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Abstract

Large language models (LLMs) have shown re-001
markable performance in vision-language tasks,002
but their application in the medical field re-003
mains underexplored, particularly for integrat-004
ing structured time series data with unstruc-005
tured clinical notes. In clinical practice, dy-006
namic time series data such as lab test results007
capture critical temporal patterns, while clinical008
notes provide rich semantic context. Merging009
these modalities is challenging due to the inher-010
ent differences between continuous signals and011
discrete text. To bridge this gap, we introduce012
ProMedTS, a novel self-supervised multimodal013
framework that employs prompt-guided learn-014
ing to unify these heterogeneous data types.015
Our approach leverages lightweight anomaly016
detection to generate anomaly captions that017
serve as prompts, guiding the encoding of raw018
time series data into informative embeddings.019
These embeddings are aligned with textual rep-020
resentations in a shared latent space, preserv-021
ing fine-grained temporal nuances alongside022
semantic insights. Furthermore, our framework023
incorporates tailored self-supervised objectives024
to enhance both intra- and inter-modal align-025
ment. We evaluate ProMedTS on disease diag-026
nosis tasks using real-world datasets, and the re-027
sults demonstrate that our method consistently028
outperforms state-of-the-art approaches.029

1 Introduction030

Recent advancements in natural language process-031

ing (NLP) have revolutionized healthcare by en-032

abling deeper insights into electronic health records033

(EHRs). EHRs combine structured data, such as034

time series laboratory (lab) test results, with un-035

structured data, including clinical notes and medi-036

cal images. While large language models (LLMs)037

excel at processing unstructured text (Nori et al.,038

2023; Singhal et al., 2023) and vision transform-039

ers have driven progress in medical image analysis040

(Wang et al., 2022; Chen et al., 2021), integrating041

Figure 1: (a) LLMs struggle to process continuous time
series data due to modality gaps with discrete textual
representations. (b) ProMedTS bridges this gap by lever-
aging anomaly descriptions and time series prompts,
aligning structured EHR data with clinical notes for im-
proved multimodal understanding.

continuous time series data with text remains a chal- 042

lenge. Unlike text, which is composed of discrete 043

tokens, time series data contain continuous signals 044

with temporal dependencies (Jin et al., 2023) as 045

illustrated in Figure 1(a). 046

Current multimodal learning approaches, espe- 047

cially contrastive learning methods (Radford et al., 048

2021; Li et al., 2023), have been effective in align- 049

ing vision and language. However, they are less 050

suited to bridge the gap between time series and 051

text. Time series data require fine-grained temporal 052

representations in a high-dimensional space and 053

are often irregularly sampled, exhibit diverse fre- 054

quencies, and include missing values (Harutyunyan 055

et al., 2019a). In addition, the lack of large-scale 056

paired datasets that link raw time series with textual 057

descriptions further hampers LLMs from incorpo- 058

rating structured information into clinical decision- 059
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making (Niu et al., 2024). Without an effective060

fusion mechanism, LLMs cannot fully exploit the061

rich temporal patterns in structured EHR data.062

To address these challenges, we propose063

ProMedTS, a self-supervised and prompt-guided064

framework designed to unify medical notes and065

time series lab test for naturally understood066

by LLMs. As shown in Figure 1(b), instead067

of feeding raw time series directly into LLMs,068

our framework introduce anomaly descriptions,069

capturing key patterns in lab test results for helping070

multimodal fusion between text and time series.071

These descriptions are generated using prompting072

with anomaly detection technology(Vinutha et al.,073

2018), converting continuous signals into human-074

readable summaries. The process involves two075

steps. First, anomaly descriptions establish a direct076

connection between time series EHRs and medical077

notes. Second, time series prompt embeddings078

are generated and added as prefix tokens to the079

LLM input. This method integrates structured080

time series information into the language modeling081

process without altering the LLM architecture,082

unifying both modalities within a same encoding083

space and enhancing clinical decision-making.084

We optimize ProMedTS with three self-supervised085

learning objectives. A contrastive loss maps tex-086

tual and time series modalities into a shared latent087

space. An anomaly-time series matching loss links088

lab test with their corresponding anomaly descrip-089

tions to reinforce consistency. Finally, an anomaly090

caption generation loss improves the fine-grained091

alignment between numeric time series lab test and092

time series prompt embeddings. Together, these093

objectives enable LLMs to process both structured094

and unstructured EHR data more effectively, ad-095

dressing the gap between language and time series096

representations in healthcare applications.097

• We propose ProMedTS, a self-supervised098

framework that integrates structured time se-099

ries and unstructured textual EHR data into100

LLMs without changing their architectures.101

• We introduce anomaly descriptions as a tex-102

tual bridge to align time series data with clini-103

cal notes, supported by three self-supervised104

objectives.105

• We demonstrate that ProMedTS significantly106

improves disease diagnosis on MIMIC-III and107

MIMIC-IV, setting a new benchmark for mul-108

timodal EHR learning.109

2 Related Work 110

The increasing diversity of EHR data has led to 111

significant advancements in multimodal learning 112

for healthcare applications. MedCLIP (Wang et al., 113

2022) employs semantic contrastive learning to 114

align medical images with textual reports, while 115

RAIM (Qiao et al., 2019) and GLoRIA (Huang 116

et al., 2021) integrate numerical and image data 117

with text using attention mechanisms. LDAM (Niu 118

et al., 2021a) further extends these approaches by 119

leveraging cross-attention with disease labels to 120

fuse features from lab tests and clinical notes. EHR- 121

KnowGen (Niu et al., 2024) transforms structured 122

lab data into text and incorporates external knowl- 123

edge for improved modality fusion. Despite these 124

advancements, achieving a unified latent embed- 125

ding that effectively captures interactions across 126

diverse modalities remains a key challenge in mul- 127

timodal EHR processing. 128

Beyond multimodal learning, recent research has 129

explored generative approaches to healthcare mod- 130

eling. Conventional methods have primarily relied 131

on discriminative models for disease risk assess- 132

ment and diagnosis (Choi et al., 2016; Niu et al., 133

2021b; Qiao et al., 2019). However, generative 134

models are increasingly being adopted, as demon- 135

strated by Clinical CoT (Kwon et al., 2024), apply- 136

ing LLMs for disease diagnosis generation. Rein- 137

forcement learning from human feedback (RLHF) 138

(Ouyang et al., 2022) and Chain-of-Thought (CoT) 139

prompting (Wei et al., 2022) have further enhanced 140

medical reasoning capabilities in models such as 141

GatorTron (Yang et al., 2022), MedPalm (Singhal 142

et al., 2023), and GPT4-Med (Nori et al., 2023). 143

While these models excel in medical question- 144

answering, they remain limited in real-world direct 145

disease diagnosis and multimodal EHR processing. 146

EHR-KnowGen (Niu et al., 2024) reframes disease 147

diagnosis as a text-to-text generation problem but 148

overlooks the crucial temporal details embedded 149

in time series lab tests, underscoring the need for 150

more effective and dedicated multimodal fusion 151

strategies. 152

3 Methodology 153

In this section, we present the ProMedTS frame- 154

work for unifying heterogeneous EHR data through 155

prompt-guided learning. We begin by defining the 156

problem and describing the model inputs, then pro- 157

vide a high-level overview of the architecture. In 158
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Figure 2: The ProMedTS model comprises three modules: the Time Series Prompt Embedding (TSPE) module,
the Multimodal Textual Information Fusion (MTIF) module, and the Self-supervised Learning (SSL) module. The
MTIF module utilizes Clinical-BERT to encode medical notes M , lab test data X , and anomaly descriptions C to
generate time series prompt embeddings T .

subsequent sections, we detail each module and159

discuss how these components are applied to down-160

stream tasks such as disease diagnosis.161

3.1 Problem Definition162

We introduce ProMedTS, aiming to reduce discrep-163

ancies between language and time series EHRs.164

Specifically, it leverages anomaly captions and gen-165

erates time series prompt embeddings to unify both166

modalities in a shared latent space. The inputs to167

ProMedTS, denoted by {M ,X}, include medical168

notes M ∈ RB×Nm (where B is the batch size169

and Nm is the number of tokens) and numeric lab170

test data X ∈ RB×L×Nx (where L is the sequence171

length and Nx is the number of lab test variants).172

Additionally, a lightweight anomaly detection (Vin-173

utha et al., 2018) is employed to generate textual174

descriptions of anomalies C ∈ RB×Nc (details175

in Appendix A.2). ProMedTS also uses learnable176

time series query embeddings P ∈ RB×Np×D,177

which are transformed into time series prompt em-178

beddings T ∈ RB×Np×D, where Np is the query179

length and D is the hidden dimension.180

3.2 Model Overview 181

Figure 2 illustrates the overview of ProMedTS, 182

which comprises three main modules. Three mod- 183

ules share the same Clinical-BERT(Alsentzer et al., 184

2019) structured model and are extended to support 185

cross-attention, self-attention, and prompt genera- 186

tion. The Time Series Prompt Embedding (TSPE) 187

module applies a cross-attention mechanism to con- 188

vert raw lab test data into prompt embeddings, pre- 189

serving key temporal features. The Multimodal 190

Textual Information Fusion (MTIF) module en- 191

codes and merges medical notes with anomaly cap- 192

tions in a unified latent space, facilitating the ex- 193

traction of complementary semantic information. 194

Finally, the Self-supervised Learning (SSL) mod- 195

ule employs tailored loss functions to bridge the 196

modality gap and maintain fine-grained temporal 197

details in the learned representations. These mod- 198

ules work in tandem to achieve robust alignment 199

and fusion of heterogeneous EHRs, and the follow- 200

ing sections provide in-depth explanations of each 201

component and their applications. 202

3.3 Time Series Prompt Embedding 203

The objective of the TSPE module is to extract 204

and encapsulate the inherent information from time 205
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series lab test data into a time series prompt em-206

bedding. Let {X,P } represent the module inputs.207

The numeric lab test data X is first processed by208

a time series encoder (TSE) using PatchTST (Nie209

et al., 2022). In parallel, the learnable query embed-210

dings P , initialized using vectors extracted from211

the Clinical-BERT word embedding layer, serve212

as query tokens in the cross-attention mechanism,213

guiding the selection of relevant temporal features214

by attending to time series lab test results encoded215

by TSE. To generate the final prompt embedding216

T , we extend the multi-head self-attention encoder217

of Clinical-BERT to support a multi-head cross-218

attention mechanism, following a strategy similar219

to that adopted in (Li et al., 2023). We designate X220

as both key and value while P serves as the query:221

T = Clinical-BERT
(
P ,TSE(X),TSE(X)

)
.
(1)222

This design ensures that the rich temporal patterns223

in X are captured within T , enabling subsequent224

modules to leverage these features effectively.225

3.4 Multimodal Textual Information Fusion226

The MTIF module is designed to fuse medical notes227

and anomaly descriptions effectively. We use the228

anomaly captioning method to generate anomaly229

descriptions, as illustrated in Figure 2. The inputs230

to the MTIF module are medical notes M and lab231

test anomaly descriptions C, which are encoded232

separately by Clinical-BERT via the multi-head233

self-attention mechanism:234

Em = Clinical-BERT(M ,M ,M),

Ec = Clinical-BERT(C,C,C),
(2)235

where Em ∈ RB×Nm×D and Ec ∈ RB×Nc×D.236

The repeated inputs indicate that the key, query, and237

value matrices are identical for the self-attention238

mechanism. This structure enables the model to239

encode each type of textual information indepen-240

dently while capturing the inherent characteristics241

and context of each input. The combined textual242

representation is then derived from these encoded243

inputs:244

Ef = AV G([Em ⊕Ec]), (3)245

where Ef ∈ RB×D, with ⊕ indicating concatena-246

tion, and AV G representing average pooling.247

3.5 Self-Supervised Learning248

This module addresses the modality gap between249

textual and time series EHR data using three spe-250

cialized loss functions. By simultaneously aligning251

cross-modal representations and preserving fine- 252

grained temporal details, the model learns to cap- 253

ture both semantic and temporal nuances. 254

3.5.1 Cross-Modal Contrastive Alignment 255

To promote cross-modal alignment, we design a 256

contrastive loss that brings language and time series 257

embeddings closer when they originate from the 258

same patient and pushes them apart otherwise. We 259

first compute similarity matrices by multiplying the 260

fused text representation Ef with the time series 261

prompt embeddings T : 262

g(Ef ,X) = max
([

Ef T (1)T , . . . ,Ef T (Np)T
])

,

g(X,Ef ) = max
([

T (1)ET
f , . . . ,T (Np)ET

f

])
,

(4) 263

where the max operator performs max-pooling 264

across Np dimensions, yielding g(Ef ,X) and 265

g(X,Ef ) ∈ RB×B . Note that g(Ef ,X) measures 266

text-to-time series similarity (by fixing Ef and iter- 267

ating over T ), while g(X,Ef ) captures time-series- 268

to-text similarity (by fixing T and iterating over 269

Ef ). This process is the same as that used in vision- 270

language contrastive learning (Radford et al., 2021; 271

Li et al., 2023). We then apply the SoftMax func- 272

tion to generate two distinct sets of logits: 273

ŷf2x
c = SoftMax

(
g(Ef ,X)

)
,

ŷx2f
c = SoftMax

(
g(X,Ef )

)
.

(5) 274

Let yf2x
c and yx2f

c denote the ground truth labels 275

indicating whether the pairs correspond to the same 276

patient in a training batch (1 if matched, 0 other- 277

wise). We use cross-entropy H(·) to define the 278

contrastive loss: 279

Lcontrast = 1
2 E

[
H
(
yf2x
c , ŷf2x

c

)
+ H

(
yx2f
c , ŷx2f

c

)]
.

(6) 280

3.5.2 Intra-Modal Matching 281

To further capture intra-modality consistency, we 282

align lab tests with corresponding anomaly descrip- 283

tions. This alignment is modeled as a binary clas- 284

sification task, distinguishing matched from un- 285

matched pairs of lab tests and anomaly captions. 286

Following Li et al. (2021), we employ a negative 287

mining strategy to generate labels ym by selecting 288

the most similar pairs in a training batch as negative 289

samples, where the top 1-ranked pair is labeled as 290

1 and the others as 0, based on the similarity com- 291

puted in Equation 4. We employ Clinical-BERT’s 292
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cross-attention, where the concatenation of C and293

P serves as the query, and the encoded time series294

X is used as both key and value. A Multilayer Per-295

ceptron (MLP) classifier with softmax activation,296

denoted fmatch, predicts the probability ŷm:297

ŷm = fmatch

(
Clinical-BERT

(
fW(C)⊕ P ,

TSE(X),TSE(X)
))

,
(7)298

where fW is the word embedding layer in Clinical-299

BERT. We define the matching loss as:300

Lmatch = E
[
H
(
ym, ŷm

)]
, (8)301

where ym is the one-hot ground truth label.302

3.5.3 Anomaly Description Reconstruction303

To ensure the time series prompt embeddings en-304

code both coarse anomaly descriptions and fine-305

grained temporal details, we reconstruct anomaly306

captions from the learned embeddings. This step307

helps unify language tokens and time series repre-308

sentations in a shared space. Specifically, we use309

Clinical-BERT with a language model head fhead,310

setting Ec as the query and T as key and value:311

Lgen = E
[
H

(
C, fhead

(
Clinical-BERT(Ec, T , T )

))]
.

(9)312

This objective is a standard language model gener-313

ation loss, computed as cross-entropy between the314

predicted token distribution and the ground truth315

tokens, encouraging the model to generate accurate316

textual descriptions, thereby reinforcing alignment317

between time series prompts and language tokens.318

Overall Loss: We combine these objectives into a319

single training loss:320

Ltotal = αLcontrast + β Lmatch + γ Lgen, (10)321

where α, β, and γ are hyperparameters balancing322

the three losses (see Appendix A.6). Our train-323

ing algorithm aims to minimize Ltotal across all324

samples (details in Appendix A.1).325

3.6 LLM-based Disease Diagnosis with326

ProMedTS327

To illustrate the practical effectiveness of328

ProMedTS in unifying textual and time series329

data, we employ a pre-trained, frozen LLM model330

for disease diagnosis. As depicted in Figure 3,331

ProMedTS first converts numeric lab test results332

into time series prompt embeddings, which are333

Figure 3: ProMedTS for empowering LLMs to in dis-
ease diagnosis.

then aligned via a fully connected layer to match 334

the LLM’s input dimensions. These embeddings 335

serve as prefix soft prompts, concatenated with 336

the medical notes so that the model can ingest 337

structured signals from time series alongside un- 338

structured clinical text. By bridging language and 339

time series modalities, the LLM can process both 340

inputs concurrently, leveraging complementary 341

information for enhanced diagnostic accuracy. 342

4 Experiments 343

4.1 Datasets and Preprocessing 344

The MIMIC-III dataset (Johnson et al., 2016) is 345

a publicly available EHR dataset containing de- 346

identified patients who were admitted to ICUs be- 347

tween 2001 and 2012. It includes medical dis- 348

charge summaries, lab test results, chest x-ray im- 349

ages and more. Our analysis focuses on EHR data 350

from approximately 27,000 patients including com- 351

plete medical discharge summaries and lab test re- 352

sults. The MIMIC-IV dataset (Johnson et al., 2023) 353

comprises EHR data from 2008 to 2019. We utilize 354

approximately 29,000 EHR records from MIMIC- 355

IV, which include complete medical discharge sum- 356

maries and lab test results. Our study targets 25 357

disease phenotypes as defined in the MIMIC-III 358

benchmark (Harutyunyan et al., 2019a). 359

Data Pre-processing. For medical notes, we ex- 360

tract the brief course from medical discharge sum- 361

maries, removing numbers, noise, and stopwords. 362

Numerical lab test results are converted into time 363

series data using the benchmark tools (Harutyun- 364

yan et al., 2019b), with missing values filled using 365

the nearest available numbers. Time series anomaly 366

descriptions are used the method defined in Ap- 367

pendix A.2. Data splitting follows the guidelines 368

in (Harutyunyan et al., 2019b), using a 4:1 ratio for 369
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Models Size Type Modality Micro Macro
CLS GEN Lab Note Precision Recall F1 Precision Recall F1

MIMIC-III
GRU 7.9M ✓ ✓ 46.41(3.48) 21.88(3.59) 29.43(1.89) 30.47(4.23) 13.00(1.14) 14.59(1.48)

PatchTST 19.2M ✓ ✓ 32.64(3.59) 42.72(5.01) 36.02(1.09) 26.86(3.51) 29.71(4.78) 19.25(3.50)

TimeLLM 78M ✓ ✓ 37.43(1.17) 54.93(6.56) 36.59(1.17) 10.18(2.30) 35.21(6.47) 15.16(2.17)

CAML 36.1M ✓ ✓ 69.04(0.18) 55.87(2.72) 61.54(0.30) 65.08(2.56) 50.12(3.05) 54.42(0.94)

DIPOLE 39M ✓ ✓ 64.38(0.89) 57.94(1.15) 60.98(0.27) 61.63(1.03) 53.02(1.18) 55.68(0.49)

Flan-T5 60M ✓ ✓ 58.12(1.11) 66.23(0.72) 62.03(0.54) 56.56(1.03) 62.47(0.76) 58.87(0.71)

PROMPTEHR 75.2M ✓ ✓ 59.29(0.97) 65.53(0.69) 62.24(0.23) 57.44(0.97) 62.87(0.61) 59.10(0.24)

LLaMA 7B ✓ ✓ ✓ 61.42(.2.08) 65.98(1.53) 63.64(0.41) 61.08(1.54) 61.64(1.27) 60.55(0.44)

LDAM 41.3M ✓ ✓ ✓ 68.00(1.23) 57.12(0.47) 62.18(0.40) 67.38(0.35) 51.50(0.95) 57.44(0.60)

FROZEN 265M ✓ ✓ ✓ 61.09(1.81) 64.07(1.58) 62.51(0.34) 59.96(1.55) 59.99(1.66) 59.15(0.30)

EHR-KnowGen 76.9M ✓ ✓ ✓ 60.01(0.29) 65.51(0.18) 62.62(0.06) 58.34(0.38) 61.81(0.28) 59.44(0.06)

ProMedTS 267.5M ✓ ✓ ✓ 61.32(0.54) 66.65(0.51) 63.67(0.08) 60.35(0.61) 61.62(0.71) 60.42(0.18)

ProMedTS* 1B ✓ ✓ ✓ 60.62(0.22) 67.83(0.18) 64.02(0.11) 59.43(0.37) 63.65(0.54) 60.78(0.13)

MIMIC-IV
GRU 7.9M ✓ ✓ 56.23(1.13) 25.77(1.58) 35.21(1.36) 38.37(1.90) 16.97(1.22) 20.65(1.32)

PatchTST 19.2M ✓ ✓ 27.26(0.03) 57.42(0.41) 36.97(0.10) 20.59(2.76) 43.72(0.25) 21.78(2.83)

TimeLLM 78M ✓ ✓ 30.30(1.78) 60.46(1.98) 40.31(1.20) 24.61(2.21) 47.26(2.37) 25.56(1.60)

CAML 36.1M ✓ ✓ 72.82(0.54) 59.48(0.82) 65.40(0.36) 67.25(0.99) 50.73(1.49) 54.71(1.42)

DIPOLE 39M ✓ ✓ 72.39(0.51) 61.38(0.83) 66.43(0.33) 70.45(0.37) 55.65(0.79) 60.37(0.62)

Flan-T5 60M ✓ ✓ 66.24(0.52) 69.53(0.18) 67.92(0.41) 64.28(0.58) 66.01(0.54) 64.79(0.36)

PROMPTEHR 75.2M ✓ ✓ 65.24(0.68) 70.31(0.56) 68.02(0.17) 63.53(0.47) 67.02(0.65) 65.01(0.28)

LLaMA 7B ✓ ✓ ✓ 68.54(1.12) 69.54(0.73) 69.29(0.32) 67.53(0.91) 66.24(1.13) 66.21(0.64)

LDAM 41.3M ✓ ✓ ✓ 72.01(0.85) 62.74(0.62) 66.91(0.20) 69.77(0.18) 56.72(0.69) 60.77(0.48)

FROZEN 265M ✓ ✓ ✓ 67.81(0.78) 69.08(0.94) 68.42(0.08) 66.27(1.00) 65.21(0.97) 65.30(0.05)

EHR-KnowGen 76.9M ✓ ✓ ✓ 65.80(0.64) 70.85(0.45) 68.16(0.11) 63.82(0.53) 67.24(0.55) 65.11(0.13)

ProMedTS 267.5M ✓ ✓ ✓ 71.63(0.46) 67.81(0.85) 69.69(0.18) 70.12(0.47) 63.58(0.79) 66.21(0.17)

ProMedTS* 1B ✓ ✓ ✓ 71.12(0.31) 69.33(0.42) 70.21(0.05) 70.97(0.42) 65.51(0.64) 67.56(0.09)

Table 1: The performance of comparative methods in the disease diagnosis tasks on MIMIC-III and MIMIC-IV.
Please note CLS - classification model, GEN -generative model, Lab - lab test result, and Note - medical notes.

training and testing.370

4.2 Baseline Methods371

We benchmark our approach against a range of372

methods: GRU (Cho et al., 2014), PatchTST373

(Nie et al., 2022), TimeLLM (Jin et al., 2023),374

CAML (Mullenbach et al., 2018), DIPOLE (Ma375

et al., 2017), Flan-T5 (Chung et al., 2024),376

PROMPTEHR (Wang and Sun, 2022), LLaMA-377

1-7B (Touvron et al., 2023) with anomalies input,378

LDAM (Niu et al., 2021a), FROZEN (Tsimpoukelli379

et al., 2021), and EHR-KnowGen (Niu et al., 2024).380

Detailed configurations of these baselines are pro-381

vided in Appendix A.3. For the disease diagnosis382

task, we adopt two scales of Flan-T5 (Chung et al.,383

2024) as the frozen LLM to validate our model’s384

effectiveness in understanding multimodal EHRs,385

primarily driven by resource considerations and386

ease of experimentation. The Flan-T5-Small-based387

model is denoted as PromMedTS, while the Flan-388

T5-Large-based model is denoted as ProMedTS*.389

In principle, any sufficiently LLM could be substi-390

tuted to potentially achieve even stronger results.391

To ensure a fair comparison, all baselines also392

employ Flan-T5 as their backbone. Reported 393

results are averaged over five runs with differ- 394

ent random seeds. The statistical significance 395

determined at p < 0.05 by t-test. Implementa- 396

tion details for every model are described in 397

Appendix A.4, and training instructions appear in 398

Appendix A.5. Our code is publicly available at 399

https://anonymous.4open.science/r/PromptMedTS- 400

V1-5F51. 401

4.3 Disease Diagnosis Performance 402

Table 1 shows that ProMedTS achieves the highest 403

overall performance, particularly in F1 scores on 404

MIMIC-IV. In addition, replacing the LLM with a 405

larger model improves F1 scores on both datasets, 406

indicating our model’s scalability and robustness 407

across different LLMs. Furthermore, TimeLLM 408

performs strongly with lab test, highlighting the 409

value of time-series inputs for LLMs in disease di- 410

agnosis. Text-based methods (e.g., Flan-T5) gener- 411

ally outperform time-series approaches, suggesting 412

that medical notes capture richer disease-related 413

information. Multimodal models (e.g., EHR- 414

KnowGen, LLaMA) exceed single-modality base- 415

lines (e.g., TimeLLM, PROMPTEHR), confirming 416
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Models Micro Macro
Precision Recall F1 Precision Recall F1

MIMIC-III
ProMedTS 61.32(0.54) 66.65(0.51) 63.67(0.08) 60.35(0.61) 61.62(0.71) 60.42(0.18)

w/o LAB 58.91(0.83) 66.59(0.57) 62.34(0.26) 57.32(0.88) 62.56(0.61) 59.05(0.22)

w/o ANOMALY 60.09(0.32) 65.03(0.98) 62.44(0.22) 59.13(0.43) 60.46(1.15) 59.11(0.25)

MIMIC-IV
ProMedTS 71.63(0.46) 67.81(0.85) 69.69(0.18) 70.12(0.47) 63.58(0.79) 66.21(0.17)

w/o LAB 67.16(0.55) 69.42(0.59) 68.22(0.31) 65.74(0.62) 64.69(0.48) 64.33(0.18)

w/o ANOMALY 70.94(0.37) 66.44(1.37) 68.47(0.12) 68.95(0.79) 62.45(0.96) 65.13(0.12)

Table 2: Ablation studies on different modality input and alignment designs for disease diagnosis.

Models Micro Macro
Precision Recall F1 Precision Recall F1

MIMIC-III
ProMedTS 61.32(0.54) 66.65(0.51) 63.67(0.08) 60.35(0.61) 61.62(0.71) 60.42(0.18)

w/o CONTRAST 60.24(0.25) 66.00(0.39) 62.99(0.07) 59.92(0.60) 61.41(0.51) 59.73(0.07)

w/o MATCH 60.12(0.58) 66.14(1.50) 62.96(0.02) 59.70(1.18) 61.37(1.34) 59.65(0.11)

w/o GEN 59.95(0.38) 66.15(0.27) 62.89(0.19) 59.57(0.55) 61.32(0.30) 59.61(0.20)

MIMIC-IV
ProMedTS 71.63(0.46) 67.81(0.85) 69.69(0.18) 70.12(0.47) 63.58(0.79) 66.21(0.17)

w/o CONTRAST 70.19(0.25) 66.22(0.39) 68.61(0.09) 69.05(0.24) 62.40(0.35 65.21(0.12)

w/o MATCH 70.79(0.34) 66.49(0.38) 68.67(0.15) 68.91(0.73) 62.25(0.48) 65.47(0.15)

w/o GEN 71.30(0.29) 65.79(0.57) 68.44(0.13) 69.14(0.48) 62.05(0.54) 65.03(0.13)

Table 3: Ablation studies on the effectiveness of different loss functions of our model for disease diagnosis.

the benefits of integrating text and time series. Gen-417

erative approaches (e.g., TimeLLM, LLaMA, EHR-418

KnowGen) also outperform classification-based419

methods. Although LLaMA performs well, its420

higher variance and parameter requirements re-421

duce practicality. Notably, our ProMedTS and422

ProMedTS* surpass all baselines (especially a423

large improvement on Flan-T5) in F1 scores, high-424

lighting its efficiency and effectiveness.425

4.4 Ablation Studies426

4.4.1 Effect of Modality Alignment in427

ProMedTS428

This section presents ablation studies to evalu-429

ate each module in ProMedTS. ProMedTS w/o430

LAB excludes lab test, removing modality align-431

ment with anomaly descriptions and medical notes.432

ProMedTS w/o ANOMALY removes alignment433

with anomaly descriptions while keeping alignment434

between lab test and medical notes to assess the435

impact of self-supervision. Table 2 summarizes the436

results, showing that ProMedTS w/o LAB suffers437

a significant drop in F1 scores, highlighting the438

importance of lab test. ProMedTS w/o ANOMALY439

also shows reduced performance, highlighting the440

challenges of aligning modalities from discrete and441

continuous encoding spaces and the adverse effects442

of misalignment on multimodal understanding.443

4.4.2 Impact of Self-Supervised Loss 444

Functions 445

Table 3 summarizes an ablation study on the loss 446

functions in ProMedTS. Both ProMedTS w/o CON- 447

TRAST and ProMedTS w/o MATCH show slight 448

declines in F1 scores, emphasizing the importance 449

of Lcontrast for aligning and unifying time series 450

and textual inputs within a shared latent space. The 451

results also underscore the role of Lmatch in intra- 452

modal alignment, ensuring the distinctiveness of 453

time series data by aligning lab test with time se- 454

ries prompt embeddings. Notably, ProMedTS w/o 455

GEN exhibits a significant drop in F1 scores, high- 456

lighting the critical role of Lgen in refining prompt 457

embeddings and integrating temporal information 458

from time series data and anomaly descriptions. 459

4.5 Model Efficiency and Complexity 460

Figure 4 illustrates the parameter counts and com- 461

putation times of baseline models on the two 462

datasets. Our model, ProMedTS, matches the pa- 463

rameter counts and computation times of multi- 464

modal baselines such as LDAM and FROZEN, 465

while using 25× fewer parameters and requiring 466

one-third less training time than LLaMA, all while 467

achieving superior diagnostic performance, high- 468

lighting its efficiency and effectiveness in language- 469

time series multimodal alignment and fusion. 470
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Figure 4: The model parameters and computation time
of all baselines.

4.6 Sensitivity Analysis of Time Series471

Prompt Length472

We performed a sensitivity analysis to examine473

the impact of the time series prompt embedding474

length (Np) on the performance of ProMedTS in475

disease diagnosis. Table 4 shows the F1 scores476

for embedding lengths of 12, 24, and 36. Slight477

fluctuations are observed in both micro and macro478

F1 scores across datasets. The optimal embedding479

length is 24 for both datasets, consistent with the480

configuration used in our experiments.481

4.7 Evaluating the Role of Anomaly482

Descriptions483

To highlight the advantages of using lab test484

anomaly captions over raw numerical time series485

values in LLMs, we evaluate Flan-T5-small with486

both input types. Table 5 presents the evaluation487

results on the MIMIC-III and MIMIC-IV datasets488

for disease diagnosis. The results show that Flan-489

T5 achieves over a 2% improvement in Micro F1490

score when using anomaly captions, demonstrat-491

ing that LLMs interpret anomaly captions more492

effectively than raw numerical values in time series493

Np Micro F1 Macro F1
MIMIC-III

12 63.09(0.06) 59.69(0.12)

24 63.67(0.08) 60.42(0.18)

36 63.32(0.09) 59.96(0.15)

MIMIC-IV
12 68.98(0.15) 65.43(0.18)

24 69.69(0.18) 66.21(0.17)

36 69.41(0.19) 65.91(0.20)

Table 4: Sensitivity analysis on different length of time
series prompt embedding.

Lab Test Input Micro F1 Macro F1
MIMIC-III

Numerical Values 32.21(1.33) 23.53(1.21)

Anomaly captions 35.19(0.92) 24.75(0.76)

Time series prompts 36.11(1.14) 25.47(1.02)

MIMIC-IV
Numerical Values 37.75(1.46) 26.10(1.09)

Anomaly captions 39.56(1.14) 27.22(0.77)

Time series prompts 40.14(1.05) 28.43(0.91)

Table 5: Micro and Macro F1 Scores Across Various
Lab Test Input Types on the LLM for Disease Diagnosis

lab test data. Additionally, the inclusion of time 494

series prompts underscores the effectiveness of our 495

model, ProMedTS, in capturing both fine-grained 496

and coarse-grained temporal information from lab 497

test results for disease diagnosis. 498

5 Conclusion and Future Work 499

In this paper, we introduce ProMedTS, a 500

lightweight and effective modality fusion frame- 501

work that leverages self-supervised prompt learn- 502

ing for multimodal EHR integration. By bridging 503

the modality gap between medical notes and lab 504

test results, ProMedTS enables LLMs to process 505

structured and unstructured medical data more ef- 506

fectively. Its three key modules and self-supervised 507

loss functions advance language–time series in- 508

tegration in healthcare, providing a scalable and 509

adaptable approach for real-world clinical applica- 510

tions. Evaluation on two real-world EHR datasets 511

demonstrates that ProMedTS significantly outper- 512

forms existing models in disease diagnosis, under- 513

scoring its potential to enhance clinical decision- 514

making and improve patient care. In future work, 515

we plan to extend our approach to larger and more 516

diverse datasets, explore additional LLM archi- 517

tectures, and investigate further improvements in 518

modality alignment techniques. 519
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Limitations520

While this study focuses on modality alignments521

and their application in downstream tasks, enhanc-522

ing the explainability of disease diagnosis remains523

an area for future work, where we plan to incor-524

porate the Chain-of-Thought rationale (Wei et al.,525

2022). Additionally, computational constraints re-526

quired the use of a relatively compact LLM, limit-527

ing the amount of clinical text processed at once,528

which may impact the model’s ability to lever-529

age full medical histories. Expanding to more530

capable models will help address this challenge.531

Furthermore, our study primarily targets higher-532

level disease phenotypes in the International Clas-533

sification of Diseases (ICD) codes (Slee, 1978),534

which could be expended to more downstream535

tasks. Future work will explore larger models, such536

as LLaMA (Touvron et al., 2023) and Mistral (Jiang537

et al., 2023), to improve diagnostic granularity and538

broaden coverage.539

Ethics Statement540

Data Privacy: While the datasets utilized in our541

research, such as MIMIC-III and MIMIC-IV, are542

publicly accessible and feature de-identified patient543

data, accessing these datasets still requires passing544

the CITI examination and applying for the data545

through PhysioNet.546
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Algorithm 1 The ProMedTS Model
1: Input: Given lab test X and medical note M

denote the EHRs input. P consists of a set of
learnable prompt embeddings.

2: while not converge do
3: for mini-batch B do
4: Obtain the time series anomaly caption

T using equation (1).
5: Obtain multimodal textual embedding Ef

using equations (2) and (3).
6: Calculate the contrastive loss Lcontrast

between lab test, anomalies, and medical
notes using equations (4), (5), and (6).

7: Calculate the matching loss Lmatch be-
tween lab test and anomalies using equa-
tions (7) and (8).

8: Calculate the generation loss Lgen be-
tween lab test and anomalies using equa-
tion (9).

9: end for
10: Update parameters by minimizing the total

loss Ltotal defined in Equation (10) by us-
ing the AdamW optimizer (Loshchilov and
Hutter, 2018) for patients in each batch.

11: end while

A Appendix735

A.1 Algorithm736

The training procedure to optimize ProMedTS by737

minimizing the loss defined in Equation (10) is738

shown in Algorithm 1.739

A.2 Lab Test Anomaly Caption740

Time series anomaly descriptions are generated741

using the IQR method (Vinutha et al., 2018) to742

identify anomalies, capturing their timing and po-743

larity (above or below standard values) and describ-744

ing them with handcrafted templates. To caption745

the lab test anomaly into textual format, we de-746

sign several text templates to describe the lab test747

anomalies. All templates are illustrated in Table 6.748

A.3 Baseline Models749

• GRU: The Gated Recurrent Unit (GRU) (Cho750

et al., 2014), a variant of recurrent neural net-751

works (RNNs), employs two gates to capture752

both long-term and short-term temporal fea-753

tures effectively.754

• PatchTST: PatchTST (Nie et al., 2022) is755

a transformer-based time series encoder de-756

signed for long-term forecasting. It segments 757

time series into subseries-level patches, treat- 758

ing each as a token within the transformer 759

architecture. 760

• TimeLLM: TimeLLM (Jin et al., 2023) is an 761

LLM-based time series prediction model that 762

reprograms input time series into text proto- 763

types before processing them with a frozen 764

LLM. It achieves state-of-the-art performance 765

in mainstream forecasting tasks, particularly 766

in few-shot and zero-shot scenarios. 767

• CAML: The Convolutional Attention for 768

Multi-Label classification (CAML) (Mullen- 769

bach et al., 2018) is a classical model for clas- 770

sifying medical notes, incorporating a cross- 771

attention mechanism and label embeddings to 772

enhance interpretability. For a fair compar- 773

ison with more recent language models, its 774

original embedding layer is replaced with one 775

from T5. 776

• DIPOLE: DIPOLE (Ma et al., 2017) is a clas- 777

sic disease prediction model that utilizes two 778

Bi-directional RNNs. It incorporates an at- 779

tention mechanism to integrate information 780

from both past and future hospital visits. For 781

a fair comparison with more recent language 782

models, its original embedding layer has been 783

replaced with one from T5. 784

• Flan-T5: showcased within the scaling 785

instruction-fine-tuning framework for lan- 786

guage models (Chung et al., 2024). It ben- 787

efits from training on a wide array of datasets 788

geared toward tasks like summarization and 789

question answering. 790

• PROMPTEHR: PROMPTEHR (Wang and 791

Sun, 2022) introduces a novel approach in gen- 792

erative models for electronic health records 793

(EHRs), implementing conditional prompt 794

learning. In this study, the model is specif- 795

ically geared towards disease diagnosis. 796

• LLaMA: LLaMA-7B (Touvron et al., 2023), 797

one of the leading large language models, is 798

enhanced by Reinforcement Learning with 799

Human Feedback (RLHF) and instructive tun- 800

ing. It is fine-tuned for disease diagnosis in 801

this study, demonstrating its versatility in var- 802

ious NLP tasks. 803

• LDAM: LDAM (Niu et al., 2021a) leverages 804
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multimodal inputs, combining laboratory test-805

ing results and medical notes for disease risk806

prediction. It utilizes label embedding to ef-807

fectively integrate these two modalities.808

• FROZEN: FROZEN (Tsimpoukelli et al.,809

2021) represents the cutting-edge multimodal810

vision-language models for few-shot learning.811

In our study, it is adapted to the disease diag-812

nosis task using inputs from lab test results813

and medical notes.814

• EHR-KnowGen: EHR-KnowGen (Niu et al.,815

2024), touted as the state-of-the-art in EHR816

multimodal learning models, focuses on dis-817

ease diagnosis generation. For this study, ex-818

ternal domain knowledge is excluded to en-819

sure a fair comparison.820

A.4 Implementation Details821

In experiments, we utilized PyTorch framework822

version 2.0.1, operating on a CUDA 11.7 environ-823

ment. We employed the AdamW optimizer with824

a starting learning rate of 1e−5 and a weight de-825

cay parameter of 0.05. Additionally, we imple-826

mented a warm-up strategy covering 10% of the827

training duration. Our experiments were conducted828

on high-performance NVIDIA Tesla V100 GPUs.829

Within the ProMedTS model, we used 24 time se-830

ries prompt embeddings, each with a dimension-831

ality of 768. The model’s hidden layer size was832

maintained at 768 for modality alignment and ad-833

justed to 512 for downstream tasks. To standardize834

the time series data input, we padded all lab test835

results to a uniform length of 1000 time steps, al-836

lowing us to divide the data into 125 patches, with837

each patch containing 8 time steps. The Flan-T5 is838

fine-tuned on two MIMIC datasets (Johnson et al.,839

2016, 2023) and then frozen for downstream tasks.840

A.5 Training Instruction Template841

Table 7 illustrates the training instruction template842

for our model ProMedTS for disease diagnosis on843

MIMIC-III and MIMIC-IV datasets.844

A.6 Sensitivity Analysis of Varying Ratios in845

Loss Function Components846

To examine the impact of different combinations847

of the three loss functions, Lcontrast, Lmatch, and848

Lgen, on the downstream performance, we perform849

a sensitivity analysis using three sets of loss ra-850

tios: 1:1:1, 1:2:2, and 1:2:1 on MIMIC-III and851

MIMIC-IV datasets. Since the value of Lcontrast852

is typically larger than those of Lmatch and Lgen, 853

we assign greater weights to Lmatch and Lgen. Fig- 854

ure 5 presents the results, where lines indicate the 855

variation in the sum of the three loss functions on 856

the testing dataset and bars represent the Micro and 857

Macro F1 scores. The figure reveals that varying 858

the weight ratios of the three loss functions has 859

minimal impact on model convergence and the per- 860

formance of downstream disease diagnosis tasks. 861

A.7 Discussion on LLMs Selection 862

In this section, we explain our choice of Flan-T5 863

as the base LLM for downstream tasks, focusing 864

on three key aspects. 1). Instruction Tuning: Our 865

method trains with instructions, as shown in Ta- 866

ble 7. Flan-T5 (Chung et al., 2024) is trained using 867

instruction tuning, which allows it to generalize 868

better across various tasks compared to the super- 869

vised fine-tuning used for OPT (Zhang et al., 2022) 870

and GPT-2 (Radford et al., 2019). 2). Rapid Proof- 871

of-Concept and Practical Development: Training 872

large language models, such as LLaMA-7B, re- 873

quires extensive computational resources and time 874

(see Figure 4). Models with fewer parameters can 875

still demonstrate our method’s effectiveness in un- 876

derstanding multimodal EHRs, as shown in our ex- 877

periment in Section 4.3 (ProMedTS vs. Flan-T5). 878

Moreover, LLMs with fewer than 1 billion parame- 879

ters will be more efficient for real-world healthcare 880

applications. 3). Scaling LLMs for Higher Perfor- 881

mance: As shown in Section 4.3, scaling Flan-T5 882

to 1 billion parameters leads to a stable increase 883

in disease diagnosis performance, as measured by 884

both Micro and Macro F1 scores on both datasets. 885

In future work, we will extend our approach to dif- 886

ferent models and tasks to further demonstrate its 887

effectiveness. 888
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If lab test value is not an abnormal value:
{Lab features} is normal all the time.
If the lab test value is an abnormal value higher than the standard:
{Lab features} is higher than normal {number of times} times.
If the lab test value is an abnormal value lower than the standard:
{Lab features} is lower than normal {number of times} times.
If the lab test value is an abnormal that include both higher and lower than the standard value:
{Lab features} is higher than normal {number of times} times and lower than normal{number of
times} times.

Table 6: Lab test anomaly caption template.

Diagnose disease from the following medical notes and lab test:
Medical Notes: ms woman signficant pmh atrial fibrillation lung cancer resection congestive heart
hypertension worsening diarrhea dysuria hypotensive admitted unit presumed active issues
hypotensive pronounced leukocytosis multiple potential sources ct scan peritoneal fluids free fluid
started surgery ...
Lab Test: < prefix1 >,< prefix2 >, ..., < prefixn >

Diagnosis:
Acute and unspecified renal failure, Fluid and electrolyte disorders, Septicemia (except in labor),
Shock, Chronic obstructive pulmonary disease and bronchiectasis, Disorders of lipid metabolism,
Cardiac dysrhythmias, Congestive heart failure; nonhypertensive,
Diabetes mellitus with complications, Other liver diseases.

Table 7: Training Instruction Template

Figure 5: Sensitivity analysis of varying ratios in loss function components, showing Micro and Macro F1 scores
for downstream tasks.

13


	Introduction
	Related Work
	Methodology
	Problem Definition
	Model Overview
	 Time Series Prompt Embedding
	Multimodal Textual Information Fusion 
	Self-Supervised Learning
	Cross-Modal Contrastive Alignment
	Intra-Modal Matching
	Anomaly Description Reconstruction

	LLM-based Disease Diagnosis with ProMedTS

	Experiments
	Datasets and Preprocessing
	Baseline Methods
	Disease Diagnosis Performance
	Ablation Studies
	Effect of Modality Alignment in ProMedTS
	Impact of Self-Supervised Loss Functions

	Model Efficiency and Complexity
	Sensitivity Analysis of Time Series Prompt Length
	Evaluating the Role of Anomaly Descriptions

	Conclusion and Future Work
	Appendix
	Algorithm
	Lab Test Anomaly Caption
	Baseline Models
	Implementation Details
	Training Instruction Template
	Sensitivity Analysis of Varying Ratios in Loss Function Components
	Discussion on LLMs Selection


