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ABSTRACT

Imputing missing node features in graphs is challenging, particularly under high
missing rates. Existing methods based on latent representations or global diffu-
sion often fail to produce reliable estimates, and may propagate errors across the
graph. We propose FSD-CAP, a two-stage framework designed to improve impu-
tation quality under extreme sparsity. In the first stage, a graph-distance-guided
subgraph expansion localizes the diffusion process. A fractional diffusion oper-
ator adjusts propagation sharpness based on local structure. In the second stage,
imputed features are refined using class-aware propagation, which incorporates
pseudo-labels and neighborhood entropy to promote consistency. We evaluated
FSD-CAP on multiple datasets. With 99.5% of features missing across five bench-
mark datasets, FSD-CAP achieves average accuracies of 80.06% (structural) and
81.01% (uniform) in node classification, close to the 81.31% achieved by a stan-
dard GCN with full features. For link prediction under the same setting, it reaches
AUC scores of 91.65% (structural) and 92.41% (uniform), compared to 95.06%
for the fully observed case. Furthermore, FSD-CAP demonstrates superior per-
formance on both large-scale and heterophily datasets when compared to other
models. Code conducting all experiments can be found at FSD-CAP.

1 INTRODUCTION

Graph Neural Networks (GNNs) are widely used for learning from graph-structured data, with suc-
cessful applications in social networks (Bian et al., 2020), biology (Li et al., 2022), and recommen-
dation systems (He et al., 2020). GNN architectures(Chen et al., 2023; Chien et al., 2020) always
assume nodal features are fully observed, allowing information to be aggregated effectively from
neighboring nodes. In practice, this assumption often fails. Node attributes are frequently missing
due to privacy constraints, sensor failures, or incomplete data collection. High missing rates disrupt
the message-passing process and significantly degrade model performance.

A variety of methods have been proposed for imputing missing features, including statistical es-
timators (Srebro et al., 2004), machine learning models (Chen & Guestrin, 2016), and generative
approaches (Vincent et al., 2008). Recent work has shifted toward deep learning techniques that
model the distribution of node attributes. These include latent space models that align observed fea-
tures with learned embeddings (Chen et al., 2020; Yoo et al., 2022), and GNN-based architectures
designed to operate on incomplete inputs (Taguchi et al., 2021). These approaches, which rely on
correlations in both feature and graph structure, are effective under moderate missing rates but ex-
perience significant performance degradation as sparsity increases, ultimately falling below simple
baselines like zero-filling or mean imputation in highly incomplete settings(You et al., 2020).

An alternative class of methods, based on diffusion, propagates observed features across the graph
under the assumption of node homophily (Rossi et al., 2022; Um et al., 2023; Wang et al., 2024).
These methods are typically lightweight, parameter-free, and more robust under high missing rates.
However, most diffusion approaches apply uniform propagation across all nodes, without accounting
for local structure or propagation order. As a result, nearby reliable signals may be underused,
particularly in sparse or large-scale graphs. Additionally, these methods often ignore variation in
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Figure 1: FSD-CAP Pipeline: Given graph G and partially observed feature matrix X , FSD-CAP
recovers the full matrix X̂ . (i) FSD: Starting from observed nodes, it gradually expands the radius of
the subgraph and performs progressive subgraph diffusion using fractional diffusion operators Aγ,0,
Aγ,1, Aγ,2, producing a preliminary imputed feature matrix. (ii) CAP: Based on the FSD-imputed
features, pseudo-labels are assigned by a classifier to form class-wise graphs, each associated with
class-specific Xc and Wc. Feature propagation within each class graph yields the final output X̂ .

connectivity and feature distribution, leading to over-smoothing and reduced discriminative power
in the imputed features.

We propose Fractional Subgraph Diffusion with Class-Aware Propagation (FSD-CAP), a diffusion-
based framework for imputing missing features on graphs. The method is designed to improve
robustness under feature sparsity and adapt to local structural variation. FSD-CAP consists of three
components. First, a fractional diffusion operator modulates the sharpness of propagation based on
local graph structure. This operator generalizes standard normalization by interpolating between
uniform averaging and dominant-neighbor selection, allowing it to adapt to varied connectivity.
Second, to reduce error accumulation from global diffusion, we introduce a graph-distance-guided
subgraph expansion strategy. This mechanism begins with observed nodes and progressively in-
cludes less certain regions, enabling early reliable estimates and improved stability. Third, a class-
aware refinement step uses pseudo-labels and neighborhood entropy to enhance the imputed fea-
tures, promoting intra-class consistency and inter-class separation. In the tasks of semi-supervised
node classification and link prediction on five benchmark datasets, this method consistently out-
performs state-of-the-art imputation approaches and maintains robustness across a wide range of
missing rates. Notably, on datasets such as CiteSeer and PubMed, FSD-CAP exhibits higher per-
formance under extreme missing conditions compared to when utilizing fully observed features,
thereby demonstrating its effectiveness in sparse scenarios. Furthermore, when compared to other
models, FSD-CAP also achieves superior performance on two large-scale datasets and four het-
erophilous datasets, showcasing its strong adaptability (Appendix A.2.7 and Appendix A.2.8).

2 PROPOSED METHOD

2.1 PRELIMINARIES AND OVERVIEW

Our objective is to learn from graphs with incomplete node features, focusing on two common set-
tings: structural missing, where some nodes have no observed features, and uniform missing, where
entries are randomly missing across the feature matrix. The goal is to impute missing attributes in a
way that enables robust representation learning, especially under high missing rates where standard
GNNs fail. To this end, we propose a two-stage imputation framework designed to stabilize learning
and adapt to local graph structure. The overall architecture is shown in Figure 1 and consists of the
following three key components.

(i) Fractional diffusion operator. We generalize the standard diffusion matrix (Gasteiger et al.,
2019) by introducing a fractional exponent that controls the sharpness of propagation (Section 2.2).
This operator interpolates between uniform averaging and nearest-neighbor routing, allowing infor-
mation to diffuse adaptively according to local graph structure and thus emphasizes reliable signals
and mitigates over-smoothing.
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(ii) Progressive subgraph diffusion. We propagate information through a structured, layer-wise
expansion from observed to unobserved nodes (Section 2.3), instead of global diffusion (Rossi et al.,
2022). At each step, only a localized subgraph is updated, thereby reducing error accumulation and
improving stability. It prioritizes easy-to-complete nodes in early stages and gradually expands to
uncertain regions.

(iii) Class-level feature refinement. We construct synthetic class-level features using pseudo-labels
and neighborhood entropy (Section 2.4) to improve the discriminability of features. These signals
are propagated within intra-class graphs to refine feature estimates and improve semantic consis-
tency. This step promotes intra-class coherence and preserves inter-class distinctiveness, reducing
over-smoothing across class boundaries.

Before presenting the technical details, we introduce the notation used throughout this section. Let
G = (V, E) denote an undirected graph, where V = {v1, v2, . . . , vN} is the set of N nodes and
E ⊆ V × V is the set of edges. Each node vk is associated with a feature vector in RF , and we
collect all node features in a matrix X ∈ RN×F , where X[k,:] denotes the feature vector of node
vk. The topology of the graph is represented by an adjacency matrix A ∈ {0, 1}N×N , where
Aij = 1 if (vi, vj) ∈ E and Aij = 0 otherwise. The corresponding degree matrix D ∈ RN×N is
diagonal, with entries Dii =

∑N
j=1 Aij . To represent missing features, we define a binary mask

matrix M ∈ {0, 1}N×F , where Mkℓ = 1 if the ℓ-th feature of node vk is observed, and Mkℓ = 0
otherwise. Proofs of theoretical results in this section are included in the supplementary material.

2.2 FRACTIONAL DIFFUSION OPERATOR

Diffusion-based imputation methods typically rely on the symmetrically normalized adjacency ma-
trix A = D−1/2AD−1/2, which defines a lazy random walk over the graph (Rossi et al., 2022;
Malitesta et al., 2024; Chen et al., 2016). This operator assumes uniform mixing across neigh-
bors, failing to account for differences in node distributions (Ji et al., 2023), which may result in
over-smoothing and diminished feature discriminability. To address this, we introduce a fractional
diffusion operator that adjusts the propagation behavior using a tunable sharpness parameter γ > 0.
The key idea is to amplify or suppress the relative influence of neighboring nodes through elemen-
twise exponentiation followed by row normalization. Specifically, the fractional diffusion matrix
Aγ ∈ RN×N is defined as

Aγ
ij := (Aij)

γ/
( N∑

k=1

(Aik)
γ
)
. (1)

This transformation preserves the row-stochastic property of A while reweighting neighbor contri-
butions based on edge strength. For γ < 1, weaker edges are amplified, resulting in smoother, more
uniform propagation. For γ > 1, stronger edges are emphasized, leading to sharper, more localized
diffusion. The standard normalized diffusion is recovered when γ = 1.
Proposition 1 (Limiting behavior of Aγ). Let A be the symmetric normalized adjacency matrix
of a connected graph, and Aγ as in equation 1. We have

lim
γ→0+

Aγ
ij =

{
1

|N (i)| if Aij > 0

0 otherwise
and lim

γ→∞
Aγ

ij =

{
1 if j ∈ argmaxk Aik

0 otherwise
. (2)

where N (i) = {j | Aij > 0} denotes the set of neighbors of node i.

Proposition 1 demonstrates that γ acts as a locality parameter, i.e., small values encourage broad,
uniform mixing across neighbors, while large values concentrate diffusion along the most prominent
edge, resulting in highly localized propagation.
Remark 1 (Super-diffusion and nearest-neighbor routing). For γ > 1, the diffusion process
enters a super-diffusion regime, where high-weight edges exert disproportionately strong influence.
As γ increases, the row weights in Aγ become increasingly concentrated around the largest entry,
leading to highly localized propagation. In the limit γ → ∞, the process reduces to deterministic
routing, where each node transfers its mass entirely to its strongest neighbor.

The effect of the fractional exponent γ on the propagated features Xγ := AγX , where X is the
input feature matrix, is formalized in Theorem 1.
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Theorem 1 (Fractional diffusion on feature propagation). Let A and Aγ denote the lazy transi-
tion and fractional diffusion operator as defined in equation 1, respectively. For any feature matrix
X ∈ RN×F , define the propagated features by Xγ := AγX . Then for each node i, we have

lim
γ→0+

Xγ
[i,:] =

1

|N (i)|
∑

j∈N (i)

X[j,:] and lim
γ→∞

Xγ
[i,:] = X[j⋆,:],

where N (i) = {j | Aij > 0} the neighborhood of vi, and j⋆ ∈ argmaxk Aik is the index of its
strongest neighbor.

2.3 PROGRESSIVE SUBGRAPH DIFFUSION

In graph learning, nodes that are closer in the graph topology are generally considered to exhibit
stronger feature similarity (You et al., 2019; Zhang & Chen, 2018). Motivated by this principle, we
design a progressive subgraph diffusion strategy that replaces global propagation with a distance-
aware, layer-wise process. Rather than diffusing information uniformly, the method propagates
features hierarchically from observed regions to unobserved ones. Nodes closer to observed features
are imputed more accurately (see, e.g., Appendix A.2.3), reinforcing the design choice of localized,
incremental expansion to preserve reliable signals and limit early error propagation.

We now define subgraph construction at the level of individual feature dimensions. For each feature
ℓ, let Vℓ

+ := {vk ∈ V |Mkℓ = 1} denote the set of nodes with observed values, and let Vℓ
− := V\Vℓ

+

denote the set with missing values. The initial subgraph G(0) is formed over Vℓ
+ using adjacency

relations inherited from the original graph G. Since observed features may be spatially sparse or
fragmented, G(0) typically consists of multiple disconnected components. Next, to complete the
feature progressively, we expand the subgraph in layers by incorporating nodes from Vℓ

− based on
their shortest-path distance to Vℓ

+. At layer m, the subgraph G(m) includes all nodes within distance
m of Vℓ

+, forming the radius-m neighborhood V(m), along with all edges among those nodes. As
m increases, the subgraph expands outward and disconnected regions gradually merge. In the limit,
when m equals the graph diameter, the subgraph G(m) recovers the full graph G.

At each layer-m subgraph, we apply fractional diffusion described in Theorem 1 independently to
each connected component. Let G(m)

i denote the i-th connected component of G(m), with corre-
sponding adjacency matrix A

(m)
i . The fractional diffusion operator on this component is defined as

Aγ,m
i := Aγ(G(m)

i ), using the formulation in equation 1. Let x(m)
i (t) denote the value of node vi

in each feature channel at iteration t, the diffusion update is thus given by

x
(m)
i (t) =

∑
vj∈N (m)(i)

Aγ,m
ij · x(m)

j (t− 1), (3)

where N (m)(i) is the neighborhood of node vi in G(m).

As the subgraph expands with increasing m, it gradually includes more distant nodes, which may
carry unreliable or noisy information. This expansion can degrade the accuracy of features imputed
in earlier layers. To address this, we introduce a retention mechanism that stabilizes updates by
blending new estimates with those from previous layers. Additionally, we enforce a boundary con-
dition to preserve observed features throughout the diffusion process. Let M denote the binary mask
matrix. At each iteration t = 1, . . . ,K, the channel-wise update rule for node vi is given by

x
(m)
i (t) = x

(m)
i (0)⊙Mi +

(
x
(m)
i (t) + λx

(m−1)
i (K)

)
⊙ (1−Mi), (4)

where ⊙ denotes the Hadamard (element-wise) product and x
(m−1)
i (K) represents the converged

result of node vi from the previous layer after K iterations that weighted by λ.

This update ensures that observed features remain fixed across all iterations, while missing values
are updated based on a blend of current estimates and the previous layer’s outputs. As m increases,
this retention mechanism promotes stability and gradual refinement, improving the reliability of
imputed features across the diffusion process. After K propagation steps using the update rules
in equation 3 and equation 4, we obtain a refined estimate x

(m)
u (K) for each node u ∈ V(m) in

4
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each feature channel, corresponding to the m-th layer subgraph G(m). As K → ∞, the recursive
updates converge to a fixed point. The following result establishes convergence of this process under
fractional diffusion.
Theorem 2 (Convergence of subgraph diffusion). Let A(m) be the adjacency matrix of the m-th
layer subgraph G(m), and let Aγ,m denote its fractional diffusion matrix as defined in equation 1.
Let x(m) ∈ R|V(m)| be the feature vector in channel ℓ, where missing entries are initialized to zero.
Let λ > 0 denote the retention coefficient, and M be the binary mask vector for observed entries in
channel ℓ. Define the update sequence by

x(m)(t) = x(m)(0)⊙M +
(
Aγ,mx(m)(t− 1) + λx(m−1)(K)

)
⊙ (1−M), t = 1, . . . ,K

Then, for sufficiently large K, the sequence x(m)(t) converges to a fixed (unique) state.

Theorem 2 guarantees that the iterative update process over each subgraph leads to a well-defined
steady-state solution for missing features. By incorporating a retention factor, the method balances
the influence of prior estimates and newly propagated information, thereby limiting error accumu-
lation across layers. As the subgraph expands with increasing radius, progressively more nodes are
included and more structural context is captured. Theorem 3 shows that under mild assumptions,
this layer-wise refinement converges to the solution that would have been obtained by applying the
diffusion update over the entire graph at once. In this way, the global behavior of the model is
recovered as the natural limit of consistent local operations.
Theorem 3 (Global convergence via progressive subgraph expansion). Let G(m) be the m-hop
expansion of the observed node set Vℓ

+ in channel ℓ, and let x(m) be the corresponding feature
estimate after applying the masked fractional diffusion update defined in Theorem 2. Assume the
graph G is connected and the diffusion sharpness parameter γ is finite. Then as m→Mmax, where
G(m) → G, the final estimate x(m)(∞) converges to the steady-state solution of the full-graph
diffusion update.

2.4 CLASS-LEVEL FEATURE REFINEMENT

After computing the feature matrix using fractional and subgraph diffusion (Sections 2.2 and 2.3),
we perform a class-guided refinement step. This stage is motivated by the observation that, under
high missing rates, most features must be inferred from a sparse set of observed values. Diffu-
sion alone tends to blur discriminative patterns, especially when semantic boundaries are inherently
weak. Class-level propagation addresses this issue by injecting semantic structure into the imputa-
tion process to improve feature quality under severe sparsity.

We begin by assigning pseudo-labels to unlabeled nodes using a semi-supervised classifier based
on a standard GCN architecture (Kipf & Welling, 2016a). Let VL ⊂ V denote the set of labeled
nodes with ground-truth labels y, and let VuL = V \ VL be the set of unlabeled nodes. For each
node in VuL, we predict a pseudo-label ỹ, while preserving the true labels in VL. Then, for each
class c ∈ C, we construct a class-specific graph by introducing a synthetic class node connected to
all nodes in G with missing features and predicted label c. Feature propagation within each class
graph is then performed, with the synthetic node serving as a class-level anchor. This step promotes
intra-class consistency and strengthens inter-class separation, resulting in more robust downstream
representations.

To account for potential errors in pseudo-label assignments, we introduce a credibility weight based
on the entropy of neighborhood label distributions. This score modulates each node’s contribution
to its class feature according to the consistency of local labels.
Definition 1 (Neighborhood label information entropy). Let N̂i = Ni∪{vi} denote the extended
neighborhood of node vi including itself. For each class c ∈ C, with 1(·) is the indicator function,
we define the normalized label entropy

Si = −
(
1/ log

(
|N̂i|

))∑
c∈C

Pi(c) · log (Pi(c)) with Pi(c) =
(
1/|N̂i|

) ∑
j∈Ni

1(ỹj=c). (5)

The entropy score Si lies in the range [0, 1], where lower values indicate greater label consistency
in the neighborhood of node i, and higher values reflect uncertainty. When Si is small, the node

5
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is more representative of its assigned class and should contribute more when computing the class
feature. Conversely, nodes with high entropy may not provide reliable class information and are thus
down-weighted. To capture this, we assign each node a confidence weight of 1 − Si and compute
class-specific feature x⋆

(c) as a weighted average of features from all nodes assigned to class c by

x⋆
(c) =

( ∑
ỹi=c

(1− Si) · xi

)
/
( ∑
ỹi=c

(1− Si)
)
, (6)

where xi is the observed/imputed feature of node vi, and x⋆
(c) is the aggregated class feature for

class c.

To incorporate class-specific information into node features, we introduce a virtual class node v(c)

for each class c, initialized with an aggregated class feature vector x⋆
(c). For each class, we construct

a class graph G(c) = (V(c), E(c)), where the node set V(c) includes the class node v(c) and the set
V(c)
− of nodes in G with missing features and pseudo-label c. Each class graph includes self-loops for

all nodes and directed edges from the class node v(c) to every node in V(c)
− . These edges allow class-

level information to flow toward incomplete nodes, guiding feature refinement. The corresponding
feature matrix X(c) for G(c) is defined by X(c) = [X

(c)
− x⋆

(c)]
T , wherein X

(c)
− ∈ R|V(c)

− |×F contains

the features of nodes in V(c)
− imputed during the earlier stage, and x⋆

(c) ∈ R1×F is the class anchor
feature assigned to the virtual node v(c).

In the pre-classification GCN, the final layer maps each node embedding zi to a class probability
distribution yi. These probabilities reflect the discriminative confidence of the node across classes
and can be used to guide class-level propagation. We apply a temperature-scaled softmax to control
the sharpness of this distribution as yi = softmax(zi/T ), where T > 0 is a temperature parameter.
The scalar value yi assigned to the predicted class serves as the self-loop weight, while (1 − yi) is
used for the incoming edge from the class node.

We construct a weighted adjacency matrix W(c) to perform diffusion within each class graph G(c).
The class node is placed last in the node ordering. For each node i in V(c)

− , the diagonal entry W
(c)
ii

is set to its predicted class probability ŷi. The entry W
(c)
i,cls is set to 1 − ŷi, allowing class-level

information to flow toward uncertain nodes. The class node has a self-loop with weight 1. All
other entries are zero.1 Feature refinement is performed using a single propagation step as X̂(c) =
W(c)X(c), where X(c) contains the imputed node features and the class anchor. After processing all
class graphs, the refined features are mapped back to their original node indices. Observed features
are then restored to produce the final output matrix X̂ , and passed to the downstream GNN for
prediction.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on five benchmark datasets: three citation networks (Cora,
CiteSeer, and PubMed) (Sen et al., 2008), where nodes represent papers and edges indicate citation
links; and Amazon co-purchase networks (Photo and Computers) (Shchur et al., 2018), where
nodes are products and edges connect items frequently bought together. Additional dataset details
are provided in Appendix A.3.1. To simulate missing features, we randomly remove node attributes
according to a missing rate parameter mr, under two settings: Uniform Missing. A random mr
percentage of feature entries in the matrix X is masked and set to zero, simulating cases where
nodes have partially missing attributes; Structural Missing. A random mr percentage of nodes is
selected, and all features associated with those nodes are masked, modeling cases where some nodes
lack features entirely.

1For example, the matrix with two incomplete nodes reads W(c) =

[
ŷ1 0 1 − ŷ1
0 ŷ2 1 − ŷ2
0 0 1

]
, where the class

node corresponds to the last row and column.

6
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Table 1: Accuracy (%) comparison for node classification at mr = 0.995. Bold values indicate
the best performance; underlined values indicate the second-best. “OOM” denotes out-of-memory
errors. “-” indicates methods that are not applicable under the given missing setting.

Structural Missing
Dataset Full Features Zero PaGCN FP GRAFENNE ITR ASD-VAE PCFI FSD-CAP

Cora 82.72 ± 1.61 43.50 ± 8.69 31.78 ± 5.68 72.71 ± 2.49 33.29 ± 5.29 59.37 ± 1.72 30.01 ± 0.55 75.36 ± 1.86 80.56 ± 1.83
CiteSeer 70.00 ± 1.35 31.29 ± 5.04 24.24 ± 1.63 57.98 ± 2.93 23.43 ± 2.37 33.83 ± 1.44 27.85 ± 3.93 66.06 ± 2.78 71.94 ± 1.32
PubMed 77.46 ± 2.09 46.14 ± 4.26 38.80 ± 5.04 74.18 ± 3.15 41.84 ± 1.71 OOM OOM 74.44 ± 2.11 76.98 ± 1.41

Photo 91.63 ± 0.62 79.04 ± 2.26 64.31 ± 6.17 86.34 ± 1.09 50.73 ± 5.68 73.59 ± 3.98 30.85 ± 8.95 87.38 ± 1.04 89.18 ± 0.97
Computers 84.72 ± 1.25 71.71 ± 2.47 58.56 ± 2.36 77.19 ± 2.16 40.31 ± 6.26 OOM OOM 78.71 ± 1.49 81.64 ± 1.21

Average 81.31 ± 1.38 54.34 ± 4.54 43.54 ± 4.18 73.68 ± 2.36 37.92 ± 4.26 OOM OOM 76.39 ± 1.86 80.06 ± 1.21

Uniform Missing
Dataset Full Features Zero PaGCN FP GRAFENNE ITR ASD-VAE PCFI FSD-CAP

Cora 82.72 ± 1.61 63.37 ± 2.02 62.21 ± 1.83 78.36 ± 1.76 39.86 ± 4.81 - 33.22 ± 5.27 78.55 ± 1.37 81.49 ± 1.95
CiteSeer 70.00 ± 1.35 53.66 ± 2.65 28.58 ± 4.31 65.31 ± 1.29 29.65 ± 2.76 - 41.65 ± 8.90 69.11 ± 1.87 73.15 ± 0.98
PubMed 77.46 ± 2.09 54.26 ± 2.68 41.48 ± 2.00 73.74 ± 2.18 44.43 ± 1.39 - OOM 76.01 ± 1.64 77.46 ± 1.15

Photo 91.63 ± 0.62 84.96 ± 1.25 85.61 ± 0.69 88.04 ± 1.53 51.39 ± 5.21 - 32.45 ± 14.95 88.55 ± 1.26 89.40 ± 0.94
Computers 84.72 ± 1.25 78.99 ± 1.04 77.58 ± 1.96 80.67 ± 1.46 36.98 ± 2.25 - OOM 81.64 ± 1.05 83.57 ± 0.95

Average 81.31 ± 1.38 67.05 ± 3.08 59.09 ± 2.16 77.22 ± 1.64 40.46 ± 3.28 - OOM 78.77 ± 1.44 81.01 ± 1.19

Table 2: Performance comparison for link prediction at mr = 0.995. OOM denotes out of memory.
The bold and underlined represent the best and the suboptimal performance (%), respectively.

Dataset Metric Full Features Structural Missing Uniform Missing
ITR FP PCFI FSD-CAP FP PCFI FSD-CAP

Cora AUC 92.12 ± 0.71 82.01 ± 2.73 84.79 ± 1.99 85.94 ± 1.49 87.97 ± 1.24 87.02 ± 1.26 86.85 ± 1.69 90.01 ± 1.10
AP 92.45 ± 0.72 83.76 ± 2.87 87.04 ± 2.46 87.95 ± 1.20 88.80 ± 1.18 89.17 ± 0.83 88.86 ± 1.15 90.66 ± 0.75

CiteSeer AUC 91.02 ± 1.15 71.35 ± 3.25 81.40 ± 1.32 80.13 ± 1.80 87.48 ± 0.96 82.44 ± 1.50 82.98 ± 1.78 87.70 ± 1.09
AP 91.59 ± 1.20 73.30 ± 2.42 83.62 ± 1.52 83.72 ± 1.58 87.82 ± 1.19 84.81 ± 0.85 86.11 ± 1.60 88.23 ± 1.16

PubMed AUC 96.88 ± 0.20 OOM 86.18 ± 0.43 82.68 ± 0.70 88.39 ± 0.57 86.32 ± 0.21 84.46 ± 0.85 88.50 ± 0.45
AP 97.13 ± 0.24 OOM 83.24 ± 0.74 86.03 ± 0.32 85.54 ± 0.72 83.33 ± 0.41 86.80 ± 0.39 85.60 ± 0.42

Photo AUC 97.85 ± 0.17 97.11 ± 0.43 91.44 ± 4.58 96.41 ± 0.47 97.55 ± 0.16 94.97 ± 3.06 97.07 ± 0.19 98.16 ±0.05
AP 97.61 ± 0.22 96.96 ± 0.48 91.11 ± 4.33 96.02 ± 0.55+ 97.32 ± 0.25 94.51 ± 3.12 96.90 ± 0.23 98.08 ± 0.08

Computers AUC 97.44 ± 0.23 OOM 90.01 ± 3.57 94.44 ± 0.34 96.85 ± 0.13 92.95 ± 3.60 95.59 ± 0.23 97.69 ± 0.07
AP 97.35 ± 0.25 OOM 90.44 ± 3.10 94.45 ± 0.34 96.83 ± 0.14 93.08 ± 3.20 95.56 ± 0.29 97.74 ± 0.07

Average AUC 95.06 ± 0.49 OOM 86.76 ± 2.38 87.92 ± 0.96 91.65 ± 0.61 88.74 ± 1.93 89.39 ± 0.95 92.41 ± 0.55
AP 95.23 ± 0.53 OOM 87.09 ± 2.43 89.63 ± 0.80 91.26 ± 0.70 88.98 ± 1.68 90.85 ± 0.73 92.06 ± 0.50

Baselines. We compare against three baseline models and four state-of-the-art methods from both
deep learning-based and diffusion-based approaches. Zero (Baseline1) sets all missing feature val-
ues to zero and applies a standard GCN (Kipf & Welling, 2016a). PaGCN (Baseline2) (Zhang
et al., 2024) uses partial graph convolution over observed features without modeling missingness.
FP (Baseline3) (Rossi et al., 2022) performs direct feature propagation using the normalized ad-
jacency matrix. Among state-of-the-art methods, GRAFENNE (Gupta et al., 2023) constructs a
three-phase message-passing framework to learn on graphs. ITR (Tu et al., 2022) and ASDVAE
(Jiang et al., 2024) utilize the distribution relationship between attributes and structures for feature
completion. PCFI (Um et al., 2023) incorporates inter-node and inter-channel correlations through
confidence-aware diffusion.

Evaluation settings and implementation. We evaluate FSD-CAP on semi-supervised node clas-
sification and link prediction tasks. For node classification, we follow the setup in Gasteiger et al.
(2019), selecting 20 nodes per class from a random pool of 1500 nodes used for training and valida-
tion; the remaining nodes are used for testing. Classification accuracy is used to assess imputation
quality. For link prediction, we adopt the edge split from Kipf & Welling (2016b), using 85% of
edges for training, 5% for validation, and 10% for testing. AUC and AP are used as evaluation
metrics.

We average results over 10 random data splits and report the mean and standard deviation of accu-
racy, AUC, and AP. Hyperparameters are selected by grid search on the validation set. For baselines,
we adopt the settings from the authors’ released code or papers; when such settings are unavailable,
we run a grid search over a reasonable range. Additional details are provided in Appendix A.3.5 and
Appendix A.3.6.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.2 SEMI-SUPERVISED NODE CLASSIFICATION

We evaluate how classification accuracy varies with the missing rate mr in the semi-supervised node
classification task. The missing rate is increased from 0.6 to 0.995, and all methods are tested under
both structural and uniform missing scenarios. Results for the Cora and CiteSeer datasets are shown
in Figure 2; additional results for PubMed, Photo, and Computers are provided in Appendix A.4.1.

As mr increases, the accuracy of all methods declines. Latent-space approaches (ITR and ASD-
VAE) exhibit significant performance degradation at high missing rates. In contrast, FSD-CAP
remains robust across datasets and maintains competitive accuracy even at mr = 0.995. Diffusion-
based methods generally outperform latent-space methods, with FSD-CAP consistently achieving
the best performance. Compared to the strongest baseline, PCFI, our method shows larger gains as
the missing rate increases.

Figure 2: Node classification accuracy (%)
comparison on Cora and CiteSeer datasets with
mr ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 0.995}. The
top row displays results for structural missing,
while the bottom row shows results for uni-
form missing. Methods that encounter out-of-
memory errors or are not applicable to specific
missing scenarios are excluded from the corre-
sponding plots.

As shown in Table 1, we report node classifica-
tion accuracy for all methods across five datasets
at a fixed missing rate of mr = 0.995. ITR is de-
signed specifically for structural missing scenar-
ios, where nodes are either fully observed or en-
tirely missing, and cannot be applied to uniform
missing settings. We therefore report its perfor-
mance only under structural missing.

Our method consistently achieves the highest ac-
curacy across all datasets at mr = 0.995. In ex-
treme missing scenarios, several deep learning-
based methods such as GRAFENNE and ASD-
VAE perform worse than the simple zero-filling
baseline (Baseline1). On large-scale datasets
like Photo and Computers, both ASD-VAE and
ITR fail with out-of-memory errors, highlight-
ing their limited scalability. In the structural
missing setting, FSD-CAP outperforms the best-
performing baseline (PCFI) with a relative im-
provement of 6.90% on Cora, computed as
(80.56 − 75.36)/75.36 × 100% = 6.90%. It
also achieves gains of 8.90%, 3.41%, 2.06%, and
3.72% on CiteSeer, PubMed, Photo, and Com-
puters, respectively. Under the uniform missing
setting, where only 0.5% of node features are re-
tained, FSD-CAP reaches average accuracy comparable to a GCN trained on fully observed features.
Notably, on CiteSeer, it even surpasses the performance of the GCN with complete features.

3.3 LINK PREDICTION

Table 2 reports AUC and AP scores for the link prediction task on five datasets at mr = 0.995.
Due to severe performance degradation of some methods under high missing rates, we restrict the
comparison to ITR and the diffusion-based methods FP and PCFI. As before, ITR is applicable
only to structural missing and fails with out-of-memory errors on large-scale datasets.

Our method consistently outperforms both FP and PCFI across all datasets and missing types, with
the sole exception of the AP metric on PubMed. These results confirm that our approach remains
effective under extreme feature sparsity in both classification and link prediction tasks.

3.4 ABLATION STUDY AND EVALUATION ON LARGE-SCALE AND HETEROPHILOUS
DATASETS

We evaluate the contribution of each component in the framework, namely the fractional diffusion
operator, progressive subgraph diffusion, and class-level feature refinement. Ablation results and
discussion appear in Appendix A.2.1. We then test FSD-CAP on large-scale datasets and on datasets

8
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with heterophily. Across these settings, the method remains competitive and adapts well. Detailed
results and analysis are provided in Appendix A.2.7 and Appendix A.2.8.

4 RELATED WORKS

4.1 GRAPH FEATURE IMPUTATION

Learning from incomplete data due to missing attributes or partial observations is a common chal-
lenge in real-world graph applications (Little & Rubin, 2019). Existing approaches fall into two
main paradigms: end-to-end models, which integrate feature completion directly into the learning
pipeline, and imputation-then-training models, which treat imputation as a separate preprocessing
step (You et al., 2020; Huo et al., 2023). End-to-end methods aim to jointly learn node repre-
sentations and impute missing features within a unified architecture. PaGCN (Zhang et al., 2024)
introduces a partial graph convolution that aggregates only observed features but struggles under
high missing rates. GRAFENNE (Gupta et al., 2023) constructs a three-phase message-passing
framework enabling dynamic feature acquisition, though its scalability is limited. Although expres-
sive, these methods often require significant training data and computational resources. On the other
hand, imputation-then-training approaches estimate missing values first utilizing statistical methods
(Liu et al., 2019; Batista & Monard, 2002) or learned generative models (Kingma & Welling, 2013;
Yoon et al., 2018) before applying standard GNNs to the completed data. SAT (Chen et al., 2020)
optimizes distributional discrepancies between graph structure and node attributes, while ITR (Tu
et al., 2022) and RITR (Tu et al., 2024) refine the input by amplifying trustworthy observed features.
These models benefit from modularity but remain vulnerable to bias when missing rates are high. A
recent survey provides a comprehensive overview of this landscape (Xia et al., 2025).

4.2 GRAPH DIFFUSION

Diffusion-based graph representation learning (Gasteiger et al., 2019; Chamberlain et al., 2021) has
been widely explored as a mechanism for neighborhood smoothing. Recent developments have
extended classical diffusion beyond standard message-passing schemes. For example, ADC (Zhao
et al., 2021) improves over GDC (Gasteiger et al., 2019) by learning adaptive neighborhood sizes
from data, eliminating the need for manual tuning and enhancing both flexibility and generalization.
In the context of imputation, diffusion can be viewed as a heat kernel process (Kondor & Lafferty,
2002), where observed features propagate through graph to estimate missing values. The process
assumes feature homophily (i.e., neighboring nodes are likely to share similar attributes) and is often
analyzed via Dirichlet energy, which decreases as smoothness increases (Zhou et al., 2021; Zhang,
2023; Zhang et al., 2023). FP (Rossi et al., 2022) formalizes this by directly minimizing Dirichlet
energy, yielding a simple and effective iterative algorithm for feature diffusion under high sparsity.
However, it does not incorporate feature correlations or relational context. Recent work addresses
this limitation by integrating richer structural signals. PCFI (Um et al., 2023) guides diffusion using
feature-level confidence across nodes and channels, while SGHFP (Lei et al., 2023) models higher-
order relationships using a hypergraph structure (Dong et al., 2025). Nonetheless, most existing
methods apply uniform diffusion across nodes, ignoring variations in completion difficulty. As a
result, poorly estimated nodes may contaminate their neighbors.

5 CONCLUSION

In this paper, we propose a novel diffusion-based feature imputation approach for incomplete graph
learning. By introducing a fractional diffusion operator and distance-guided progressive subgraph
diffusion, we are able to adjust the propagation sharpness according to local graph structure and
propagate information from observed to missing nodes hierarchically, thereby improving the stabil-
ity of the diffusion process and the reliability of the imputed features. We further design a class-
level refinement mechanism to enhance feature quality under severe feature sparsity. Extensive
experiments conducted on a variety of benchmark datasets demonstrate that our method not only
consistently outperforms state-of-the-art approaches in semi-supervised node classification and link
prediction tasks, with particularly notable improvements under extreme feature missingness, but
also exhibits remarkable adaptability to diverse graph structures.
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ETHICS STATEMENT

FSD-CAP improves the robustness of GNNs under high feature-missing rates and may benefit ap-
plications in domains such as social networks and recommender systems. However, as with any
imputation technique, there is a risk of misuse, particularly in inferring sensitive or private attributes
from partial data. We encourage responsible use, including proper access controls and ethical over-
sight, especially when applying the model to contexts involving personal or sensitive information.

REPRODUCIBILITY STATEMENT

The proposed imputation framework is introduced in detail in Section 2, with a summary of the
experimental setup provided in Section 3. Further details, including data splitting strategies and
hyperparameter settings, are given in the appendix. For reproducibility, we make the code and
corresponding random seeds publicly available.
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A APPENDIX

OUTLINE OF THE SUPPLEMENTARY MATERIAL

Section 1 – Proofs of main results: Formal proofs for the theoretical results stated in the main paper.

Section 2 – Experimental analyses: We present additional evaluations to support the effectiveness
and robustness of FSD-CAP. First, ablation studies show that removing any single com-
ponent leads to a consistent drop in performance across all datasets. Second, sensitivity
analyses demonstrate the stability of the framework with respect to key parameters. A
comparison with FP, a global diffusion baseline, highlights FSD-CAP’s ability to main-
tain accuracy at greater distances from observed nodes, validating the progressive diffusion
mechanism.
We also analyze class-level characteristics of imputed features and visualize the outputs
of FP and PCFI to show that FSD-CAP better preserves inter-class separability. We fur-
ther validate FSD-CAP’s strong practical scope and generality through comparative ex-
periments on large-scale and heterophily datasets.Finally, we report classification accuracy
under missing rates from 60% to 99.5%, showing that FSD-CAP is highly robust to both the
rate and structure of missing data. Under uniform missing with mr = 0.995, the average
performance drop is just 0.3% relative to the fully observed case; in some cases, perfor-
mance even improves. FSD-CAP consistently achieves higher node classification accuracy
than the state-of-the-art baseline PCFI under varying levels of feature missingness.

Section 3 – Implementation and hyperparameters: Experimental setup for both node classification
and link prediction tasks, including dataset statistics, data splits, evaluation metrics, model
architectures, and hyperparameter configurations for all baselines and FSD-CAP.

Section 4 – Supplementary figures and tables: Additional results comparing node classifica-
tion accuracy on PubMed, Photo and Computers across multiple missing rates (mr ∈
0.6, 0.7, 0.8, 0.9, 0.95, 0.995). These results extend Section 3.2 of the main paper and fur-
ther validate the robustness of FSD-CAP.

Section 5 – Declaration of LLM usage: We make a full disclosure regarding the utilization of the
large language model (LLM) throughout the process of completing this thesis.

A.1 PROOFS OF MAIN RESULTS

Proposition A.1 (Limiting behavior of Aγ). Let A be the symmetric normalized adjacency matrix
of a connected graph, and Aγ ∈ RN×N is defined as

Aγ
ij := (Aij)

γ/

(
N∑

k=1

(Aik)
γ

)
. (7)

We have

lim
γ→0+

Aγ
ij =


1

|N (i)|
if Aij > 0

0 otherwise
, lim

γ→∞
Aγ

ij =

{
1 if j ∈ argmaxk Aik

0 otherwise
. (8)

where N (i) = {j | Aij > 0} denotes the set of neighbors of node i.

Proof. Let i be a fixed row index. By definition, the entries of Aγ are given by

Aγ
ij =

Aγ
ij∑

k∈N (i) A
γ
ik

, (9)

where the sum is taken over the neighborhood N (i) = k | Aik > 0. Since A is a symmetric
normalized adjacency matrix, all its entries are nonnegative and satisfy Aij ∈ [0, 1].

We consider two limiting cases:
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Case 1: γ → 0+. For all j ∈ N (i), we have Aγ
ij → 1 as γ → 0+. Therefore, the numerator tends

to 1 for each neighbor, and the denominator tends to |N (i)|. As a result,

lim
γ→0+

Aγ
ij =

1

|N (i)|
if j ∈ N (i), (10)

and zero otherwise. Thus, the row converges to a uniform distribution over the neighbors of node i.

Case 2: γ → ∞. In this case, the exponentiation amplifies differences between entries. Specif-
ically, the largest value Aik dominates the sum in the denominator, and the softmax approaches a
one-hot distribution centered at the maximum. Let j⋆ ∈ argmaxk Aik. Then,

lim
γ→∞

Aγ
ij =

{
1 if j = j⋆

0 otherwise
, (11)

which completes the proof.

Theorem A.1 (Fractional diffusion on feature propagation). Let A and Aγ denote the lazy tran-
sition and fractional diffusion operator as defined in equation 7, respectively. For any feature matrix
X ∈ RN×F , define the propagated features by Xγ := AγX . Then for each node i, we have

lim
γ→0+

Xγ
[i,:] =

1

|N (i)|
∑

j∈N (i)

X[j,:] and lim
γ→∞

Xγ
[i,:] = X[j⋆,:],

where N (i) = {j | Aij > 0} the neighborhood of vi, and j⋆ ∈ argmaxk Aik is the index of its
strongest neighbor.

Proof. The propagated feature vector at node i is defined by

Xγ
[i,:] =

N∑
j=1

Aγ
ijX[j,:],

the limiting regimes of γ thus read

Case 1: γ → 0+. As γ approaches zero, we have Aγ
ij → 1/|N (i)| for all j ∈ N (i), and zero

otherwise. Therefore,

Xγ
[i,:] →

1

|N (i)|
∑

j∈N (i)

X[j,:],

which corresponds to uniform averaging over the neighborhood of node i.

Case 2: γ → ∞. The largest entry in row i of A dominates the normalization. Specifically, if
j⋆ ∈ argmaxk Aik, then Aγ

ij → 1 if j = j⋆, and zero otherwise. Hence,

X
(γ)
[i,:] → X[j⋆,:],

which corresponds to selecting the feature vector of the strongest neighbor.

Theorem A.2 (Convergence of subgraph diffusion). Let A(m) be the adjacency matrix of the m-th
layer subgraph G(m), and let Aγ,m denote its fractional diffusion matrix as defined in equation 7.
Let x(m) ∈ R|V(m)| be the feature vector in channel ℓ, where missing entries are initialized to zero.
Let λ > 0 denote the retention coefficient, and M be the binary mask vector for observed entries in
channel ℓ. Define the update sequence by

x(m)(t) = x(m)(0)⊙M +
(
Aγ,mx(m)(t− 1) + λx(m−1)(K)

)
⊙ (1−M), t = 1, . . . ,K

Then, for sufficiently large K, the sequence x(m)(t) converges to a fixed (unique) state.
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Proof. Fix a feature channel ℓ, and consider the m-th subgraph layer G(m) with n = |V(m)| nodes.
Let x(m) denotes the vector of ℓ-th feature values across all nodes in this subgraph

x(m) =


x
(m)
1 [ℓ]

x
(m)
2 [ℓ]

...
x
(m)
n [ℓ]

 .

Recall M ∈ {0, 1}N×F be the full binary feature mask. Define the channel-wise mask vector
M (ℓ) ∈ {0, 1}n by M

(ℓ)
i := M [i, ℓ], which indicates whether node vi’s feature in channel ℓ is

observed.

Let A(m) be the symmetric normalized adjacency matrix of the subgraph G(m), and define the
fractional diffusion operator Aγ,m ∈ Rn×n as

Aγ,m
ij =

(A
(m)
ij )γ∑n

k=1(A
(m)
ik )γ

.

Since γ > 0, this defines a row-stochastic matrix with nonnegative entries. Its support coincides
with that of A(m), and thus matches the topology of the subgraph. If G(m) is connected, then Aγ,m

is the transition matrix of an irreducible and aperiodic Markov chain.

From standard results in Markov chain theory, for any initial vector v(0), the iterates

v(t) = (Aγ,m)tv(0)

converge to the unique stationary distribution.

Now consider the masked and retained update. Define the diagonal projection matrices

P := diag(M (ℓ)), Q := I − P = diag(1−M (ℓ)).

Then the update rule can be written as

x(m)(t) = Px(m)(0) +Q
(
Aγ,mx(m)(t− 1) + λx(m−1)(K)

)
,

where λ > 0 is the retention factor and x(m−1)(K) is the converged estimate from the previous
layer. This is a linear, inhomogeneous recurrence of the form

x(m)(t) = Gx(m)(t− 1) + b,

with
G := QAγ,m, b := Px(m)(0) + λQx(m−1)(K).

Since Aγ,m is row-stochastic and Q is diagonal with entries in [0, 1], the matrix G is sub-stochastic
– its rows have nonnegative entries and sum to at most 1. Furthermore, any row corresponding to an
observed feature (i.e., M (ℓ)

i = 1) satisfies Qii = 0, so the corresponding row of G is all zeros. If at
least one feature is observed (i.e., M (ℓ) ̸= 0), then G has at least one row with sum strictly less than
1, and thus its spectral radius satisfies ρ(G) < 1.

Since ρ(G) < 1, the recurrence converges to a unique fixed point, i.e.,

x(m)(∞) = (I −G)−1b.

This proves that the update converges for each feature channel ℓ, in every subgraph layer m, as long
as the underlying subgraph is connected and γ <∞.

Theorem A.3 (Global convergence via progressive subgraph expansion). Let G(m) be the m-
hop expansion of the observed node set Vℓ

+ in channel ℓ, and let x(m) be the corresponding feature
estimate after applying the masked fractional diffusion update defined in Theorem A.2. Assume
the graph G is connected and the diffusion sharpness parameter γ is finite. Then as m → Mmax,
where G(m) → G, the final estimate x(m)(∞) converges to the steady-state solution of the full-graph
diffusion update.
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Proof. Fix a feature channel ℓ, and consider sequence of subgraphs {G(m)} defined by expanding
the observed node set Vℓ

+ in increasing m-hop neighborhoods. Each subgraph G(m) = (V(m), E(m))
satisfies

V(m) ⊆ V(m+1), E(m) ⊆ E(m+1), and
⋃
m

G(m) = G.

Let x(m)(∞) denote the steady-state solution obtained by applying the masked and retained update
on G(m), which exists by Theorem A.2. Since each update only modifies nodes in V(m), and each
V(m) is strictly contained in the next, the sequence {x(m)(∞)}m defines an expanding approxima-
tion of the solution on the full graph.

We now define the full-graph update. Let G = (V, E) be the complete graph, and let Aγ ∈ RN×N

be the full fractional diffusion matrix defined over all N nodes

Aγ
ij =

(Aij)
γ∑N

k=1(Aik)γ
,

where A is the symmetric normalized adjacency matrix of G. Let x⋆ be the solution to the global
masked and retained update

x⋆ = Px(0) +Q (Aγx⋆ + λxprev) ,

where P = diag(M (ℓ)), Q = I − P , and x(0) is the initial feature vector for this channel.

Now, observe that for any fixed node i, there exists a minimal radius mi such that i ∈ V(m) for all
m ≥ mi. Beyond this point, the update for x(m)

i (∞) is computed using the same local topology,
diffusion weights, and mask structure as in the full graph. Hence, for each node i, the local solution
on G(m) matches the restriction of the global solution, up to boundary conditions that vanish as the
subgraph expands.

Furthermore, the retention mechanism ensures that values propagated from earlier layers remain sta-
ble and reinforce prior estimates. Because the number of nodes is finite and each node is eventually
included in some G(m), we conclude that

lim
m→Mmax

x(m)(∞) = x⋆,

where x⋆ is the fixed point of the global masked diffusion update.

A.2 EXPERIMENTAL ANALYSES:

A.2.1 ABLATION STUDY

To evaluate the contribution of each component in FSD-CAP, we perform ablation studies under
the structural missing setting with a 99.5% missing rate. Experiments are conducted on both semi-
supervised node classification and link prediction tasks across all datasets. We compare the full
model to the following variants, each with one component removed

1. w/o_Frac_oper: Removes the fractional diffusion operator.

2. w/o_Prog_subg: Removes the progressive subgraph diffusion.

3. w/o_Class_refine: Removes the class-level feature refinement.

The results of the ablation studies are reported in Table 3 for node classification and Table 4 for link
prediction. In both tasks, removing any single component from FSD-CAP results in a consistent drop
in performance across all datasets, confirming the contribution of each module. The performance
degradation is especially pronounced in the link prediction setting.

w/o_Frac_oper. Removing the fractional diffusion operator results in an average accuracy drop
of 2.02% in node classification, with a larger effect observed on denser co-purchase datasets such
as Photo and Computers (Table 3). Its impact is even more pronounced in link prediction, where
the average AUC decreases by 5.60% across five datasets (Table 4). These results highlight the
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role of the fractional operator in adapting diffusion sharpness to local structure and demonstrate its
importance in both tasks.

w/o_Prog_subg. Eliminating the progressive subgraph diffusion mechanism results in a smaller
average performance loss compared to the other two components. However, as shown in Table 4,
it leads to noticeable degradation on link prediction for datasets such as Cora and CiteSeer. The
progressive expansion strategy helps reduce error accumulation during diffusion by gradually incor-
porating nodes, improving stability and overall performance.

w/o_Class_refine. The class-level refinement has the most significant impact on node classification
performance (Table 3). Its removal particularly affects sparse graphs with multiple classes, such as
Cora (7 classes) and CiteSeer (6 classes). By constructing class-specific anchor nodes and propagat-
ing within class-specific graphs, this component enhances inter-class separation and strengthens the
discriminative power of imputed features.

Together, these results demonstrate that all three components play complementary roles. Their com-
bination is essential for achieving robust and accurate imputation under extreme sparsity.

Table 3: Ablation study on semi-supervised node classification. Best values are in bold.
Cora CiteSeer PubMed Photo Computers Average

FSD-CAP 80.56% 71.94% 76.98% 89.18% 81.64% 80.06%
w/o_Frac_oper 79.95% (-0.61%) 71.82% (-0.12%) 75.54% (-1.44%) 86.27% (-2.91%) 76.60% (-5.04%) 78.04% (-2.02%)
w/o_Prog_subg 79.34% (-1.22%) 70.84% (-1.10%) 75.97% (-1.01%) 88.07% (-1.11%) 79.14% (-2.50%) 78.67% (-1.39%)

w/o_Class_refine 76.43% (-4.13%) 68.65% (-3.29%) 75.52% (-1.46%) 88.10% (-1.08%) 78.06% (-3.58%) 77.35% (-2.71%)

Table 4: Ablation study on link prediction, with best performance highlighted in bold.
Metric Cora CiteSeer PubMed Photo Computers Average

FSD-CAP
AUC 87.97% 87.48% 88.39% 97.55% 96.85% 91.65%
AP 88.80% 87.82% 85.54% 97.32% 96.83% 91.26%

w/o_Frac_oper
AUC 80.54% (-7.43%) 79.07% (-8.41%) 85.32% (-3.07%) 95.94% (-1.61%) 89.39% (-7.46%) 86.05% (-5.60%)
AP 82.65% (-6.15%) 81.74% (-6.08%) 84.81% (-0.73%) 95.46% (-1.86%) 89.99% (-6.84%) 86.93% (-4.33%)

w/o_Prog_subg
AUC 82.67% (-5.30%) 79.71% (-7.77%) 86.10% (-2.29%) 96.47% (-1.08%) 95.75% (-1.10%) 88.14% (-3.51%)
AP 84.48% (-4.32%) 80.67% (-7.15%) 84.71% (-0.83%) 96.16% (-1.16%) 95.68% (-1.15%) 88.34% (-2.92%)

w/o_Class_refine
AUC 83.00% (-4.97%) 79.58% (-7.90%) 84.90% (-3.49%) 96.49% (-1.06%) 94.71% (-2.14%) 87.74% (-3.91%)
AP 84.69% (-4.11%) 80.76% (-7.06%) 83.00% (-2.54%) 96.26% (-1.06%) 94.63% (-2.20%) 87.87% (-3.39%)

A.2.2 PARAMETER ANALYSIS

To assess the sensitivity of FSD-CAP to its key parameters (γ, λ, and T ), we conduct controlled
experiments on both semi-supervised node classification and link prediction. We use the structural
missing setting with a 99.5% feature missing rate, evaluating on Cora and the denser Photo dataset.

In the fractional subgraph diffusion (FSD) stage, information is propagated progressively from ob-
served to unobserved nodes by expanding the subgraph. The fractional exponent γ controls the
sharpness of diffusion: higher values lead to more localized propagation. The retention coefficient
λ determines the weight of previous estimates in the update. The temperature T is used in the
class-aware refinement stage to modulate the influence of class-level anchors.

We examine the joint effect of the fractional diffusion parameter γ and the retention coefficient λ on
model performance, with temperature T fixed. Figure 3 shows classification accuracy on Cora and
Photo as these parameters vary. On Cora, γ is swept from 0.6 to 1.6 (step size 0.2), while on Photo
it ranges from 2.0 to 4.0 with the same step. In both cases, λ is varied from 0 to 1 in increments
of 0.1. Results indicate that Cora achieves higher accuracy when λ ∈ [0.2, 0.4] and γ ∈ [1.2, 1.4],
suggesting that incorporating estimates from previous diffusion layers improves imputation quality.
On the denser Photo dataset, accuracy improves when γ is set around 2.6 to 3.0, reflecting the benefit
of sharper, edge-concentrated diffusion in dense graphs.

Figures 4 and 5 present AUC and AP scores for link prediction on Cora and Photo, respectively.
The trends are consistent with those observed in node classification, confirming that performance
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Figure 3: Sensitivity of node classification accuracy to the retention coefficient λ and fractional
exponent γ on Cora and Photo datasets.

Figure 4: Sensitivity of link prediction performance to the retention coefficient λ and fractional
exponent γ on the Cora dataset.

Figure 5: Sensitivity of link prediction performance to the retention coefficient λ and fractional
exponent γ on the Photo dataset.

is sensitive to the choice of λ and γ. On Cora, smaller values of λ yield better results. On Photo,
higher values of γ improve performance more noticeably than in the classification setting, suggesting
that localized diffusion captures structure relevant to link formation. Modulating diffusion strength
across local neighborhoods allows FSD-CAP to better exploit available information. These sensi-
tivity results further validate the role of each component in FSD-CAP. The retention mechanism
stabilizes the diffusion process by preserving accurate estimates from earlier layers, reducing error
propagation. The fractional operator adjusts the relative influence of neighboring nodes based on
local graph structure, helping to mitigate over-smoothing and improve overall imputation quality.
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In the class-aware propagation (CAP) step, a GCN-based classifier assigns pseudo-labels to unla-
beled nodes. These labels are used to construct class-specific features and class-wise graphs for
targeted feature refinement. The temperature parameter T is applied to the softmax function to
control the sharpness of the output distribution. Lower values of T produce sharper, more confi-
dent predictions; higher values yield smoother distributions. When T = 1, the standard softmax is
recovered.

Figure 6: Sensitivity of node classification and link prediction performance to temperature parameter
T on the Cora and Photo datasets.

Figure 6 shows the effect of the temperature parameter T on model performance across accuracy,
AUC, and AP metrics for the Cora and Photo datasets. On Cora, both node classification and link
prediction achieve optimal performance near T = 5. On the denser Photo dataset, the optimal value
of T differs by task: T ≈ 25 yields the best node classification accuracy, while T = 0.001 gives
the highest link prediction scores. At low T , the pseudo-label distribution becomes sharply peaked,
resulting in high-confidence weights during class-aware propagation. This reduces the influence of
class-level features and increases the emphasis on individual node characteristics. For link prediction
on dense graphs, this behavior is beneficial, as rich local structure can guide accurate edge inference.
In contrast, node classification benefits from smoother pseudo-labels (higher T ), which reduce intra-
class noise and improve class-level separation. These results highlight the importance of tuning T :
relative to the default T = 1, appropriate values can significantly improve performance on both
tasks.

A.2.3 ACCURACY COMPARISON ON DIFFERENT DISTANCE

To assess how distance from observed features impacts classification accuracy, we evaluate perfor-
mance under the structural missing setting with a 99.5% missing rate. Nodes are grouped by their
shortest-path distance to the nearest node with observed features, and average accuracy is computed
for each group. We compare FSD-CAP to the global diffusion baseline FP across five datasets.
Figures 7 and 8 present accuracy as a function of distance for sparse and dense graphs, respectively.

Figure 7: Node classification accuracy (%) of FP and FSD-CAP grouped by shortest-path distance
to the nearest node with observed features, evaluated on Cora, CiteSeer, and PubMed.
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Figure 8: Node classification accuracy (%) of FP and FSD-CAP as a function of shortest-path dis-
tance to the nearest observed node, evaluated on the Photo and Computers datasets.

As shown in Figure 8, the Photo and Computers datasets are relatively dense, with most missing-
feature nodes located within five hops of observed nodes. In contrast, the sparser datasets—Cora,
CiteSeer, and PubMed (Figure 7)—exhibit much larger maximum distances between missing and
observed nodes. Across all datasets, both FP and FSD-CAP show a general decline in accuracy as
distance increases. In some cases, accuracy temporarily rises at longer distances. This is explained
by the node distribution: most nodes lie within a few hops of observed regions, while distant nodes
are few (Figure 9), which inflates the average accuracy of these small groups.

This trend confirms that diffusion-based methods perform better for nodes near observed features.
Compared to FP, which applies global propagation, FSD-CAP reduces accuracy degradation at
greater distances and improves performance for nearby nodes. These results support the effective-
ness of progressive subgraph diffusion, which focuses propagation on reliable local neighborhoods
and limits error accumulation, leading to more stable and accurate imputation.

Figure 9: Number of nodes at each shortest-path distance from the nearest node with observed
features across the five datasets.

A.2.4 CLASS-LEVEL FEATURE SIMILARITY ANALYSIS

To analyze the class-level structure of features imputed by FSD-CAP, we perform experiments under
the structural missing setting with a 99.5% missing rate. Cosine similarity is used to measure both
intra-class and inter-class feature similarity. We compute these metrics on the imputed features and
compare them to those obtained from the original, fully observed features.

Tables 5 and 6 report intra-class and inter-class cosine similarity for the original and imputed fea-
tures, respectively. “Average” denotes the mean intra-class similarity across all classes. The “Ratio”
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Table 5: Inter-class and intra-class cosine similarities of original features.

Dataset Inter-class
Intra-class

Average Ratio
class1 class2 class3 class4 class5 class6 class7 class8 class9 class10

Cora 0.054 0.087 0.117 0.092 0.070 0.071 0.089 0.116 - - - 0.091 1.70
CiteSeer 0.042 0.053 0.063 0.063 0.067 0.078 0.061 - - - - 0.064 1.54
PubMed 0.063 0.112 0.094 0.078 - - - - - - - 0.094 1.51

Photo 0.337 0.282 0.495 0.331 0.435 0.354 0.381 0.289 0.354 - - 0.365 1.08
Computers 0.348 0.371 0.347 0.442 0.390 0.300 0.449 0.534 0.455 0.393 0.414 0.409 1.17

Table 6: Inter-class and intra-class cosine similarities of features imputed by FSD-CAP under the
structural missing setting with a missing rate of 99.5%.

Dataset Inter-class
Intra-class

Average Ratio
class1 class2 class3 class4 class5 class6 class7 class8 class9 class10

Cora 0.827 0.937 0.986 0.992 0.907 0.828 0.887 0.950 - - - 0.926 1.12
CiteSeer 0.671 0.854 0.817 0.947 0.868 0.962 0.958 - - - - 0.901 1.34
PubMed 0.905 0.930 0.961 0.938 - - - - - - - 0.943 1.04

Photo 0.884 0.983 0.984 0.987 0.992 0.995 0.978 0.991 0.992 - - 0.988 1.12
Computers 0.868 0.994 0.867 0.982 0.923 0.928 0.979 0.973 0.966 0.920 0.975 0.946 1.09

is defined as the average intra-class similarity divided by the inter-class similarity. A ratio greater
than 1 indicates better class separability.

As shown in Table 5, the original features consistently yield higher intra-class similarity than inter-
class similarity across all datasets, confirming their strong class-discriminative structure. Table 6
shows that FSD-CAP preserves this structure even under 99.5% feature missing. In all cases, the
ratio remains above 1, indicating that the imputed features retain meaningful class-level separation.

These results confirm that FSD-CAP maintains discriminative feature geometry under extreme spar-
sity. As shown in Table 11 (Appendix A.2.9), the resulting classification performance is comparable
to, and in some cases exceeds, that of the fully observed setting.

A.2.5 T-SNE VISUALIZATION

Under the structural missing setting with a 99.5% feature missing rate, we reconstruct node features
using two diffusion-based baselines (FP and PCFI) and our proposed FSD-CAP. We then apply
t-SNE to project the imputed features into two dimensions for qualitative comparison.

Figures 10 and 11 show the t-SNE visualizations across five datasets, with nodes colored by ground-
truth class labels. FSD-CAP produces more compact and well-separated clusters than FP and PCFI.
Nodes from the same class form cohesive groups with clearer boundaries between classes. These
visual patterns align with the similarity analysis in Appendix A.2.4, further demonstrating FSD-
CAP’s ability to preserve class structure and support downstream tasks such as node classification.

A.2.6 COMPLEXITY ANALYSIS

Computational complexity. FSD-CAP consists of two stages: fractional subgraph diffusion
(FSD) and class-aware propagation (CAP).

To make the cost concrete, we report wall-clock time (in seconds), including both the time for feature
imputation and training of downstream GCN for FSD-CAP and baseline models in the Table 7. We
measure a single split per dataset under a structural missing setting with a 99.5% missing rate. All
experiments are run on a 40-core Intel Xeon Silver 4210R CPU with one NVIDIA RTX 4090 GPU.

As shown in the table, deep learning-based methods incur significantly higher computational costs
compared to diffusion-based imputation approaches. For FSD-CAP, the vast majority of the time is
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Figure 10: t-SNE visualizations of imputed node features on Cora, CiteSeer, and PubMed under the
structural missing setting with a 99.5% missing rate. Nodes are colored by ground-truth class labels.

spent on training the downstream model. The actual feature completion stage, in contrast, is highly
efficient, requiring only 0.38s on Cora, 0.76s on CiteSeer, 0.75s on PubMed, 0.57s on Photo, and
1.09s on Computers. Among diffusion-based models, FSD-CAP requires more imputation time than
FP and PCFI, yet the cost remains moderate. The extra time comes from the multi step subgraph
expansion, which improves reconstruction under extreme missingness. With only 0.5% of features
available, FSD-CAP improves over PCFI by 1.80% to 5.88% on Cora, CiteSeer, PubMed, Photo,
and Computers, with an average gain of 3.67%. This yields a favorable trade-off between accuracy
and efficiency and is practical for real-world settings with severe feature scarcity.

Table 7: Training time (in seconds) of methods under a structural missing setting with 99.5% missing
rate.

Cora CiteSeer PubMed Photo Computers

PaGCN 3.442s 6.035s 11.297s 12.643s 26.635s
GRAFENNE 78.285s 30.133s 225.987s 160.739s 223.767s

ASD-VAE 328.785s 132.977s OOM 468.35s OOM
FP 2.251s 2.282s 2.911s 3.267s 7.545s

PCFI 2.959s 2.797s 3.763s 3.769s 8.327s
FSD-CAP 3.276s 3.103s 4.022s 4.329s 8.992s
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Figure 11: t-SNE visualizations of imputed node features on Photo and Computers under the struc-
tural missing setting with a 99.5% missing rate. Nodes are colored by ground-truth class labels.

Memory complexity. Table 8 reports the actual memory usage (in MB) of FSD-CAP for both
semi-supervised node classification and link prediction under the structural missing setting with a
99.5% missing rate. Results are shown across five datasets, along with the average memory con-
sumption for each task.

Table 8: Memory usage (in MB) of FSD-CAP for semi-supervised node classification and link
prediction under the structural missing setting with a 99.5% feature missing rate.

Cora CiteSeer PubMed Photo Computers Average

Semi-supervised node classification 690 816 3638 1014 2044 1640.4
Link prediction 658 876 2560 1108 2274 1495.2

A.2.7 ACCURACY COMPARISON ON LARGE-SCALE DATASETS

We include results on the large-scale OGBN-ArXiv dataset and a subgraph with 50,000 nodes ex-
tracted from OGBN-Products . The OGBN-ArXiv graph has 169,343 nodes, 1,166,234 edges, and
128 dimensional features.

We evaluate node classification accuracy under both structural and uniform missing settings. As
shown in Table 9, several deep learning models, including GRAFENNE, ITR, and ASD-VAE, run
out of memory on two graphs. FSD-CAP attains the best performance among all evaluated meth-
ods in both settings. It reaches 69.11% under structural missingness and 70.16% under uniform
missingness, outperforming FP and PCFI. In the uniform case, the gap to the full feature model at
72.27% is 2.11 percentage points. These results indicate that the framework scales to large graphs
and maintains strong reconstruction quality at extreme sparsity.

A.2.8 ACCURACY COMPARISON ON HETEROPHILY DATASETS

We evaluate heterophily explicitly. The benchmarks are Cornell, Texas, and Wisconsin from We-
bKB, and Chameleon from Wikipedia. Their edge homophily ratios are 0.30, 0.11, 0.21, and 0.23,
defined as the fraction of edges that connect nodes of the same class.
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Table 9: Accuracy comparison on OGBN-Arxiv and OGBN-Products for node classification with
99.5% missing rate.

OGBN-Arxiv OGBN-Products

structural missing uniform missing structural missing uniform missing

Full Features 72.27 ± 0.11 72.27 ± 0.11 69.04 ± 0.07 69.04 ± 0.07
Zero 56.36 ± 0.63 57.70 ± 0.70 51.66 ± 1.30 58.70 ± 0.70

PaGCN 47.46 ± 0.51 56.92 ± 0.34 55.00 ± 0.55 56.00 ± 0.56
GRAFENNE OOM OOM OOM OOM

ITR OOM OOM OOM OOM
ASD-VAE OOM OOM OOM OOM

FP 68.13 ± 0.41 68.52 ± 0.18 67.53 ± 0.64 68.66 ± 0.35
PCFI 68.59 ± 0.29 69.39 ± 0.29 68.18 ± 0.30 68.39 ± 0.29

FSD-CAP 69.11 ± 0.33 70.16 ± 0.27 69.03 ± 0.41 69.26 ± 0.27

We test node classification at a 99.5% missing rate under structural and uniform masks. We compare
with diffusion-based completion methods FP and PCFI, and with two heterophil-oriented GNNs,
Hop GNN and GPR GNN, under the same settings.

As shown in Table 10, when features are extremely sparse, the heterophily GNNs degrade, while
completion first helps by reconstructing informative representations. Under structural missingness,
Hop GNN averages 44.97%, and FSD-CAP reaches 56.22%. Under uniform missingness, FSD-CAP
averages 58.85% and outperforms all baselines.

These findings are consistent with our design. Progressive subgraph diffusion limits early cross-
class leakage, and fractional diffusion allows milder mixing on weak homophily. The class-aware
refinement then pulls uncertain nodes toward class prototypes and downweights boundary nodes by
entropy. Together, the table demonstrates that the framework generalizes well to weak homophily.

Table 10: Accuracy on heterophily graphs for semi-supervised node classification task at 99.5%
missing rate. The best results are highlighted in bold.

Structural Missing
Chameleon Texas Cornell Wisconsin Average

Hop-GNN 26.65% ± 9.66 57.11% ± 6.56 47.11% ± 6.56 49.02% ± 5.95 44.97%
GPR-GNN 21.90% ± 1.75 58.42% ± 6.09 48.42% ± 6.09 46.08% ± 5.49 43.70%

FP 39.40% ± 2.97 61.07% ± 8.81 55.36% ± 12.12 55.53% ± 7.20 52.84%
PCFI 41.44% ± 7.32 64.00% ± 8.11 55.17% ± 12.04 55.32% ± 7.46 53.98%

FSD-CAP 43.23% ± 8.30 66.79% ± 6.60 57.24% ± 11.14 57.63% ± 9.00 56.22%

Uniform Missing
Chameleon Texas Cornell Wisconsin Average

Hop-GNN 25.19% ± 6.75 57.11% ± 6.56 47.11% ± 6.56 49.02% ± 5.95 44.61%
GPR-GNN 23.00% ± 1.68 58.42% ± 6.09 48.42% ± 6.09 46.08% ± 5.49 43.98%

FP 40.36% ± 4.47 61.43% ± 8.57 55.86% ± 12.12 58.16% ± 4.92 53.95%
PCFI 40.54% ± 4.08 62.50% ± 9.75 55.86% ± 12.12 57.37% ± 6.21 54.07%

FSD-CAP 47.84% ± 5.21 71.07% ± 8.06 57.55% ± 11.66 58.95% ± 5.79 58.85%

A.2.9 ROBUSTNESS ANALYSIS AGAINST DIFFERENT DATA MISSING LEVELS

To evaluate the robustness of FSD-CAP under varying levels of feature missingness, we perform
node classification experiments on five datasets under both structural and uniform missing settings.
The missing rate is gradually increased from 60% to 99.5%, and results are compared to the full-
feature setting to assess how performance degrades with increased sparsity. Table 11 reports the
classification accuracy at each missing rate, along with the relative change compared to the fully
observed setting.
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Table 11: Node classification accuracy (%) of FSD-CAP at different missing rates. Relative perfor-
mance changes are reported with respect to the fully observed (full-feature) setting.

Structural Missing
Dataset Full Features 60% Missing 70% Missing 80% Missing 90% Missing 95% Missing 99.5% Missing

Cora 82.72% 82.75% (+0.03%) 82.77% (+0.02%) 82.28% (-0.44%) 82.45% (-0.27%) 82.01% (-0.71%) 80.56% (-0.16%)
CiteSeer 70.00% 71.29% (+1.29%) 71.19% (+1.19%) 71.40% (+1.40%) 71.97% (+1.97%) 72.85% (+2.85%) 71.94% (+1.94%)
PubMed 77.46% 77.13% (-0.33%) 76.96% (-0.50%) 76.89% (-0.57%) 77.22% (-0.24%) 77.19% (-0.27%) 76.98% (-0.48%)

Photo 91.63% 91.67% (+0.04%) 91.58% (-0.05%) 91.34% (-0.29%) 90.79% (-0.84%) 90.37% (-1.26%) 89.18% (-2.45%)
Computers 84.72% 85.00% (+0.28%) 84.70% (-0.02%) 84.13% (-0.59%) 84.08% (-0.64%) 84.17% (-0.55%) 81.64% (-3.08%)

Average 81.31% 81.57% (+0.26%) 81.44% (+0.13%) 81.21% (-0.10%) 81.30% (-0.01%) 81.32% (+0.01%) 80.06% (-1.25%)

Uniform Missing
Dataset Full Features 60% Missing 70% Missing 80% Missing 90% Missing 95% Missing 99.5% Missing

Cora 82.72% 82.84% (+0.12%) 82.61% (-0.11%) 82.63% (-0.09%) 82.61% (-0.11%) 82.39% (-0.33%) 81.49% (-1.23%)
CiteSeer 70.00% 71.34% (+1.34%) 71.31% (+1.31%) 72.21% (+2.21%) 72.26% (+2.26%) 72.61% (+2.61%) 73.15% (+3.15%)
PubMed 77.46% 77.33% (-0.13%) 77.21% (-0.25%) 77.38% (-0.08%) 77.33% (-0.13%) 76.96% (-0.50%) 77.46% (-0.00%)

Photo 91.63% 91.63% (-0.00%) 91.39% (-0.24%) 91.02% (-0.61%) 90.77% (-0.86%) 90.37% (-1.26%) 89.40% (-2.23%)
Computers 84.72% 84.54% (-0.18%) 84.83% (+0.11%) 84.30% (-0.42%) 84.38% (-0.34%) 84.14% (-0.58%) 83.57% (-1.15%)

Average 81.31% 81.54% (+0.23%) 81.47% (+0.16%) 81.51% (+0.20%) 81.47% (+0.16%) 81.29% (-0.02%) 81.01% (-0.30%)

In the structural missing setting, FSD-CAP maintains or exceeds the performance of the full-feature
setting when the missing rate is below 95%, demonstrating its ability to handle substantial feature
loss. When the missing rate reaches 99.5%, with only 0.5% of features observed, the average ac-
curacy decreases by just 1.25% relative to the fully observed case. In the uniform missing setting,
the performance drop is even smaller. At a 99.5% missing rate, the average decline is only 0.3%,
confirming the robustness of FSD-CAP under extreme sparsity. On the CiteSeer dataset, FSD-CAP
consistently outperforms the full-feature setting across all tested missing rates. Under the 99.5%
uniform missing condition, it improves accuracy by 3.15%, indicating that the reconstructed fea-
tures can be more beneficial for downstream tasks than the original input. These results show that
FSD-CAP remains effective and reliable across a wide range of missing levels and patterns.

A.2.10 ACCURACY COMPARISON WITH SOTA

We further evaluate the performance of FSD-CAP against the current state-of-the-art method (PCFI)
on node classification accuracy at different missing rates across five datasets, results are shown in
Table 12. FSD-CAP consistently outperforms PCFI across all missing patterns. Notably, as the miss-
ing rate increases, the performance gap between FSD-CAP and PCFI becomes more pronounced.
Specifically, when the missing rate reaches 99.5%, FSD-CAP achieves an average accuracy im-
provement of 3.67% across all datasets under the structure missing setting, and 2.24% under the
uniform missing setting. On CiteSeer dataset with 99.5% structural missing rate, FSD-CAP achieves
a performance gain of 5.88%, demonstrating its robustness to high levels of feature incompleteness
compared to PCFI.

Compared to denser graphs such as Photo and Computers, FSD-CAP shows more significant im-
provements on the sparser datasets (Cora, CiteSeer, and PubMed) with highest gains observed on
the Cora dataset. As revealed by the ablation study in Appendix A.2.1, the second-stage class-aware
propagation mechanism plays a critical role in enhancing performance, particularly in sparse graph
scenarios. By incorporating class-level feature information, this module effectively enhances inter-
class discrimination, thereby improving classification accuracy. In contrast, while the fractional
subgraph diffusion stage offers certain improvements over conventional symmetrically normalized
diffusion, its overall contribution to performance is relatively modest. On denser graph with bet-
ter connectivity, the FSD stage benefits performance by emphasizing local neighborhood influence
through a higher fractional exponent γ, leading to more localized diffusion and improved model
behavior.

A.3 IMPLEMENTATION AND HYPERPARAMETERS

A.3.1 DATASETS

We evaluate FSD-CAP on five benchmark datasets: three citation networks (Cora, CiteSeer, and
PubMed) and two Amazon co-purchase networks (Photo and Computers).
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Table 12: Node classification accuracy (%) of PCFI and FSD-CAP under different feature missing
rates. The performance changes of FSD-CAP relative to PCFI are given in parentheses.

Structural Missing

Dataset 60% Missing 70% Missing 80% Missing 90% Missing 95% Missing 99.5% Missing

PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP

Cora 80.57% 82.75%(+2.18%) 80.01% 82.77%(+2.76%) 79.36% 82.28%(+2.92%) 78.88% 82.45%(+3.57%) 77.84% 82.01%(+4.17%) 75.36% 80.56%(+5.20%)
CiteSeer 70.10% 71.29%(+1.19%) 69.69% 71.19%(+1.50%) 70.21% 71.40%(+1.19%) 69.76% 71.97%(+2.21%) 69.58% 72.85%(+3.27%) 66.06% 71.94%(+5.88%)
PubMed 76.03% 77.13%(+1.10%) 76.09% 76.96%(+0.87%) 75.80% 76.89%(+1.09%) 75.90% 77.22%(+1.32%) 76.07% 77.19%(+1.12%) 74.44% 76.98%(+2.54%)

Photo 91.41% 91.67%(+0.16%) 90.88% 91.58%(+0.70%) 90.42% 91.34%(+0.92%) 89.44% 90.79%(+1.35%) 89.09% 90.37%(+1.28%) 87.38% 89.18%(+1.80%)
Computers 84.91% 85.00%(+0.09%) 83.63% 84.70%(+1.07%) 83.15% 84.13%(+0.98%) 82.40% 84.08%(+1.68%) 81.90% 84.17%(+2.27%) 78.71% 81.64%(+2.93%)

Average 80.62% 81.57%(+0.94%) 80.06% 81.44%(+1.38%) 79.79% 81.21%(+1.42%) 79.28% 81.30%(+2.06%) 78.90% 81.32%(+2.42%) 76.39% 80.06%(+3.67%)

Uniform Missing

Dataset 60% Missing 70% Missing 80% Missing 90% Missing 95% Missing 99.5% Missing

PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP PCFI FSD-CAP

Cora 81.01% 82.84%(+1.83%) 80.25% 82.61%(+2.36%) 80.19% 82.63%(+2.44%) 79.55% 82.61%(+3.06%) 78.59% 82.39%(+3.80%) 78.55% 81.49%(+2.94%)
CiteSeer 71.10% 71.34%(+0.24%) 69.97% 71.31%(+1.34%) 70.13% 72.21%(+2.08%) 69.92% 72.26%(+2.34%) 68.85% 72.61%(+3.76%) 69.11% 73.15%(+4.04%)
PubMed 76.29% 77.33%(+1.04%) 75.90% 77.21%(+1.31%) 76.18% 77.38%(+1.20%) 76.58% 77.33%(+0.75%) 76.26% 76.96%(+0.70%) 76.01% 77.46%(+1.45%)

Photo 90.88% 91.63%(+0.75%) 90.97% 91.39%(+0.42%) 90.42% 91.02%(+0.60%) 89.73% 90.77%(+1.04%) 89.08% 90.37%(+1.29%) 88.55% 89.40%(+0.85%)
Computers 83.62% 84.54%(+0.92%) 83.40% 84.83%(+1.43%) 83.39% 84.30%(+0.91%) 83.14% 84.38%(+1.24%) 82.42% 84.14%(+1.72%) 81.64% 83.57%(+1.93%)

Average 80.58% 81.54%(+0.96%) 80.10% 81.47%(+1.37%) 80.06% 81.51%(+1.45%) 79.78% 81.47%(+1.69%) 79.04% 81.29%(+2.25%) 78.77% 81.01%(+2.24%)

• In the citation networks, nodes represent academic papers and edges indicate citation links.
Node features are bag-of-words representations of paper abstracts, and each node is labeled
according to its research topic.

• In the Amazon co-purchase networks, nodes correspond to products and edges connect
items frequently purchased together. Node features are derived from bag-of-words encod-
ings of product reviews, and labels reflect product categories.

All datasets are publicly available through the MIT-licensed PyTorch Geometric library. We evaluate
on the largest connected component of each graph. Dataset statistics are provided in Table 13, use
the setup in FP and PCFI.

Table 13: Dataset statistics and data splits used for semi-supervised node classification.
Dataset Nodes Edges Attributes Classes Train/Valid/Test Nodes
Cora 2,485 5,069 1,433 7 140/1,360/985
CiteSeer 2,120 3,679 3,703 6 120/1,380/620
PubMed 19,717 44,324 500 3 60/1,440/18,217
Photo 7,487 119,043 745 8 160/1,340/5,987
Computers 13,381 245,778 767 10 200/1,300/11,881

A.3.2 DATA SPLIT

For node classification, we follow a two-step data split. First, 1500 nodes are randomly selected as
the development set, with the remainder used for testing. Within the development set, 20 nodes per
class are randomly sampled for training, and the rest form the validation set, following the setup in
FP and PCFI. Table 13 summarizes the data split for each dataset.

For link prediction, we adopt the edge split protocol from PCFI, allocating 85% of edges for training,
5% for validation, and 10% for testing. To ensure robust evaluation, all experiments are repeated
with 10 random seeds. For each seed, we generate independent data splits and feature mask matrices
M to simulate missing attributes. The final results are reported as the mean and standard deviation
over these 10 runs.

The feature mask matrix M is initialized as an all-ones matrix with the same shape as the original
feature matrix. Under uniform missing, m% of the entries are randomly set to zero. Under structural
missing, m% of the rows are randomly selected and set entirely to zero, simulating nodes with fully
missing features.

A.3.3 BASELINE DETAILS

We compare FSD-CAP with the following methods:
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i. Zero. A standard GCN trained on the feature matrix with missing values replaced by zeros. We
use the implementation from the PyTorch Geometric library (MIT License).

ii. PaGCN. PaGCN applies partial graph convolution over observed features without explicitly
modeling missingness. We use the authors’ MIT-licensed code.2

iii. ITR. ITR performs adaptive imputation through a two-stage process: initialization from graph
structure followed by refinement using affinity updates. We use the Apache-2.0 licensed implemen-
tation.3

iv. ASD-VAE. ASD-VAE learns a shared latent space by maximizing the joint likelihood of attribute
and structure views, then reconstructs features via decoupled decoding. We use the authors’ publicly
released code.4

v. FP. FP reconstructs features through iterative propagation using the normalized adjacency matrix.
We use the Apache-2.0 licensed code.5

vi. PCFI. PCFI imputes missing values by performing inter-node and inter-channel diffusion
weighted by pseudo-confidence. We use the official Apache-2.0 licensed implementation.6

vii. GRAFENNE. GRAFENNE uses a three-phase message-passing framework on an allotropically
transformed graph to learn from streaming features. We use the authors’ released code.7

A.3.4 EVALUATION METRICS

We evaluate FSD-CAP on two standard graph learning tasks: semi-supervised node classification
and link prediction.

Semi-supervised Node Classification. Given a graph with partially labeled nodes, the objective
is to predict labels for the unlabeled nodes. Performance is measured by classification accuracy,
defined as the proportion of correctly predicted labels across all nodes. Higher accuracy indicates
better generalization in the semi-supervised setting.

Link Prediction. This task involves predicting missing edges between node pairs using learned
feature representations. We use AUC (area under the ROC curve) and AP (average precision) as
evaluation metrics. AUC quantifies the model’s ability to rank existing edges above non-edges, while
AP measures the area under the precision-recall curve, reflecting the balance between precision and
recall.

A.3.5 EXPERIMENTAL SETTINGS

Semi-supervised Node Classification. All experiments use a consistent data split strategy with
10 random seeds per dataset. All models, except ASD-VAE and PaGCN, are implemented us-
ing a three-layer GCN trained with the Adam optimizer. ASD-VAE uses the Katz-GCN archi-
tecture as proposed in its original work, and PaGCN employs a modified GCN designed for in-
complete inputs. For methods with reported hyperparameters (ITR, GRAFENNE, ASD-VAE), we
follow the original configurations. For the remaining models, the learning rate is selected from
{0.1, 0.01, 0.005, 0.001, 0.0005}, and dropout from {0.0, 0.25, 0.5}, based on validation perfor-
mance. All experiments are run on a 40-core Intel Xeon Silver 4210R CPU with 4 NVIDIA RTX
4090 GPUs (24GB each).

All methods are evaluated under both structural and uniform missing settings across varying missing
rates mr, except ITR, which is applicable only to structural missing where node features are either
fully observed or fully missing.

Link Prediction. We adopt the same 10-split strategy across all datasets. All models are imple-
mented using a two-layer Graph Autoencoder and trained with Adam. Hyperparameters are tuned

2https://github.com/yaya1015/PaGCN
3https://github.com/WxTu/ITR
4https://github.com/jiangxinke/ASD-VAE
5https://github.com/twitter-research/feature-propagation
6https://github.com/daehoum1/pcfi
7https://github.com/data-iitd/Grafenne
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on the validation set, with the same learning rate and dropout search space used in the node classifi-
cation task.

A.3.6 FSD-CAP IMPLEMENTATION

For semi-supervised node classification, we set the GCN learning rate to 0.01 with dropout 0.5 on
Cora, CiteSeer, and Computers. On PubMed and Photo, the learning rate is 0.005, with dropout
values of 0.5 and 0.25, respectively. The pre-trained GCN used for pseudo-label generation adopts
the same settings. Following PCFI, the number of propagation steps K is fixed at 100, sufficient for
convergence.

We tune the hyperparameters γ (fractional diffusion exponent), λ (feature retention coefficient), and
T (temperature) using grid search. For sparse datasets (Cora, CiteSeer, PubMed), γ is selected from
[0.6, 1.6]; for dense datasets (Photo, Computers), from [2.0, 4.0], both with a step size of 0.2. λ is
searched in [0, 1] with step 0.1. T is selected from {1, 5, 25, 100, 250, 1000}.
In the link prediction task, the GCN classifier uses the same configuration as above. For the down-
stream Graph Autoencoder, the dropout rate is fixed at 0.5. Learning rates are set to 0.005 for Cora
and CiteSeer, 0.1 for PubMed, and 0.0005 for Photo and Computers. Hyperparameter tuning fol-
lows the same protocol: λ ∈ [0, 1] with step 0.1, T ∈ {0.001, 0.01, 0.1, 1, 5, 10, 25, 50}. For γ, we
use [4.0, 6.0] on dense datasets and [0.6, 1.6] on sparse datasets, both with step 0.2.

We report the selected hyperparameter configurations for semi-supervised node classification and
link prediction under a 99.5% feature missing rate in Table 14 and Table 15, respectively. Additional
parameter sensitivity analysis is presented in Appendix A.2.2.

Table 14: Hyperparameter configurations for FSD-CAP on semi-supervised node classification task.
Parameter Cora CiteSeer PubMed Photo Computers

Structural Missing
γ 1.2 1.2 1.6 2.8 3.8
λ 0.2 0.9 0.6 0.3 0.4
T 5 250 5 25 100

Uniform Missing
γ 1.2 1.2 1.2 2.8 4.0
λ 0.2 0.7 0.1 0.0 0.3
T 250 250 5 25 100

Table 15: Hyperparameter configurations for FSD-CAP on link prediction task.
Parameter Cora CiteSeer PubMed Photo Computers

Structural Missing
γ 1.4 1.4 1.4 4.2 5.0
λ 0.2 0.3 0.0 0.8 0.0
T 5 25 10 0.001 0.001

Uniform Missing
γ 1.2 1.6 1.6 4.4 5.6
λ 0.0 0.0 0.0 0.0 0.0
T 5 25 25 0.01 0.001

The implementation of FSD-CAP (Apache-2.0 licensed) will be made publicly available upon pub-
lication.

A.3.7 ADDITIONAL DISCUSSION

Limitations. This work focuses solely on missing node attributes and does not address missing or
uncertain edges. In many practical settings, both node features and graph topology may be incom-
plete. Extending FSD-CAP to handle joint feature and structure imputation remains an open and
important direction for future research.

Societal Impacts. FSD-CAP improves the robustness of GNNs under high feature-missing rates
and may benefit applications in domains such as social networks and recommender systems. How-
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Figure 12: Node classification accuracy (%) on PubMed, Photo and Computers for mr ∈
{0.6, 0.7, 0.8, 0.9, 0.95, 0.995}. The top row shows structural missing; the bottom row shows uni-
form missing. Methods that are inapplicable or result in out-of-memory errors are omitted.

ever, as with any imputation technique, there is a risk of misuse, particularly in inferring sensitive or
private attributes from partial data. We encourage responsible use, including proper access controls
and ethical oversight, especially when applying the model to contexts involving personal or sensitive
information.

A.4 SUPPLEMENTARY FIGURES AND TABLES

A.4.1 ACCURACY ON PUBMED, PHOTO AND COMPUTERS UNDER VARYING MISSING RATES.

This subsection presents the classification accuracy results for the PubMed, Photo and Computers
datasets under structural and uniform missing scenarios, with missing rates (mr) ranging from 0.6
to 0.995. The corresponding figure is shown in Figures 12.

A.5 DECLARATION OF LLM USAGE

The use of large language models (LLMs) is only for editing purposes such as grammar, spelling,
and formatting checks, and does not influence the core methodology, scientific rigor, or originality
of this research. LLMs are not involved in the design, analysis, or interpretation of the study.

A.6 ALGORITHOM DESCRIPTION OF FRACTIONAL SUBGRAPH DIFFUSION (FSD)

A.7 ALGORITHOM DESCRIPTION OF CLASS-AWARE PROPAGATION (CAP)
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Algorithm 1 FSD algorithm
Input: Graph G = {X,A}, Known/unknown node sets Vℓ

+/− for each channel ℓ, Binary mask
matrix M , True labels y, Number of channels F and node N , Hyper-parameters (γ, K, λ)

1: for channel ℓ = 1, . . . , F do
2: Initialize sub-graph G(0):
3: Keep starting m = 0 (Initialize the number of sub-layers)
4: Read subgraphs A(m) =k-hopSubgraph(Vℓ

+, A,m) (Extract A of m- hop subgraph)
5: while A(m) ̸= A do
6: Normalize A(m) = D−1/2A(m)D−1/2 (Symmetric normalized adjacency matrix)
7: Fractional weighted matrix Aγ,m

ij = (A
(m)
ij )γ/

(∑N
k=1(A

(m)
ik )γ

)
8: for t = 1 to K do
9: x(m)(t) = x(m)(0)⊙M + (Aγ,mx(m)(t− 1) + λx(m−1)(K))⊙ (1−M)

10: end for
11: m← m+ 1 (Enter the next level of subgraph)
12: Extended subgraphs A(m) =k-hopSubgraph(Vℓ

+, A,m)
13: end while
14: xℓ = x(m)(K) (Update final features of the current channel)
15: end for
16: Stack {xℓ}Fℓ=1 to form pre-imputed X̃

17: return Pre-imputed feature matrix X̃

Algorithm 2 CAP algorithm

Input: Graph G = {X̃, A}, Known/unknown node sets Vℓ
+/− for each channel ℓ, Binary mask

matrix M , True labels y, Number of node N and classes C, Hyper-parameters T
1: Get pseudo-labels ỹ and predicted class probability ŷ using GNN with (A, X̃, y) and tempera-

ture T
2: for i = 1 to N do
3: for c = 1 to C do
4: Pi(c) =

(
1/|N̂i|

)∑
j∈Ni

1(ỹj=c)

5: end for
6: information entropy Si = −

(
1/ log

(
|N̂i|

))∑
c∈C Pi(c) · log (Pi(c))

7: end for
8: for c = 1 to C do
9: compute class-specific feature: x⋆

(c) =
(∑

ỹi=c(1− Si) · xi

)
/
(∑

ỹi=c(1− Si)
)

10: Define virtual class node v(c) and class subset V(c) = {v(c)} ∪ V(c)
−

11: X
(c)
− = extract_matrix(X̃,V(c)

− ) (X(c)
− contains imputed features of nodes in V(c)

− )
12: Feature Matrix for V(c): X(c) = [X

(c)
− x⋆

(c)]
T (row-wise concatenation)

13: Initialize W(c) as zero matrix of size |V(c)| × |V(c)|
14: for each node i ∈ V(c) do
15: W

(c)
ii = ŷi,c (self-loop weight: confidence in class c)

16: W
(c)

i,|V(c)| = 1− ŷi,c (edge from node vi to class node v(c))
17: end for
18: Class Propagation X̂(c) = W(c)X(c)

19: Class feature matrix Xc = extract_matrix(X̂(c),V(c)
− )

20: X̂ = combine_matrix(X̃,Xc,M) (restore known features and update refined features)
21: end for
22: return Imputed feature matrix X̂
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