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Abstract

The design and evaluation of recommender systems often
takes the perspective of supervised machine learning, treat-
ing viewer preferences and the content catalogue as static.
However, in reality, recommender systems interact with and
shape the behavior of viewers and content creators. In this
position paper, we argue that due to these interactions, rec-
ommendation systems are more accurately characterized as
dynamical systems, impacting the environment in which they
operate. Towards this goal, we propose a unified framework
of a recommender system as a dynamical system, and we for-
mulate existing mathematical models of interactions between
recommender systems, viewers, and creators from prior work
within this framework. This framework allows us to identify
the similarities and differences between these models, which
we hope aids future development of mathematical models for
recommender system dynamics.

1 Introduction
Personalized recommendation algorithms were born of the
decentralized web, motivated to help individuals navigate
a “deluge” of articles, songs, and videos sent over email
lists [28, 18, 39]. Today, recommendation algorithms are an
ubiquitous part of the online experience. They mediate in-
teractions on many online platforms, where individuals both
view and create content. Recommendations have impact—
not just on the immediate satisfaction of a viewer, but also
on the formation of interests and popularity of content [5].

We thus argue that recommender systems should be an-
alyzed as dynamical systems that account for the interac-
tions with viewers and creators. We are motivated by how
the recommender systems shapes and is shaped by interac-
tions with viewers and creators; in fact, these interactions
can drive shifts in viewer preferences [32] and shifts in the
landscape of content available on the platform [36]. The so-
cietal ramifications of these interactions make it crucial to
account for dynamics when designing and evaluating rec-
ommendation algorithms.

Towards this ambitious goal, an emerging line of work
has proposed different mathematical models of interactions
among a recommender, viewers, and creators. These models
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offer different formalizations of how a recommender sys-
tem shapes (and is shaped by) viewer preferences and be-
havior as well as creator behavior. However, these models
adopt different perspectives of impact ranging from dynam-
ical systems to game theory to behavioral psychology, which
makes it challenging to compare and integrate these models.

The goal of our work is to propose a unified framework
that allows us to formulate models from prior work in a
common language. We cast interactions between the recom-
mender system, viewers, and creators as a dynamical sys-
tem with measurements and states that can vary over time
(Section 2). Then, we formulate several models on viewer
dynamics and creator dynamics within this common mathe-
matical framework, which allows us to compare the formal-
izations and perspectives taken in different papers (Sections
3-4). We hope that our unification and analysis of prior work
aids the development of mathematical models for recom-
mender system dynamics and furthers the design and evalu-
ation of recommender systems.

2 Background and Framework
We propose the following unified model for interactions be-
tween a platform which hosts and recommends content, indi-
viduals who view the content, and individuals who create the
content. We refer to these three distinct types of stakehold-
ers as the recommender, viewers, and creators respectively.
The overall system consist of a single platform, m ∈ N+

viewers, and p ∈ N+ content creators.
At time t, there are various observable quantities, which

we refer to as measurements and denote by yt. We fur-
ther distinguish measurements pertaining to the three enti-
ties of interest, so yt = (yrt , y

v
t , y

c
t ). Here, yrt is the most
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Figure 1: Illustration of recommendation systems as the in-
terconnection of three distinct entities, each described as a
dynamical system.



recent recommendation, yvt = (yv1,t, · · · , yvm,t) contains the
most recent observed viewer behaviors (e.g., likes, clicks,
watch time, replies) for each of the m viewers, and yct =
(yc1,t, · · · , ycp,t) contains the observed creator behavior (e.g.,
attributes of the created content) for each of the p creators.

To describe models of long term impact and dynamics,
we additionally consider an internal state xt. Similarly to
measurements, we distinguish the state variables of the three
types of stakeholders. The recommender’s state is xr

t , the
viewers’ states are xv

t , and the creators’ states are xc
t . These

states may not be directly observable to the recommender.
However, the state at time t determines the measurement at
t, subject to corruption by the measurement noise vt. Addi-
tionally, the state contains sufficient information to predict
its own evolution, aside from process noise wt. That is, the
state at t+1 depends on the state at t and the measurement at
t, along with the unobserved wt. We now detail how the in-
teractions between the recommender, viewers, and creators
shape the states and measurements over time.

Recommender. Recommendations are selected according
to a recommendation function gr, which takes as input the
recommender system’s internal state. Without loss of gen-
erality, we simply define the recommender state as xr

t =
[y1, . . . , yt−1], which is the history of observed measure-
ments (but not unobservables). This state definition captures
the fact that most recommendation algorithms are trained on
historical data of viewer and creator behaviors. In addition
to the state, we allow recommendations to depend on a noise
variable vt to model randomness in the selection or training
algorithms. In particular, for i ∈ [m], the output gr(i;xr

t , vt)
describes the content shown to viewer i. The content comes
from an available content pool, which is defined with respect
to creator outputs yct . Then the internal state xr

t+1 is updated
by appending the current measurement yt to the previous in-
ternal state xr

t .

Viewers. In any recommendation system, the recommen-
dations yrt impact the observed viewer behaviors yvt , due to
the simple fact that viewers react to the recommended con-
tent. Many of the papers we survey consider an additional
level of impact: effects on the viewers’ internal state xv

t .
Such effects are motivated by a variety of phenomena, rang-
ing from boredom to opinion formation (Section 3). The for-
mal model is as follows: for each viewer i ∈ [m], the recom-
mendations impact the evolution of the viewer state, which
evolves according to xv

i,t+1 = fv(x
v
i,t, yt, wt). Here, wt is

process noise capturing unmodelled effects or randomness.
Then the viewer behavior yvi,t = gv(x

v
i,t, y

r
i,t, vt) is governed

by the unobserved viewer state xv
i,t and noise vt. For exam-

ple, many recommendation algorithms personalize by mod-
elling each viewer with a parameter vectors that is learned
from data; these parameter vectors can be seen as modelling
a static internal viewer state.

Creators. Traditional recommendation algorithm design
considers a fixed catalog of content. In this survey, we in-
clude a growing body of work which models the process
of content creation, often through a strategic lens. In these
papers, the creators choose to create content on the basis

of several factors: the recommendations made by the rec-
ommender, the observed behavior of other creators, and the
consumption patterns of viewers.

Most works take the perspective of game theory and
mechanism design, defining utility functions rather than ex-
plicit dynamics. Instead, we represent this implicit depen-
dence through a model of memoryless state evolution. More
formally, for each j ∈ [p], the internal creator state evolves
as xc

j,t+1 = fc(yt, wt) where wt is process noise captur-
ing unmodelled effects or randomness. Then the content that
is available at time t, described by the observable attributes
ycj,t, is determined by the internal state ycj,t = gc(x

c
j,t, vt)

and possibly noise vt.

3 Models of Viewer Dynamics
Of the works included in our survey, the majority are con-
cerned with how viewers are impacted by the recommenda-
tions they receive. In these papers, the content pool is mod-
elled as unchanging, or changing over time independently
from the recommendations and viewer behaviors. In other
words, xc

t is not dependent on yt. Therefore, we focus our
discussion on the representation of xv

t , its evolution as de-
scribe by the model fv , and its relationship to measurements
yvt . We split our discussion into three categories: preference
shifts, transient phenomena, and behavioral shifts.

Preference shifts
Many works consider settings in which recommendations
change viewer preferences. In these settings, the primary
state representation xv

i,t models a viewer preference, which
determines the measured behavior yvi,t, e.g. rating or click.
Below, we present an overview of these works and provide
detailed mathematical definitions in Appendix A.

State Definition. Many papers model the viewer prefer-
ence as a vector containing affinities for each discrete piece
of content (or type of content) in the catalog [23, 1, 6, 29,
13]. Others model the preference more continuously, as a
vector in a latent space [12, 34, 11, 8, 24]. In this latter cate-
gory, the recommended content also has a latent representa-
tion in the same vector space. In either case, the preference
state indicates how much a viewer enjoys, agrees with, or
is drawn to particular pieces of content, types of content, or
content with particular characteristics. In particular, the pref-
erence determines viewer response to recommendations: a
continuous valued rating [12, 34, 11], the choice of an item
from the recommended set [23, 1, 6, 8] or from the entire
catalog [29], or the acceptance or rejection of a single rec-
ommendation [24, 13].

State Update. Viewer preferences change in response to
the recommendations, as a result of either exposure or inter-
action. In some papers, the preference is influenced by the
mere exposure to content in a slate [23, 29, 8, 13] or sin-
gle recommendation [24, 13, 11, 34], while in others, the
update depends on the resulting viewer selection [1, 6] or
behavior [12].

In many works, the preference shifts towards the rec-
ommended content [24, 8, 29, 11], increasing the viewer’s



affinity for similar content. Lu et al. [34] consider both “at-
traction” and “repulsion”. In Jiang et al. [23], affinity in-
creases for selected content and a decreases for the recom-
mendations that are not selected. Dean and Morgenstern [12]
adopt a model of “biased assimilation” in which preferences
shift towards recommendations that the viewer enjoys and
away from recommendations that they dislike. Evans and
Kasirzadeh [13] model a similar effect in a simplified exam-
ple of political polarization. The operant conditioning model
of Curmei et al. [11] includes a scalar “memory” of previous
ratings which determines a “surprise” factor that modulates
the magnitude and direction of the preference shift. In addi-
tion to preference, Krueger, Maharaj, and Leike [29] model
viewer “loyalty” based on recommendation quality. Some
papers consider a general class of relationships between past
recommendations and affinity [1, 6].

Goal. The works surveyed in this section have a variety
of goals. Several papers are motivated by concerns and cri-
tiques of recommender systems, like echo chambers and po-
larization [34, 23, 24, 12]. These works propose particular
dynamics models, demonstrate a failure mode of traditional
recommendation algorithms, and propose new algorithms to
address these problems. Curmei et al. [11] present dynam-
ics models inspired by psychology literature and propose a
framework for empirical validation. Other works consider
general classes of preference shifts [1, 6] and develop al-
gorithms with provable guarantees. In a similar vein, some
works are interested the general phenomenon of manipula-
tion, and present algorithms for generic reinforcement learn-
ing settings [29, 8, 13]. In these works, particular preference
models are introduced as an example in simulation experi-
ments.

Transient phenomena
A recent line of work studies how viewer preferences may
evolve in a transient fashion, showing as boredom and ha-
bituation effects of recommendations. In these settings, de-
pending on how recommenders present content to the view-
ers, their preferences may shift and later return to their ini-
tial state. In all these papers, the viewer state xv

i,t represents
an internal state that governs viewer preference (or viewer
preference itself) and the measurement yvi,t is either view-
ers’ feedback (e.g., ratings or clicks) or viewers’ utilities.
We offer a high-level overview of this literature and provide
detailed mathematical definitions of viewer models in Ap-
pendix B.

State Definition. The viewer state xv
i,t can sometimes be

summary statistics of viewers’ past consumption history. For
example, the viewer state is modeled as the number of times
each recommendation category is presented [33]; as the time
elapsed since the last recommendation of a recommenda-
tion category [27, 37, 9]; as switches among recommen-
dation categories [30, 14]; or as the entire past interaction
history a viewer has experienced [38]. In other settings, the
viewer’s internal state is unobserved to recommenders. For
example, the internal viewer state represents an unknown
viewer type [2]; or unobserved viewer satiation/memory to-
wards different categories [31, 25].

State Update. Viewer preference models in this line of
work capture different aspects of transient preference shifts.
One growing line of work models boredom or satiation in
recommender systems under a multi-armed bandits setting
[33, 27, 37, 31, 25]. The updates of viewers’ internal states
capture the accumulation of memory that the viewer has
over past recommendation categories. The expected mea-
surement E[yvi,t] decreases (indicating the disinterest of the
viewer towards the recommended category) as viewer bore-
dom accumulates towards the recommended category. Un-
der the same multi-armed bandits setting, the updates in
Laforgue et al. [30], Foussoul et al. [14] capture that viewer
preference may be seasonal or periodic; the dynamics in
Ben-Porat et al. [2] model the phenomena that viewers may
leave the platform upon being recommended unsatisfying
content. Finally, in the most general setting, the state up-
dates in Saig and Rosenfeld [38] appends the viewer’s cur-
rent interaction to the viewer’s interaction history with the
recommender system.

Goal. The overall goals for these works consist of two
components: (1) uncover ways of estimating viewer prefer-
ence dynamics [31, 37]; and (2) find optimal recommender
policy gr for viewers with these transient preference shifts
[31, 27, 33, 37, 30, 14, 2, 38, 25]. The objective for finding
the optimal recommender policy is often defined as a func-
tion depending on ({yvi,t}i∈[n])t. Depending on the semantic
meaning of yvi,t, the optimal recommender policy could be
either viewer-optimal (e.g., maximizing viewers’ utility) or
platform-optimal (e.g., maximizing viewers’ click-through
rates).

Behavioral shifts
A handful of papers move beyond viewer preferences and
investigate broader forms of viewer behavioral shifts. These
works consider several different mechanisms influencing be-
havior, including behavioral weaknesses of viewers [26] and
strategic reasoning [35, 17, 10]. Below, we present a high-
level overview of these models and defer further details to
Appendix C.

State Definition. To encapsulate all of these nuances, the
viewer state is represented as more than just a preference.
Different papers, which examine different phenomena, de-
fine the state in different ways. Kleinberg, Mullainathan,
and Raghavan [26] propose a dual-process model of viewer
behavior reminiscent of psychology and behavioral eco-
nomics, where viewers are modelled as following one of
two consumption processes. In this model, the state is rep-
resented as the consumption process that the viewer is cur-
rently operating in. Mansour, Slivkins, and Syrgkanis [35]
explore strategic settings in which we can decompose the
internal viewer state xv

i = (xv,P
i , xv,B

i ) into viewers’ pref-
erence xv,P

i and viewer’s information set or belief xv,B
i in

a Bayesian, game theoretic sense. Haupt, Hadfield-Menell,
and Podimata [17], Cen, Ilyas, and Madry [10] study view-
ers strategically deciding what content to engage with to cu-
rate their feed: in this model, the viewer state xv represents a
vector-valued decision about which content to engage with.



State Update. The state update also varies across papers.
For example, Kleinberg, Mullainathan, and Raghavan [26]
model viewers as probabilistically switching between con-
sumption processes depending on the content properties.
Mansour, Slivkins, and Syrgkanis [35] consider independent
individual viewers who sequentially interact with the sys-
tem once, but make choices after Bayesian updates based
on recommendation yri,t. Haupt, Hadfield-Menell, and Podi-
mata [17], Cen, Ilyas, and Madry [10] focus on game the-
oretic equilibria, which can sometimes be reached through
best-response dynamics.

Goal. The overall goal of these works is to examine viewer
behavioral shifts that are not captured by preferences alone.
More specifically, these works formalize negative outcomes
which arise from these behavioral nuances, and design op-
timal system policies that prevent these negative outcomes.
Negative outcomes are defined with respect to a variety of
different values, such as fairness and bias [17], viewer wel-
fare [26][17, 10], or content exploration [35].

4 Models of Creator Interactions
A growing body of work has studied how the recommen-
dation algorithm can shape creator behaviors, with a focus
on how the recommendation algorithm implicitly shapes the
landscape of content available on the platform. Although
these papers take the perspective of game theory, we recast
these papers within the dynamical systems framework in
Section 2. The underlying model is that creators—who com-
pete to win recommendations—strategically design their
content to appear in as many recommendations as possible.

When casting these game-theoretic models within our dy-
namical system frameworks, the state corresponds to the cre-
ator action and the state update is implicitly specified by
a creator reward function and recommender function. More
specifically, the internal creator state xc

j,t = acj,t is specified
by the creator’s actions acj,t ∈ A about the content that they
intend to create. (In these models, the vector [ac1,t, . . . , a

c
p,t]

of internal states of the p creators determine the content
landscape at time step t.) The creator’s state evolves as a
best-response fc to the creator utility function. In these mod-
els, the creator utility depends on (1) the creator reward
function h which depends on actions (i.e., aj,t) and measure-
ments (i.e., yrt and yvt ) and (2) the recommender function gr
which depends on the recommender state. Different papers
differ in the state definition (as specified by the action space)
as well as state updates (as specified by the reward function
and recommender function). Below, we present a high-level
overview of these models and defer further details to Ap-
pendix D.

State Definition (Action Space). The geometry of the ac-
tion space A varies from 1-dimensional, to finite, to high-
dimensional across different papers. For example, Ghosh
and McAfee [16] take A = [0, 1] to capture quality, and
Buening et al. [7] take A = [0, 1] to capture feedback prob-
ability. Ben-Porat and Tennenholtz [4] take A to be any finite
space which captures variation in content type. Jagadeesan,
Garg, and Steinhardt [22], Hron et al. [19] take A to be the

d-dimensional space Rd or nonnegative orthant Rd
≥0. The

dimensions correspond to content attributes and capture the
embeddings learned by (nonnegative) matrix factorization.
Yao et al. [41] consider general subsets of Rd.

State Update (Reward Function). The specifics of the
creator reward function h vary across papers, with differ-
ent papers emphasizing different aspects of exposure, en-
gagement, costs, and nonmyopicness. Ben-Porat and Ten-
nenholtz [4], Hron et al. [19] take the creator reward to
be the number of recommendations won by the creator. Ja-
gadeesan, Garg, and Steinhardt [22] additionally incorporate
production costs which scale with content quality. Immor-
lica, Jagadeesan, and Lucier [21] additionally incorporate
that viewers don’t necessarily consume recommendations
(and modifies the creator reward accordingly). Yao et al. [40]
take the creator reward to be engagement, and Yao et al. [41]
considers more general score-based functions. Ghosh and
McAfee [16] provide monetary prizes to creators based on
the creator’s rank along magnitude (quality) and takes the
reward to be the prize minus production costs. Ghosh and
Hummel [15], Hu et al. [20] focus on non-myopic creators
accounting for the reward from future time steps when com-
puting their best response, and Hu et al. [20] captures that
creators can take different actions at each time step.

State Update (Recommender Function). The specifics
of the recommendation function gr also differ across pa-
pers, with some works focusing on standard recommenda-
tion algorithms and other works taking a platform design
perspective. For example, motivated by matrix factorization,
Jagadeesan, Garg, and Steinhardt [22], Hron et al. [19] fo-
cus on recommendations specified by the inner product of
content and viewer preference vectors, and Hron et al. [19]
incorporate noise. Yao et al. [40] consider recommendations
which output a slate of the top K pieces of content accord-
ing to an engagement metric. To capture interactions across
many time steps, Ghosh and Hummel [15], Hu et al. [20]
consider stateful recommendation functions based on multi-
armed bandit algorithms. Taking a design perspective, Ben-
Porat and Tennenholtz [4], Yao et al. [41] construct rec-
ommendation functions which achieve fairness and welfare
properties.

Goal. Since these papers take the perspective of game the-
ory, the primary focus is on the fixed points of the dynam-
ical system (which corresponds to equilibria of the game
between creators), rather than on dynamics. Different pa-
pers study different aspects of the fixed points: some works
[4, 19] focus on the existence of fixed points (i.e., equilib-
rium existence); other works [22, 7, 21] examine the struc-
ture of the fixed points (i.e., the equilibrium structure), fo-
cusing on the potential for specialization by creators [22]
and the potential for clickbait [7, 21]; other works study
viewer welfare at the fixed points [15, 20, 41]. Finally, a
handful of works (e.g. [3, 19]) start to bring in best-response
and better-response dynamics and study convergence.
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A Additional details for Preference Shifts in Section 3
We discuss each paper, describe how the states and measurement variables are defined, and provide the formal models of
dynamics and measurement functions.

Notation: Sd−1 is the sphere in d dimensions.
• Lu et al. [34] define for each viewer i the preference state xv

i,t ∈ Rd, the recommended content yri,t ∈ Rd, and the measured
rating yvi,t ∈ R for some latent dimension d. The dynamics capture three possible behaviors: stationary, attraction, and
aversation:

xv
i,t+1


∼ µi,0 w.p. α1

=
∑t

τ=1 wt−τy
r
i,τ w.p. α2

= −
∑t

τ=1 wt−τy
r
i,τ w.p. α3

E[yvi,t] = ⟨xv
i,t, y

r
i,t⟩

• Curmei et al. [11] define for each viewer i the preference state xv
i,t ∈ Rd, the recommended content yri,t ∈ Rd, and the

measured rating yvi,t ∈ R for some latent dimension d. The define dynamics for an effect “mere exposure”

xv
i,t+1 = (1− α)xv

i,t + αyri,t E[yvi,t] = ⟨xv
i,t, y

r
i,t⟩ .

They propose an additional model of “operant conditioning” with state variable augmented to include a memory variable
xv
i,t = (pi,t,mi,t) ∈ Rd × R[

mi,t+1

pi,t+1

]
=

[
δ(mi,t + (pvi,t)

⊤yri,t)
(1− α|si,t|)pi,t + α1si,ty

r
i,t

]
, si,t = arctan

(
1∑t−1

τ=1 δ
τ
mt − (pi,t)

⊤yri,t

)
, E[yvi,t] = ⟨xv

i,t, y
r
i,t⟩

• Dean and Morgenstern [12] define for each viewer i the preference state xv
i,t ∈ Sd−1, the recommended content yri,t ∈ Sd−1,

and the measured rating yvi,t ∈ R for some latent dimension d. The dynamics capture “biased assimilation,” with

xv
i,t+1 ∝ xv

i,t + ηt⟨xv
i,t, y

r
i,t⟩ · yri,t, E[yvi,t] = ⟨xv

i,t, y
r
i,t⟩ .

• Kalimeris et al. [24] define for each viewer i the recommendation including both content and predicted score yri,t =
(si,t, ci,t) ∈ R × C and the measured click yvi,t ∈ {0, 1}. The viewer state xv

i,t ∈ [0, 1] is memoryless and determined
by the predicted score:

xv
i,t =

{
σ(si,t) + (1− σ(si,t)γr(si,t)) si,t > 0

σ(si,t)(1 + γr(si,t)) si,t ≤ 0
, E[yvi,t] = xv

i,t

• Jiang et al. [23] define for each viewer i the preference state xv
i,t ∈ Rp the recommended length k slate of content yri,t ∈ [p]k,

and the measured binary feedback yvi,t ∈ {0, 1}k for p discrete piece of content. They study a class of dynamics models
wherein the preference for an item increases when it is clicked, and decreases when it is recommended but not clicked:

∀ j ∈ yri,t,

{
xv
i,t+1[j] > xv

i,t[j] yvi,t[j] = 1

xv
i,t+1[j] < xv

i,t[j] yvi,t[j] = 0
E[yvi,t[j]] is increasing in xv

i,j [j]

• Agarwal and Brown [1] define for each viewer i the preference state xv
i,t ∈ ∆(p), the recommended length k slate of content

yri,t ∈ [p]k, and the clicked item yvi,t ∈ yri,t for p discrete piece of content. They study a class of dynamics models:

xv
i,t+1 =

1∑t
τ=0 γ

τ
(γxv

i,t + eyv
i,t
) yvi,t = c w.p. ∝ fc(x

v
i,t)

Brown and Agarwal [6] study a similar model for the case that γ = 1.
• Krueger, Maharaj, and Leike [29] define a global “loyalty” state xv

g,t ∈ Rm, for each viewer i the preference state xv
i,t ∈ Rp,

the recommended content yri,t ∈ [p], and the consumed content yvi,t ∈ [p]. A single viewer is active at each timestep
with it ∼ softmax(xv

g,t). Then for this viewer i = it, the loyalty and preference update, and the viewer selects a content
independent of the top recommendation.

xc
g,t+1[i] = xc

g,t[i] + α1x
v
i,t[y

r
i,t], xv

i,t+1 =
xv
i,t + α1eyr

i,t

∥xv
i,t + α2eyr

i,t
∥2

, yvit,t ∼ softmax(xv
it,t)

• Carroll et al. [8] define for each viewer i the preference state xv
i,t ∈ Rd, the recommended content yri,t ∈ ∆(C) for a fixed

content set C = {c1, . . . , cp} ⊂ Rd, and viewer selection behavior yvi,t ∈ C. The state update is influenced by a viewer belief
over the future available content

xv
i,t = x w.p. ∝ exp(β2(λc̄

⊤xv
i,t + (1− λ)c̄⊤p)), c̄ =

∑
c∈C(y

r
i,t[c])

3c∑
c∈C(y

r
i,t[c])

3
, yvi,t = c w.p. ∝ yri,t[c] exp(β1x

v
i,t

⊤c)



• Evans and Kasirzadeh [13] define for each viewer i the belief state xv
i,t ∈ [0, 1]3, recommended content type yri,t ∈ {1, 2, 3},

and viewer response yvi,t ∈ {0, 1}. For either j, j′ = 1, 3 (when xv
i,t[1] is largest element) or j, j′ = 3, 1 (when xv

i,t[3]
is largest element), xv

i,t+1[j] = 1{yri,t = j′}min{ptxv
i,t[j], 1} where pt is sampled of r.v. with E[pt] > 1. yvi,t = 1 w.p.

xv
i,t[y

r
i,t]

B Additional details for Transient Phenomena in Section 3
In this section, most of the papers adopt a multi-armed bandits framework where the learner is the recommender system; the
arms to pull indicates the recommendation (category) to present to the viewer; and the received reward is the feedback given by
the viewer or the viewer utility. We use the notation that for any vector a, a[k] indicates the k-th entry of a. In cases where a is
a one-hot vector representing the action taken by the learner, its non-zero entry represents the arm being pulled.

• In Levine, Crammer, and Mannor [33], there are K recommendation categories/arms; and yri,t is a one-hot vector of K
dimensions representing the recommendations given to viewer i at time t. If yri,t[k] = 1, arm k is pulled. The viewer state
xv
i,t ∈ NK

+ has its k-th entry be the number of time times arm k has been pulled so far. More specifically, xv
i,t+1[k] =

xv
i,t[k] + I{yri,t[k] = 1} and xv

i,0[k] = 0. The expected measurement is the expected reward of pulling an arm: If yri,t[k] = 1,
E[yvi,t] = mk(x

v
i,t[k]) where mk is an arm-dependent monotonically decreasing function of the number of arm pulls.

• In Kleinberg and Immorlica [27], the recommendation yri,t is defined the same as that of Levine, Crammer, and Mannor
[33]. The viewer state xv

i,t ∈ NK
+ has its k-th entry be the number of time steps elapsed since k is pulled last time. More

specifically, xv
i,t+1[k] = xv

i,t[k]+1 if yri,t[k] ̸= 1, xv
i,t+1[k] = 1 if yri,t[k] = 1 and xv

i,0[k] = 0. The expected measurement is
the expected reward of pulling an arm: If yri,t[k] = 1, E[yvi,t] = mk(x

v
i,t[k]) where mk is a concave function of the number

of arm pulls. In Pike-Burke and Grunewalder [37], mk is drawn from a Gaussian process. In Cella and Cesa-Bianchi [9],
mk is a monotonically increasing function.

• In Leqi et al. [31], the recommendation yri,t is defined the same as that of Levine, Crammer, and Mannor [33]. The viewer
state xv

i,t ∈ NK
+ has its k-th entry be the satiation that the viewer has towards arm k. More specifically, xv

i,t+1[k] =
γk(x

v
i,t[k] + yri,t[k]) and xv

i,0[k] = 0 where γk ∈ (0, 1) is the satiation retention factor. The expected measurement is the
expected reward of pulling an arm: If yri,t[k] = 1, E[yvi,t] = bk − λkx

v
i,t[k] where bk ∈ R is the base reward of arm k and

λk ≥ 0 is the exposure influence factor for arm k.

• In Ben-Porat et al. [2], the recommendation yri,t is defined the same as that of Levine, Crammer, and Mannor [33]. The
internal state xv

i,0 ∼ Q is a viewer type belonging to [B] (B ∈ N+) sampled from a prior distribution Q. For t ≥ 1,
xv
i,t = xv

i,t−1 if yvi,t−1 = 1 (i.e., viewer state remains if they have clicked on the recommendation) else xv
i,t = 0 with

probability Lk,xv
i,t

(indicating that the viewer may leave the platform with probability Lk,xv
i,t

). The expected measurement
is the expected click rate when the recommender pulls arm k, i.e., E[yvi,t] = Pk,xv

i,0
· I{xv

i,t ̸= 0} if yri,t[k] = 1.

• In Saig and Rosenfeld [38], the viewer internal state xv
i,t is a set of tuples consisting of their previous interaction with the

platform. That is, xv
i,t = {(bj , yri,j , yvi,j) | j < t} where bj is time when j-th event happens, yri,j is the j-th recommendation

viewer i obtained and yvi,j is the viewer’s reported rating. Depending on the subject of interest, yvi,t is defined differently as
a function of xv

i,t. For example, yvi,t can be (bt − bt−1)
−1, which is viewer’s “instantaneous [response] rate.”

• In Laforgue et al. [30], the recommendation yri,t is defined the same as that of Levine, Crammer, and Mannor [33]. The
internal state xv

i,t is a K-dimensional vector where xv
i,t[k] = δk(x

v
i,t−1[k], y

r
i,t−1) where δk is a transition function that

tracks arm switches. The expected measurement when yri,t[k] = 1 is E[yvi,t = mk(x
v
i,t[k]) where mk is an arm-wise reward

function. In Foussoul et al. [14], mk is assumed to be monotonic.
• In Khosravi et al. [25], the recommendation yri,t is defined the same as that of Levine, Crammer, and Mannor [33]. The

viewer internal state is real-valued, i.e., xv
i,t ∈ R. If yri,t[k] = 1, xv

i,t = xv
i,t−1 + λ(bk − xv

i,t−1) where bk is an arm-wise
constant and λ is a universal constant. If yri,t[k] = 1, then E[yvi,t] = rk · xv

i,t where rk ∈ R is an arm-wise constant.

C Additional details for Behavioral Shifts in Section 3
The models in this section vary substantially from paper to paper.

• Kleinberg, Mullainathan, and Raghavan [26] define two systems with their own logics and utility distributions U and V ,
which may be correlated. In system 1, item t produces utility ut ∼ U ; if ut > 0, the viewer continues to next round,
otherwise, the viewer’s continuation to the next round is determined by System 2. With System 2, item t produces utility
vt ∼ V . Leaving the system (not consuming t) gives utility W , with net utility W − vt. With probability q > 0, the viewer
continues. With probability 1− q, the viewer discontinues.

• Mansour, Slivkins, and Syrgkanis [35] examine Bayesian agents who separately and sequentially choose to pull bandit
arms once; each arm i has reward drawn from D(µi) for expected reward µi and µ = (µ1, ..., µm) drawn from known



prior P0 (which is common knowledge). The recommender system recommends σt to viewer t, and the viewer chooses
argmaxi E[µi|σt] (with some additional conditions on past viewers having followed recommendations).

• Haupt, Hadfield-Menell, and Podimata [17] model viewers having personal preference type θ (a preference distribution
over content types j ∈ [d]) and observe system-chosen recommendation policy g mapping consumption frequencies to
recommendation types. Viewers strategically choose a “consumption plan” (i.e. consumed distribution over [d] to feed
into the algorithm). They explore several recommender system interventions, including an “incognito mode” where the
recommendation function is restricted. They focus on a complete-information setting where such an intervention is known,
but explicitly suggest a more general incomplete information setting with limited knowledge of the recommendation function
for future work.

• Cen, Ilyas, and Madry [10] similarly use a game-theoretic model. A viewer has a memoryless best-response function fv

mapping recommendations yr to a distribution xv , from which their behavior yv is drawn.

D Additional details for Content Creators in Section 4
The models for creator behavior can be broken down into two categories: models which focus on a single time step and treat
the system as myopic, and models which consider non-myopic interactions across multiple time steps. In all of these models,
the viewers are static.

Myopic models. We describe the myopic models ([16, 4, 3, 22, 19, 40, 41, 21]) where the creator and recommender system
do not factor in the future impacts.

Before diving into the papers, we introduce some formalisms. Creator j’s internal state xc
j,t = acj,t is specified by the

creator’s internal action acj,t ∈ A about what content to create. The state update fc captures the creator’s best-response to their
utility function uj(a; a

c
−j,t, y

r
t ) which depends on the action a of a creator j, the actions of other creators j′ ̸= j, and the

recommendations yrt . In particular, the state update is defined by the best-response

fc(yt, wt) = argmaxa∈Auj(a; a
c
−j,t, yt).

The state update implicitly depends on a creator reward function h(j, yrt , y
v
t , a) (which captures the reward that creator j receives

from the measurements yrt and yvt along with production costs of their action a) and the recommender function gr(i, x
r
t , vt)

(which maps the recommender state, which includes the content landscape, to measurements). In the myopic models, the
recommender function gr(i;x

r
t , vt) only depends on yt−1 and vt, and notably not on [y1, . . . , yt−2]. We thus introduce the

simplified function g′r(i; yt−1, vt) to denote recommendations.
We specify each paper in terms of how it defines the action space A, the reward function h, and the recommender system g′r:

• Ghosh and McAfee [16] take A = [0, 1] (capturing quality). The recommender function g′r awards prizes to creators based
on their quality rank. The reward h captures prize for creator j according to the recommendation ranks given by yrt minus a
1-time cost of production c(a). The model additionally incorporates participation decisions.

• Ben-Porat and Tennenholtz [4] take A to be a finite set. The recommender function is a randomized function g′r mapping
each viewer to a content in yct or no content (denoted by ∅). The reward h captures the number of recommendations in yrt
assigned to creator j.

• Ben-Porat, Rosenberg, and Tennenholtz [3] take A to be a finite set capturing content topics. When a given creator j writes
on a topic a ∈ A, their article is a predetermined quality qa,j . Each viewer seeks a particular topic a ∈ A of content.
The recommender function g′r assigns a viewer seeking a topic a the content with highest quality of that topic: that is,
argmaxj∈[p]qa,j · I[a = acj,t]. The reward h captures the number of recommendations in yrt assigned to creator weighted by
topic-specific weights.

• Jagadeesan, Garg, and Steinhardt [22] take A = RD
≥0 to be D-dimensional content embeddings in the nonnegative orthant.

Each viewer i has a fixed preference vector ui ∈ RD
≥0. The recommender function g′r assigns the viewer i the content

created by creator j that maximizes the inner product ⟨ui, a
c
j,t⟩: that is, argmaxj∈[p]⟨ui, a

c
j,t⟩. The reward h is the number of

recommendations won minus the 1-time cost of production specified by c(a) = ||a||β .
• Hron et al. [19] take A to be D-dimensional content embeddings in the unit sphere

{
x/||x||2 | x ∈ RD

}
. Each viewer i has

a fixed preference vector ui ∈ RD. The recommender function g′r assigns viewer i the content created by creator j with
probability proportional to eη⟨ui,a

c
j,t⟩. The reward h is the number of recommendations won.

• Yao et al. [40] take A ⊆ RD to be an abstract set. There is a set of viewers X ⊆ RD. The recommender system computes
scores for each content and viewer pair and assigns the top K recommendations to be the top K scores. The reward h is the
sum of the scores of the recommendations won.

• Yao et al. [41] take A ⊆ RD to be an abstract set. There is a set of viewers X ⊆ RD. The recommender system computes
scores for each content and viewer pair and determines recommendations g′r based on an arbitrary function of these scores
and the viewer characteristics. The reward h captures the reward received by the creator (specified by a general reward
function of the scores and the viewer) minus the production cost c(a).



• Immorlica, Jagadeesan, and Lucier [21] take A = R2
≥0 to be 2-dimensional content embeddings capturing a clickbait

dimension and quality dimension. Each viewer i has a fixed type ti > 0 representing their tolerance for clickbait and only
engages with content if they derive nonnegative utility (viewer utility increases with quality and decreases with clickbait).
The recommender function gr optimizes an engagement metric (which is misaligned with viewer welfare) and assigns viewer
i the content that maximizes viewer i’s engagement. The reward h is the number of recommendations won (that viewers
actually engage with) minus a 1-time cost of production.

We specify the form of the creator utility function uj . The creator utility function uj anticipates the impact of the creator’s
actions on recommendations in the next time step, which make it slightly messy to formalize in the dynamical system frame-
work, but which we can nonetheless formalize as follows. At time step t, creators j first assesses how their actions a and the
actions of other creators acj,t would affect the content landscape

ỹct (a) := [ac1,t, a
c
2,t, . . . , a

c
j−1,t, a, a

c
j+1,t . . . , a

c
p,t].

Let the measurements with this content landscape be denoted by ỹt(a). Then, the creator assesses the impact on the downstream
recommendations

ỹrt+1(a) := [g′r(1; ỹt(a)), . . . , g
′
r(n; ỹt(a))]

and observed viewer behaviors
ỹvi,t+1(a) = gv(x

v
i , ỹ

r
i,t+1(a), vt),

and computes their utility:
uj(a; a

c
−j,t, yt) := h(j, ỹrt+1(a), ỹ

v
t+1(a), a).

Non-myopic models. We next turn to the non-myopic models ([15, 20, 7]). The dynamic models of content creator behavior
are slightly harder to formulate, since the recommender function and creators are non-myopic. The recommender function gr
is modelled as a multi-bandit algorithm. Creators account for their (potentially discounted) cumulative reward when selecting
actions.
• Ghosh and Hummel [15] consider a setup where each creator j enters the platform at a potentially different time step. The

action set is A = [0, 1] and captures content quality. The recommender system is a stochastic multi-armed bandit algorithm.
The reward h is the number of recommendations to be won at the current round and in the future minus the cost of production
c(a). The model additionally incorporates participation decisions.

• Hu et al. [20] consider a setup where all creators arrive at every time step and can create new content at each time step. The
action set is A ∈ (RD

≥0)
T . The recommender system is an adversarial multi-armed bandit algorithm. The reward h is the

cumulative discounted sum of the number of recommendations to be won minus the cost of production at each time step.
Production costs at each time step t are specified by c(at) = ||at||β . This model makes the simplifying assumption that each
creator chooses the content that they will produce at every time step at the beginning of the game.

• Buening et al. [7] consider a setup where creators all arrive at every time and each choose the feedback rate a ∈ A = [0, 1]
of their content at the beginning of the game. The recommender system is a multi-armed bandit algorithm that accounts for
probabilistic feedback. The reward h is the total number of recommendations won.


