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ABSTRACT

Federated Learning (FL) systems are susceptible to adversarial attacks, where
malicious clients submit poisoned models to disrupt the convergence or plant
backdoors that cause the global model to misclassify some samples. Current
defense methods are often impractical for real-world FL systems, as they either
rely on unrealistic prior knowledge or cause accuracy loss even in the absence
of attacks. Furthermore, these methods lack a protocol for verifying execution,
leaving participants uncertain about the correct execution of the mechanism. To
address these challenges, we propose a novel anomaly detection strategy that is
designed for real-world FL systems. Our approach activates the defense only when
potential attacks are detected, and enables the removal of malicious models without
affecting the benign ones. Additionally, we incorporate zero-knowledge proofs
to ensure the integrity of the proposed defense mechanism. Experimental results
demonstrate the effectiveness of our approach in enhancing FL system security
against a comprehensive set of adversarial attacks in various ML tasks.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) enables clients to collaboratively train machine
learning models without sharing their local data with other parties. Due to its privacy-preserving
nature, FL has attracted considerable attention across various domains in real-world applications (Hard
et al., 2018; Chen et al., 2019; Ramaswamy et al., 2019; Leroy et al., 2019; Byrd & Polychroniadou,
2020; Chowdhury et al., 2022). Even though FL does not require clients to share their raw data with
other parties, its collaborative nature inadvertently introduces privacy and security vulnerabilities (Cao
& Gong, 2022; Bhagoji et al., 2019; Lam et al., 2021; Jin et al., 2021; Tomsett et al., 2019; Chen
et al., 2017; Tolpegin et al., 2020a; Kariyappa et al., 2022; Zhang et al., 2022c). Malicious clients
can harm training by submitting corrupted model updates to disrupt global model convergence (Fang
et al., 2020; Chen et al., 2017), or by planting backdoors that cause the global model to perform
poorly on certain data (Bagdasaryan et al., 2020b;a; Wang et al., 2020).

Existing literature on defenses in FL comes with certain inherent limitations, making them unsuitable
for real-world FL systems (Blanchard et al., 2017; Yang et al., 2019; Fung et al., 2020; Pillutla et al.,
2022; He et al., 2022; Cao et al., 2022; Karimireddy et al., 2020; Sun et al., 2019; Fu et al., 2019;
Ozdayi et al., 2021; Sun et al., 2021). Some strategies require prior knowledge of the number of
malicious clients within the FL system (Blanchard et al., 2017), while in practice adversaries would
not announce their malicious intentions before attacking. Other defense strategies mitigate impacts
of potential malicious client submissions by leveraging methods that inevitably alter the aggregation
results, such as re-weighting the local models (Fung et al., 2020), modifying the aggregation func-
tion (Pillutla et al., 2022), and removing local models that tend to be poisoned (Blanchard et al., 2017).
However, in practical FL systems, attacks happen infrequently. While introducing the aforementioned
defenses can mitigate the impact of potential malicious clients, the performance loss caused by the
inclusion of them can outweigh the defense gain, as most real-world training cases are benign and
these defenses largely compromise the model quality for all benign cases. Moreover, existing defense
mechanisms are deployed om FL servers without any verification for their execution. As a result,
clients are unable to verify whether the defense mechanism was executed accurately and correctly,
leaving them reliant on server’s integrity and undermining trust in real-world FL systems.
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Figure 1: Overview of the proposed anomaly detection mechanism.

Motivated by these, a successful anomaly detection approach should simultaneously satisfy the
following: i) detectability: it should be capable of detecting potential attacks and responding solely
when such threats are likely to occur; ii) identifiability: if an attack is detected, the strategy should
further identify the malicious client models and mitigate (or eliminate) their adversarial impacts
without harming the benign ones; and iii) verifiability: the defensive mechanism should be integrated
with a verification mechanism to ensure the correct execution of the defense mechanism, such that
clients can trust the FL system without relying solely on the server’s goodwill.

Table 1: Comparison among our method and state-of-the-art techniques.

Attribute/Method Krum RFA Foolsgold NormClip Bucketing Median TrimMean Ours
Detecting the presence of attacks ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Removing malicious models ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Free from impractical knowledge ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Free from reweighting ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓
Free from modifying aggregation ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓
Free from harming benign models ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Decent results in non-attack cases ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Verification for correct execution ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

This paper proposes a two-stage defense for anomaly detection that filters out malicious client
models in each FL training round with challenges in real-world FL systems addressed. On the first
stage, our approach detects potential existence of malicious clients in the current FL round based
on cross-round detection. The potential presence of malicious clients activates the second stage,
named cross-client detection that evaluates the degree of evilness of each local model and filters out
malicious ones based on the intuition of 3σ Rule (Pukelsheim, 1994). Our mechanism integrates a
robust verification protocol that utilizes Zero-Knowledge Proof (ZKP) (Goldwasser et al., 1989) to
guarantee integrity and honest execution of the proposed defensive mechanism on the FL server. We
overview our mechanism in Figure 1. Then, we compare our approach with state-of-the-art ones,
including Krum (Blanchard et al., 2017), RFA (Pillutla et al., 2022), Foolsgold (Fung et al., 2020),
NormClip (Sun et al., 2019), Bucketing (Karimireddy et al., 2020), Coordinate-Wise Median (Yin
et al., 2018), and Trimmed Mean (Yin et al., 2018) in Table 1. Our contributions are listed below:

i) Real-world applicability. Our method is designed to meet practical requirements of defenses in
real-world FL applications. As far as we know, we are the first to close the significant gap between
theoretical research and its real-world applicability in FL security.

ii) Utility and practicability. Our method is free from any unrealistic prior information, nevertheless
it can still detect and eliminate the impact of malicious client models without harming the benign
ones. By this means, our method proves it applicability and effectiveness in real-world FL systems
where attacks happen rather rarely.

iii) Conditional activation. We propose a two-stage detection method that first identifies suspi-
cious models and then, if necessary, triggers a double-check of the local models, thereby avoiding
unnecessary accuracy loss caused by introducing a defense mechanism.

iv) Accuracy preservation. Our method preserves accuracy in attack-free situations, which is
essential due to the infrequent occurrence of attacks in real-world scenarios.

v) Identifiability. Our approach removes malicious local models with high accuracy without harming
the benign models or modifying the aggregation function.

vi) Verifiability. To foster trust in FL systems, we leverage ZKPs, enabling clients to independently
verify the correct execution of the proposed defense mechanism on the server without relying solely
on the server’s goodwill.
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2 PROBLEM SETTING

2.1 ADVERSARY MODEL

We consider an FL system in which at least 50% of the clients are benign. Some clients may be
adversarial and can conduct attacks to achieve malicious goals such as i) planting a backdoor so
that the global model misclassifies a specific set of samples while the overall model performance
is minimally impacted (backdoor attacks, e.g., (Bagdasaryan et al., 2020b; Wang et al., 2020)); ii)
altering local models to prevent the global model from converging (Byzantine attacks, e.g., (Chen
et al., 2017; Fang et al., 2020)); and iii) cheating the FL server by randomly submitting contrived
models without actual training (free riders, e.g., (Wang, 2022)). We assume the FL server is not
fully trusted due to the complex execution environment in real-world FL systems. We assume the FL
clients know the server would conduct a defense but they are suspicious if the server has conducted
the defense correctly, and they would like to verify the integrity of the defense without depending
solely on the server’s goodwill. We assume that the adversaries cannot conduct adaptive attacks, and
discuss the extension of our approach to adaptive attacks in §3.4.

2.2 PRELIMINARIES

Federated Learning (FL). FL (McMahan et al., 2017) enables training models across decentralized
devices without centralizing data. It is beneficial when dealing with sensitive data, as it allows data to
remain on its original device during training.

Krum. Krum or m-Krum (Blanchard et al., 2017) selects one or m local models that deviate less
(evaluated using pairwise distances) from the majority for aggregation. See Appendix A.1 for details.

3σ Rule. 3σ (Pukelsheim, 1994) is an empirical rule and has been utilized in anomaly detection
for data management (Han et al., 2019). It states that the percentages of values within one, two,
and three standard deviations of the mean are 68%, 95%, and 99.7%, respectively. This rule can be
widely applied on real-world applications, as normal distributions are consistent with real-world data
distributions (Lyon, 2014). Moreover, when data is not normally distributed, we can transform the
distribution to normal distribution (Aoki, 1950; Osborne, 2010; Sakia, 1992; Weisberg, 2001).

Zero-Knowledge Proofs (ZKPs). A ZKP (Goldwasser et al., 1989) is a proof system enabling a
prover to convince a verifier that a function has been correctly computed on the prover’s secret input
(witness). ZKPs have three properties: i) correctness: the proof they produce should pass verification
if the prover is honest (integrity property); ii) soundness: a cheating prover cannot convince the
verifier with overwhelming probability, and iii) zero-knowledge: the prover’s witness is not learned
by the verifier (privacy property).

3 TWO-STAGE ANOMALY DETECTION MECHANISM

We propose a two-stage anomaly detection mechanism to identify and filter out malicious local
models on the server. This mechanism is executed at each FL round after the server collects local
models from the clients. The server first performs a cross-round check that leverages some cache,
which we call reference models, to assess the likelihood of the presence of any malicious clients.
Note that at this stage, the server does not remove any local models. If potentially malicious clients
are detected, the server subsequently conducts a cross-client detection to analyze each local model
and assess its degree of evilness. Based on this evaluation, the server identifies and excludes the
malicious models from aggregation.

3.1 CROSS-ROUND DETECTION

To assess the likelihood of potential presence of malicious clients, FL servers compute similarities
between the local models of the current FL round and certain golden truth reference models cached
in the last FL round. Local models with higher similarities to the reference models are less likely to
be malicious, thus have a higher likelihood to be benign.

We present the intuitive idea in Figure 2. Inspired by the state-of-the-art (Fung et al., 2020), we utilize
the cosine score to compute model similarities. For each local model wi, and its reference model wr,
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Algorithm 1: Cross-Round Detection

Inputs: τ : training round id, e.g., τ = 0, 1, 2, . . .;W(τ): client models of τ round; γ: upper bound of
similarities for malicious client models.

function cross_round_check(W(τ), τ, γ) begin
1 if τ=0 then return True;
2 Wτ−1 ← get_cached_client_models(), wτ−1

g ← get_global_model_of _last_round()
3 for w

(τ)
i ∈ Wτ do

4 Sc(w
τ−1
i ,wτ

i )← get_similarity(wτ−1
i ,wτ

i ), Sc(w
τ−1
g ,wτ

i )← get_similarity(wτ−1
g ,wτ

i )

5 if Sc(w
τ−1
g ,wτ

i ) < γ or Sc(w
τ−1
i ,wτ

i ) < γ then return True ▷ There may be attacks ;

6 return False ▷ No attack.

the cosine similarity is computed as Sc(wi,wr) =
wi·wr

||wi||·||wr|| . We expect the cosine similarity of
each local model and its reference model to be high, since a higher cosine similarity indicates that the
local model is closer to the golden truth reference model and, thus, is more likely to be benign. On
the contrary, lower cosine similarities indicate that attacks have a higher possibility of occurrence on
that client in the current FL training round, as malicious clients may submit arbitrary or tampered
local models through some attacks (Bagdasaryan et al., 2020b; Wang et al., 2020; Chen et al., 2017;
Fang et al., 2020), making their local models diverge from the reference model.

Reference model
Benign local models
Malicious local models

      ①      ②

Figure 2: Cosine similarities. 1 indicates likely benign
models with high cosine similarity, and 2 indicates
likely malicious models with low cosine similarity.

We select reference models based on
the characteristics of the attacks that are
widely considered in both the literature
and real-world systems, i.e., Byzantine at-
tacks (Chen et al., 2017; Fang et al., 2020)
and backdoor attacks (Bagdasaryan et al.,
2020b; Wang et al., 2020). For each local
model in the current FL training round, we
utilize two types of models as the reference
models: i) the global model from the previ-
ous FL training round to identify whether
the current local model deviates significantly from it, potentially preventing the global model from
achieving convergence, and ii) the local model of the same client from the last FL training round to
detect whether the local models submitted by the same client differ much across subsequent rounds,
which can indicate that the client was benign in the previous round but turned evil in the current
round. We note that although we use cosine similarity to compute a bound, our method does not rely
heavily on it. In this stage, our method flags suspicious models as potentially malicious but does not
remove them. Instead, it decides whether to remove them in the latter stage of the proposed approach.

Cross-Round Detection Algorithm. We present the cross-round detection algorithm in Algorithm 1.
Initially, the server loads the reference models, including the global model from the last FL round,
as well as the cached local models that are deemed as benign from the previous FL round. For
each FL round τ , we denote the global model of the previous FL round by wτ−1

g . We let wτ
i

denote local model submitted by client Ci in the current round τ , and let wτ−1
i denote that client’s

cached local model from the previous round. The algorithm computes similarities Sc(w
τ
i ,w

τ−1
g )

and Sc(w
τ
i ,w

τ−1
i ), and utilizes these scores, together with a threshold γ (−1 < γ < 1), to detect

whether potential attacks have happened in the current FL training round. Any similarity score that is
lower than γ signals that the corresponding client might be malicious and triggers a further inspection
on the client models in the second stage of our anomaly detection approach, as described in §3.2.

3.2 CROSS-CLIENT DETECTION

Cross-client detection computes a score for each local model to evaluate its degree of evilness, and
utilizes the 3σ rule to filter out those local models with higher degrees of evilness, i.e., the malicious
models. The 3σ rule is pivotal for three reasons: i) in case the client datasets are i.i.d., parameters
of the local models follow normal distribution (Baruch et al., 2019; Chen et al., 2017; Yin et al.,
2018); ii) according to the Central Limit Theorem (CLT) (Rosenblatt, 1956), when client datasets are
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Algorithm 2: Cross-Client Detection Algorithm.
Inputs: τ : training round id, τ = 0, 1, 2, . . .;W: local models of a training round; m: m-Krum parameter.
function Cross_Client_Detection(W, τ) begin

1 if τ = 0 then
m← |W|/2, f ← |W|/2, wavg ← Krum_and_m_Krum(W,m, f)

2 L ← compute_L2_scores(W,wavg)

3 µ←
∑

ℓ∈L ℓ

|L| , σ ←
√∑

ℓ∈L(ℓ−µ)2

|L|−1
▷ ComputeN (µ, σ)

4 for 0 < i < |W| do
5 if L[i] > µ+ λσ then remove wi fromW ;

6 wavg ← average(W) ▷ Cache wavg
7 returnW

non-i.i.d., the local models still converge towards normal distribution, especially when the number
of clients is at least 30 (Chang et al., 2006; of Public Health, 2001); and iii) even when CLT does
not hold strongly (e.g., the number of clients is lower than 30), previous works show that the local
models still exhibit certain statistical features (Karimireddy et al., 2020; Pillutla et al., 2022), thus the
3σ rule can still be applied to derive analytics from the local models.

Let L denote the degree of evilness for client models in the current FL round, where higher scores
indicate higher probability for that client to be malicious. Suppose L follows normal distribution
N (µ, σ), where µ is mean and σ is standard deviation. We then have the following definition.

Definition 3.1. Local models with evilness degree higher than µ+ λσ are identified as malicious
local models, where λ (λ > 0) adjusts the sensitivity of the score computation.

According to Definition 3.1, local models with degree of evilness higher than the boundary are
detected as malicious models and are excluded from aggregation. We note that we only take one side
of the bounds given by the 3σ rule, such that the models with evilness lower than µ + λσ are not
identified as outliers since we prefer lower evilness.

The details are described in Algorithm 2. In this paper, we select L2 distances to compute the degree
of evilness. For each local model, we compute its score using that model and the average model from
the previous round, denoted as wavg. We prefer that the local model does not deviate significantly
from the average model of the previous round, which can serve as golden truth. For each local
model wi in the current round, its L2 score, denoted as L[i], is computed as L[i] = ||wi −wavg||.
Considering that the first round does not have an average model as a reference, to avoid involving any
malicious models in the aggregation of the first round, we utilize m-Krum (Blanchard et al., 2017) to
compute an approximate average model. In m-Krum, it is ideal to involve a maximum number of
benign local models and avoid polluting the approximate average model from any malicious local
model. As the FL server does not know the number of potential malicious clients, we set m to |W|/2
to compute an approximate average model based on the assumption that the number of malicious
clients is less than |W|/2, where |W| is the number of clients in each FL round. In later training
rounds, we do not need m-Krum as we simply utilize the average model from the previous round.

3.3 OPTIMIZATIONS FOR REFERENCE MODELS

So far, the server stores the complete client models and the updated global model as reference models
for the next FL round at the end of each FL round. However, this approach encounters pragmatic
challenges in real-world deployments due to the following: i) Storage Constraints: real-world FL
systems often have complex execution environments and restricted storage, which necessitate the
algorithm to be optimized for storage and computation efficiency; ii) Computational Overhead: incor-
porating a ZKP for validation after each FL round (which will be discussed in §4) is computationally
intensive (Goldreich & Krawczyk, 1996). Utilizing the entire collection of client/global models for
computation increases resource consumption significantly and prolongs the verification time in each
FL round. Meanwhile, the FL system must await the completion of this verification process before
continuing the subsequent operations, which detrimentally impacts the experience of the FL clients.
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ZKP Circuit for Cross-Client Detection
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Figure 3: ZKP circuits for the proposed two-stage anomaly detection mechanism.

In light of these, we propose using only segmental models instead of entire models as reference
models. The reference model should follow the following criteria: i) the selected fragment should
sufficiently represent the full model while minimizing the fragment size, ideally using just one layer
of the original model; ii) the selection mechanism must be generally applicable in real-world systems
and independent of specific data distributions or model structures. We follow the terminology in Fung
et al. (2020) and name such layer as an importance layer. We note that such a layer is not required to
contain the maximal information compared to other layers of the same model, but should be more
informative than the majority of the other layers. Intuitively, we select the second-to-last layer as
the importance layer, as it is close to the output layer and thus can retain substantial information.
This method can reduce complexity effectively, especially for ZKP-related computations. As an
example, the second-to-last layer of CNN contains only 7, 936 parameters, compared to its full size
of 1, 199, 882 parameters. We experimentally validate our importance layer selection in Exp 1 in §5.

3.4 DISCUSSIONS ON EXTENSIONS TO ADAPTIVE ATTACKS

In this work, we focus on non-adaptive adversaries, a common assumption in the literature (Ozdayi
et al., 2021; Guerraoui et al., 2018b; Pillutla et al., 2022; Karimireddy et al., 2020; Yin et al., 2018)
that enables us to create a baseline for anomaly detection and establish the robustness of our model
under basic adversarial settings. While adaptive adversaries present a more challenging scenario,
addressing them would introduce complexities that are beyond the scope of this initial work.

We acknowledge the importance of addressing adaptive attacks in FL systems. Below we discuss
extensions of our approach to adaptive attacks. In the presence of adaptive attackers, malicious clients
can craft their models based on their knowledge of the global model, their local model from the last
FL iteration, and the cosine similarity threshold used in our defense. By carefully modifying their
local models to ensure the cosine similarity falls within the threshold, malicious models may appear
benign and survive the detection. To solve this problem, our approach can be extended from the
following two directions: 1) regularizing local models before measuring cosine similarity, such that
the adversaries cannot craft their local models based on their known information; and 2) diversifying
the layers used for cross-round detection instead of just relying on a single layer, thus it would be
difficult for adversaries to predict and modify their local models accordingly.

4 VERIFIABLE ANOMALY DETECTION

Our method incorporates a verification module to enhance trust and privacy within the FL system.
Ideally, the verification module should have the following features: i) client-side verification: it
should enable clients who may have concerns about the integrity of the FL server to verify the correct
execution of the defense mechanism, without solely relying on the server’s goodwill; and ii) privacy
protection: it should not necessitate the clients to access inappropriate knowledge, such as local
models from other clients, thus preserving privacy and integrity in the FL system.

We incorporate ZKPs to ensure that the clients can verify the integrity of the defense without accessing
the other local models. We utilize zkSNARKs (Bitansky et al., 2012) that offer constant proof sizes
and constant verification time regardless of the size of computation. Such property is crucial for
applications where the verifier’s (i.e., an FL client) resources are limited, e.g., real-world FL systems.
We design ZKP circuits as in Figure 3. Details of implementations are in Appendix §A.4.

ZKP for Anomaly Detection. Most of the computations in Algorithm 1 and Algorithm 2 are linear
and can be compiled into an arithmetic circuit easily, e.g., computing cosine similarity between
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two matrices of size n × n requires a circuit with O(n2) multiplication gates and one division.
While it is difficult to directly compute division on a circuit, it can be easily verified with the prover
providing the pre-computed quotient and remainder beforehand. Similar to Weng et al. (2021), we can
utilize Freivalds’ algorithm (Freivalds, 1977) to verify matrix multiplications. In general, the matrix
multiplication constitutes the basis of the verification schemes used for the proposed mechanism.
Naively verifying a matrix multiplication AB = C where A,B,C are of size n× n requires proving
the computation step by step, which requires O(n3) multiplication gates. With Freivalds’ algorithm,
the prover first computes the result off-circuit and commits to it. Then, the verifier generates a random
vector v of length n, and checks A(Bv)

?
= Cv. This approach reduces the size of the circuit to O(n2).

We exploit this idea to design an efficient protocol for the square root computation in Algorithm 2.
To verify that x =

√
y is computed correctly, we ask the prover to provide the answer x as witness

and then we check in the ZKP that x is indeed the square root of y. Note that we cannot check x2 is
equal to y because the zkSNARK works over a prime field and the square root of an input number
might not exist. So, we check if x2 is close to y by checking that x2 ≤ y and (x + 1)2 ≥ y. This
approach reduces the computation of square root to 2 multiplications and 2 comparisons.

The zero-knowledge property of ZKPs allows public verification of prover’s (i.e., the FL server)
integrity in case of the server being untrustworthy. By incorporating ZKPs, we provide a public
verifiable approach for each client to ensure FL server’s integrity which is essential for building and
maintaining trust in FL systems. This ensures that clients can verify the correctness of the defense
without needing to rely solely on the server’s goodwill. This is also secure in case there exists
adversarial clients, as the ZKP itself reveals nothing about the prover’s witness, i.e., private data,
models, and/or thresholds the server uses during the proposed anomaly detection approach.

5 EVALUATIONS

Setting. A summary of datasets and models for evaluations can be found in Table 2. By default, we
employ CNN and the non-i.i.d. FEMNIST dataset (α = 0.5), as the non-i.i.d. setting closely captures
real-world scenarios. We utilize FedAVG in our experiments. By default, we use 10 clients for FL
training, corresponding to real-world FL applications where the number of clients is typically less
than 10, especially in ToB scenarios. We also vary the number of clients from 10 to 100 in Exp 5,
and validate the utility of our approach in a practical application using 20 edge real-world devices;
see Exp 11. We conduct our evaluations on a server with 8 NVIDIA A100-SXM4-80GB GPUs, and
validate the correct execution with ZKP on Amazon AWS with an m5a.4xlarge instance with 16 CPU
cores and 32 GB memory. We implement the ZKP system in Circom (Contributors, 2022).1

Table 2: Models and datasets.

Model Dataset

CNN (McMahan et al., 2017) FEMNIST (Caldas et al., 2018)
ResNet-20 (He et al., 2016) Cifar10 (Krizhevsky et al., 2009)
ResNet-56 (He et al., 2016) Cifar100 (Krizhevsky et al., 2009)
RNN (McMahan et al., 2017) Shakespeare (McMahan et al., 2017)
LR (Cox, 1958) MNIST (Deng, 2012)

Selection of attacks and defenses. We employ two byzantine attacks and two backdoor attacks
that are widely considered in literature, including a random weight Byzantine attack that randomly
modifies the local submissions (Chen et al., 2017; Fang et al., 2020), a zero weight Byzantine attack
that sets all model weights to zero (Chen et al., 2017; Fang et al., 2020), the label flipping backdoor
attack that flip labels in the local data Tolpegin et al. (2020b), and a model replacement backdoor attack
(Bagdasaryan et al., 2020b) that intends to use a poisoned local model to replace the global model.
We utilize 5 baseline defense mechanisms that can be effective in real systems: m-Krum (Blanchard
et al., 2017), Foolsgold (Fung et al., 2020), RFA (Pillutla et al., 2022), Bucketing (Karimireddy et al.,
2020), and Trimmed Mean (Yin et al., 2018). For m-Krum, we set m to 5, which means 5 out of 10
submitted local models participate in aggregation in each FL training round.

Evaluation Metrics. We evaluate the effectiveness of cross-round check using cross-round detection
success rate, defined by the proportion of rounds where the algorithm correctly detects cases with

1We provide a link to our code in Appendix §A.7.
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Figure 4: Impacts of different parameters.

or without an attack relative to the number of total FL rounds. A 100% cross-round success rate
indicates that all FL rounds that potential attacks might have happened are detected, and none of the
benign cases are identified as “attacks” by mistake. We evaluate the quality of cross-client detection
using modified Positive Predictive Values (PPV) (Fletcher, 2019), the proportions of positive results
in statistics and diagnostic tests that are true positive results. Let us denote the number of true positive
and the false positive results as NTP and NFP , respectively. Then we have PPV = NTP

NTP+NFP
. In

our setting, client submissions that are detected as “malicious” and are actually malicious are defined
as True Positive, i.e., NTP , while client submissions that are detected as “malicious” even though
they are benign are defined as False Positive, i.e., NFP . Since we would like the PPV to reveal the
relation between NTP and the total number of malicious local models across all FL rounds, we use
the total number of malicious local models across all FL rounds, denoted as Ntotal , and compute
a modified PPV as NTP

NTP+NFP+Ntotal
, where 0 ≤ PPV ≤ 1

2 . Ideally, PPV is 1
2 , where all malicious

local models are detected, i.e., NFP = 0 and NTP = Ntotal . The details are in Appendix A.2.

Exp 1: Selection of importance layer. We utilize the L2-norm of the local models to evaluate the
“sensitivity” of each layer. A layer with a norm higher than most of the other layers indicates higher
sensitivity compared to others, thus can be utilized to represent the whole model. We evaluate the
sensitivity of the layers of CNN, RNN, and ResNet-56. The results for RNN, CNN, and ResNet-56
are deferred to Figure 9a, Figure 9b, and Figure 9c in Appendix §A.5, respectively. The results show
the sensitivity of the second-to-the-last layer is higher than most of the other layers. Thus, this layer
includes adequate information of the whole model and can be selected as the importance layer.

Exp 2: Impact of the similarity threshold. We evaluate the impact of the similarity threshold γ in
the cross-round check with 10 clients in each FL round, where 4 of them are malicious. Ideally, the
cross-round check should confirm the absence or presence of an attack accurately. We evaluate the
impact of the cosine similarity threshold γ in the cross-round check by setting γ to 0.5, 0.6, 0.7, 0.8,
and 0.9. As described in Figure 4a, the cross-round detection success rate is close to 100% in the
case of Byzantine attacks. We observe that, when the cosine similarity threshold γ is set to 0.5, the
performance is satisfactory in all cases, with at least 93% cross-round detection success rate.

Exp 3: Selection of the number of deviations (λ). We set λ to 0.5, 1, 1.5, 2, 2.5, and 3, and utilize
PPV to evaluate the impact of the number of deviations, i.e., the parameter λ in the anomaly bound
µ+ λσ. To evaluate a challenging case where a large portion of the clients are malicious, we set 40%
clients malicious in each FL round. Given that the number of FL rounds is 100, the total number
of malicious submissions Ntotal is 400. We evaluate our approach on three tasks, as follows: i)
CNN+FEMNIST, ii) ResNet-56+Cifar100, and iii) RNN + Shakespeare. We observe in Figure 4b,
that when λ is 0.5, the results are the best. Especially for the random weight Byzantine attack, we see
that the PPV is exactly 0.5, indicating that all malicious local models are detected. In subsequent
experiments, unless specified otherwise, we set λ to 0.5.

Exp 4: Varying the percentage of malicious clients. We use random Byzantine attack and set the
percentage of malicious clients to 20% and 40%. We also include a baseline case where all clients
are benign. As shown in Figure 4c, the test accuracy remains relatively consistent across different
cases, as in each FL training round, our approach filters out the local models that tend to be malicious
to minimize the negative impact of malicious client models on aggregation.

Exp 5: Varying the number of FL clients. We explore the impact of the number of clients under the
random Byzantine attack. We set the number of clients to 10, 40, 70, and 100, and set the percentage
of malicious clients to 40%. The results, as described in Figure 4d, indicate that in all cases, our
approach has high utility and can filter out malicious clients with high accuracy.
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(a) Random weights (b) Zero weights

Figure 5: Byzantine attacks

(a) Label flipping (b) Model replacement

Figure 6: Backdoor attacks

(a) Varying # attack rounds (b) 40 attack rounds.

Figure 7: Evaluations on selected attacks

(a) ResNet-20 & Cifar10 (b) ResNet-56 & Cifar100

Figure 8: Evaluations on CV tasks

Exp 6: Evaluations on Byzantine attacks. We compare our approach with the state-of-the-art
defenses using 10 clients, and set one of them as malicious in each FL round. We include a “benign”
baseline scenario with no activated attack or defense. The results for the random weight Byzantine
attack (Figure 5a) and the zero weight Byzantine attack (Figure 5b) demonstrate that our approach
effectively mitigates the negative impact of the attacks and significantly outperforms the other
defenses, by achieving a test accuracy much closer to the benign case.

Exp 7: Evaluations on backdoor attacks. We compare our approach with the state-of-the-art
defenses using 10 clients, where one of them is malicious in each FL round. Considering that the
label flipping attack is subtle and manipulates local training data and produces malicious local models
that are challenging to detect, we set the parameter λ to 2 to produce a tighter boundary. The results
for the label flipping attack and model replacement backdoor attack are shown in Figure 6a and
Figure 6b, respectively. Results show that our approach is effective against backdoor attacks, with the
test accuracy much closer to the benign case compared to the baseline defenses.

Exp 8: Evaluations on different attack frequencies. We configure attacks to occur only during
specific rounds to evaluate the effectiveness of the proposed two-stage approach. The total number of
attack rounds is set to 10, 40, 70, and 100, respectively. We then fix the number of attack rounds to 40
and compare our approach with the state-of-the-art defenses. The results in Figure 7a and Figure 7b
show that our method effectively mitigates the impact of the adversarial attacks, ensuring minimal
accuracy loss and robust performance even under different attack rounds.

Exp 9: Evaluations on different tasks. We evaluate the defenses against the random mode of the
Byzantine attack with different models and datasets described in Table 2. The results in Figure 8a,
Figure 8b, and Figure 9d in §A.5 show that our approach outperforms the baseline defenses by
effectively filtering out poisoned local models, with a test accuracy close to the benign scenarios.
Moreover, some defenses may fail in some tasks, e.g., m-Krum fails in RNN in Figure 9d, as those
methods either select a fixed number of local models or re-weight the local models in aggregation,
which potentially eliminates some local models that are important to the aggregation, leading to an
unchanged test accuracy in later FL rounds.

Exp 10: Evaluations of ZKP verification. We implement a prover’s module which contains
JavaScript code to generate witness for the ZKP, as well as to perform fixed-point quantization.
Specifically, we only pull out parameters of the importance layer to represent the whole model to
reduce complexity. We report the results in Table 3.

Exp 11: Evaluations in a real-world setting. To validate the utility and scalability of our approach
in real-world applications, we utilize 20 real-world edge devices to demonstrate how our anomaly
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Table 3: Cost of ZKP of different models

Model Stage 1 Circuit Size Stage 2 Circuit Size Proving Time (s) Verification Time (ms)

CNN 476,160 795,941 33 (12 + 21) 3
RNN 1,382,400 2,306,341 96 (34 + 62) 3
ResNet-56 1,536,000 2,562,340 100 (37 + 63) 3

Bracketed times denote duration for cross-round detection and cross-client detection.

detection mechanism performs under practical constraints and settings. The device information is
shown in Figure 10 in Appendix §A.6. In each FL round, we designate 5 devices as malicious. The
FL client package is integrated into the edge nodes to fetch data from our back-end periodically. Due
to the challenges posed by real-world settings, such as devices equipped solely with CPUs (lacking
GPUs), potential connectivity issues, network latency, and limited storage on edge devices, we select
a simple task, i.e., using the MNIST dataset for a logistic regression task, and use our proposed
anomaly detection method to prevent against the random weight Byzantine attack. The training
process is shown in Figure 11 in Appendix §A.6 , and the total training time is 221 seconds. The
CPU utilization and network traffic during training are shown in Figure 12 and Figure 13 in Appendix
§A.6, respectively.

6 RELATED WORKS

Detection of attacks. Zhang et al. (2022b) employs k-means to partition local models into clusters that
correspond to “benign” or “malicious”. While this approach can efficiently detect attacks, it requires
some pre-training rounds and relies much on historical client models, thus might not be as effective
when there is limited information on past client models. For example, their implementation (Zhang
et al., 2022a) sets the starting round to detect attacks to different training rounds, e.g., 50 when the
datasets are MNIST and FEMNIST, and 20 when the dataset is CIFAR10. While this approach is
novel, it is not suitable for real FL systems, as attacks may happen in earlier rounds as well.

Defense mechanisms in FL. Robust learning and the mitigation of adversarial behaviors in FL has
been extensively explored (Blanchard et al., 2017; Yang et al., 2019; Fung et al., 2020; Pillutla et al.,
2022; He et al., 2022; Karimireddy et al., 2020; Sun et al., 2019; Fu et al., 2019; Ozdayi et al., 2021;
Sun et al., 2021; Yin et al., 2018; Chen et al., 2017; Guerraoui et al., 2018a; Xie et al., 2020; Li et al.,
2020; Cao et al., 2020). Some approaches keep several local models that are more likely to be benign
in each FL round, e.g., (Blanchard et al., 2017; Guerraoui et al., 2018a; Yin et al., 2018), and (Xie
et al., 2020), instead of aggregating all client submissions. Such approaches are effective, but they
keep fewer local models than the real number of benign local models to ensure that all malicious local
models are filtered out, causing misrepresentation of some benign local models in the aggregation.
This completely wastes the computation resources of the benign clients that are incorrectly removed
and thus, changes the aggregation results. Some approaches re-weight or modify local models to
mitigate the impacts of potential malicious submissions (Fung et al., 2020; Karimireddy et al., 2020;
Sun et al., 2019; Fu et al., 2019; Ozdayi et al., 2021; Sun et al., 2021), while other approaches alter
the aggregation function or directly modify the aggregation results (Pillutla et al., 2022; Karimireddy
et al., 2020; Yin et al., 2018; Chen et al., 2017). While these defense mechanisms can be effective
against attacks, they might inadvertently degrade the quality of outcomes due to the unintentional
alteration of aggregation results even when no attacks are present. This is especially problematic
given the low frequency of attacks in practical scenarios.

7 CONCLUSIONS

We present a novel anomaly detection approach specifically designed for real-world FL systems. Our
approach utilizes an early cross-round check that activates subsequent anomaly detection exclusively
in the presence of attacks. When attacks happen, our approach removes malicious client models effi-
ciently, ensuring that the local models submitted by benign clients remain unaffected. By leveraging
ZKPs, our approach enables clients to verify the integrity of the removal performed by the server.
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A APPENDIX

A.1 DETAILS OF KRUM AND m-KRUM

In Krum and m-Krum, the server selects m (m is one in Krum) local models that deviate less from
the majority based on their pairwise distances, where such local models are more likely to be benign
and thus are accepted for aggregation in the current round. Given that there are f byzantine clients
among L clients that participate in each FL iteration, Krum selects one model that is the most likely
to be benign as the global model. That is, instead of using all L local models in aggregation, the
server selects a single model to represent all L submissions. To do so, Krum computes a score for
each model wi, denoted as SK(wi), using L − f − 2 local models that are “closest” to wi, and
selects the local model with the minimum score to represent the aggregation result. For each local
model wi, suppose CN

i is the set of the L− f − 2 local models that are closest to wi, then SK(wi)
is computed by

SK(wi) =
∑
j∈Ci

||wi −wj ||2.

An optimization of Krum is m-Krum (Blanchard et al., 2017) that selects m local models, instead
of one, when aggregating local models. The algorithm for Krum and m-Krum is summarized in
Algorithm 3 .

A.2 PROOF OF THE RANGE OF PPV

Below, we show that the upper bound of PPV is 1
2 .

Proof. PPV = NTP

NTP+NFP+Ntotal
, then 1

PPV = 1 + NFP

NTP
+ Ntotal

NTP
. As NFP

NTP
≥ 0 and Ntotal

NTP
≥ 1, we

have 1
PPV ≥ 2, thus PPV ≤ 1

2 .
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Algorithm 3: Krum and m-Krum.
Inputs: W: client submissions of a training round; i: the client id for which we compute a Krum score
SK(wi); f : the number of malicious clients in each FL iteration; m: the number of “neighbor” client
models that participate in computing the Krum score Sk(wi) of each client model wi; m is 1 by default in
Krum.

1 function Krum_and_m_Krum(W,m, f) begin
2 Sk ← []
3 for wj ∈ W do
4 Sk(wi)← compute_krum_score(W, i,m, f)

5 filter(W, Sk) ▷ Keep local models with the L/2 lowest Krum scores
6 return average(W)

7 function compute_krum_score(W, i,m, f) begin
8 d← [] ▷ Square distances of wi to other local models.
9 L← |W| ▷ L: the number of clients in each FL round.

10 for wj ∈ W do
11 if i ̸= j then

d.append (||wi −wj ||2)

12 sort(d) ▷ In ascending order
13 Sk(wi)←

∑L−f−3
k=0 d ▷ Use the smallest L− f − 2 scores to compute Sk(wi)

14 return Sk(wi)

A.3 EXTENSION TO CLIENT SAMPLING

Our method can work in the case of client sampling. For ease of explanation, in the main manuscript,
we assumed that all clients participate in aggregation in every FL iteration. However, with some
engineering efforts, we can easily extend the method to handle client selection. To handle scenarios
with client selection, we can cache historical client models for the same clients across rounds, such
that the server can perform cross-round detection even when clients do not participate in every round.
If the cached model for a client is too old, we can use the global model from the last round as the
reference model. A scenario with adversary clients that participate only once (i.e., single-shot attacks)
constitutes a specific case of the client selection challenge described above. In such cases, we can use
the global model from the last round as the reference model for cross-round detection.

A.4 ZERO-KNOWLEDGE PROOF (ZKP) IMPLEMENTATION

This section describes the details of the implementation of ZKPs. In what follows, the prover is the
FL server, whereas the verifiers are the FL clients.

A.4.1 CHOICE OF THE ZKP SYSTEM

In our implementation, we use the Groth16 (Groth, 2016) zkSNARK scheme implemented in the
Circom library (Contributors, 2022) for all the computations described earlier. We choose this ZKP
scheme because its construction ensures constant proof size (128 bytes) and constant verification
time. Because of this, Groth16 is popular for blockchain applications as it necessitates little on-chain
computation. There are other ZKP schemes based on different constructions that can achieve faster
prover time (Liu et al., 2021), but their proof size is bigger and verification time is not constant,
which is a problem if the verifier lacks computational power, as in our case since the verifiers are the
FL clients in our setting. The construction of a ZKP scheme that is efficient for both the prover and
verifier is still an open research direction.

A.4.2 ZKP-COMPATIBLE LANGUAGE

The first challenge of applying ZKP protocols is to convert the computations into a ZKP-compatible
language. ZKP protocols model computations as arithmetic circuits with addition and multiplication
gates over a prime field. However, our computations for our approach are over real numbers. The
second challenge is that some computations such as square root are nonlinear, making it difficult to
wire them as a circuit. To address these issues, we implement a class of operations that map real
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numbers to fixed-point numbers. To build our ZKP scheme, we use Circom library (Contributors,
2022), which compiles the description of an arithmetic circuit in a front-end language similar to C++
to the back-end ZKP protocol.

A.4.3 INTERACTIVITY OF ZKSNARKS

In the Freivalds’ algorithm (Freivalds, 1977), the prover first computes the matrix multiplication and
commits to its result. Then the verifier generates and sends the random vector. This step is interactive
in nature, but we can make this non-interactive using the Fiat-Shamir heuristic as it is public-coin,
meaning the vector is randomly selected by the verifier and made public to everyone. Therefore, the
prover can instead generate this vector by setting it to the hash of matrices A,B and C. With this, our
entire ZKP pipeline, including the Freivalds’ step can become truly non-interactive.

A.4.4 MOTIVATION OF IMPLEMENTING ZKP

ZKP enables proving to the clients that the server has correctly executed the anomaly detection
process. This addresses a critical concern in FL systems, where clients cannot directly verify the
server’s behavior and must fully trust the server. Below, we explain the motivation for ZK from
research, industry product, and system perspectives.

Research Perspective: Existing literature has considered various adversarial models. For example,
1) clients might be malicious and submit modified models; 2) FL server might be curious about local
models and want to infer sensitive information, such as original training data, or the local models; 3)
clients might be curious about local models of other clients; 4) an external adversary may hack the
communication channels between clients and the server and poison some client models; 5) the FL
server may be hacked by external adversaries; 6) a global “sybil” may hack the whole system and
control some clients by modifying their local training data, and so on.

In our paper, we assume the FL server is not fully trusted due to the complex execution environment
in real systems. There may be external adversaries or a global sybil, thus, even if the server hopes
to execute the aggregation correctly, the presence of adversaries necessitates a ZKP module for
verification to ensure that the server’s actions are transparent and trustworthy to all clients.

Industry Perspective: The necessity of ZKP also arises from real-world application needs. Consider,
for example, FL clients that are medical institutions or hospitals holding sensitive data, such as patient
medical records. These institutions may want to collaboratively train a model but be unwilling to
share their raw data due to privacy concerns. Although these institutions know that the server will
run an anomaly detection procedure, they may not be fully convinced that the server will honestly
execute the procedure or that their models will participate in the aggregation without bias. Here,
ZKP enables verification that the anomaly detection is performed correctly, even when the clients
do not have access to the local models of other clients. This is critical for gaining the trust of the
participating clients.

System Perspective: Real FL systems with rewards contain components such as model aggregation,
contribution assessment of local models, and anomaly detection, etc. If the FL server is not fully
trusted, validating all these operations is essential. However, the focus of our paper is specifically on
anomaly detection, and therefore, we have primarily discussed the application of ZKP in this context.
The ZKP module ensures that even if the server is not fully trusted, e.g., under potential external
threats, clients can have verifiable proof that the anomaly detection has been executed correctly, thus
maintaining the integrity and security of the whole FL process.

A.5 SUPPLEMENTARY EXPERIMENTAL RESULTS

The results for the importance layers of RNN, CNN, and ResNet-56 are given in Figure 9a, Figure 9b,
and Figure 9c, respectively. The results for evaluations on RNN and the Shakespeare dataset is shown
in Figure 9d.

A.6 SUPPLEMENTARY RESULTS FOR THE REAL-WORLD EXPERIMENT

The edge devices we use are described in Figure 10, the real-world simulation is in Figure 11, the
CPU utilization is in Figure 12, and the network traffic is in Figure 13.
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(a) RNN layer sensitivity. (b) CNN sensitivity. (c) ResNet-56 sensitivity. (d) RNN & Shakespeare

Figure 9: Supplementary experimental results.

Figure 10: Edge device information.

Figure 11: Real-world application demonstration. Yellow: aggregation server waiting time; pink:
aggregation time; green: client training time; blue: client communication time.
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Figure 12: CPU utilization. Figure 13: Network traffic.

A.7 CODE IMPLEMENTATION

Implementations for anomaly detection can be found at https://gitfront.io/r/
user-5174596/LghVL3hZgZ34/anomaly-detection-code/.

Implementations for zero-knowledge-proof verification can be found at https://gitfront.
io/r/user-5174596/eeZxuwaKtPnU/outlier-detection-zkp/.
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