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Abstract001

In this work, we aim to clarify and reconcile002
metrics for evaluating privacy protection in text003
through a systematic survey. Although text004
anonymization is essential for enabling NLP re-005
search and model development in domains with006
sensitive data, evaluating whether anonymiza-007
tion methods sufficiently protect privacy re-008
mains an open challenge. In manually review-009
ing 43 papers that report privacy metrics, we010
identify and compare six distinct privacy no-011
tions and analyze how the associated metrics012
capture different aspects of privacy risk. We013
then assess how well these notions align with014
legal privacy standards (HIPAA and GDPR), as015
well as user-centered expectations grounded in016
HCI studies. Our analysis offers practical guid-017
ance on navigating the landscape of privacy018
evaluation approaches further and highlights019
gaps in current practices. Ultimately, we aim to020
facilitate more robust, comparable, and legally021
aware privacy evaluations in text anonymiza-022
tion.023

1 Introduction024

Text anonymization—through methods such as025

redaction, rewriting, or data synthesis—has be-026

come a critical tool for mitigating the risks of027

sharing or training models on sensitive data (Lison028

et al., 2021). When done effectively, anonymiza-029

tion can enable access to valuable resources like030

clinical records, legal texts, or social media content031

without endangering individual privacy. However,032

text anonymization is inherently difficult: high-033

dimensional data in general is vulnerable to re-034

identification (Narayanan and Shmatikov, 2008),035

and even mechanisms that offer formal guarantees036

can still fail against practical deanonymization at-037

tacks (Mattern et al., 2022; Tong et al., 2025; Pang038

et al., 2025). As LLMs further heighten concerns039

about memorization of training data (Carlini et al.,040

2021) and re-identification of sensitive attributes041

(Staab et al., 2024), rigorous privacy evaluation has042

become a fundamental requirement for responsible 043

data sharing and model deployment. 044

Despite the importance of evaluation, measuring 045

the effectiveness of text anonymization systems re- 046

mains an open challenge. Current evaluations span 047

a wide range of tasks and assumptions, reflecting 048

divergent notions of privacy. Papers focusing on 049

redacting direct identifiers, such as (Hassan et al., 050

2019; Lison et al., 2021; Pilán et al., 2022), im- 051

plicitly use different notions of privacy than papers 052

focusing on synthesizing text (Meisenbacher et al., 053

2024a; Yue et al., 2023; Wang et al., 2023), and 054

even papers targeting the same notion of privacy 055

use different metrics. In many cases, metrics are 056

poorly connected to legal and social notions of 057

privacy, leaving researchers and practitioners with 058

limited guidance on what risks a given evaluation 059

actually measures, or what constitutes sufficient 060

protection in practice. 061

In this work, we aim to enhance understanding of 062

privacy evaluation in text by conducting a system- 063

atic survey of metrics. Through keyword searching 064

and citation links, we identify 43 papers published 065

since 2019 that report metrics for measuring pri- 066

vacy in text, and we manually categorize metrics 067

into high-level notions of privacy. Unlike existing 068

surveys of anonymization techniques (Pawar et al., 069

2018; Mahendran et al., 2021) or general privacy 070

principles (Wagner and Eckhoff, 2019), we specif- 071

ically target quantified metrics. While we focus 072

primarily on metrics for evaluating privacy in text 073

that has been anonymized (e.g., through redaction, 074

rewriting, or synthesis), our analysis also has rele- 075

vance to privacy in models trained on text. 076

Our analysis reveals six privacy notions underly- 077

ing specific metrics—identifier removal effective- 078

ness, dataset membership, attribute inference risk, 079

reconstruction attacks, semantic inference risk, and 080

theoretical privacy bounds, which we discuss in 081

more depth in §2.2. We further discuss how these 082

notions map to legal privacy standards, specifically 083
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HIPAA and GDPR (§3), and social expectations de-084

rived from user-centered research (§4). Finally, we085

conclude by discussing open challenges in privacy086

evaluation and opportunities for future work.087

Overall, we aim to aid researchers and practi-088

tioners in understanding the landscape of privacy089

evaluations for text, offering a structured view of090

what existing metrics capture and what they over-091

look. By organizing metrics by privacy objective092

and examining their assumptions, we offer practi-093

cal guidance for metric selection and reveal gaps094

in legal alignment, social relevance, and evaluation095

consistency. We ultimately aim to improve consis-096

tency in evaluation and encourage future work on097

the development of new standardized metrics.098

2 Existing privacy metrics in NLP099

2.1 Scope and Methodology100

We define the scope of this survey as metrics101

for evaluating privacy in anonymized text out-102

puts—i.e., evaluations that directly assess how103

much sensitive information remains exposed in104

the text itself after anonymization. Our goal is105

to characterize the landscape of privacy evaluations106

applied to generated or modified text, focusing on107

settings where both original and anonymized ver-108

sions are typically available.109

We include papers published from 2019 onward110

that explicitly report one or more quantitative met-111

rics for evaluating privacy in anonymized or syn-112

thetic text. This time window ensures our review113

focuses on recent methods relevant to current NLP114

pipelines and data-sharing concerns. We identi-115

fied papers using a combination of keyword-based116

search and backward citation tracking. Specifi-117

cally, we searched ACL Anthology and Google118

Scholar using combinations of the terms “text119

anonymization”, “text sanitization”, and120

“synthetic text generation”.121

To be included, a paper must satisfy all of the122

following:123

• Focus on natural language text (not images,124

structured tabular data, or speech);125

• Contain anonymized or privatized text outputs126

(not just internal model embeddings or repre-127

sentations);128

• Report at least one privacy evaluation metric129

(beyond utility, fluency, or readability);130

• Be peer-reviewed or publicly available as a 131

preprint since January 2019. 132

2.2 Survey of Evaluation Metrics 133

We identify six high-level privacy objectives that 134

the surveyed papers aim to evaluate: identifier re- 135

moval, dataset membership, attribute inference, re- 136

construction attacks, semantic inference, and theo- 137

retical bounds. These objectives are summarized in 138

Figure 1. Each objective reflects a different aspect 139

of privacy risk and corresponds to distinct fami- 140

lies of evaluation metrics. Some papers target a 141

single objective, while others report metrics span- 142

ning multiple categories. In the subsections that 143

follow, we describe each objective in turn, outline 144

the types of metrics used to evaluate it, and dis- 145

cuss how these metrics are applied in practice. A 146

detailed mapping of papers to privacy objectives 147

and associated evaluation metrics is provided as a 148

spreadsheet in the supplementary materials. 149

2.2.1 Identifier Removal Effectiveness 150

Identifier removal effectiveness asks whether 151

anonymized text still exposes directly identifying 152

information, such as names, addresses, or con- 153

tact details, that should have been masked during 154

anonymization. The most common evaluation ap- 155

proach compares detected spans against gold stan- 156

dard annotations using token-level or span-level 157

precision, recall, and F1 scores. These metrics 158

dominate because they clearly reflect two types 159

of failure: masking too little (false negatives) and 160

masking too much (false positives) (Lison et al., 161

2021). 162

Metrics vary in how they evaluate disclosure. 163

For example, entity-level recall treats an identifier 164

as successfully protected only if all its mentions 165

are masked across a document or corpus, while 166

other metrics distinguish between identifiers that 167

uniquely point to individuals (e.g., names) and 168

those that may only do so in combination (e.g., age 169

or ZIP code) (Pilán et al., 2022). To handle cases 170

where the predicted masked span does not exactly 171

match the annotated boundary—either by mask- 172

ing too little or too much—tagging schemes (IOB- 173

Exact or IOB-Partial) have been used to address 174

partial masking and boundary mismatch (Hassan 175

et al., 2019; Manzanares-Salor et al., 2022). 176

Approximate-match metrics credit redactions 177

that are incomplete but still effective—such as 178

changing “John Smith” to “Jonathan” or using para- 179

phrases. Edit-distance-based scores (e.g., Leven- 180
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Identifier Removal Effectiveness

Are names, addresses, and other identifiers 
properly masked?

Original: John Smith lives at 123 Main 
St.

Anonymized: [NAME] lives at [ADDRESS].

Reconstruction Attacks

Can original text be recovered from the 
anonymized version?

Anonymized: “[REDACTED] visited the ER 
on Jan 5th.”

→ Model predicts correctly: “John Smith”

→ Reconstruction successful

Dataset Membership

Can an attacker tell whether a record was in the 
training set?

Injected into training: “Xjqwz Qubit”

Output: Model generates “Xjqwz Qubit”

→ Memorization detected

Semantic Inference Risk

Does the anonymized text still imply sensitive 

meaning?

Original: The patient was diagnosed with 
Stage IV lung cancer.

→ Anonymized: The patient began 
aggressive chemotherapy

Attribute Inference Risk

Does the text still leak specific traits like 
gender?

Anonymized review: “Loved the pedi and 
facial!”

→ Classifier predicts gender: female

Theoretical Privacy Bounds

What is the worst-case risk under formal 
privacy guarantees?

Privacy budget: ε = 2.0, δ = 1e-5

Figure 1: Overview of six privacy objectives used in text privacy evaluation. Each panel summarizes the privacy
notion and provides an illustrative example.

shtein Recall) and token-level lexical divergence181

quantifies how different the anonymized span is182

from the original (Alves et al., 2024; Xin et al.,183

2025). At a higher semantic level, metrics like PRI-184

VACY_NLI asks whether the anonymized sentence185

still implies the original using textual entailment186

models, while SPRIVACY reports human judg-187

ments of whether personal information remains188

(Huang et al., 2024).189

Together, these metrics form a progression from190

surface-level removal to deeper notions of semantic191

obfuscation. While span-level F1 remains the most192

common metric, newer work shows that seman-193

tic or corpus-level assessments may better capture194

residual privacy risks, especially in cases when195

anonymization involves rewriting rather than redac-196

tion. Importantly, identifier-only metrics may un-197

derestimate leakage: successfully masking names198

does not guarantee protection if the text still allows199

an individual to be inferred through other cues,200

which motivates more robust evaluation frame-201

works under different notions of privacy.202

2.2.2 Dataset Membership203

Dataset membership metrics assess whether an ad-204

versary can determine if a specific record was part205

of the data used to train or generate an anonymized206

output. This metric is strongly tied to the concept207

of privacy in models and is most commonly used208

to assess synthetic data generation approaches, as209

most redaction-based approaches would trivially210

fail this test. When the notion of a “record” is well211

defined—as in the entire clinical record for a pa-212

tient—successfully hiding membership may offer 213

broad protections (Salem et al., 2023). 214

Standard evaluations use shadow or reference 215

models to estimate membership inference accu- 216

racy, F1, or AUC (Arnold et al., 2023; El Kababji 217

et al., 2023). Variants include confidence-threshold 218

and entropy-threshold attacks on privatized embed- 219

dings, with success rate indicating leakage (Du 220

et al., 2023). However, membership inference at- 221

tacks remain fragile and context-sensitive: their 222

performance is highly influenced by attack design, 223

dataset construction, and the nature of the reference 224

data (Naseh and Mireshghallah, 2025; Duan et al., 225

2024). 226

While membership inference traditionally fo- 227

cuses on entire data points (e.g., if a full document 228

was included in a dataset used to train a synthetic 229

data generator), work focused on synthetic text 230

generation specifically has also evaluated privacy 231

through canary-injection experiments (Carlini et al., 232

2019; Yue et al., 2023; Ramesh et al., 2024), which 233

assess memorization and leakage through a par- 234

tial notion of membership. In canary experiments, 235

unique phrases are inserted into the data used to 236

train synthetic text generators. The leakage rate 237

and perplexity rank of these “canaries” serve as 238

indicators of the risk of data leakage, e.g., a low 239

perplexity indicates a canary was likely a member 240

of the training data (Carlini et al., 2019). 241

Dataset membership testing is common in evalu- 242

ations of generation methods that claim differential 243

privacy guarantees (Arnold et al., 2023; Du et al., 244

2023; Yue et al., 2023). These studies often pair em- 245
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pirical leakage measures with formal (ε, δ) budgets246

to assess whether theoretical protections translate247

into practical robustness.248

2.2.3 Attribute Inference Risk249

Attribute inference metrics evaluate whether san-250

itized text still reveals sensitive traits, that is, can251

a reader infer gender, age, or diagnosis more accu-252

rately than chance? These metrics are often used to253

evaluate rewriting-based methods (Meisenbacher254

et al., 2024b; Meisenbacher and Matthes, 2024)255

and synthetic text generation approaches (Wang256

et al., 2023; Wang and Sun, 2022). Most pub-257

lished attacks pursue attributes of the text author:258

reviewer gender or age in Trustpilot, political lean-259

ing in tweets, stylistic cues in blog posts (Meisen-260

bacher et al., 2024b; Chim et al., 2025). A smaller261

but growing line of work targets attributes of peo-262

ple mentioned within the text, for example patient263

sex or comorbidities in synthetic EHRs generated264

by DP-RVAE or PromptEHR (Wang et al., 2023;265

Wang and Sun, 2022).266

A common approach is to train classifiers on267

both original and anonymized text and compare268

their ability to predict protected traits. A drop in ac-269

curacy or F1 is interpreted as evidence of improved270

privacy. For example, Meisenbacher et al. (2024b)271

use Privacy F1 under static and adaptive attack-272

ers to quantify how retraining DP-MLM rewrites273

limits attribute leakage. Multi-attribute settings274

extend this to keyword-inference accuracy, Gender-275

F1, and Age-F1 in synthetic EHRs (Wang et al.,276

2023; Meisenbacher and Matthes, 2024).277

Beyond individual attribute prediction,278

El Kababji et al. (2023) model sequential attacks279

in which an adversary first links synthetic clinical280

trial records to real patients and then predicts281

sensitive attributes such as tumor grade. These282

approaches capture different facets of attribute283

leakage and can be applied to both token and284

embedding-level representations.285

These metrics are valuable for quantifying resid-286

ual leakage that might persist even after identifiers287

are removed. However, a drop in inference accu-288

racy does not guarantee that private attributes are289

fully protected (Du et al., 2023; Chim et al., 2025).290

Attribute inference thus plays a complementary291

role in privacy evaluation: it highlights forms of292

privacy leakage that are not captured by identifier293

masking alone, but does not ensure broader protec-294

tion on its own against reconstruction or member-295

ship disclosure.296

2.2.4 Reconstruction Attacks 297

Reconstruction attacks pose a different question: 298

after anonymization, can an adversary re-create 299

verbatim or near-verbatim portions of the original 300

document, and thus link them back either to the 301

author or to the individuals mentioned? Even with 302

names removed, rare phrases or consistent style 303

can suffice for re-identification. 304

The most widely reported reconstruction met- 305

rics operate at the document level. Retrieval-based 306

metrics (e.g., BM25, Jaccard, or ensemble link- 307

ing) count how often an anonymized text’s original 308

counterpart is retrieved from the candidate pool, 309

exposing residual uniqueness in wording or topic 310

(Xin et al., 2025; Ben Cheikh Larbi et al., 2023; 311

Morris et al., 2022). In clinical domains, manual 312

re-identification studies simulate the process by 313

which humans might trace rewritten notes back to 314

the patients described (Casula et al., 2024). 315

More automated approaches for re-identification 316

include bounding worst-case leakage rates across 317

tokens (Tong et al., 2025), and estimating how 318

easily masked tokens are guessed by models like 319

BERT (Chen et al., 2023). Other metrics highlight 320

unique or memorized content: span surprisal (Pa- 321

padopoulou et al., 2022), plausible-deniability set 322

size (Yue et al., 2021), ROUGE overlap (Zecevic 323

et al., 2024), and rare-token counts (Meisenbacher 324

et al., 2024c). 325

Together, these metrics range from coarse re- 326

trieval to fine-grained content recovery. Choosing 327

among them depends on whether the primary con- 328

cern is full-document retrieval or recovery of sen- 329

sitive snippets, and whether the at-risk party is the 330

author of the text, the individual described, or both. 331

2.2.5 Semantic Inference Risk 332

While reconstruction metrics focus on verbatim 333

overlap, semantic inference metrics ask a broader 334

question: does the anonymized text still convey 335

the same meaning as the original? If so, an ad- 336

versary may infer sensitive information, even in 337

the absence of explicit identifiers. Metrics focused 338

on semantic inference differ from those focused 339

on attribute inference in that they primarily assess 340

similarity between original and anonymized text, 341

and do not necessarily target the prediction of spe- 342

cific personal traits. Instead, they flag risks when 343

anonymized content retains enough topical, rela- 344

tional, or narrative structure to support inference. 345

Most evaluations begin with embedding-based 346

similarity. SBERT cosine scores are commonly 347
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used to quantify alignment between original and348

anonymized text (Meisenbacher et al., 2024a).349

To move beyond raw cosine scores, Xin et al.350

(2025) introduce two refinements: a lexical diver-351

gence score, which filters out superficial rewording,352

and a semantic alignment score, which uses lan-353

guage model prompts to judge factual consistency.354

Both metrics help identify cases where surface355

anonymization fails to hide deeper meaning, es-356

pecially in clinical contexts where sensitive events357

remain recognizable.358

When dense encoders are unavailable, simpler359

lexical metrics provide a coarse but practical al-360

ternative. Igamberdiev and Habernal (2023) rein-361

terpret corpus-level BLEU as a privacy indicator:362

large n-gram overlap implies that substantial orig-363

inal wording and therefore potential leakage re-364

mains. Meisenbacher et al. (2024c) report the Per-365

turbation Percentage (PP), the fraction of tokens366

altered during anonymization, and show low PP367

often aligns with successful author-attribute infer-368

ence.369

These metrics vary in granularity and precision,370

but all reflect a central tradeoff: preserving util-371

ity often means preserving meaning, which may372

leave privacy at risk. For applications where down-373

stream utility is paramount, practitioners may tol-374

erate relatively high similarity scores, whereas in375

high-sensitivity domains, such as clinical text, even376

subtle semantic similarities can pose privacy risks.377

2.2.6 Theoretical Privacy Bounds378

In contrast to the more empirical measurements379

of privacy described in the preceding sections, dif-380

ferentially private methods provide strict mathe-381

matical guarantees that set an upper bound on the382

maximum permissible privacy leakage. The tight-383

ness of this bound depends on the user-specified384

parameters that define the privacy budget, and it385

can be reported alongside other empirical measures.386

As such, we regard these theoretical bounds as dis-387

tinct metrics that directly quantify the extent of388

privacy protection.389

Differentially private methods generally involve390

the addition of noise to model representations or391

gradient updates to reduce the risk of membership392

inference. The level of noise added is carefully393

calibrated to adhere to the specified privacy budget,394

typically formalized by (ε, δ) differentially private395

guarantees. Both text synthesis and text rewrit-396

ing approaches have incorporated DP guarantees,397

including SANTEXT, DP-BART, DP-MLM, and398

DP-RVAE, and papers typically report results under 399

varying levels of ε (Yue et al., 2021; Igamberdiev 400

and Habernal, 2023; Meisenbacher et al., 2024b; 401

Wang et al., 2023; Du et al., 2023). 402

In addition to global ε values, some studies an- 403

alyze privacy at the token level to better under- 404

stand the behavior of specific mechanisms. The 405

self-substitution rate Nw measures the probability 406

that a token survives the mechanism unchanged, 407

whereas the support size Sw counts how many dis- 408

tinct outputs the mechanism may emit for that to- 409

ken (Meisenbacher et al., 2024a,c; Arnold et al., 410

2023). These two metrics together characterize the 411

output entropy of the substitution process: when 412

tokens are frequently altered and drawn from a 413

large set of alternatives, an adversary faces greater 414

uncertainty about the original content. 415

Importantly, theoretical guarantees do not re- 416

place empirical testing. They only hold if methods 417

are correctly implemented and the data satisfies nec- 418

essary assumptions. Furthermore, while theoretical 419

metrics can precisely describe which setup offers 420

better protection, they typically lack human inter- 421

pretability, e.g. under differential privacy, ε = 4 422

implies better protection than ε = 8, but it is not 423

clear what either metric actually means for leak- 424

age risks nor which value should be used. Recent 425

studies report DP parameters alongside reconstruc- 426

tion or membership attack results, enabling readers 427

to verify whether the empirical results respect the 428

advertised guarantees (Meisenbacher et al., 2024a; 429

Chen et al., 2023; Wang et al., 2023; Meisenbacher 430

et al., 2024b; Zecevic et al., 2024; Arnold et al., 431

2023; Du et al., 2023; Yue et al., 2023; Wang and 432

Sun, 2022). 433

3 Are current metrics sufficient to meet 434

legal standards? 435

Modern privacy regulations articulate rigorous re- 436

quirements for anonymization that are not always 437

reflected in current technical evaluations. In this 438

section, we assess whether commonly used eval- 439

uation metrics in text anonymization align with 440

the legal definitions, using the two most influen- 441

tial frameworks as case studies: the U.S. HIPAA 442

Privacy Rule and the EU General Data Protection 443

Regulation (GDPR). Drawing from the survey in 444

§2.2, we analyze where current practices fall short, 445

and what improvements are necessary for legal de- 446

fensibility. 447
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3.1 HIPAA: Emphasis on Identifier Removal448

and Expert Judgment449

The HIPAA Privacy Rule defines two standards for450

de-identification of data: (1) Safe Harbor, which451

mandates removal of 18 enumerated identifiers;452

and (2) Expert Determination, in which a statistical453

expert attests that the risk of re-identification is454

“very small” given anticipated use (Office for Civil455

Rights (OCR), 2012).456

Identifier Removal metrics (§2.2.1) align well457

with Safe Harbor. These metrics appeared in 15458

of the reviewed papers, and directly measure how459

effectively models detect and mask identifiable to-460

kens.461

However, current evaluation datasets are rarely462

annotated according to HIPAA standards. An-463

notation of generic named entity types misses464

more domain-specific identifiers, especially since465

HIPAA’s list includes quasi-identifiers like geo-466

graphic information and dates. Entity-level recall467

metrics (Pilán et al., 2022) better quantify HIPAA468

compliance than span-level metrics by requiring469

consistent masking across contexts, but few evalua-470

tions use them.471

The Expert Determination pathway implies the472

need for holistic risk modeling—evaluations that473

simulate adversarial re-identification or analyze474

residual inference risks. While attribute inference,475

reconstruction attacks, and semantic inference risk476

have the potential to mimic expert determinations,477

only a few studies attempt such modeling, and very478

few studies investigate how attack models com-479

pare to real experts. Exceptions include human-in-480

the-loop evaluations, such as the TILD framework481

(Mozes and Kleinberg, 2021), which uses “moti-482

vated intruder” tests to assess whether humans can483

re-identify entities given background knowledge.484

While current evaluation metrics cover some as-485

pects of HIPAA, especially Safe Harbor, they fall486

short of the broader requirements implied by Ex-487

pert Determination, which demand more compre-488

hensive and adversary-aware assessments.489

3.2 GDPR: Contextual Risk and Semantic490

Inference491

GDPR requires that anonymized data be such that492

individuals are “not identifiable by any means rea-493

sonably likely to be used” by an adversary (Euro-494

pean Parliament and Council, 2016). This contex-495

tual standard evaluates identifiability not just by496

direct identifiers but also by semantic clues, auxil-497

iary data, and task-specific inference. 498

Reconstruction metrics (§2.2.4) simulate adver- 499

sarial behavior and are among the most legally 500

aligned with GDPR. However, most studies adopt a 501

single fixed attacker and rarely vary the knowledge 502

base or background assumptions, limiting their ro- 503

bustness as legal evidence. 504

Attribute inference metrics (§2.2.3) also relate 505

directly to GDPR concerns, as they measure the 506

extent to which sensitive traits can be recovered 507

from anonymized text. Yet few evaluations test 508

multiple attributes. 509

Metrics from the Semantic Inference Risk 510

(§2.2.5) category indirectly assess the residual in- 511

formation in the text. High semantic similarity may 512

indicate exposure of sensitive attributes or events. 513

Yet these proxies do not directly evaluate whether 514

an attacker could infer private information, as re- 515

quired under GDPR. 516

GDPR compliance requires adversarial thinking 517

and evaluation of contextual identifiability. Most 518

current metrics fall short on this front: Identifier 519

Removal metrics overlook quasi-identifiers and 520

risks of re-identification; Reconstruction metrics 521

are rarely diversified across attack strategies; and 522

semantic similarity scores do not map cleanly onto 523

real-world inference risks. Broader adoption of 524

human-intruder studies and diverse reconstruction 525

attacks and attribute inference probes are needed 526

to bridge this gap. 527

4 User-Centered Privacy and Contextual 528

Integrity 529

While technical metrics dominate text anonymiza- 530

tion research, they often overlook a central ques- 531

tion: to what extent do these metrics reflect what 532

people actually care about in privacy? Human- 533

centered literature on HCI and social computing 534

suggests that users’ privacy perceptions depend on 535

more than whether names or attributes are masked. 536

Users’ privacy expectations are shaped by the infor- 537

mation context, agency, and perceived coherence 538

of privatized text. This section explores key themes 539

from user-centered privacy research, identifying 540

gaps between current evaluation practices and the 541

lived concerns of users. 542

The theory of Contextual Integrity, introduced 543

by Nissenbaum (2004), suggests that privacy is 544

not about secrecy or control in the abstract, but 545

about appropriate flows of information: who sends 546

what to whom, under what conditions, and for what 547
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purpose. In practice, whether a particular data shar-548

ing is acceptable depends on if it aligns with the549

norms in the associated context. For example, ac-550

ceptance of COVID-19 contact tracing applications551

and vaccination-certification systems depends on552

whether the information flows are bounded by ex-553

pectations about recipients, use purpose, and reten-554

tion time, all of which go beyond simply removal of555

identifiers or risks of re-identification (Feng et al.,556

2024; Zhang et al., 2022). Through a user study557

with 721 participants, Meisenbacher et al. (2025)558

show that users care about data sensitivity, mech-559

anism type, and reason for data collection in the560

specific context of differentially private text, as561

suggested by contextual integrity theory more gen-562

erally.563

While NLP systems and evaluation practice have564

minimally drawn from contextual integrity theory,565

HCI studies have leveraged it by treating privacy566

as alignment between users’ disclosure preferences567

and the contextual demands, rather than as fixed568

rules or outputs. Several systems aim to support569

users in managing what they share, rather than de-570

ciding for them. For instance, Rescriber lets users571

rewrite or hide sensitive parts of their messages572

to language models, based on what the user feels573

is appropriate in the moment (Zhou et al., 2025).574

Other tools like CLEAR and Contextual Privacy575

Policies adapt the way data is handled depending576

on factors like location, app behavior, or who the577

recipient is (Chen et al., 2025; Pan et al., 2024).578

Evaluations of privacy in text could similarly in-579

tegrate context. Currently, metrics focus narrowly580

on identifier recall, leakage, or attack success, with-581

out assessing whether the anonymized text reflects582

an information flow that is appropriate for the con-583

text, whether users feel in control of disclosures,584

or whether the outputs align with their privacy ex-585

pectations. As a result, systems may score well586

on standard benchmarks yet still fail to earn user587

trust or meet real-world standards of privacy ac-588

ceptability. Context-sensitive metrics could entail,589

for example, explicitly defining the scenario where590

each metric is appropriate. Future work could also591

develop new metrics that take context or user pref-592

erences as input variables that influence the type of593

assessment.594

5 Discussion595

While our survey focuses on evaluating privacy in596

text itself, a related line of research concerns the597

privacy risks of models trained on text, with recent 598

work focusing on large language models (LLMs). 599

We briefly highlight how our survey can inform 600

research in this setting as well, and generally sug- 601

gests that better reconciling text and model privacy 602

can advance both areas. 603

Model privacy literature typically investigates 604

whether trained models can memorize, reveal, or 605

allow inference about sensitive training data (Neel 606

and Chang, 2024). Although the evaluation tar- 607

get differs from text anonymization, the two ar- 608

eas share some similar privacy notions, such as 609

membership inference and reconstruction attacks. 610

Specific metrics for model privacy overlap with 611

metrics used to evaluate privacy in synthetic text, 612

including canary attacks and success rate of mem- 613

bership inference attacks, where evaluation often 614

targets the synthetic text generato, not just the out- 615

put text. In particular, membership inference at- 616

tacks (MIAs) have been widely studied in both 617

black-box and white-box settings (Carlini et al., 618

2022; Shokri et al., 2017), with recent work adapt- 619

ing them to few-shot and in-context learning (Wen 620

et al., 2024; Jiménez-López et al., 2025). 621

Beyond leakage of training data, Staab et al. 622

(2024) demonstrate an additional model privacy 623

risk in LLMs specifically: that they can infer sensi- 624

tive traits through attribute inference attacks. This 625

risk is quantified using metrics like classifier ac- 626

curacy and profiling success, which also appear 627

in anonymization work (Frikha et al., 2025). Al- 628

though a privacy risk, the potential for LLMs to 629

be powerful de-anonymizers also offers an oppor- 630

tunity for empirical evaluation: LLMs may serve 631

as strong adversaries in empirically conducting re- 632

construction attacks, attribute inference risks, and 633

semantic inference risks. 634

Model privacy literature includes several stan- 635

dardized benchmarks. Mireshghallah et al. (2024) 636

apply theories of contextual integrity to evaluate 637

privacy in terms of normative expectations, echoing 638

similar calls in user-centered anonymization met- 639

rics. PrivLM-Bench evaluates privacy risks such 640

as PII exposure and attribute inference across stan- 641

dardized tasks (Li et al., 2024). Probing tools like 642

ProPILE and targeted black-box attacks offer prac- 643

tical approaches to assess leakage without requiring 644

internal model access (Kim et al., 2023; Abascal 645

et al., 2024). These methods highlight how infor- 646

mation can leak through paraphrases or semantic 647

proxies, a challenge also present in text anonymiza- 648

tion. As privacy risks in NLP span both model 649
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behavior and textual output, bridging the two liter-650

atures could support more robust and transparent651

evaluation frameworks. These would incorporate652

attacker simulations, contextual analysis, and met-653

rics grounded in real-world privacy concerns.654

6 Recommendations and Open655

Challenges656

Our survey reveals several gaps in current privacy657

evaluation practices for text anonymization and658

highlights opportunities for future work. In this659

section, we synthesize key takeaways into action-660

able recommendations and outline open research661

directions for building more robust and comparable662

evaluation frameworks.663

Align metrics with stated goals. Privacy met-664

rics should reflect the intended privacy guarantees665

of a method. For example, approaches designed666

to minimize re-identification risk should not be667

evaluated solely with identifier-removal F1 scores,668

which ignore indirect leakage. Similarly, methods669

that aim to reduce semantic inference should adopt670

task-specific probes or classifier-based evaluations,671

not just surface similarity metrics. Articulating in-672

tended use cases and mapping them to appropriate673

metrics is essential for meaningful evaluation.674

Design comparable and use-case-grounded eval-675

uations. The field would benefit from standard-676

ized evaluation pipelines that apply uniformly677

across anonymization strategies. Currently, text678

anonymization methods are frequently evaluated679

under different notions of privacy. For example,680

while redaction approaches are evaluated for iden-681

tifier removal, synthetic data generation methods682

are evaluated using membership inference attacks.683

The lack of standardization makes it difficult to684

compare the practical usability of these approaches.685

Evaluation protocols should be grounded in real-686

istic scenarios and expected use cases, rather than687

tailored to probing the specific proposed method.688

Support human-centered and context-aware689

evaluation. Current metrics often overlook pri-690

vacy risks that arise from context or user expecta-691

tions. Approaches such as motivated intruder tests-692

where a human tries to re-identify records using693

web searches or domain knowledge—contextual694

acceptability judgments, and scenario-based prob-695

ing can help capture privacy violations not visible696

through token-level leakage scores. While these697

methods are expensive, they offer high-fidelity sig- 698

nals that better reflect real-world privacy concerns. 699

Bridge technical metrics with legal standards. 700

Technical evaluations should be interpretable in 701

light of legal definitions of identifiability and risk, 702

recognizing that strong performance on token-level 703

metrics may not satisfy privacy laws or user expec- 704

tations. Integrating adversarial simulations, auxil- 705

iary knowledge tests, and plausibility-based link- 706

age metrics can help ensure evaluations better re- 707

flect regulatory expectations. At the same time, 708

current policies often lag behind emerging threats. 709

Over time, robust and transparent evaluation met- 710

rics, especially those grounded in real-world risks, 711

should inform the development of improved legal 712

standards and regulatory benchmarks. 713

Scale and structure human-in-the-loop evalua- 714

tion. Manual re-identification or attribute infer- 715

ence studies offer valuable insights, but are costly 716

and difficult to reproduce. To make them more 717

reproducible and scalable, future work should de- 718

velop annotation protocols, intruder test guidelines, 719

and hybrid heuristics that combine automation with 720

targeted human review. Establishing norms for 721

reporting such studies would also support trans- 722

parency and comparison. 723

By addressing these issues, future research can 724

move toward a more comprehensive, reliable, and 725

socially grounded framework for evaluating privacy 726

in text anonymization. 727

7 Conclusion 728

Text anonymization remains an essential yet dif- 729

ficult component of privacy-preserving NLP. Our 730

survey identifies six distinct privacy objectives re- 731

flected in existing metrics and highlights gaps be- 732

tween current evaluation practices and the broader 733

legal, social, and practical standards that define 734

meaningful privacy protection. 735

To move toward more rigorous and relevant eval- 736

uation, we call for clearer alignment between stated 737

privacy goals and chosen metrics, greater attention 738

to adversarial and contextual risks, and stronger 739

integration of human-centered perspectives. As pri- 740

vacy risks grow with increasingly powerful genera- 741

tive models, a structure and context-aware evalua- 742

tion framework will be key to ensuring responsible 743

data sharing and model deployment. 744
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Limitations745

This survey focuses exclusively on post hoc evalua-746

tion metrics for privacy in text anonymization. We747

do not assess the effectiveness of anonymization748

methods themselves. We also do not conduct a749

thorough review of other privacy paradigms, such750

as model privacy (except where they relate to our751

work) or federated learning.752

Our inclusion criteria require papers to explic-753

itly report at least one privacy metric, which may754

bias our sample toward works that adopt quantifi-755

able evaluation practices. Finally, while we discuss756

legal and social notions of privacy, our analysis757

is necessarily interpretive and does not constitute758

formal legal guidance.759
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tin Vechev. 2024. Beyond Memorization: Violating 1045
Privacy Via Inference with Large Language Models. 1046
arXiv preprint. ArXiv:2310.07298 [cs]. 1047

Meng Tong, Kejiang Chen, Xiaojian Yuan, Jiayang Liu, 1048
Weiming Zhang, Nenghai Yu, and Jie Zhang. 2025. 1049
On the Vulnerability of Text Sanitization. arXiv 1050
preprint. ArXiv:2410.17052 [cs]. 1051

Isabel Wagner and David Eckhoff. 2019. Technical Pri- 1052
vacy Metrics: a Systematic Survey. ACM Computing 1053
Surveys, 51(3):1–38. ArXiv:1512.00327 [cs]. 1054

Yuyang Wang, Xianjia Meng, and Ximeng Liu. 2023. 1055
Differentially Private Recurrent Variational Autoen- 1056
coder For Text Privacy Preservation. Mob. Netw. 1057
Appl., 28(5):1565–1580. 1058

Zifeng Wang and Jimeng Sun. 2022. PromptEHR: Con- 1059
ditional Electronic Healthcare Records Generation 1060
with Prompt Learning. In Proceedings of the 2022 1061
Conference on Empirical Methods in Natural Lan- 1062
guage Processing, pages 2873–2885, Abu Dhabi, 1063
United Arab Emirates. Association for Computa- 1064
tional Linguistics. 1065

Rui Wen, Zheng Li, Michael Backes, and Yang 1066
Zhang. 2024. Membership Inference Attacks 1067
Against In-Context Learning. arXiv preprint. 1068
ArXiv:2409.01380 [cs]. 1069

Rui Xin, Niloofar Mireshghallah, Shuyue Stella Li, 1070
Michael Duan, Hyunwoo Kim, Yejin Choi, Yulia 1071
Tsvetkov, Sewoong Oh, and Pang Wei Koh. 2025. 1072
A False Sense of Privacy: Evaluating Textual Data 1073
Sanitization Beyond Surface-level Privacy Leakage. 1074
arXiv preprint. ArXiv:2504.21035 [cs]. 1075

11

https://doi.org/10.48550/arXiv.2310.17884
https://doi.org/10.48550/arXiv.2310.17884
https://doi.org/10.48550/arXiv.2310.17884
https://doi.org/10.48550/arXiv.2310.17884
https://doi.org/10.48550/arXiv.2310.17884
https://doi.org/10.18653/v1/2022.findings-emnlp.352
https://doi.org/10.48550/arXiv.2103.09263
https://doi.org/10.48550/arXiv.2103.09263
https://doi.org/10.48550/arXiv.2103.09263
https://doi.org/10.48550/arXiv.2103.09263
https://doi.org/10.48550/arXiv.2103.09263
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.48550/arXiv.2501.11786
https://doi.org/10.48550/arXiv.2501.11786
https://doi.org/10.48550/arXiv.2501.11786
https://doi.org/10.48550/arXiv.2501.11786
https://doi.org/10.48550/arXiv.2501.11786
https://doi.org/10.48550/arXiv.2312.06717
https://doi.org/10.48550/arXiv.2312.06717
https://doi.org/10.48550/arXiv.2312.06717
https://digitalcommons.law.uw.edu/wlr/vol79/iss1/10
https://digitalcommons.law.uw.edu/wlr/vol79/iss1/10
https://digitalcommons.law.uw.edu/wlr/vol79/iss1/10
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.usenix.org/conference/usenixsecurity24/presentation/pan-shidong-hope
https://www.usenix.org/conference/usenixsecurity24/presentation/pan-shidong-hope
https://www.usenix.org/conference/usenixsecurity24/presentation/pan-shidong-hope
https://www.usenix.org/conference/usenixsecurity24/presentation/pan-shidong-hope
https://www.usenix.org/conference/usenixsecurity24/presentation/pan-shidong-hope
https://www.usenix.org/conference/usenixsecurity24/presentation/pan-shidong-hope
https://www.usenix.org/conference/usenixsecurity24/presentation/pan-shidong-hope
https://arxiv.org/abs/2410.12443
https://arxiv.org/abs/2410.12443
https://arxiv.org/abs/2410.12443
https://arxiv.org/abs/2410.12443
https://arxiv.org/abs/2410.12443
https://doi.org/10.18653/v1/2022.aacl-main.18
https://doi.org/10.18653/v1/2022.aacl-main.18
https://doi.org/10.18653/v1/2022.aacl-main.18
https://doi.org/10.1109/PUNECON.2018.8745425
https://doi.org/10.1109/PUNECON.2018.8745425
https://doi.org/10.1109/PUNECON.2018.8745425
https://doi.org/10.1162/coli_a_00458
https://doi.org/10.1162/coli_a_00458
https://doi.org/10.1162/coli_a_00458
https://doi.org/10.1162/coli_a_00458
https://doi.org/10.1162/coli_a_00458
https://doi.org/10.18653/v1/2024.findings-emnlp.894
https://doi.org/10.18653/v1/2024.findings-emnlp.894
https://doi.org/10.18653/v1/2024.findings-emnlp.894
https://doi.org/10.18653/v1/2024.findings-emnlp.894
https://doi.org/10.18653/v1/2024.findings-emnlp.894
https://doi.org/10.1109/SP46215.2023.10179281
https://doi.org/10.1109/SP46215.2023.10179281
https://doi.org/10.1109/SP46215.2023.10179281
https://doi.org/10.1109/SP46215.2023.10179281
https://doi.org/10.1109/SP46215.2023.10179281
https://doi.org/10.48550/arXiv.1610.05820
https://doi.org/10.48550/arXiv.1610.05820
https://doi.org/10.48550/arXiv.1610.05820
https://doi.org/10.48550/arXiv.2310.07298
https://doi.org/10.48550/arXiv.2310.07298
https://doi.org/10.48550/arXiv.2310.07298
https://doi.org/10.48550/arXiv.2410.17052
https://doi.org/10.1145/3168389
https://doi.org/10.1145/3168389
https://doi.org/10.1145/3168389
https://doi.org/10.1007/s11036-023-02096-9
https://doi.org/10.1007/s11036-023-02096-9
https://doi.org/10.1007/s11036-023-02096-9
https://doi.org/10.18653/v1/2022.emnlp-main.185
https://doi.org/10.18653/v1/2022.emnlp-main.185
https://doi.org/10.18653/v1/2022.emnlp-main.185
https://doi.org/10.18653/v1/2022.emnlp-main.185
https://doi.org/10.18653/v1/2022.emnlp-main.185
https://doi.org/10.48550/arXiv.2409.01380
https://doi.org/10.48550/arXiv.2409.01380
https://doi.org/10.48550/arXiv.2409.01380
https://doi.org/10.48550/arXiv.2504.21035
https://doi.org/10.48550/arXiv.2504.21035
https://doi.org/10.48550/arXiv.2504.21035


Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li,1076
Huan Sun, and Sherman S. M. Chow. 2021. Dif-1077
ferential Privacy for Text Analytics via Natural Text1078
Sanitization. In Findings of the Association for Com-1079
putational Linguistics: ACL-IJCNLP 2021, pages1080
3853–3866, Online. Association for Computational1081
Linguistics.1082

Xiang Yue, Huseyin Inan, Xuechen Li, Girish Kumar,1083
Julia McAnallen, Hoda Shajari, Huan Sun, David1084
Levitan, and Robert Sim. 2023. Synthetic Text Gen-1085
eration with Differential Privacy: A Simple and Prac-1086
tical Recipe. In Proceedings of the 61st Annual Meet-1087
ing of the Association for Computational Linguistics1088
(Volume 1: Long Papers), pages 1321–1342, Toronto,1089
Canada. Association for Computational Linguistics.1090

Agathe Zecevic, Xinyue Zhang, Sebastian Zeki, and1091
Angus Roberts. 2024. Generation and Evaluation of1092
Synthetic Endoscopy Free-Text Reports with Differ-1093
ential Privacy. In Proceedings of the 23rd Workshop1094
on Biomedical Natural Language Processing, pages1095
14–24, Bangkok, Thailand. Association for Compu-1096
tational Linguistics.1097

Shikun Zhang, Yan Shvartzshnaider, Yuanyuan Feng,1098
Helen Nissenbaum, and Norman Sadeh. 2022. Stop1099
the Spread: A Contextual Integrity Perspective on the1100
Appropriateness of COVID-19 Vaccination Certifi-1101
cates. In 2022 ACM Conference on Fairness Account-1102
ability and Transparency, pages 1657–1670, Seoul1103
Republic of Korea. ACM.1104

Jijie Zhou, Eryue Xu, Yaoyao Wu, and Tianshi Li. 2025.1105
Rescriber: Smaller-LLM-Powered User-Led Data1106
Minimization for LLM-Based Chatbots. In Proceed-1107
ings of the 2025 CHI Conference on Human Factors1108
in Computing Systems, pages 1–28, Yokohama Japan.1109
ACM.1110

12

https://doi.org/10.18653/v1/2021.findings-acl.337
https://doi.org/10.18653/v1/2021.findings-acl.337
https://doi.org/10.18653/v1/2021.findings-acl.337
https://doi.org/10.18653/v1/2021.findings-acl.337
https://doi.org/10.18653/v1/2021.findings-acl.337
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2024.bionlp-1.2
https://doi.org/10.18653/v1/2024.bionlp-1.2
https://doi.org/10.18653/v1/2024.bionlp-1.2
https://doi.org/10.18653/v1/2024.bionlp-1.2
https://doi.org/10.18653/v1/2024.bionlp-1.2
https://doi.org/10.1145/3531146.3533222
https://doi.org/10.1145/3531146.3533222
https://doi.org/10.1145/3531146.3533222
https://doi.org/10.1145/3531146.3533222
https://doi.org/10.1145/3531146.3533222
https://doi.org/10.1145/3531146.3533222
https://doi.org/10.1145/3531146.3533222
https://doi.org/10.1145/3706598.3713701
https://doi.org/10.1145/3706598.3713701
https://doi.org/10.1145/3706598.3713701

	Introduction
	Existing privacy metrics in NLP
	Scope and Methodology
	Survey of Evaluation Metrics
	Identifier Removal Effectiveness
	Dataset Membership
	Attribute Inference Risk
	Reconstruction Attacks
	Semantic Inference Risk
	Theoretical Privacy Bounds


	Are current metrics sufficient to meet legal standards?
	HIPAA: Emphasis on Identifier Removal and Expert Judgment
	GDPR: Contextual Risk and Semantic Inference

	User-Centered Privacy and Contextual Integrity
	Discussion
	Recommendations and Open Challenges
	Conclusion

