performing K parallel forward passes using varied dropout masks.

The preliminary forward pass, though beneficial, is optional. Omitting it results in only approximately
7% throughput reduction compared to greedy decoding, while still consistently improving perfor-
mance metrics across benchmarks. Furthermore, the method efficiently handles the K parallel passes
by batching identical inputs with distinct dropout masks into a single batched operation, significantly
reducing additional computational overhead.

In terms of GPU memory, we verified efficiency under realistic conditions. Using vLLM and
LLaVA-1.5 on 4xA800 80GB GPUs, GPU memory usage was 38.12 GB with efficient KV caching,
unchanged between greedy decoding and our method without preliminary passes. Confirmatory
experiments under Huggingface Transformers similarly demonstrated minimal GPU memory increase
(from 14.02 GB to 15.31 GB), indicating negligible impact on inference constraints.

The cost of computing uncertainty metrics is explicitly included in our benchmarks and remains
negligible. With LLaVA-1.5 and 576 image tokens, computing uncertainty adds only 73.30 ms per
input, a minor cost amortized across the batched forward passes.

Overall, our approach effectively balances efficiency and performance.

Metric Greedy Ours w/o prelim  Ours w/ prelim
Throughput (tok/s) 1 37.0 34.1 (-7.8%) 20.1 (-45.7%)
Wall-time (per 50 tok) | 1.35 1.47 (+8.9%) 2.49 (+84.4%)

Table 3: Computational overhead analysis.

7.2 Parallel Dropouts Hyperparameters

As in we generate K candidate predictions using token dropout. This section examines how
varying the hyperparameters impacts generation quality. We fix §(*) = 0.1 and adjust v(*) based on
a predefined order: (1) = 0.3, 7(?) = 0.5, and v(®) = 0.7. However, setting 7(*) = 0.9 excessively
drops visual tokens and degrades InstructBLIP’s performance, so we set v(*) = 0.1. Moreover, our
majority voting favors candidates with fewer dropped tokens in ties. To avoid identical outputs when
comparing only two candidates, we remove Candidate 1 in the second round.

As shown in Fig. 3] (a) and (b), both CHAIR 5 and CHAIR scores peak at K = 3 for LLaVA-1.5 and
InstructBLIP. Increasing K to 4 introduces a less-masked candidate that slightly negatively impact
our method’s effectiveness in reducing hallucinations. Conversely, using fewer candidates (e.g. , only
Candidate 1/2) lacks the balance needed for stable voting outcomes, resulting in increased randomness.
Similarly, Fig.|3|(c) and (d) shows that THRONE’s R, and P,; metrics also perform best at K = 3.
Overall, we find that selecting three candidates strikes the optimal balance between increased certainty
from additional votes and the controlled uncertainty introduced by candidate dropout probability,
allowing DROPOUT DECODING to achieve more trustworthy and stable generation results.

7.3 Preliminary Forward Pass

As discussed in §5.2] DROPOUT DECODING may employ a preliminary forward pass to retain most
relevant objects during generation, which helps reduce hallucinated objects while maintaining high-
quality outputs. In contrast, bypassing this step risks masking relevant visual tokens during the token
dropout phase, potentially degrading overall performance. However, incorporating a preliminary
forward pass roughly doubles the computational cost per generation. Specifically, our goals are:
1) to confirm the effectiveness of the preliminary forward pass, and 2) to explore a more efficient
alternative when computational resources are limited.

As shown in Table I} including the preliminary forward pass consistently improves most metrics,
with particular notable gains in the Fy; score on THRONE. Interestingly, for LLaVA-1.5 and LLaVA-
NEXT, the variant without the preliminary pass still outperforms other baselines in most metrics.
We hypothesize that this discrepancy arises from differences in the abundance of visual tokens, as
LLaVA-1.5 and LLaVA-NEXT have hundreds or thousands of visual tokens. While InstructBLIP
only has 32, making each token’s contribution more critical. Consequently, omitting the preliminary
forward pass in InstructBLIP risks losing critical information, lowering performance. These findings



suggest that while a preliminary forward pass is highly beneficial for LVLMs, models with more
tokens may achieve better efficiency and performance by skipping this step.

7.4 Necessity of Uncertainty Guidance on Masking

As discussed in §5.1] DROPOUT DECODING incorporates epistemic uncertainty in the masking
process. To validate the necessity of this approach, we compare it with a random masking strategy,
which replaces uncertainty with a random method. As shown in table Table {4} although random
masking performs better on the CHAIR metric, it struggles with BLEU and fails to compute the
THRONE metric. We find that random masking causes repetitive token generation (e.g., “apple apple
apple...”), artificially inflating the CHAIR score. This happens because random masking disrupts
contextual information, leading to faulty generation. In contrast, our uncertainty-based approach
selectively masks uncertain tokens, preserving the context and ensuring more coherent and accurate
sequences.

Model Method CHAIR BLEU THRONE
CHAIRg | CHAIR;] BLEU{ THRONE

Greedy 42~20i2.86 7-90i0.63 11.62i0,09 Table

LLaVA-1.5  Uncertainty-guided 39.80423 11.734¢0.25 11.6440.12 Table|L]
Random 35.9310.90 8.57:&0.63 11.51i0,12 Error
Greedy 27.87:&1.32 7-9010.63 12-70:t0.54 Table

InstructBLIP Uncertainty-guided 24.5347126 6.631065 12.30+0.18 Table|L]
Random 2380i1 28 5~07i0.71 10‘88i0_08 Error

Table 4: Comparison of masking strategies on CHAIRg, CHAIR;, BLEU and THRONE metrics for
LLaVA-1.5, InstructBLIP.

7.5 High-Confidence Token Masking Analysis

To further investigate the robustness of our uncertainty-guided masking, we conducted an additional
ablation experiment focusing on the opposite condition—masking high-confidence tokens instead of
low-confidence ones.

Following the identical experimental setup as in Table[T] (our main CHAIR and THRONE evaluation),
we replaced low-confidence masking with high-confidence masking. The results are summarized in
Table

Model CHAIRs | CHAIR; | Fu? Fosa? PalT Ra?
LLaVA 41.62 12.00 0.798 0.784 0.774 0.858
LLaVA-NEXT 27.61 7.82 0.803 0.823 0.828 0.789
InstructBLIP 29.50 9.01 0.808 0.825 0.825 0.794

Table 5: Effect of masking high-confidence tokens on CHAIR and THRONE metrics.

As shown, the results are generally worse than masking low-confidence tokens (i.e., masking high-
uncertainty tokens as in our proposed method) and remain close to the greedy decoding baseline. This
suggests that dropping high-confidence tokens has limited influence on generation quality—these
tokens correspond to regions where the model is already certain, typically associated with background
or redundant patches. Consequently, their removal produces only minor perturbations.

In contrast, masking low-confidence tokens directly influences the model’s generative process, as
these tokens are uncertain yet potentially informative (often corresponding to salient or ambiguous
visual regions). Masking them introduces meaningful variability, thereby improving robustness and
reducing hallucination frequency. This further validates our uncertainty-guided masking strategy as
both effective and theoretically grounded.

8 Conclusion

We introduce DROPOUT DECODING, a novel uncertainty-guided context selective decoding approach
aimed at enhancing the reliability of LVLMs. After quantifying the uncertainty in visual inputs,
DROPOUT DECODING accordingly drops out visual tokens to regularize uncertainty and employs
an ensemble-based decoding approach to stabilize generation. Extensive experiments on CHAIR,
THRONE, and MMBench validate the effectiveness with consistent improvements over existing
methods in both hallucination reduction and general multimodal capability.
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A Details of Uncertainty Decomposition
A detailed derivation of Eq. (3):
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B Implementation Details

Our experiment is conducted on the MSCOCO 2014 test set, where we randomly sample 500 images
across 3 random seeds. The average and standard deviation across these seeds are reported in our
result table. The prompt used for the images is "Describe the image."

The experimental setup of DROPOUT DECODING is shown in Table[6] We set the maximum new
tokens to 512 to ensure the complete generation of models, therefore achieving more reliable results
from CHAIR and THRONE. In MMBench, as all questions are single-choice questions, we set the
maximum new tokens to 1 for a more precise evaluation. We set other parameters in generation to
greedy for more stable and repeatable results.

Parameters CHAIR THRONE MMBench

512 512 256
Top-k False
Top-p 1
Temperature 7 1
Number Beams 1

Table 6: Parameter settings used in our experiments.

In addition to general generation settings, DROPOUT DECODING includes hyperparameters specified
in §5.2] The details of these hyperparameter settings are provided below:

Top-k in identifying relevant visual tokens. Before the decoding process, we first obtain ¢P™,
which is then used in the decoding process for generating the relevant visual tokens. The higher the
top-k is, the more visual tokens are expected to be kept during the decoding process. In LLaVA-1.5,
we set k = 5, and in InstructBLIP, we set k& = 10. The difference of k between LLaVA-1.5 and
InstructBLIP derives from the informative level of each visual token, where in LLaVA-1.5, each
visual token carries less information than in InstructBLIP, which only contains 32 visual tokens.

Number of mask K. K refers to the number of predictions that will join the majority vote progress.
We set K = 3 in our experiment settings.

~) and ¢*) in uncertainty-guided masking We set 6*) = 0.1,7*) = 02k + 0.1;k =
1,2, ..., K; K = 3 in our experiment settings.

Moreover, we provide the hyperparameter settings of our baselines. OPERA’s hyperparameters can
be referred to Table |/} VCD’s hyperparameters can be referred to Table



Parameters Value

Self-attention Weights Scale Factor & 50
Attending Retrospection Threshold 15
Beam Size 3
Penalty Weights 1
Table 7: OPERA hyperparameter settings.

Parameters Value
Amplification Factor « 1
Adaptive Plausibility Threshold 0.1
Diffusion Noise Step 500

Table 8: VCD hyperparameter settings.

C Details of Masked Tokens

We measured the average masked visual tokens of the selected candidate in decoding, demonstrating
the effectiveness of our method. For reference, the total number of visual tokens varies across models:
LLaVA uses 576 visual tokens, InstructBLIP processes 32 visual tokens, while LLaVA-NEXT
typically generates around 2,000 tokens depending on the resolution and patching strategy.

LLaVA LLaVA-NEXT InstructBLIP

Masked Tokens 244.14 879.53 13.67
Table 9: Average number of masked tokens in the selected candidate

Impact Statement

This paper aims to advance the field of Machine Learning. While our work has potential societal
implications, we do not identify any immediate concerns that require specific attention.

Limitations

While DROPOUT DECODING improves reliability by suppressing uncertain visual tokens during
inference, our method has several limitations. First, the additional forward pass in decoding, which
introduces computational overhead. Second, the effectiveness of epistemic uncertainty estimation
relies on the quality of text-space projections, which may be influenced by the quality of projector.



D Generation Examples and Analysis

D.1 LLaVA-1.5 Examples

Generated Caption:
Greedy Generated caption:

The image features a black and white photograph of a small
boat with three people rowing it down a river. The boat is be-
ing pulled by the people, and there are two swans swimming
alongside the boat. The swans are swimming in the water
near the boat, creating a peaceful and serene scene.

DROPOUT DECODING Generated caption:

The image features a group of people in a small boat, pad-
dling down a river. There are at least four people visible in
the boat, with some of them sitting closer to the front and
others towards the back. The boat is filled with people, and
they seem to be enjoying their time together on the water.

Generated Caption:
Greedy Generated caption:

The image features a kitchen countertop with a microwave
oven and a large, wrapped object sitting on top of it. The
object is wrapped in aluminum foil, which is covering a
large rectangular box or container. The microwave oven is
positioned on the left side of the countertop, and the wrapped
object is placed on the right side. The countertop is also
adorned with a few utensils, such as a spoon and a fork.

DROPOUT DECODING Generated caption:

The image features a kitchen counter with a metal pan or
tray sitting on top of it. The pan is covered in aluminum foil,
which is commonly used to keep food warm or to prevent it
from sticking to the pan. The kitchen counter appears to be a
part of a larger countertop, and the scene suggests that the
pan is being prepared for cooking or baking.

Generated Caption:
Greedy Generated caption:

The image features a dining table set with a white plate con-
taining a variety of food items, including meat, vegetables,
and bread. The plate is placed on a wooden table, and there
is a glass of wine next to it. The table is set for a meal, with
a fork and knife placed on the table. The food items on the
plate are arranged in a visually appealing way.

DROPOUT DECODING Generated caption:

The image features a dining table with a white plate contain-
ing a delicious meal. The plate is topped with a variety of
food items, including a piece of meat, a roll, and a side of
vegetables. There are also a couple of carrots on the plate.
In addition to the plate, there is a wine glass placed on the
table, suggesting that the meal is accompanied by a glass of
wine. A chair is positioned near the table.




D.2 InstructBLIP Examples

Generated Caption:
Greedy Generated caption:

The image features a table with a laptop and a plate of food,
including a bowl of salad and a plate of food. The food is
arranged on the table, with a fork and a knife nearby. The
laptop is placed on the table, likely used for work or en-
tertainment. The table is set up for a comfortable dining
experience, with a variety of food options available.

DROPOUT DECODING Generated caption:

The image features a plate of food on the table is aestheti-
cally pleasing and well-balanced. There is a plate of food,
including a salad, and a bowl of chicken, and a fork. The
plate is placed on the table, which is also adorned with a
laptop and a computer. The laptop is placed on the table, and
the computer is positioned to the left of the plate.

Generated Caption:
Greedy Generated caption:

The image features a red fire hydrant placed in front of a
stone wall. The fire hydrant is positioned in the middle of
the scene, with a window above it. There are two benches
placed near the fire hydrant, one on the left and another on
the right side of the image. The benches are positioned close
to the fire hydrant, with one closer to the window and the
other further away.

DROPOUT DECODING Generated caption:

The image features a red fire hydrant is placed in front of
a stone building, with a window above it. The window is
located on the second floor of the building, and the fire
hydrant is positioned in front of the window. There are two
metal bars on either side of the fire hydrant, which are likely
used to secure the hydrant in place.

Generated Caption:
Greedy Generated caption:

The image features a dining table with a white plate topped
with a slice of pie, a spoon, and a cherry on top. The pie is
surrounded by various utensils, including a fork, knife, and
spoon. There are also two cups on the table, one on the left
and one on the right, each containing a beverage. The dining
table is set with a variety of dishes, including a bowl, a cup,
and a spoon. The scene is set for a delicious meal, with the
pie and beverages adding to the overall ambiance.

DROPOUT DECODING Generated caption:

The image features a dining table is set with a variety of
dishes, including a plate with a slice of pie, a cherry, and a
spoon. There are also several cups of coffee and a bowl of
soup. The table is set for a meal, and the dishes are arranged
in a way that suggests a person is about to enjoy their food.




D.3 LLaVA-NEXT Examples

Generated Caption:
Greedy Generated caption:

In the heart of a bustling pizza shop, a woman stands, her
attention captivated by the slice of pizza she holds in her
hand. The pizza, with its golden crust and vibrant toppings,
is a tantalizing sight. She’s dressed casually, her green jacket
contrasting with the warm tones of the shop.The shop itself
is a feast for the eyes. A large refrigerator stands in the back-
ground, its surface adorned with various signs and posters.
The words "We guarantee the best pizza" are prominently
displayed, a testament to the shop’s commitment to quality.

DROPOUT DECODING Generated caption:

In the heart of a bustling pizza shop, a woman stands, her
attention captivated by the slice of pizza she holds in her
hand. The pizza, with its golden crust and vibrant toppings,
is a tantalizing sight. She’s dressed casually, her green jacket
contrasting with the warm tones of the shop.The shop itself
is a feast for the eyes. Boxes of pizza are neatly stacked on
shelves, their white and red colors standing out against the
darker tones of the shop. A sign on the wall proudly declares
"We guarantee the best pizza in town", a testament to the
shop’s confidence in its offerings. ...

Generated Caption:
Greedy Generated caption:

The image depicts a cozy indoor setting with a focus on a
wooden table. The table is set with a few items, including a
plate of food, a glass of water, and a small bowl. There are
also a couple of utensils, a fork and a knife, placed on the
table. The table is positioned in front of a large window that
offers a view of a patio area with a bamboo fence and a small
table. The room has a warm and inviting atmosphere, with a
wooden floor and a beige cushion visible in the foreground.
The lighting suggests it might be daytime. There are no
visible texts or distinctive brands in the image. The style of
the image is a candid, real-life photograph with a focus on
the table setting and the view outside the window.

DROPOUT DECODING Generated caption:

The image depicts a cozy indoor setting with a focus on a
wooden table. The table is set with a few items, including a
plate with a small portion of food, a glass of water, and a pair
of chopsticks. There are also a couple of small bowls and a
spoon on the table. The table is positioned in front of a large
window that offers a view of a wooden deck outside. The
deck is furnished with a bench and a small table, and there
are bamboo plants and a tree visible in the background. The
room has a warm and inviting atmosphere, with a wooden
floor and a cushion on the floor to the left of the table. The
lighting suggests it might be daytime, and the overall style
of the image is natural and serene.




D.4 Analysis

In our examples, we use red to denote hallucinations. Specifically, DROPOUT DECODING addresses
hallucinations in two key ways: eliminating non-existent objects and correcting the generation
of misidentified objects. For instance, in the third example of LLaVA-1.5, the Greedy method
hallucinates a non-existent object, a knife, whereas DROPOUT DECODING effectively removes this
hallucination. Similarly, in the second example of InstructBLIP, the Greedy method misidentifies
metal bars as benches, but DROPOUT DECODING successfully corrects this, accurately recognizing
the metal bars.
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of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the efficiency analysis for time of execution.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper for each asset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work doesn’t release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our core method development does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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