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Abstract
We introduce EXIT, an extractive context001
compression framework that enhances both002
the effectiveness and efficiency of retrieval-003
augmented generation (RAG) in question an-004
swering (QA). Current RAG systems often005
struggle when retrieval models fail to rank the006
most relevant documents, leading to the inclu-007
sion of more context at the expense of latency008
and accuracy. While abstractive compression009
methods can drastically reduce token counts,010
their token-by-token generation process signifi-011
cantly increases end-to-end latency. Conversely,012
existing extractive methods reduce the latency013
but rely on independent, non-adaptive sentence014
selection, failing to fully utilize contextual in-015
formation. EXIT addresses these limitations016
by classifying sentences from retrieved docu-017
ments—while preserving their contextual de-018
pendencies—enabling parallelizable, context-019
aware extraction that adapts to query complex-020
ity and retrieval quality. Our evaluations on021
both single-hop and multi-hop QA tasks show022
that EXIT consistently surpasses existing com-023
pression methods and even uncompressed base-024
lines in QA accuracy, while also delivering sub-025
stantial reductions in inference time and token026
count. By improving both effectiveness and ef-027
ficiency, EXIT provides a promising direction028
for developing scalable, high-quality QA solu-029
tions in RAG pipelines 1.030

1 Introduction031

Retrieval-Augmented Generation (RAG) (Lewis032

et al., 2020; Khandelwal et al., 2020) is the task033

of enhancing Large Language Models (LLMs) re-034

sponses with relevant external contexts or docu-035

ments. By grounding answers in evidence, RAG036

systems have gained much attention for mitigating037

hallucination issues (Ram et al., 2023; Li et al.,038

2023b) and improving factual reliability (Jeong039

et al., 2024; Xia et al., 2024b).040

1We will make our code publicly available upon acceptance
of this paper.
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Figure 1: Average QA accuracy (EM) and efficiency
(Total Latency) for various compression methods using
Contriever-MSMARCO as the retriever and Llama-3.1-
8b-Instruct as the reader.

However, they face significant challenges in prac- 041

tical deployment, as retrieval models sometimes 042

fail to rank the most relevant documents at the 043

top (Robertson and Zaragoza, 2009; Izacard et al., 044

2022). One potential solution is to retrieve a larger 045

set of documents to ensure the coverage of the 046

necessary information, but this approach compro- 047

mises both effectiveness and efficiency. Specifi- 048

cally, for effectiveness, LLMs often struggle with 049

processing long contexts, overlooking critical in- 050

formation located in the middle of contexts (Liu 051

et al., 2023). Additionally, irrelevant information 052

in retrieved documents can act as distractors, sig- 053

nificantly degrading the overall QA performance 054

(Shi et al., 2023a; Li et al., 2023a; Wu et al., 2024). 055

From an efficiency perspective, increasing the con- 056

text size raises inference latency—due to quadratic 057

complexity in attention computation (Xia et al., 058

2024a)—and API costs tied to input length2. More- 059

over, the context window limitations inherent in 060

LLM architectures set strict upper bounds on the 061

maximum input size. 062

To address these challenges, context compres- 063

sion has emerged as a promising solution, condens- 064

ing essential information from multiple retrieved 065

contexts through either abstractive or extractive ap- 066

proaches. While they can reduce inference time and 067

filter out irrelevant information, both approaches 068

2https://openai.com/api/pricing/
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still have notable drawbacks. Specifically, abstrac-069

tive compression methods—often implemented via070

autoregressive generation—summarize or rewrite071

documents into a single condensed passage (Li072

et al., 2023c; Xu et al., 2024; Yoon et al., 2024;073

Li et al., 2024; Wang et al., 2023), significantly074

increasing end-to-end latency due to their token-075

by-token generation process. For instance, as illus-076

trated in Figure 1, CompAct (Yoon et al., 2024), a077

representative abstractive approach, takes over 8078

seconds to process just five documents for a sin-079

gle query, whereas using the original document080

without compression takes only 1 second.081

On the other hand, extractive compression ap-082

proaches can offer a more efficient alternative (Xu083

et al., 2024; Jiang et al., 2023, 2024), by selecting084

relevant textual segments (e.g., sentences, or even085

token-level excerpts) directly from retrieved doc-086

uments. This strategy reduces both compression087

time and overall latency. However, current extrac-088

tive methods have yet to reach their full potential in089

terms of effectiveness (Choi et al., 2021; Pan et al.,090

2024). They often rely on rigid selection criteria091

that do not adapt to variations in query complex-092

ity or the quality of retrieved documents, and they093

frequently neglect to fully leverage the broader con-094

text when choosing which tokens or sentences to095

retain. Specifically, as illustrated in Figure 1, while096

extractive approaches such as RECOMP-Extr (Xu097

et al., 2024) achieve minimal compression time,098

their inability to dynamically adjust selection pro-099

cesses results in suboptimal QA performance.100

Therefore, in this work, we propose a novel com-101

pression framework for RAG, EXtractIve ContexT102

compression (EXIT), designed to enhance both ef-103

fectiveness and efficiency by improving efficiency104

through an extractive compression strategy and en-105

hancing effectiveness through dynamic, context-106

aware sentence selection. Specifically, as shown in107

Figure 2, EXIT operates in three stages: (1) split-108

ting retrieved documents into sentences, (2) per-109

forming parallelizable binary classification (“Yes”110

or “No”) on each sentence to assess its relevance111

while considering its full document context, rather112

than evaluating them independently, and (3) recom-113

bining selected sentences while preserving their114

original order. Therefore, as shown in Figure 1,115

EXIT frames context compression as a sentence116

classification problem, enabling it to outperform117

both compression methods and the uncompressed118

baseline in terms of speed. Specifically, it reduces119

processing time from several seconds to about 1120

second. Moreover, by leveraging context-aware and 121

adaptive sentence selection, EXIT also surpasses 122

other extractive methods in accuracy. Also, we note 123

that EXIT operates as a plug-and-play module that 124

can be seamlessly integrated into any existing RAG 125

pipeline without architectural modifications. 126

We evaluate EXIT on both single-hop QA tasks 127

(NQ (Kwiatkowski et al., 2019), TQA (Joshi et al., 128

2017)) and multi-hop QA tasks (HQA (Yang et al., 129

2018), 2WikiMultiHopQA (Ho et al., 2020)). Ex- 130

perimental results demonstrate that EXIT not only 131

improves effectiveness over both abstractive and 132

extractive compression baselines but also signif- 133

icantly reduces latency compared to abstractive 134

methods and the uncompressed baseline. 135

Our contributions are as follows: 136

• We identify and address the key weaknesses 137

of existing context compression methods: ab- 138

stractive approaches incur prohibitive latency, 139

while traditional extractive methods rely on 140

rigid, non-adaptive content selection. 141

• We propose EXIT (EXtractIve ContexT Com- 142

pression), an extractive compression frame- 143

work that dynamically adjusts to query com- 144

plexity and retrieval quality. 145

• We demonstrate, through extensive experi- 146

ments, that EXIT surpasses previous compres- 147

sion methods and uncompressed retrievals, im- 148

proving QA performance while significantly 149

reducing both token counts and end-to-end 150

latency. 151

2 Related Work 152

Retrieval-Augmented Generation. The RAG 153

pipeline typically follows a naive retrieve-then- 154

generate process, where a single-step retrieval pre- 155

cedes generation (Lewis et al., 2020; Shi et al., 156

2023b; Ram et al., 2023). However, a simple single- 157

step retrieval often fails to rank relevant docu- 158

ments at the top and struggles to handle multi- 159

hop queries requiring multiple pieces of informa- 160

tion. To address these, RAG pipelines have evolved 161

into iterative, recursive, and multi-hop retrieval ap- 162

proaches (Shao et al., 2023; Trivedi et al., 2023; 163

Khattab et al., 2022), which require multiple re- 164

trievals for a single query. While these methods im- 165

prove information coverage, they also increase end- 166

to-end latency from retrieval to generation, reduc- 167

ing the overall efficiency of the pipeline. Moreover, 168
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Query (q) Answer (a)Retriever Compressor Reader LLM

Query Ezzard Charles was a world champion in which sport?

Step 1: Sentence-Level Decomposition
Step 3: Document Reassembly

Query

Ezzard Charles Ezzard Mack 

Charles, known as the 

Cincinnati Cobra (July 7, 

1921 – May 28, 1975) was an 

American professional boxer 

and World Heavyweight 

Champion

The following year, he 

outpointed his idol and former 

World Heavyweight 

Champion Joe Louis to 

become the recognized Lineal 

Champion

Reader LLM

Answer Boxing 

Yes

YesStep 2: Context-Aware Relevance Classification

the seventh greatest 

Heavyweight of all time. No

Ezzard Charles Ezzard Mack 

Charles, known as the 

Cincinnati Cobra (July 7, 1921 – 

May 28, 1975) was an American 

professional boxer and World 

Heavyweight Champion

+

[1] "Ezzard Charles“

the seventh greatest 

Heavyweight of all time. 

Ezzard Charles Ezzard 

Mack Charles…

…He was born in 

Lawrenceville, Georgia, but 

is commonly thought of as a 

Cincinnatian. Charles 

graduated from Woodward 

High School in
Charles graduated from 

Woodward High School in

Yes

+

+

+ No

Compressor

Top-k Retrieved  Documents

[1] "Ezzard Charles“

 the seventh greatest Heavyweight of all time. Ezzard 

Charles Ezzard Mack Charles, known as the 

Cincinnati Cobra (July 7, 1921 – May 28, 1975) was 

an American professional boxer and World 

Heavyweight Champion…

…He was born in Lawrenceville, Georgia, but is 

commonly thought of as a Cincinnatian. Charles 

graduated from Woodward High School in

...

the seventh greatest Heavyweight of all time.

Ezzard Charles Ezzard Mack Charles, known as 

the Cincinnati Cobra (July 7, 1921 – May 28, 

1975) was an American professional boxer and 

World Heavyweight Champion

Charles graduated from Woodward High School 

in

Ezzard Charles was a world 

champion in which sport?

Ezzard 

Charles was 

a world 

champion in 

which sport?

Query

...
...

...

Relevance 

Score (𝒓𝒊𝒋)
>

Threshold 
(τ)

Yes No

Figure 2: Overview of our framework. First, the retrieved document is split into sentences. Next, each sentence
is classified as either “Yes" or “No" using the Compressor. Finally, sentences with scores above the threshold are
recombined in their original order to complete the compression.

increasing the document length or the number of169

retrieved documents as alternative solutions to en-170

sure coverage further exacerbates efficiency issues171

in these complex retrieval approaches. This not172

only heightens inference costs (Xia et al., 2024a)173

but also makes it harder to focus on critical de-174

tails within the documents (Liu et al., 2023). In175

response, reducing the tokens in the retrieved docu-176

ments while keeping key information in them has177

gotten attention to complement the efficiency issue178

of the RAG pipeline.179

Context Compression. Context compression has180

emerged as a practical remedy for handling increas-181

ingly large prompt lengths in RAG pipelines. Ex-182

isting approaches commonly fall into soft or hard183

compression. Soft compression focuses on shorten-184

ing embedding vectors at the token level (Wingate185

et al., 2022; Mu et al., 2023; Ge et al., 2024; Cheva-186

lier et al., 2023; Cheng et al., 2024), but requires187

extensive training and architectural changes, mak-188

ing it unsuitable for black-box LLMs.189

Hard compression, by contrast, removes non-190

essential textual content directly (Li et al., 2023d;191

Jiang et al., 2023), offering a plug-and-play so-192

lution compatible even with API-based models193

such as ChatGPT (OpenAI, 2023). Hard compres-194

sion techniques are further divided into abstrac-195

tive and extractive methods. Abstractive methods196

employ autoregressive models to generate query-197

focused summaries, thus drastically reducing to-198

ken counts at the cost of additional latency and199

potential hallucinations (Zhao et al., 2020). For 200

example, RECOMP-Abst (Xu et al., 2024) uses a 201

T5-based summarizer for token reduction but re- 202

quires dataset-specific training and slows inference. 203

CompAct (Yoon et al., 2024) and Refiner (Li et al., 204

2024) take this approach further by leveraging even 205

larger LLMs with 7B parameters, compounding la- 206

tency issues and increasing resource demands. 207

Extractive methods select salient segments (e.g., 208

sentences, or tokens) directly from the retrieved 209

documents. This avoids the autoregressive bottle- 210

neck and mitigates hallucinations. RECOMP-Extr 211

(Xu et al., 2024) is one such example, but its static 212

and context-agnostic selection of only a few sen- 213

tences per document limits its performance. Simi- 214

larly, token-level approaches such as LLMLingua 215

family (Li et al., 2023d; Jiang et al., 2023; Pan 216

et al., 2024; Jiang et al., 2024) can distort seman- 217

tic coherence by removing key entities or splitting 218

essential facts. 219

In short, abstractive methods offer strong com- 220

pression but suffer from latency and potential hal- 221

luciantions, while extractive methods are often 222

rigid and lack context awareness. Our work ad- 223

dresses these limitations by proposing a paralleliz- 224

able, context-aware extractive compression frame- 225

work. It adaptively selects sentences at scale, pre- 226

serving semantic integrity and efficiently balancing 227

accuracy with speed, even in complex, multi-step 228

retrieval scenarios. 229
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3 Method230

In this section, we first present our problem formu-231

lation, the RAG pipeline with a compression stage,232

and our novel compression framework, EXIT,233

which is designed to extract key evidence for an-234

swering in a parallel manner.235

3.1 Problem Formulation236

RAG Pipeline with Compression. Given a query237

q and a document corpus C, a RAG pipeline first238

retrieves Top-k relevant document set D:239

D = {d1, . . . , dk} = Retriever(q, C), (1)240

The retrieved documents within the document set241

D are then processed by a compression module that242

preserves query-relevant information while signifi-243

cantly reducing input length:244

D′ = Compressor(q,D) s.t. l(D′) ≪ l(D), (2)245

where l(·) represents the function calculating the246

number of tokens in the document set. After com-247

pression, the number of tokens included in D′ is248

substantially decreased compared to D. Finally, an249

LLM generates the answer a using the compressed250

set D′ and the given query q:251

a = LLM(q,D′). (3)252

Objectives of Compression. For effective and effi-253

cient compression in the RAG pipeline, three key254

criteria should be satisfied: (1) D′ should contain255

fewer tokens, as fewer tokens lead to shorter answer256

generation times (i.e., reading time); (2) D′ should257

retain the essential evidence required to answer the258

query, ensuring effectiveness; and (3) the compres-259

sion process should be sufficiently fast enough to260

avoid significantly increasing the overall end-to-261

end inference latency.262

3.2 Extractive Context Compression (EXIT)263

To achieve three objectives of the compression step,264

EXIT consists of three main components: sentence-265

level decomposition, context-aware relevance clas-266

sification, and document reassembly.267

Sentence-Level Decomposition. In Step 1 of Fig-268

ure 2, EXIT divides each retrieved document into269

individual sentences using a rule-based sentence270

tokenizer. For each document di ∈ D, we pro-271

duce a sentence set Si = {si1, si2, . . . , sin}, where272

sij is the j-th sentence in document i. Operating273

at the sentence level avoids the fragmentation of274

key phrases and preserves entity relationships that 275

token-level compression techniques (Jiang et al., 276

2023) often disrupt. As a result, the compressed 277

context preserves both syntactic coherence and se- 278

mantic integrity, ensuring that key information is 279

effectively retained. 280

Context-Aware Relevance Classification. To ef- 281

fectively and efficiently filter sentences in D that 282

contain key evidence for answering the question, 283

we design two key components for sentence rel- 284

evance evaluation: document consideration and 285

single-token prediction. First, incorporating the 286

entire document di is essential, as key evidence 287

may be distributed throughout the context rather 288

than confined to a single sentence, ensuring no 289

critical information is missed and enabling effec- 290

tive context compression. Furthermore, as multiple- 291

token generation proposed in the previous work 292

(Yoon et al., 2024; Li et al., 2024) could compro- 293

mise the overall efficiency of the RAG pipeline, we 294

design the lightweight relevance calculation with 295

only single-token prediction with “Yes” and “No” 296

from the query q, document di, and sentence sij . 297

In detail, for each candidate sentence sij , the eval- 298

uation model calculates the relevance score rij of 299

the sentence sij for a given query q and document 300

di as follows: 301

rij =
P (“Yes”|q, di, sij)

P (“Yes”|q, di, sij) + P (“No”|q, di, sij)
(4) 302

where P (·|·) denotes the likelihood of each token 303

from the evaluation model. This relevance calcu- 304

lation is parallelized across multiple sentences, al- 305

lowing them to be evaluated simultaneously. 306

Then, among the sentences in D, EXIT selects 307

sentences with a relevance score exceeding a pre- 308

defined threshold τ , as high relevance scores indi- 309

cate that a sentence contains critical information. 310

Notably, this selection process results in an adap- 311

tive number of sentences in the compressed set 312

D′, rather than a fixed amount. This adaptive ap- 313

proach aligns with prior work (Jeong et al., 2024), 314

recognizing that the complexity of queries and the 315

amount of key information vary across queries. As 316

a result, our sentence selection strategy enables 317

effective compression while ensuring all key evi- 318

dence is included in the compressed set. 319

Document Reassembly. As shown in Step 3 of 320

Figure 2, EXIT reconstructs the compressed doc- 321

ument D′ by concatenating only the selected sen- 322

tences in their original order. Following Hwang 323

et al. (2024), preserving the canonical sentence 324
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sequence maintains logical flow and contextual co-325

herence. This approach ensures that the resulting326

compressed document remains understandable and327

supports accurate downstream reasoning.328

3.3 Classifier Model Training329

Training Strategy. Our goal is to train a relevance330

classifier capable of accurately identifying which331

sentences provide the evidence required to answer332

a query. To approximate real-world complexity,333

we utilize a question-answering dataset that re-334

quires multi-sentence reasoning and offers explicit335

sentence-level annotations of essential information.336

Leveraging these annotations, we model three typ-337

ical retrieval outcomes: (1) content that directly338

provides the needed evidence, (2) passages that ap-339

pear relevant but lack crucial details, and (3) texts340

that are entirely irrelevant.341

Data Sampling. From the annotated dataset, we342

draw positive examples from sentences explicitly343

marked as necessary for producing the correct an-344

swer. Within the same documents, we select hard-345

negative examples—sentences that appear related346

to the query but do not contain the required ev-347

idence—thereby simulating plausible but incom-348

plete retrieval scenarios. Additionally, we sample349

random negatives from unrelated queries, ensuring350

the classifier learns to dismiss off-topic content.351

By maintaining a balanced mix of positives, hard352

negatives, and random negatives, we create a train-353

ing set that captures a wide spectrum of retrieval354

conditions.355

Training Procedure. Each training instance is rep-356

resented as (q, s, d, l), where q is the query, s is a357

candidate sentence, d is the document containing358

s, and l ∈ {“Yes”, “No”} indicates whether s pro-359

vides the required evidence. We employ a binary360

cross-entropy loss function to train the classifier:361

L = −1l=“Yes” logP (“Yes”)−(1−1l=“Yes”) logP (“No”),
(5)362

By exposing the classifier to a balanced and di-363

verse set of retrieval scenarios, we improve its abil-364

ity to generalize and reliably identify sentences that365

contain the critical evidence for answering queries.366

4 Experiment Setups367

We conduct comprehensive experiments to evaluate368

EXIT’s effectiveness and efficiency in context com-369

pression for RAG systems. More implementation370

details of our experiments are in Appendix A.371

Datasets. We evaluate on both single-hop and372

multi-hop question answering datasets: Natu-373

ralQuestions (NQ) (Kwiatkowski et al., 2019) and 374

TriviaQA (TQA) (Joshi et al., 2017) for single- 375

hop QA; HotpotQA (HQA) (Yang et al., 2018) 376

and 2WikiMultihopQA (2WIKI) (Ho et al., 2020) 377

for multi-hop QA. We use the test set for TQA eval- 378

uations and development sets for all other datasets. 379

For the train dataset for the classifier, we exploit the 380

train split of HQA, which has relevant annotations 381

to each sentence in the multiple documents for a 382

query. 383

Model Configuration. Our system consists of 384

three primary components. The retriever employs 385

Contriever-MSMARCO (Izacard et al., 2022), a 386

dense retriever fine-tuned on MSMARCO (Nguyen 387

et al., 2016). The EXIT compressor utilizes 388

Gemma-2B-it (Mesnard et al., 2024), optimized 389

for efficient parallel processing. For the reader 390

model, we exploit two scales of instruction-tuned 391

models: Llama3.1-{8, 70}B-Instruct (Dubey et al., 392

2024). 393

Baselines. We compare EXIT against follow- 394

ing context compression approaches: 1) Origi- 395

nal Documents serves as uncompressed baseline. 396

For abstractive methods, 2) RECOMP-Abs (Xu 397

et al., 2024) uses T5-based (775M) summariza- 398

tion tuned for NQ, TQA, HQA (HQA model for 399

2WIKI), 3) CompAct (Yoon et al., 2024) imple- 400

ments Mistral-7B-based iterative compression with 401

5-segment blocks, and 4) Refiner (Li et al., 2024) 402

uses Llama2-7B-based compression. For extrac- 403

tive methods, 5) RECOMP-Extr (Xu et al., 2024) 404

employs Contriever-based (110M) sentence-level 405

extraction tuned for NQ, TQA, HQA (HQA model 406

for 2WIKI), and 6) LongLLMLingua (Jiang et al., 407

2024) uses Llama2-7B-chat for token-level extrac- 408

tion with 0.4 dynamic compression rate. 409

Evaluation Metrics. We evaluate our approach 410

using three metrics: Exact Match (EM) and F1 411

score to measure effectiveness in question answer- 412

ing, and end-to-end inference latency (Lat.) in 413

seconds to assess efficiency. Here, end-to-end la- 414

tency is defined as the total time encompassing 415

both the compression and generation steps, as the 416

retrieval step remains consistent across all methods. 417

Implementation Details. We conduct retrieval 418

over the December 2018 Wikipedia dump and ap- 419

ply SpaCy for sentence splitting. We employ vLLM 420

v0.5.5 (Kwon et al., 2023) for accelerated infer- 421

ence with the hyperparameter T = 0.0 and Top- 422

P = 1.0. We empirically set the relevance thresh- 423

old τ = 0.5. All experiments are conducted on 424

A100-SXM4-80GB GPUs. 425
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Table 1: Performance across models and datasets, measured by EM, F1, and inference latency (Lat.). 8B reader
experiments were conducted on a single A100-80GB GPU, while 70B reader experiments utilized 4 A100-80GB
GPUs in parallel. Best results for each dataset are highlighted in bold, and second best results are underlined. The
“Type” column denotes whether a given compressor is abstractive (Abs.) or extractive (Ext.).

Compressor Type NQ TQA HQA 2WIKI AVG.

EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓

Llama3.1-8B-Instruct

Original Docs - 34.6 47.1 1.0 58.8 68.6 0.9 28.1 38.6 1.0 16.1 24.9 1.1 34.4 44.8 1.0
RECOMP-Abst Abs. 31.3 43.2 1.6 55.9 65.7 1.4 26.5 37.0 2.2 22.7 29.1 2.1 34.1 43.7 1.8
CompAct Abs. 32.9 44.6 8.5 58.1 67.7 8.8 28.8 39.8 8.3 16.8 26.0 8.1 34.2 44.5 8.4
Refiner Abs. 32.9 45.0 28.1 59.2 68.9 10.9 28.8 40.0 6.9 16.8 25.4 6.4 34.4 44.8 13.1
RECOMP-Extr Ext. 34.6 44.6 0.5 56.5 65.1 0.4 23.4 32.8 0.4 11.2 19.6 0.6 31.4 40.5 0.5
LongLLMLingua Ext. 30.2 41.5 0.9 59.4 68.0 0.8 28.0 38.0 0.8 21.5 27.4 0.9 34.8 43.7 0.9
EXIT (Ours) Ext. 35.9 47.8 0.8 60.8 69.9 0.7 30.6 41.5 0.8 24.2 30.8 0.9 37.9 47.5 0.8

Llama-3.1-70B-Instruct

Original Docs - 35.6 48.0 8.6 65.1 73.9 7.7 33.7 44.5 8.3 20.8 28.3 9.1 38.8 48.7 8.4
RECOMP-Abst Abs. 34.1 47.0 4.5 61.3 70.6 3.3 30.3 40.8 4.4 24.2 30.3 4.2 37.5 47.2 4.1
CompAct Abs. 34.1 45.4 11.9 62.6 71.1 11.7 33.8 44.1 11.0 20.5 27.4 11.6 37.8 47.0 11.5
Refiner Abs. 35.3 47.1 42.5 64.3 73.0 18.3 33.8 44.7 14.6 21.2 28.0 11.2 38.7 48.2 21.6
RECOMP-Extr Ext. 35.8 45.3 2.5 63.5 71.0 2.2 27.6 36.7 2.9 13.8 19.3 3.3 35.2 43.1 2.7
LongLLMLingua Ext. 32.2 44.0 4.4 66.7 75.2 3.9 34.1 45.3 4.0 28.3 34.8 4.3 40.3 49.8 4.1
EXIT (Ours) Ext. 36.9 49.4 3.9 67.3 75.9 3.1 37.0 48.3 3.3 28.6 34.5 3.5 42.5 52.0 3.5

5 Main Results426

Table 1 summarizes our evaluation results across427

multiple datasets and compression strategies. With428

the 8B reader, EXIT demonstrates strong general-429

ization: although trained solely on HQA, it effec-430

tively addresses both single-hop (NQ, TQA) and431

multi-hop (2WIKI) queries under out-of-domain432

conditions. Compared to all baseline methods,433

EXIT consistently improves EM scores—for in-434

stance, by 1.3 and 2.0 points on NQ and TQA, and435

by even larger margins of 2.5 and 8.1 points on436

HQA and 2WIKI, respectively. Notably, these ac-437

curacy gains come with an average latency of just438

0.8s, substantially faster than abstractive compres-439

sion approaches.440

The benefits of EXIT become more pronounced441

at larger scales. Using the 70B reader, EXIT sur-442

passes the accuracy of all competing methods,443

averaging a 3.7-point improvement in EM and444

a 3.3-point improvement in F1 over the uncom-445

pressed baseline. On HQA, it achieves a 3.3-point446

EM gain while maintaining an efficient 3.5s la-447

tency—faster than using uncompressed documents448

and still competitive with the previously fastest449

method, RECOMP-Extr, but with significantly450

higher accuracy. EXIT’s effectiveness and effi-451

ciency, especially with larger models, make it a452

practical solution for large-scale QA applications.453

6 Analyses 454

We conduct a series of analyses examining EXIT’s 455

robustness, classification performance, latency fac- 456

tors, and design choices under various configura- 457

tions. Additional experimental results and analyses 458

are provided in Appendix B. 459

6.1 Robustness Analysis 460

To examine EXIT’s robustness as the retrieval set 461

size grows, we gradually increased the number of 462

retrieved documents (k ∈ {1, 5, 10, 20, 30}) with 463

an 8B reader, as shown in Figure 3. We found that 464

EXIT steadily improves EM scores—from 28.2 465

points at k = 1 to 33.1 points at k = 30—while 466

avoiding the performance degradation seen in RE- 467

COMP variants and Refiner at high k values. Also, 468

we measured the impact on the efficiency of the 469

RAG pipeline with token counts and end-to-end 470

latency, confirming that EXIT significantly reduces 471

context from 4,497.1 tokens to 594.4 tokens (86.8% 472

fewer) at k = 30, even improving the quality. 473

Also, EXIT’s latency scales nearly linearly (0.48s 474

to 2.71s) and is much faster than the abstraction 475

methods and the uncompressed baseline. These re- 476

sults demonstrate that EXIT consistently delivers 477

significant accuracy improvements with minimal 478

inference costs, regardless of the number of doc- 479

uments, making it well-suited for tasks involving 480

larger retrieval sets. 481
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6.2 Classification Performance482

To better understand the effectiveness of our483

context-aware relevance classifier, we report row-484

normalized confusion matrices for both in-domain485

(HQA) and out-of-domain (2WIKI) datasets, as486

shown in Figure 4. On HQA, the classifier dis-487

plays a perfectly balanced ability to recognize both488

relevant (“Yes”) and irrelevant (“No”) sentences,489

achieving over 90% precision and recall in each cat-490

egory. While, on the 2WIKI dataset, the classifier491

exhibits a slight drop in recall for “Yes” sentences,492

it still performs strong classification ability with493

over 70% recall and 90% precision. These results494

confirm that the classifier performs robustly in its495

training domain and generalizes reasonably well496

to unseen queries, yet we leave narrowing this dis-497

crepancy as a valuable future research direction.498

6.3 Understanding End-to-End Latency499

Factors500

While previous work has primarily focused on min-501

imizing token counts to reduce reading time, we502

emphasize the importance of considering end-to-503

end latency, including compression, for building an504

efficient RAG pipeline. We provide a breakdown505

of the total end-to-end latency into read time and506

compression time, along with an analysis of the av-507

erage number of tokens in compressed documents,508

as shown in Figure 5. Although some methods509

0

3

6

9

12

15

Ti
m

e 
(s

ec
)

1.03 1.82

8.43

13.07

0.48 0.86 0.79

Compression Time
Reading Time

Orig
ina

l D
oc

s

RECOMP-A
bst

Com
pA

ct

Refi
ne

r

RECOMP-E
xtr

Lon
gL

LMLing
ua

EXIT (O
urs

)
0

200

400

600

800
#t

ok
en

747.00 
(100.00%)

48.30 
(6.40%)

76.30 
(10.20%)

89.40 
(12.10%) 68.70 

(9.10%)

227.50 
(30.50%) 210.10 

(28.30%)

#token

Figure 5: Comparison of compression and reading la-
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Experiments were conducted on a single A100 GPU.

achieve extreme token reduction—e.g., RECOMP- 510

Abst (6.4%) and CompAct (10.2%)—their lengthy 511

compression stages (1.46s and 7.99s, respectively) 512

negate these gains, resulting in overall inference 513

times that exceed the uncompressed baseline. By 514

contrast, EXIT retains a moderate token ratio 515

(28.3%) but completes compression rapidly (0.36s), 516

bringing total latency to 0.79s, a 23.3% improve- 517

ment over the 1.03s needed without compression. 518

This analysis highlights the importance of balanc- 519

ing token reduction and compression inference 520

latency to achieve actual efficiency in the RAG 521

pipeline. Also, our proposed method, EXIT, aligns 522

closely with these objectives, offering a practical 523

approach to context compression for RAG. 524

6.4 Ablation Studies 525

To better understand how the design choices in 526

EXIT affect its overall performance and efficiency, 527

we conduct ablation studies focusing on three key 528

components: data sampling strategy, adaptive sen- 529

tence selection, and context-aware extraction. Ta- 530

ble 2 summarizes these results. 531

Data Sampling Strategy. Our training data com- 532

7



Table 2: Ablation studies on HQA examining (1) train-
ing data composition (Pos, H-Neg, Neg), (2) adaptive
vs. fixed-length sentence selection, and (3) the impact
of incorporating passage context during classification.

Configuration EM ↑ F1 ↑ # token ↓

Ours (Pos + H-Neg + Neg) 31.6 42.6 195.1

Pos + H-Neg 30.0 41.3 286.8
Pos + Neg 29.8 40.9 404.6

w/o Adaptive Sentence Selection 29.4 40.7 91.0
w/o Passage as context 30.4 42.3 157.4

bines positive, hard negative, and random negative533

samples to mirror the diversity of real-world re-534

trieval scenarios. Compared to using only subsets535

of these sample types, the comprehensive strategy536

improves EM by 1.6 points over using only hard537

negatives and by 1.8 points over only random nega-538

tives. Relying solely on positive and random nega-539

tives led to excessive token retention, while depend-540

ing only on hard negatives diminished the model’s541

ability to filter out spurious retrieval noise.542

Adaptive Sentence Selection. We compare our543

adaptive selection mechanism to fixed-length se-544

lection. Although fixed-length selection achieves545

the lowest token count (91.0), it reduces EM by 2.2546

points and F1 by 1.9 points. This underscores the547

importance of adaptively selecting sentences based548

on the complexity of the query and the retrieved549

documents, rather than using a static cap.550

Context-Aware Extraction. We assess the impact551

of incorporating full document context when eval-552

uating each sentence’s relevance. Removing sur-553

rounding context saves 38 tokens but lowers EM554

by 1.2 points, indicating that broader contextual555

awareness is crucial for maintaining answer accu-556

racy, even if it slightly increases token count.557

These findings confirm that a balanced training558

data strategy enhances robustness, that adaptive559

sentence selection ensures efficiency, and that full560

document consideration preserves accuracy. The561

classification performances under each ablation set-562

ting are reported in Appendix B.5.563

6.5 Impact of Compressor Model Size and564

Compression Strategy565

Model Size Considerations. Figure 6 presents an566

ablation study examining how different base mod-567

els influence EM scores and total latency. Note568

that all models trained within EXIT achieve supe-569

rior accuracy compared to uncompressed baselines570

and fast compression under 2 seconds. Specifically,571

Gemma-2B, our base classifier model, achieves a572
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Figure 6: Ablation on HQA comparing EM scores and
latency for different model configurations within EXIT
(red dot). CompAct and Original Docs are included as
indicators. Experiments on a single A100-80GB GPU.

favorable balance between effectiveness and effi- 573

ciency, delivering 31.6 EM points in 0.78s. When 574

moving to the largest model, Gemma-7B, the high- 575

est accuracy (32.4 EM) is achieved, yet it also in- 576

flates latency to 1.50s, slightly exceeding the time 577

of uncompressed documents. These results sug- 578

gest that scaling up model parameters can improve 579

performance but may also compromise latency ben- 580

efits, emphasizing the flexibility of our proposed 581

framework by selecting an appropriate model de- 582

pending on the user requirement. 583

Abstractive vs. Extractive Compression. Fig- 584

ure 6 also compares our extractive approach, EXIT, 585

against CompAct, a 7B-scale abstractive compres- 586

sor. Using Mistral-7B as the base model for both 587

methods, EXIT (31.3 EM, 1.46s) significantly out- 588

performs CompAct (30.6 EM, 8.26s) in terms of 589

latency and maintains competitive accuracy. This 590

stark difference underscores that the compression 591

strategy, not the just model size, heavily influences 592

efficiency. By relying on extraction rather than iter- 593

ative summarization, EXIT capitalizes on a large- 594

scale model to preserve high accuracy without in- 595

curring prohibitively long inference time. 596

7 Conclusion 597

We present EXIT, an efficient context compression 598

framework for RAG systems that leverages parallel 599

processing and context-aware, adaptive sentence 600

selection. Our experiments demonstrate that EXIT 601

achieves superior performance across both single- 602

hop and multi-hop QA tasks while maintaining 603

practical inference speeds. Despite being trained 604

only on HQA, EXIT shows a strong zero-shot gen- 605

eralization ability and proves effective across a 606

wide range of open-source models of varying sizes. 607

These results suggest that efficient parallel extrac- 608

tion with smaller models can outperform larger ab- 609

stractive approaches, offering a practical solution 610

for real-world RAG applications. 611
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Limitation612

Our current approach relies on explicit sentence-613

level annotations to train the classifier. While these614

annotations were obtained manually in our experi-615

ments, they could potentially be automated through616

alternative means, such as by GPT-4 supervision or617

signals derived from the reader itself. We have not618

yet explored these automated annotation strategies,619

but doing so remains a promising avenue for future620

work. Additionally, our study primarily focuses on621

a general-domain setting, leaving questions about622

the classifier’s performance in specialized domains623

unanswered. Investigating how well our approach624

generalizes to domain-specific or highly special-625

ized corpora presents another valuable direction for626

future research. Lastly, we focus on a single-step627

RAG pipeline, where retrieval occurs only once, ex-628

cluding more complex pipelines (Shao et al., 2023;629

Trivedi et al., 2023; Khattab et al., 2022). However,630

our proposed framework, EXIT, is orthogonal to631

these approaches and can be seamlessly integrated632

by compressing the retrieved documents from each633

retrieval step.634

Ethics Statement635

This work enhances RAG-based QA without gen-636

erating new content beyond what is retrieved. How-637

ever, biases and inaccuracies in the source doc-638

uments can still propagate through our compres-639

sion process. Ensuring the reliability, fairness, and640

proper curation of underlying corpora is essential641

for ethical deployment. Future efforts should in-642

tegrate bias detection, provenance tracking, and643

user-centric evaluations to promote more transpar-644

ent and equitable real-world applications.645
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Appendix966

In the Appendix, we provide additional implemen-967

tation details and present supplementary results and968

analyses not covered in the main text.969

A More Implementation Details970

This section describes our training environment,971

data composition, and prompt templates. All ex-972

periments were conducted on an NVIDIA A100-973

SXM4-80GB GPU cluster. Training was performed974

on a single GPU with gradient accumulation.975

A.1 Training Configuration976

We trained the compressor model using the follow-977

ing settings:978

• Batch size: 8 per device979

• Gradient accumulation steps: 8980

• Learning rate: 1e-5981

• Weight decay: 0.1982

• Warmup ratio: 0.03983

• Training epochs: 1984

Memory Optimization:985

• Optimizer: paged_adamw_8bit986

• Quantization: 4-bit with float16987

• LoRA configuration: Rank=64, Scaling=32,988

Dropout=0.05989

A.2 Model Selection and Training Time990

Model selection was based on validation loss.991

Training required approximately 90 hours on our992

cluster.993

A.3 Data Processing994

Table 3: Statistics of the training dataset constructed
from HQA. Positive (Pos) sentences are required for the
correct answer, Hard-Neg (H-Neg) sentences appear in
the same passages but lack crucial evidence, and Neg
sentences come from unrelated queries. Counts are in
thousands (K).

Split Pos H-Neg Neg Total

Train 213K 107K 107K 427K
Valid 2.4K 1.2K 1.2K 4.8K

We used SpaCy to segment documents into sen-995

tences. Table 3 shows the composition of the train-996

ing and validation sets derived from HQA. The997

training set contains 427K sentences, including998

213K positive (Pos), 107K hard-negative (H-Neg),999

and 107K negative (Neg) instances. The validation1000

set includes 4.8K sentences with a similar distribu- 1001

tion. This balanced composition ensures the clas- 1002

sifier encounters diverse retrieval scenarios during 1003

training. 1004

A.4 Inference Settings 1005

For inference, we set: 1006

• Temperature: 0.0 1007

• Top-p: 1.0 1008

• vLLM version: v0.5.5 1009

• Relevance threshold (τ): 0.5 1010

A.5 Prompt Templates 1011

Table 4: A prompt template for document compression.

Compression Prompt Template

Query:
{query}
Full context:
{original passage}
Sentence:
{sentence}
Is this sentence useful in answering the
query? Answer only “Yes” or “No”.

Table 5: A prompt template used by the reader model
for the QA task.

QA Prompt Template

Context information is below.
———————
{context}
———————
Given the context information and not prior
knowledge, answer the query. Do not pro-
vide any explanation.
Query: {query}
Answer:

Full prompt templates for compression and QA 1012

tasks are provided in Tables 4 and 5, respectively. 1013

A.6 Reproducibility 1014

We will release our codebase, including dataset pre- 1015

processing scripts, evaluation protocols, and model 1016

checkpoints, upon publication. All random seeds 1017

are set to 42 to facilitate reproducibility. 1018
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Table 6: Performance comparison between in-domain
(HQA) and out-of-domain (2WIKI) datasets using
BM25 as the reader model. Best results are highlighted
in bold, and second best results are underlined.

Compressor Type HQA 2WIKI

EM ↑ F1 ↑ # Token ↓ EM ↑ F1 ↑ # Token ↓

Top-5 Documents

Original Docs - 28.2 39.1 755.8 (100.0) 19.6 25.9 789.7 (100.0)
RECOMP-Abst Abs. 27.8 39.2 63.0 (8.3) 25.0 30.6 55.7 (7.1)
CompAct Abs. 30.6 41.2 76.9 (10.2) 19.6 29.1 71.0 (9.0)
Refiner Abs. 30.8 42.3 84.0 (11.1) 19.6 27.8 62.9 (8.0)
RECOMP-Extr Ext. 28.2 37.5 93.1 (12.3) 11.8 19.1 99.1 (12.5)
LongLLMLingua Ext. 28.6 39.7 230.3 (30.5) 22.2 27.4 236.6 (30.0)
EXIT (Ours) Ext. 33.4 44.5 177.8 (23.5) 24.4 29.1 138.2 (17.5)

Top-20 Documents

Original Docs - 31.2 42.5 3009.5 (100.0) 23.0 30.6 3132.5 (100.0)
RECOMP-Abst Abs. 29.0 39.7 69.7 (2.3) 22.8 28.2 52.3 (1.7)
CompAct Abs. 31.6 43.0 109.5 (3.6) 20.4 28.7 113.2 (3.6)
Refiner Abs. 28.4 38.8 136.1 (4.5) 18.8 26.9 108.4 (3.5)
RECOMP-Extr Ext. 28.4 37.0 93.5 (3.1) 11.2 19.3 96.7 (3.1)
LongLLMLingua Ext. 31.0 40.7 558.0 (18.5) 23.6 28.3 593.7 (19.0)
EXIT (Ours) Ext. 35.2 46.9 411.3 (13.7) 27.2 32.4 312.7 (10.0)

B Additional Experimental Results and1019

Analyses1020

Table 13 shows detailed results for each dataset and1021

model configuration under zero-shot QA prompts,1022

using both Top-5 and Top-20 retrieval. For the few-1023

shot QA prompts, Table 14 summarizes the results,1024

where we randomly selected five training examples1025

per dataset as demonstrations. Table 15 provides1026

comprehensive token count statistics, and Table 161027

breaks down end-to-end latency.1028

B.1 Performance with Sparse Retrieval1029

To assess EXIT’s robustness with different retrieval1030

architectures, we evaluate it with BM25, a sparse1031

retrieval method. Table 6 compares EXIT’s perfor-1032

mance on HQA (in-domain) and 2WIKI (out-of-1033

domain) under Top-5 and Top-20 retrieval settings.1034

With Top-5 retrieval, EXIT shows notable gains1035

on HQA, improving EM (33.4 vs. 28.2) and F11036

(44.5 vs. 39.1) over the uncompressed baseline.1037

Although RECOMP-Abst performs best on 2WIKI1038

(25.0 EM, 30.6 F1), EXIT remains competitive1039

(24.4 EM, 29.1 F1).1040

EXIT’s advantages grow with Top-20 retrieval.1041

On HQA, EXIT outperforms all baselines, improv-1042

ing EM by 4.0 points (35.2 vs. 31.2) and F1 by1043

4.4 points (46.9 vs. 42.5) compared to using un-1044

compressed documents. On 2WIKI, EXIT achieves1045

the highest scores (27.2 EM, 32.4 F1), confirming1046

its generalizability across domains and retrieval1047

strategies.1048

Table 7: Performance comparison between in-domain
(HQA) and out-of-domain (2WIKI) datasets using GPT-
4o as the reader model. Best results are highlighted in
bold, and second best results are underlined.

Compressor Type HQA 2WIKI

EM ↑ F1 ↑ #token (%) ↓ EM ↑ F1 ↑ #token (%) ↓

Top-5 Documents

Original Docs - 37.2 48.6 735.3 (100.0) 31.2 35.3 764.5 (100.0)
RECOMP-Abst Abs. 29.4 40.2 62.8 (8.5) 23.8 27.8 53.5 (7.0)
CompAct Abs. 37.4 48.0 74.3 (10.1) 30.0 33.6 67.6 (8.8)
Refiner Abs. 35.8 47.5 71.4 (9.7) 27.8 32.6 54.2 (7.1)
RECOMP-Extr Ext. 32.4 41.7 87.1 (11.8) 25.6 28.6 93.6 (12.2)
LongLLMLingua Ext. 34.2 45.2 223.1 (30.3) 30.6 34.5 230.5 (30.2)
EXIT (Ours) Ext. 38.2 50.4 191.2 (26.0) 31.8 35.8 145.6 (19.0)

Top-20 Documents

Original Docs - 39.6 51.8 2940.5 (100.0) 40.0 43.8 3066.2 (100.0)
RECOMP-Abst Abs. 33.6 44.2 62.7 (2.1) 26.6 32.1 48.9 (1.6)
CompAct Abs. 33.0 43.7 106.0 (3.6) 23.0 27.3 105.1 (3.4)
Refiner Abs. 31.8 41.5 130.6 (4.4) 31.0 35.5 100.3 (3.3)
RECOMP-Extr Ext. 31.2 39.6 86.2 (2.9) 23.2 27.2 91.0 (3.0)
LongLLMLingua Ext. 38.8 49.4 549.5 (18.7) 35.4 39.6 581.5 (19.0)
EXIT (Ours) Ext. 39.4 50.1 453.6 (15.4) 35.6 40.3 346.7 (11.3)

B.2 Performance with Proprietary Model 1049

We further examine EXIT’s effectiveness using 1050

GPT-4o as the reader. Table 7 compares perfor- 1051

mance on HQA (in-domain) and 2WIKI (out-of- 1052

domain), along with compression rates. 1053

For Top-5 retrieval, EXIT attains the best accu- 1054

racy on HQA (38.2 EM, 50.4 F1) while retaining 1055

only 26.0% of tokens. This surpasses the uncom- 1056

pressed baseline (37.2 EM, 48.6 F1) with a 74% 1057

token reduction. On 2WIKI, EXIT maintains lead- 1058

ing accuracy (31.8 EM, 35.8 F1) while using just 1059

19.0% of the original tokens. 1060

Under Top-20 retrieval, where uncompressed 1061

documents benefit from greater coverage, EXIT 1062

still achieves competitive accuracy with substan- 1063

tially fewer tokens. On HQA, EXIT closely 1064

matches the uncompressed EM score (39.4 vs. 1065

39.6) while using only 15.4% of tokens. Although 1066

RECOMP variants compress more aggressively, 1067

they suffer marked performance drops. LongLLM- 1068

Lingua performs similarly to EXIT but retains more 1069

tokens (18.7% vs. 15.4%). 1070

These findings illustrate EXIT’s ability to bal- 1071

ance performance and efficiency, making it valu- 1072

able for API-based proprietary models where token 1073

costs and accuracy both matter. 1074

B.3 Impact of Threshold τ 1075

We analyze EXIT’s sensitivity to the relevance 1076

threshold τ . Figure 7 shows EXIT’s performance 1077

across various τ values. 1078

EXIT remains stable over a wide threshold range, 1079

with strong results between τ=0.3–0.5. At τ=0.3, 1080
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Figure 7: Changes in EM, F1 score, and token count as the threshold T for retaining sentences is adjusted.

Table 8: Classification performance for Yes/No labels,
including overall accuracy.

Overall

Class Precision ↑ Recall ↑ F1-Score ↑

Yes 0.91 0.93 0.92
No 0.93 0.91 0.92

Hard Negative

Yes 0.86 0.93 0.89
No 0.93 0.84 0.88

Negative

Yes 0.96 0.93 0.95
No 0.93 0.96 0.95

EXIT reaches 25.2 EM using only 25% of the to-1081

kens (195.82 vs. 780.95 for the baseline), a substan-1082

tial improvement over the original documents (18.01083

EM). F1 scores also remain consistently higher1084

than the baseline (30.21–30.73 vs. 25.74).1085

Even under extreme compression (τ=0.9, 7.9%1086

of tokens), EXIT achieves better accuracy (24.01087

EM, 29.44 F1) than the uncompressed documents.1088

Conversely, a lenient threshold (τ=0.1) retains1089

more tokens but still provides benefits, demonstrat-1090

ing that EXIT effectively identifies crucial content1091

under varying conditions.1092

This robustness across thresholds gives prac-1093

titioners flexibility to adjust the compression-1094

accuracy trade-off without severely impacting per-1095

formance.1096

B.4 Analysis of Classification Performance1097

Across Negative Sample Types1098

Table 8 presents EXIT’s sentence-level classifica-1099

tion performance, broken down by negative sam-1100

ple type. EXIT achieves 0.92 F1 for both positive1101

(“Yes”) and negative (“No”) classes overall, indi-1102
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HQA (with Context)

Yes No
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Figure 8: Row-normalized confusion matrices compar-
ing classification performance with (left) and without
(right) contextual information on HQA. The availability
of context improves the model’s ability to accurately
distinguish relevant (“Yes”) from non-relevant (“No”)
sentences.

cating a balanced ability to identify essential and 1103

non-essential sentences. 1104

The model excels at filtering random negatives 1105

(0.95 F1), effectively discarding irrelevant content. 1106

With hard negatives (topically related but not essen- 1107

tial), EXIT still performs well (0.89 F1 for positive, 1108

0.88 for negative), handling nuanced relevance dis- 1109

tinctions. 1110

These results highlight EXIT’s adaptability and 1111

confirm its suitability for real-world RAG scenarios 1112

where both overtly irrelevant and subtly extraneous 1113

content must be managed. 1114

B.5 Classification Performance under 1115

Ablation Setting. 1116

B.5.1 Analysis of Training Data Composition 1117

Figure 9 presents row-normalized confusion ma- 1118

trices comparing classification performance across 1119

three training data configurations: Ours (Pos+H- 1120

Neg+Neg), Pos+H-Neg, and Pos+Neg. Under the 1121

Ours setup, the classifier displays a balanced ability 1122

to identify both “Yes” (relevant) and “No” (irrel- 1123

evant) sentences, achieving an F1-score of 0.92 1124
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Figure 9: Row-normalized confusion matrices for clas-
sification performance under different training data
conditions: Ours (Pos+H-Neg+Neg), Pos+H-Neg, and
Pos+Neg. Each matrix compares the predicted (“Yes”/
“No”) labels against the actual labels.

for both classes. In contrast, excluding one type of1125

negative sample (Pos+H-Neg or Pos+Neg) reduces1126

overall robustness, evidenced by declines in both1127

accuracy and class-wise F1 scores. For instance,1128

the Pos+Neg configuration struggles to maintain1129

balance, accurately identifying “Yes” instances but1130

misclassifying a substantial number of “No” cases.1131

These results confirm that incorporating a compre-1132

hensive mix of positive, hard-negative, and random-1133

negative samples leads to more reliable and contex-1134

tually aware sentence selection, thereby improving1135

the classifier’s performance in practical retrieval-1136

augmented QA scenarios.1137

B.5.2 Impact of Context on Classification1138

Performance1139

We evaluate the classifier’s performance with and1140

without broader passage-level context. Figure 81141

shows that including context maintains over 90%1142

precision and recall for both “Yes” and “No”1143

classes. Without context, precision and recall de-1144

cline, weakening the distinction between relevant1145

and irrelevant sentences. This emphasizes the im-1146

portance of incorporating passage-level context for1147

accurately identifying answer-critical information.1148

B.6 Training Data Ablation Analysis1149

Table 9 compares models trained on HQA, 2WIKI,1150

or both. Training solely on HQA yields the high-1151

est EM and F1 (31.6 EM, 42.6 F1) with moderate1152

token usage. In contrast, 2WIKI training improves1153

compression but lowers accuracy (29.2 EM, 40.31154

F1). Combining datasets does not surpass HQA1155

alone.1156

This finding suggests that data quality and struc-1157

ture matter more than quantity. HQA’s annotations1158

appear particularly effective for learning robust1159

compression strategies that generalize well, val-1160

idating our choice to use it as the primary training1161

dataset.1162

Table 9: Training data ablation comparison. Best results
per metric are highlighted in bold.

Training Data EM ↑ F1 ↑ # token ↓

HQA 31.6 42.6 195.1
2WIKI 29.2 40.3 135.3
2WIKI+HQA 30.6 42.0 232.2

B.7 Case Studies 1163

To illustrate how EXIT’s extractive compression 1164

strategy improves both accuracy and readability, 1165

we present qualitative examples and comparisons 1166

with other compression methods. 1167

Original Documents vs. Ours. In Table 10, the 1168

original documents contain the correct answer 1169

(“Custard”) but also include distracting information 1170

(“Eggnog”). Despite having the necessary evidence, 1171

the reader fails to produce the correct answer, likely 1172

due to this distractor. In contrast, our method (Ours) 1173

filters out irrelevant details, drastically reduces in- 1174

put length, and retains only the essential context 1175

needed to answer the query accurately. As a result, 1176

the reader confidently generates the correct answer 1177

(“Custard”). 1178

In a second scenario (Table 11), the original 1179

documents retrieve multiple documents related to 1180

“Wagner” or “sci-fi” series but fail to provide any 1181

content explicitly linking James Belushi to the cor- 1182

rect 90s sci-fi series, resulting in an incorrect pre- 1183

diction. Surprisingly, Ours removes all retrieved 1184

context entirely, providing the reader with no addi- 1185

tional information. Under this no-context condition, 1186

the reader relies solely on its internal knowledge 1187

and, in this case, correctly identifies “Wild Palms.” 1188

While this outcome indicates a form of hallucina- 1189

tion or model bias—since the answer emerges with- 1190

out external supporting evidence—it also demon- 1191

strates Ours’ capability to avoid misleading context. 1192

By eliminating irrelevant or confusing documents, 1193

Ours can sometimes allow the model’s internal 1194

knowledge to surface, leading to correct answers 1195

even in the absence of any retrieved information. 1196

Comparisons with Other Methods. Table 12 1197

compares Ours with several competing compres- 1198

sion approaches. CompAct preserves some relevant 1199

information but introduces hallucinations, causing 1200

the reader to claim that it cannot find the correct 1201

answer. Refiner omits the crucial entity required to 1202

answer the query, demonstrating how abstractive 1203

compressors may inadvertently remove key content. 1204
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In contrast, Ours avoids hallucinations and retains1205

the answer’s entity in a concise, coherent form.1206

LongLLMLingua’s token-level filtering ap-1207

proach yields unreadable text and removes the1208

essential “Romania” entity, preventing the reader1209

from generating the correct answer. Ours, on the1210

other hand, maintains semantic coherence and in-1211

cludes the correct entity, allowing the reader to1212

produce the correct answer without interference.1213

These case studies highlight the advantages of1214

Ours: it eliminates distractors, preserves critical1215

entities, and maintains semantic integrity. Conse-1216

quently, the reader consistently arrives at correct1217

answers with fewer tokens and no hallucinations.1218
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Table 10: Case study comparing compressed contexts and answers between Original Docs and Ours.

Original Docs Ours

Query Crème Anglaise is the French version of which English dessert item?

Context [1] Creme anglaise
Crème anglaise Crème anglaise (French for
""English cream"") is a light pouring Cus-
tard used as a dessert cream or sauce. It is a
mix of sugar, egg yolks, oil, and hot milk
...
[2] Creme anglaise
However, the ice cream base is much thicker
and has various flavourings. The American
South it is known as ""Custard."" It can be
served like Eggnog during the Christ-
mas season. Other names include the French
terms ""crème à l’anglaise"" (""English-style
cream"") and ""crème française"" (""French
cream""). Crème anglaise Crème anglaise
(French for ""English cream"") is a light pour-
ing Custard used as a dessert cream or sauce.
It is a mix of sugar, egg yolks, oil, and hot
milk often flavoured with vanilla. Its name
may derive from the prevalence of sweet Cus-
tards in English desserts. The cream is made
by
[3] Creme anglaise
...
[4] Custard
lemon. ""Crème pâtissière"" is a key ingredi-
ent in many French desserts including mille-
feuille (or Napoleons) and filled tarts. It is
also used in Italian pastry and sometimes in
Boston cream pie. The thickening of the Cus-
tard is caused by the combination of egg and
cornstarch. Corn flour or flour thicken at 100
°C and as such many recipes instruct the pas-
try cream to be boiled. In a traditional Cus-
tard such as a ""crème anglaise"", where egg
is used alone as a thickener, boiling results in
the over cooking and subsequent ’curdling’
of the Custard; however, in a pastry cream,
starch
[5] Cremeschnitte
usually pure thick Custard, less commonly
combined with meringue (whipped egg
whites and sugar) creme. A similar recipe
with only meringue filling is called Šampita.
In Australia, the dish is more commonly
known as a ’vanilla slice’. Cremeschnitte A
cremeschnitte („„„„ ) is a chantilly and Cus-
tard cream cake dessert popular in several
Central European countries. There are many
regional variations, but they all include a puff
pastry base and Custard cream. In Slovenia,
kremna rezina is commonly associated with
the town of Bled, an Alpine tourist destina-
tion in northwestern Slovenia. The recipe

[1] Creme anglaise
Crème anglaise Crème anglaise (French for
""English cream"") is a light pouring Cus-
tard used as a dessert cream or sauce.
[2] Creme anglaise
Other names include the French terms
""crème à l’anglaise"" (""English-style
cream"") and ""crème française"" (""French
cream""). Crème anglaise Crème anglaise
(French for ""English cream"") is a light pour-
ing Custard used as a dessert cream or sauce.
[3] Creme anglaise
Alternatively, it can be drunk as a dessert
on its own, for example in ""Île flottante""
(""floating island""): the cream is poured into
a bowl with a piece of meringue (""blancs en
neige"") floated on top along with praline. It
can also be used as a base for desserts such
as ice cream or crème brûlée.
[4] Custard
""Crème pâtissière"" is a key ingredient in
many French desserts including mille-feuille
(or Napoleons) and filled tarts.

Answer Custard

Predict Eggnog Custard

18



Table 11: Case study comparing compressed contexts and answers between Original Docs and Ours. Despite
containing no relevant context, Ours method predicts the correct answer, indicating a hallucination scenario.

Original Docs Ours

Query Which 90s sci fi series with James Belushi was based on Bruce Wagner’s comic strip of
the same name?

Context [1] Michael I. Wagner
patterned his character after Wagner’s man-
nerisms and physical behavior. The series ran
on Thursday nights in the Spring of 1988 dur-
ing the same time slot as NBC’s "The Cosby
Show", and with that competition could not
attract a sufficient audience to get renewed
for the following season.
...
Wagner helped develop and write the Bochco
animated series "Capitol Critters", he also
wrote and served as supervising producer
[2] Michael I. Wagner
Steven Bochco and several of his projects.
Wagner was asked by ABC in 1987 to help de-
velop a new science fiction series, " Probe ",
a light-hearted series about a scientific crime
fighter named Austin James.
...
Parker Stevenson, who played the lead char-
acter, stated in a later interview that he
[3] John Wagner
the mid-1990s Wagner worked on a number
of licensed properties for Dark Horse Comics
in the US, including "Aliens", "Star Wars"
– notably solo stories starring Boba Fett and
the comics strand of the multimedia project
"" – and "".
...
It was nominated for the Angoulême Interna-
tional Comics Festival Prize for Scenario in
2006. In 2000 Wagner
[4] Martin Wagner (artist)
Martin Wagner (artist) Martin Wagner (born
April 27, 1966) is an American artist, car-
toonist, and filmmaker.
...
. His production schedule became increas-
ingly protracted and he ceased publishing the
series altogether following issue No. 12 in
1994. In 1996 he made a
[5] Wired (film)
"L.A. Law", "Murphy Brown", and "Sein-
feld"), Chiklis gained fame for portraying the
lead roles of Commissioner Tony Scali on the
ABC police drama "The Commish" (1991-
1996), and LAPD Detective Vic Mackey on
the FX police drama "The Shield" (2002-
2008) and as well as Marvel superhero Ben
"The Thing" Grimm in the films "Fantastic
Four" (2005) and "" (2007).
...
Wired (film) Wired is a 1989 biographical
film of comedian and actor John Belushi, di-
rected by Larry Peerce, and adapted from the
1984 book of the same name by "Washing-
ton"

No context (completely pruned)

Answer Wild Palms

Predict Probe Wild Palms
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Table 12: Combined case studies comparing compressed contexts and answers across different methods.

Case Study 1 CompAct Ours

Query Where was there a series of explosions and fire on 23 October 1989 (killing 23 employees
and injuring 314), an explosion on 23 June 1999 (killing two men and injuring three), and
an explosion and fire on 27 March 2000 (causing 1 death and 71 injuries)?

Context The Flixborough disaster was an explosion
at a chemical plant near Flixborough, Eng-
land on 1 June 1974. The incident started on
October 23, 1989, at 1400 Jefferson Road,
Pasadena, Texas .

[1] Phillips disaster of 1989
On October 23, 1989, at 1400 Jefferson Road,
Pasadena, Texas , a powerful explosion killed
23 and injured 314. A powerful and devas-
tating explosion and fire ripped through the
HCC, killing 23 persons—all working at the
facility—and injuring 314 other (185 Phillips
66 employees and 129 contract employees).

Answer Pasadena, Texas

Predict I couldn’t find any information about the spe-
cific incidents you mentioned. The Flixbor-
ough disaster occurred on 1 June 1974.

Pasadena, Texas

Case Study 2 Refiner Ours

Query Who said that there are only three true sports, bullfighting, mountaineering, and motor
racing, the rest are merely games?

Context 1.1. Extreme sport
There are only three sports: bullfighting, mo-
tor racing, and mountaineering; all the rest
are merely games.

[1] Extreme sport
usually, but wrongly, attributed to Ernest
Hemingway . The phrase is: There are
only three sports: bullfighting, motor racing,
and mountaineering; all the rest are merely
games.

Answer Ernest Hemingway

Predict There is no information provided about who
said that.

Ernest Hemingway

Case Study 3 LongLLMLingua Ours

Query Which was the only Eastern Bloc country to participate in the 1984 LA Olympics?

Context 984 Summer Olympicscottthe majority of So-
viet Bloc will not particip Games,aus, escu’s
Roman expected.984 Summer boyc The boyc
of the 1984 Summer in Los Angeles years
after U.S.-led boycott of the 1980 Summer
Olympics in The boycott involved 14 Bloc
countries and allies, led by the Soviet Union,
which initi boycott on May 8, 1984. Bootting
countries organized major event, the Friend-
ship Games, in July and August 1984 Al-
though the boycott by the Soviet Union af-
fected number Olympic Sum were perhaps
the first games of a new era to make a profit.
Although a boycott led by the Soviet Union
depleted the field in certain sports, 140 Na-
tional Olympic Committees took part, which
was a record at the time. Again, without the
participation of the Eastern European coun-
tries, the 1984 Games were dominated by
their host country. The Games were also the
first time mainland China (People’s Repub-
lic) participated. According to British journal-
ist Andrew Jennings, a KGB colonel stated
that the agency’s officers had posed as anti-
doping authorities from

[1] 1984 Summer Olympics boycott
The boycott involved 14 Eastern Bloc coun-
tries and allies, led by the Soviet Union,
which initiated the boycott on May 8, 1984.
...
[3] Summer Olympic Games
Eastern Bloc that did attend the 1984
Olympics. Although a boycott led by the
Soviet Union depleted the field, 140 NOCs
took part. Without Eastern European coun-
tries, the 1984 Games were dominated by
the host. The Games were also the first time
mainland China participated.
...
[5] 1984 Summer Olympics boycott
However, no threat to Eastern Bloc athletes
was discovered, and the athletes from the
Eastern Bloc country that did attend the 1984
games— Romania —encountered no prob-
lems.

Answer Romania

Predict China Romania
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Table 13: Zero-shot QA prompt evaluation of compressor performance across different top-k scenarios, models,
and datasets, measured by EM, F1, and inference latency (Lat.). 8B reader experiments were conducted on a single
A100-80GB GPU, while 70B reader experiments utilized 4 A100-80GB GPUs in parallel. Best results for each
dataset are highlighted in bold, Second best results are highlighted in underline.

Compressor Type
NQ TQA HQA 2WIKI AVG.

EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓ EM ↑ F1 ↑ Lat. ↓

Llama-3.1-8B-Instruct

Top-5 Documents

Original Docs - 34.6 47.1 1.0 58.8 68.6 0.9 28.1 38.6 1.0 16.1 24.9 1.1 34.4 44.8 1.0
RECOMP-Abst Abs. 31.3 43.2 1.6 55.9 65.7 1.4 26.5 37.0 2.2 22.7 29.1 2.1 34.1 43.7 1.8
CompAct Abs. 32.9 44.6 8.5 58.1 67.7 8.8 28.8 39.8 8.3 16.8 26.0 8.1 34.2 44.5 8.4
Refiner Abs. 32.9 45.0 28.1 59.2 68.9 10.9 28.8 40.0 6.9 16.8 25.4 6.4 34.4 44.8 13.1
RECOMP-Extr Ext. 34.6 44.6 0.5 56.5 65.1 0.4 23.4 32.8 0.4 11.2 19.6 0.6 31.4 40.5 0.5
LongLLMLingua Ext. 30.2 41.5 0.9 59.4 68.0 0.8 28.0 38 0.8 21.5 27.4 0.9 34.8 43.7 0.9
Ours (EXIT) Ext. 35.9 47.8 0.8 60.8 69.9 0.7 30.6 41.5 0.8 24.2 30.8 0.9 37.9 47.5 0.8

Top-20 Documents

Original Docs - 36.6 49.5 3.4 62.0 71.7 2.9 29.9 40.5 2.9 18.8 27.9 3.2 36.8 47.4 3.1
RECOMP-Abst Abs. 26.9 38.3 1.7 57.3 66.6 1.9 26.8 37.1 2.4 22.7 28.8 2.6 33.4 42.7 2.2
CompAct Abs. 33.8 45.4 26.1 57.8 67.5 24.5 28.9 39.6 27.5 16.7 24.6 32.2 34.3 44.3 27.6
Refiner Abs. 30.1 41.4 28.7 57.6 67.0 44.2 26.6 37.3 29.6 16.3 24.9 10.8 32.7 42.6 28.3
RECOMP-Extr Ext. 32.8 42.6 0.6 55.5 63.6 0.4 22.2 31.2 0.5 10.0 18.3 0.7 30.1 38.9 0.6
LongLLMLingua Ext. 33.4 45.1 2.8 62.4 71.2 2.7 31.2 41.4 2.8 24.1 30.1 2.9 37.8 46.9 2.8
Ours (EXIT) Ext. 38.1 50.8 1.8 62.8 72.0 1.7 32.9 44.0 1.8 25.5 32.3 2.0 39.8 49.8 1.8

Llama-3.1-70B-Instruct

Top-5 Documents

Original Docs - 35.6 48.0 8.6 65.1 73.9 7.7 33.7 44.5 8.3 20.8 28.3 9.1 38.8 48.7 8.4
RECOMP-Abst Abs. 34.1 47.0 4.5 61.3 70.6 3.3 30.3 40.8 4.4 24.2 30.3 4.2 37.5 47.2 4.1
CompAct Abs. 34.1 45.4 11.9 62.6 71.1 11.7 33.8 44.1 11.0 20.5 27.4 11.6 37.8 47.0 11.5
Refiner Abs. 35.3 47.1 42.5 64.3 73.0 18.3 33.8 44.7 14.6 21.2 28.0 11.2 38.7 48.2 21.6
RECOMP-Extr Ext. 35.8 45.3 2.5 63.5 71.0 2.2 27.6 36.7 2.9 13.8 19.3 3.3 35.2 43.1 2.7
LongLLMLingua Ext. 32.2 44.0 4.4 66.7 75.2 3.9 34.1 45.3 4.0 28.3 34.8 4.3 40.3 49.8 4.1
Ours (EXIT) Ext. 36.9 49.4 3.9 67.3 75.9 3.1 37.0 48.3 3.3 28.6 34.5 3.5 42.5 52.0 3.5

Top-20 Documents

Original Docs - 39.5 52.5 25.8 69.1 77.6 24.9 38.5 50.0 25.3 28.8 36.8 28.1 44.0 54.2 26
RECOMP-Abst Abs. 31.5 45.1 4.5 63.4 72.2 3.7 31.3 41.8 4.8 25.4 30.7 4.8 37.9 47.4 4.5
CompAct Abs. 33.9 45.1 30.8 61.7 70.0 28.1 31.7 40.9 32.0 18.5 23.5 36.5 36.4 44.9 31.9
Refiner Abs. 32.6 43.5 37.9 62.9 71.4 48.9 31.9 42.2 33.0 22.7 28.7 12.8 37.5 46.5 33.2
RECOMP-Extr Ext. 33.6 42.7 2.4 63.1 70.3 2.2 25.6 34.5 2.9 12.2 17.4 3.3 33.6 41.2 2.7
LongLLMLingua Ext. 34.5 46.4 10.9 68.2 76.9 10.4 36.7 48.4 10.6 29.8 36.5 11.0 42.3 52.1 10.7
Ours (EXIT) Ext. 39.4 52.6 5.1 68.7 77.3 4.3 38.6 50.2 4.7 30.0 36.3 4.8 44.2 54.1 4.7
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Table 14: Few-shot QA prompt evaluation measured by EM and F1. Best results for each dataset are highlighted in
bold, Second best results are highlighted in underline.

Compressor Type NQ TQA HQA 2WIKI AVG.

EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑

Llama-3.1-8B-Instruct

Top-5 Documents

Original Docs - 36.9 48.8 61.5 70.3 29.6 39.9 22.2 29.1 37.5 47.0
RECOMP-Abst Abs. 33.9 45.1 57.8 66.7 27.0 37.2 26.2 32.2 36.2 45.3
CompAct Abs. 35.0 46.3 60.3 69.2 30.2 40.6 23.9 31.0 37.3 46.8
Refiner Abs. 34.4 46.0 61.0 70.0 29.6 39.9 23.4 30.0 37.1 46.5
RECOMP-Extr Ext. 35.9 45.8 58.5 66.1 25.9 35.4 21.2 27.5 35.4 43.7
LongLLMLingua Ext. 30.7 41.8 60.8 68.8 27.3 37.1 23.0 28.8 35.5 44.1
EXIT (Ours) Ext. 35.8 47.4 61.0 69.8 29.7 40.3 25.9 32.0 38.1 47.4

Top-20 Documents

Original Docs - 39.2 51.4 64.2 73.2 30.6 40.8 24.8 32.4 39.7 49.4
RECOMP-Abst Abs. 30.2 40.7 59.3 67.6 27.4 37.7 26.8 32.4 35.9 44.6
CompAct Abs. 35.6 47.0 60.1 69.2 30.7 40.6 21.0 28.3 36.9 46.3
Refiner Abs. 32.2 43.1 59.6 68.6 27.8 37.9 22.8 29.4 35.6 44.7
RECOMP-Extr Ext. 34.2 43.7 57.5 64.9 24.6 33.8 19.8 26.0 34.0 42.1
LongLLMLingua Ext. 33.8 45.2 63.8 72.1 31.0 41.1 25.3 31.6 38.5 47.5
EXIT (Ours) Ext. 38.8 50.8 63.4 72.3 32.2 43.1 26.6 32.9 40.3 49.8

Llama-3.1-70B-Instruct

Top-5 Documents

Original Docs - 39.5 51.8 68.3 76.5 36.0 46.7 31.4 37.5 43.8 53.1
RECOMP-Abst Abs. 38.1 50.3 63.4 72.4 30.8 41.2 27.8 33.4 40.0 49.3
CompAct Abs. 37.9 49.7 67.7 76.0 36.8 47.5 32.2 38.7 43.7 53.0
Refiner Abs. 38.2 50.2 67.7 76.1 36.0 46.9 30.5 36.6 43.1 52.4
RECOMP-Extr Ext. 40.1 50.9 68.1 75.6 30.8 40.2 26.5 31.9 41.4 49.7
LongLLMLingua Ext. 35.2 47.2 69.3 77.2 35.6 46.8 34.7 40.2 43.7 52.8
EXIT (Ours) Ext. 39.5 51.9 69.6 77.8 38.1 49.4 35.4 41.0 45.7 55.1

Top-20 Documents

Original Docs - 42.1 55.0 71.1 79.1 39.4 51.1 35.4 42.4 47.0 56.9
RECOMP-Abst Abs. 37.2 50.0 65.6 74.0 32.4 43.2 30.3 35.7 41.4 50.8
CompAct Abs. 37.6 49.1 66.4 74.4 33.6 42.7 25.6 30.5 40.8 49.2
Refiner Abs. 36.5 47.6 66.6 74.7 33.3 43.3 30.2 35.6 41.6 50.3
RECOMP-Extr Ext. 38.6 49.1 68.4 75.6 28.9 38.0 24.7 29.9 40.1 48.2
LongLLMLingua Ext. 37.0 49.1 70.5 78.5 37.9 49.4 35.4 41.1 45.2 54.6
EXIT (Ours) Ext. 42.5 55.3 71.0 79.0 39.8 51.1 36.5 42.2 47.5 56.9
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Table 15: Token distribution analysis across different top-k scenarios, models, and datasets. Best results for each
dataset are highlighted in bold, Second best results are highlighted in underline.

Compressor Type NQ TQA HQA 2WIKI AVG.

#token (%) ↓ #token (%) ↓ #token (%) ↓ #token (%) ↓ #token (%) ↓

Top-5 Documents

Original Docs - 723.9 (100.0) 730.3 (100.0) 749.2 (100.0) 784.8 (100.0) 734.4 (100.0)
RECOMP-Abst Abs. 38.0 (5.2) 36.9 (5.0) 63.3 (8.4) 55.1 (7.0) 46.0 (6.2)
CompAct Abs. 77.5 (10.7) 79.0 (10.8) 77.3 (10.3) 71.4 (9.1) 78 (10.6)
Refiner Abs. 115.6 (16.0) 103.2 (14.1) 76.6 (10.2) 62.1 (7.9) 98.5 (13.4)
RECOMP-Extr Ext. 43.9 (6.1) 42.7 (5.8) 90.2 (12.0) 97.9 (12.5) 58.9 (8.0)
LongLLMLingua Ext. 224.3 (31) 221.9 (30.4) 229.2 (30.6) 234.5 (29.9) 225.1 (30.7)
Ours (EXIT) Ext. 283.8 (39.2) 211.3 (28.9) 190.3 (25.4) 154.9 (19.7) 228.4 (31.2)

Top-20 Documents

Original Docs - 2897.4 (100.0) 2925.2 (100.0) 2996.6 (100.0) 3139.7 (100.0) 2939.8 (100.0)
RECOMP-Abst Abs. 26.1 (0.9) 38.6 (1.3) 64.5 (2.2) 51.1 (1.6) 43.1 (1.5)
CompAct Abs. 105.4 (3.6) 102.5 (3.5) 111.8 (3.7) 109.5 (3.5) 106.5 (3.6)
Refiner Abs. 232.4 (8.0) 176.0 (6.0) 117.3 (3.9) 92.7 (3.0) 175.2 (6.0)
RECOMP-Extr Ext. 43.4 (1.5) 40.6 (1.4) 89.3 (3.0) 95.7 (3.0) 57.8 (2.0)
LongLLMLingua Ext. 550.9 (19.0) 553.9 (18.9) 563.3 (18.8) 595.5 (19.0) 556 (18.9)
Ours (EXIT) Ext. 1001.2 (34.6) 635.0 (21.7) 465.0 (15.5) 367.1 (11.7) 700.4 (23.9)
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Table 16: Latency analysis across different top-k scenarios, models and datasets. Each entry shows compres-
sion/reading/total time in seconds. 8B reader experiments were conducted on a single A100-80GB GPU, while 70B
reader experiments utilized 4 A100-80GB GPUs in parallel. Best results for each dataset are highlighted in bold,
Second best results are highlighted in underline.

Compressor Type NQ TQA HQA 2WIKI AVG.

Comp. ↓ Read ↓ Total ↓ Comp. ↓ Read ↓ Total ↓ Comp. ↓ Read ↓ Total ↓ Comp. ↓ Read ↓ Total ↓ Comp. ↓ Read ↓ Total ↓

Llama-3.1-8B-Instruct

Top-5 Documents

Original Docs - - 1.03 1.03 - 0.93 0.93 - 0.96 0.96 - 1.12 1.12 - 1.03 1.03
RECOMP-Abst Abs. 1.13 0.43 1.55 1.06 0.29 1.35 1.92 0.32 2.24 1.73 0.38 2.11 1.46 0.36 1.81
CompAct Abs. 8.04 0.43 8.47 8.47 0.36 8.83 7.80 0.47 8.26 7.65 0.49 8.14 7.99 0.44 8.43
Refiner Abs. 27.40 0.70 28.10 10.50 0.40 10.90 6.50 0.40 6.90 5.80 0.50 6.40 12.52 0.55 13.07
RECOMP-Extr Ext. 0.04 0.50 0.54 0.04 0.31 0.35 0.04 0.37 0.41 0.04 0.59 0.63 0.04 0.44 0.48
LongLLMLingua Ext. 0.38 0.47 0.85 0.37 0.42 0.79 0.39 0.46 0.84 0.40 0.53 0.93 0.39 0.47 0.86
Ours (EXIT) Ext. 0.33 0.43 0.76 0.35 0.36 0.71 0.38 0.40 0.78 0.39 0.53 0.92 0.36 0.43 0.79

Top-20 Documents

Original Docs - - 3.41 3.41 - 2.85 2.85 - 2.94 2.94 - 3.22 3.22 - 3.11 3.11
RECOMP-Abst Abs. 1.07 0.63 1.70 1.55 0.31 1.86 2.09 0.35 2.44 2.16 0.44 2.60 1.72 0.43 2.15
CompAct Abs. 25.58 0.49 26.06 24.08 0.39 24.47 27.02 0.52 27.53 31.63 0.57 32.19 27.08 0.49 27.57
Refiner Abs. 28.00 0.70 28.70 43.70 0.50 44.20 29.00 0.60 29.60 9.80 1.00 10.80 27.63 0.69 28.32
RECOMP-Extr Ext. 0.11 0.51 0.62 0.11 0.28 0.39 0.12 0.42 0.54 0.11 0.56 0.68 0.11 0.44 0.55
LongLLMLingua Ext. 1.76 1.04 2.80 1.78 0.92 2.70 1.83 0.93 2.76 1.89 1.01 2.90 1.81 0.98 2.79
Ours (EXIT) Ext. 1.33 0.42 1.76 1.37 0.36 1.74 1.45 0.40 1.85 1.51 0.53 2.04 1.42 0.43 1.85

Llama-3.1-70B-Instruct

Top-5 Documents

Original Docs - - 8.63 8.63 - 7.70 7.70 - 8.30 8.30 - 9.09 9.09 - 8.43 8.43
RECOMP-Abst Abs. 1.28 3.20 4.48 1.20 2.14 3.34 2.06 2.37 4.43 1.71 2.54 4.24 1.56 2.56 4.12
CompAct Abs. 8.77 3.11 11.88 8.97 2.72 11.69 8.28 2.73 11.01 8.36 3.23 11.59 8.59 2.95 11.54
Refiner Abs. 35.90 6.60 42.50 14.70 3.60 18.30 11.30 3.30 14.60 8.00 3.20 11.20 17.48 4.16 21.64
RECOMP-Extr Ext. 0.04 2.44 2.48 0.04 2.21 2.25 0.04 2.87 2.91 0.05 3.29 3.33 0.04 2.70 2.74
LongLLMLingua Ext. 0.50 3.87 4.37 0.50 3.40 3.90 0.51 3.52 4.03 0.54 3.72 4.26 0.51 3.63 4.14
Ours (EXIT) Ext. 0.44 3.50 3.94 0.44 2.66 3.10 0.42 2.88 3.30 0.50 3.03 3.54 0.45 3.02 3.47

Top-20 Documents

Original Docs - - 25.78 25.78 - 24.85 24.85 - 25.35 25.35 - 28.09 28.09 - 26.02 26.02
RECOMP-Abst Abs. 1.13 3.36 4.49 1.58 2.11 3.70 2.24 2.59 4.83 2.07 2.75 4.81 1.76 2.70 4.46
CompAct Abs. 27.60 3.24 30.84 25.41 2.74 28.15 28.90 3.08 31.99 33.54 2.92 36.45 28.86 2.99 31.86
Refiner Abs. 32.50 5.40 37.90 47.40 1.50 48.90 31.40 1.50 33.00 9.70 3.10 12.80 30.25 2.90 33.15
RECOMP-Extr Ext. 0.11 2.27 2.38 0.12 2.10 2.21 0.12 2.77 2.89 0.13 3.18 3.31 0.12 2.58 2.70
LongLLMLingua Ext. 2.35 8.51 10.86 2.35 8.04 10.38 2.40 8.24 10.65 2.50 8.47 10.97 2.40 8.32 10.71
Ours (EXIT) Ext. 1.62 3.50 5.12 1.64 2.67 4.31 1.78 2.88 4.65 1.80 2.96 4.75 1.71 3.00 4.71

24


	Introduction
	Related Work
	Method
	Problem Formulation
	Extractive Context Compression (EXIT)
	Classifier Model Training

	Experiment Setups
	Main Results
	Analyses
	Robustness Analysis
	Classification Performance
	Understanding End-to-End Latency Factors
	Ablation Studies
	Impact of Compressor Model Size and Compression Strategy

	Conclusion
	More Implementation Details
	Training Configuration
	Model Selection and Training Time
	Data Processing
	Inference Settings
	Prompt Templates
	Reproducibility

	Additional Experimental Results and Analyses
	Performance with Sparse Retrieval
	Performance with Proprietary Model
	Impact of Threshold 
	Analysis of Classification Performance Across Negative Sample Types
	Classification Performance under Ablation Setting.
	Analysis of Training Data Composition
	Impact of Context on Classification Performance

	Training Data Ablation Analysis
	Case Studies


