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ABSTRACT

Although multi-view multi-label learning has been extensively studied, research
on the dual-missing scenario, where both views and labels are incomplete, re-
mains largely unexplored. Existing methods mainly rely on contrastive learning
or information bottleneck theory to learn consistent representations under missing-
view conditions, but relying solely on loss-based constraints limits the ability to
capture stable and discriminative shared semantics. To address this issue, we in-
troduce a more structured mechanism for consistent representation learning: we
learn discrete consistent representations through a multi-view shared codebook
and cross-view reconstruction, which naturally align different views within the
limited shared codebook embeddings and reduce redundant features. At the de-
cision level, we design a weight estimation method that evaluates the ability of
each view to preserve label correlation structures, assigning weights accordingly
to enhance the quality of the fused prediction. In addition, we introduce a fused-
teacher self-distillation framework, where the fused prediction guides the training
of view-specific classifiers and feeds the global knowledge back into the single-
view branches, thereby enhancing the generalization ability of the model under
missing-label conditions. The effectiveness of our proposed method is thoroughly
demonstrated through extensive comparative experiments with advanced methods
on five benchmark datasets.

1 INTRODUCTION

Multi-view data are very common in the real world (Zhao et al., 2017), where a single sample
is often described by multiple representations from different modalities or various feature extrac-
tion methods, such as RGB/HSV/GIST for images, audio-visual synchronization for videos, con-
tent/behavior/social views in recommender systems, and multi-omics data in bioinformatics (Yan
et al., 2021). The goal of multi-view learning is to exploit the consistency and complementarity
among views to improve the quality of representations and the performance of downstream tasks
such as classification. It has already become a fundamental technique in numerous real-world appli-
cations (Yu et al., 2025).

Similarly, many tasks naturally fall into the multi-label setting, where a single sample is often asso-
ciated with multiple labels, such as in image classification and multi-topic text classification (Hang
& Zhang, 2021). Compared with single-label classification, multi-label classification can improve
performance by exploiting label correlations (Chen et al., 2019). If such correlations are effectively
modeled and utilized, they not only alleviate the negative impact of label sparsity but also enhance
prediction accuracy and robustness under limited annotation conditions.

However, the ideal assumption of complete multi-view data with fully observed multi-label anno-
tations is rarely satisfied in practice (Wen et al., 2023). On the one hand, incomplete multi-view
data are very common (Yin & Sun, 2021). During multi-view data collection, sensor failures, occlu-
sions, or cross-domain restrictions (e.g., privacy and authorization constraints) often render certain
views unavailable during training or inference. On the other hand, missing multi-label data are also
prevalent (Chen et al., 2020). This is mainly due to the high cost of fine-grained annotation and
the limited attention of annotators, which often result in only partial labels being observed for some
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samples. Treating missing labels as negative instances in a naive way further aggravates the class
imbalance problem and introduces bias (Ridnik et al., 2021).

A more challenging scenario arises when both multi-view and multi-label data are missing simul-
taneously, forming the dual-missing situation (Liu et al., 2023b). Firstly, missing multi-view data
affect the learning of consistency and complementarity across views, increasing the uncertainty of
representation learning. Secondly, missing multi-label data compromise the modeling of label cor-
relations and the completeness of supervisory signals. When both types of missingness occur at the
same time, methods designed to handle only one type of missingness often fail to be effective (Tan
et al., 2018).

In response to this challenge, systematic research on the problem of Incomplete Multi-View Multi-
Label Classification (IMVMLC) has significant practical and theoretical value. This study mainly
focuses on two existing technical directions. The first is multi-view consistency representation learn-
ing. Representative works include DICNet (Liu et al., 2023b), which is based on contrastive learn-
ing and enforces representation consistency by constructing positive pairs from the same view, and
SIP (Liu et al., 2024c), which follows the information bottleneck principle to maximize shared in-
formation by preserving effective features while minimizing non-shared information. The second
direction is multi-view fusion strategies, which include both feature-level and decision-level fu-
sion. AIMNet (Liu et al., 2024a) adopts average fusion to obtain robust but relatively “smoothed”
predictions. LMVCAT (Liu et al., 2023c) introduces learnable weights to adaptively allocate the
contribution of each view feature, thereby improving discriminability. RANK (Liu et al., 2025) em-
ploys a view-quality-aware subnetwork to explicitly leverage multi-view complementarity, enabling
the classification network to learn reliable cross-view fused representations.

However, these methods face certain limitations. In learning multi-view consistency representations,
they often rely on loss constraints (e.g., contrastive learning) or regularization techniques that min-
imize non-shared information across views. When views are missing, such strategies easily lead
to under-representation or over-regularization, which limit the generalization ability of the model.
Moreover, most existing fusion strategies overlook the structural information implied by label cor-
relations, and many learnable-weight or quality-discriminator-based fusion approaches introduce
additional training costs.

To address these issues, we propose a method, Incomplete Multi-View Multi-Label Classification via
Shared Codebook and Fused-Teacher Self-Distillation (SCSD). First, for consistency representation,
we introduce a shared codebook and cross-view reconstruction mechanism. The shared discrete
codebook captures cross-view common semantics, while cross-view reconstruction further enhances
the consistency of the discrete representations. The limited multi-view shared codebook embeddings
eliminate redundant features and enhance the generalization ability of the representations. Second,
for decision fusion, we design a label-correlation-oriented fusion strategy. This strategy assigns
different weights to each view by estimating the ability of each view prediction to preserve the
original label correlation structure, thereby reducing the impact of low-quality views. Finally, for
the training paradigm, we adopt fused-teacher self-distillation: the fused prediction serves as the
teacher signal to guide the learning of each view-specific classifier. In this way, the global knowledge
integrated across views is fed back into the single-view branches, improving consistency, robustness,
and generalization during both training and inference. The main contributions of this paper are
summarized as follows:

• We propose a novel framework for incomplete multi-view multi-label classification based
on a shared codebook and fused-teacher self-distillation. The framework handles arbitrary
missing scenarios and achieves leading performance on multiple datasets, surpassing many
advanced methods.

• We propose to learn discrete consistent representations through a multi-view shared code-
book, which quantizes continuous features into a limited set of codebook embeddings. This
design produces more compact representations and effectively reduces redundant informa-
tion. At the same time, the features of different views can naturally align in this shared
codebook embedding space, which enhances the consistency of multi-view representations.

• We propose a weighted fusion method that assigns weights according to each view’s ability
to preserve label correlation structures in its predictions. This method does not rely on ad-
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Figure 1: The main framework of SCSD. The upper part represents the framework of multi-view
consistent discrete representation learning, while the lower part represents the framework of multi-
view prediction fusion and self-distillation.

ditional external networks or learnable weights and fully exploits the structural information
inherent in the supervision signals.

• We introduce a fused-teacher self-distillation framework for multi-view predictions, in
which the knowledge of all views is fed back to each view branch through a self-distillation
loss, thereby improving the generalization ability of the model.

2 METHOD

2.1 PROBLEM DEFINITION

In this section, we define the problem and introduce the notations. We consider a multi-view dataset
{X(v)}mv=1, where m denotes the number of views, and X(v) ∈ Rn×dv , with dv representing the
original feature dimension of the v-th view and n representing the number of samples. We define a
label matrix Y ∈ {0, 1}n×c with c categories, where Yi,j = 1 indicates that the i-th sample has the
j-th label, and Yi,j = 0 indicates that the j-th label is not assigned to the i-th sample. To handle
missing views, we introduce a missing-view indicator matrix W ∈ {0, 1}n×m, where Wi,j = 1
indicates that the j-th view of the i-th sample is observed, and Wi,j = 0 indicates that the j-th view
is missing. Similarly, we introduce a missing-label indicator matrix G ∈ {0, 1}n×c to represent
missing labels, where Gi,j = 1 indicates that the j-th label of the i-th sample is observed, and
Gi,j = 0 indicates that the j-th label is missing. We use zeros to fill the missing samples and labels.
Our goal is to train a model for multi-label classification under the condition where both views and
labels are incomplete. In this paper, Xi,j , Xi,:, and X:,j denote the element, the i-th row, and the
j-th column of matrix X , respectively.

2.2 CONSISTENT DISCRETE REPRESENTATION LEARNING

In this section, we describe in three parts the process of learning multi-view consistent discrete
representations through a shared codebook and cross-view reconstruction

Encoding. Since the original dimensionalities dv of different views in multi-view data are not
identical, we first use view-specific MLP encoders to map the raw data into a unified dimensional
space de. Formally, {Z(v) = E(v)(X(v))}mv=1, where Z(v) ∈ Rn×de denotes the continuous features
of the v-th view, and E(v) denotes the MLP encoder of the v-th view.
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Quantization. We subsequently discretize Z(v) through vector quantization (Van Den Oord et al.,
2017), mapping each sample Z

(v)
i,: from a view into a token sequence, i.e., a sequence of discrete

codes. We first define a learnable shared codebook V = {ei}ki=1 ∈ Rk×dc , which contains k codes,
each of dimensionality dc. We adopt a grouped quantization method (Baevski et al., 2019) to split
Z

(v)
i,: into g segments. For clarity, taking the i-th sample from the v-th view as an example, we obtain

Z̃
(v)
i,: = {zt}gt=1 ∈ Rg×(de/g), where zt ∈ Rdc denotes the t-th feature segment and dc = de/g. We

assign each zt its nearest codebook embedding by nearest-neighbor lookup:

t∗ = argmin
j

∥ℓ2(zt)− ℓ2(ej)∥22, j = 1, . . . , k, (1)

Thus, we obtain the optimal quantization index t∗ for the t-th feature segment zt, and denote ẑt =
et∗ , where ℓ2(·) represents ℓ2 normalization used for codebook lookup (Yu et al., 2021). Through
this quantization operation, the original continuous feature Z

(v)
i,: is mapped into an integer index

sequence [1∗, 2∗, . . . , g∗] ∈ Vg , where each index t∗ corresponds to one codebook embedding.
Finally, we retrieve the codebook embeddings according to these indices and concatenate them to
obtain the quantized discrete representation: Ẑ

(v)
i,: = [ẑ1; ẑ2; . . . ; ẑg] ∈ Rde , where [·; ·] denotes

the concatenation operation. All other non-missing multi-view features Z(v) undergo the same
quantization process to yield their discrete representations Ẑ(v).

Reconstruction and Loss Function. For each view, we construct a view-specific MLP decoder
to reconstruct the original view X(v) from its discrete representation Ẑ(v), denoted as {D(v)}mv=1.
To better learn multi-view consistent representations, we introduce cross-view reconstruction: each
view representation is decoded by different view decoders to reconstruct the original features, i.e.,
{X̂(j,v) = D(j)(Ẑ(v))}mv=1, j = 1, . . . ,m, where X̂(j,v) denotes the reconstructed original features
of view j from the representation of view v. The reconstruction loss is defined as

Lrec =
1∑n

i=1

∑m
j=1

∑m
v=1 Wi,j Wi,v

n∑
i=1

m∑
j=1

m∑
v=1

∥∥X̂(j,v)
i,: −X

(j)
i,:

∥∥2
2
Wi,j Wi,v (2)

We use an MSE-based reconstruction loss, where the missing-view indicator matrix W masks un-
available views. The reconstruction loss is computed only when both view v and view j are avail-
able, which reduces the influence of missing views on the model. Since the nearest-neighbor search
in Eq 1 is non-differentiable, we follow (Van Den Oord et al., 2017) and adopt a straight-through
gradient estimator: zt = sg[zt − ẑt] + ẑt, where the gradient is directly copied from the decoder
input to the encoder output. The codebook learning objective is defined as

L(i,v)
vq︸ ︷︷ ︸

sample i, view v

=

g∑
t=1

(
∥sg[ℓ2(zt)]− ℓ2(ẑt)∥22 + ∥ℓ2(zt)− sg[ℓ2(ẑt)]∥22

)
, (3)

where sg[·] denotes the stop-gradient operation, i.e., sg[z] ≡ z and d
dz sg[z] ≡ 0. The first term

forces the codebook embeddings to be close to the encoder outputs, while the second term ensures
that the encoder outputs are pulled toward a codebook embedding. We compute the loss over all
non-missing samples: Lvq = 1∑n

i=1

∑m
v=1 Wi,v

∑n
i=1

∑m
v=1 Wi,v L(i,v)

vq .

In this part, our multi-view consistent discrete representation learning consists of m encoders, one
quantizer, and m decoders. We quantize the continuous features {Z(v)}mv=1 into discrete represen-
tations {Ẑ(v)}mv=1 using the same shared codebook. Through shared codebook quantization, the
features of different views are mapped into a limited set of codebook embeddings, which not only
reduces redundancy but also allows common information across views to be expressed consistently
in the discrete space. Moreover, our cross-view reconstruction loss further enhances the learning of
consistent multi-view representations, making additional loss constraints unnecessary.

2.3 CLASSIFICATION AND MULTI-VIEW DECISION FUSION

In this section, we introduce how to perform multi-label classification based on the view-consistent
discrete representations {Ẑ(v)}mv=1 learned in Section 2.2.

4
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Classification. We first construct a multi-label classifier F (v)
cls (·) for each view, which consists of a

fully connected layer that maps {Ẑ(v)}mv=1 into the label space. Formally, {P (v) = σ(F
(v)
cls (Ẑ

(v))) ∈
Rn×c}mv=1, where σ(·) denotes the sigmoid activation function.

Fusion. Existing approaches for multi-view feature fusion and decision-level fusion mainly include
average fusion, learnable weight fusion, uncertainty-aware fusion, and quality-discriminator-based
fusion. Here, we propose to guide the evaluation of view prediction quality using label correlations,
and then assign quantitative weights to each view prediction. Our method is more suitable for multi-
view prediction fusion, as it fully exploits both multi-label supervision signals and label correlations.

Specifically, we first compute a label correlation matrix using the conditional probability matrix,
following the approach in (Hang & Zhang, 2021; Chen et al., 2019). The formulation is given as

Si,j =

∑n
r=1 Yr,iYr,j∑n

r=1 Yr,iYr,i + ε
=

Y ⊤
:,iY:,j

Y ⊤
:,iY:,i + ε

(4)

Here, Sij denotes the probability of label j occurring when label i occurs, ε denotes a small scalar.
The label matrix Y is taken from the training set, and the final label correlation matrix is obtained
as S ∈ Rc×c. Next, we compute the label correlation matrix for each view prediction P̂

(v)
r,: =

Wr,v P
(v)
r,: in the same way:

S
(v)
i,j =

∑n
r=1 P̂

(v)
r,i P̂

(v)
r,j∑n

r=1 P̂
(v)
r,i P̂

(v)
r,i + ε

=
(P̂

(v)
:,i )⊤P̂

(v)
:,j(

P̂
(v)
:,i

)⊤
P̂

(v)
:,i + ε

(5)

Through this formulation, we obtain the label correlation matrices for each view, {S(v)}mv=1 ∈
Rc×c, which are computed using the predictions from the available views in the current batch. We
then measure the ability of the v-th view to preserve label correlation structures by computing the
Frobenius norm between S(v) and S, which serves as an indicator of prediction quality. Before
computing the difference, we symmetrize and row-normalize both matrices to obtain Ŝ(v) and Ŝ.
The prediction quality score and view weights are defined as

q(v) = −∥Ŝ(v) − Ŝ∥F , w
(v)
i =

exp
(
q(v)/τ

)
· Wi,v∑m

u=1 exp
(
q(u)/τ

)
· Wi,u

, (6)

where the second term denotes the softmax normalization with a temperature parameter τ . This
yields the weights of all views, {w(v)

i }mv=1, i = 1, ..., n. This method not only relies on the predic-
tions of individual views but also explicitly leverages the global label correlation structure S. As a
result, the weight assignment prioritizes views that align with the global label dependency patterns
and reduces the influence of noisy views on the fusion results. In each batch, S(v) is updated ac-
cording to the current predictions, so the weights adaptively reflect the relative quality of different
views across training stages and batches, rather than remaining fixed.

Pi,: =

m∑
v=1

w
(v)
i P

(v)
i,: . (7)

Finally, the fused prediction P ∈ Rn×c is obtained by weighted fusion. We align the fused predic-
tion P with the ground-truth labels Y through the binary cross-entropy loss:

Lc = Lbce(P, Y ) = − 1

nc

n∑
i=1

c∑
j=1

(
Yi,j log(Pi,j) + (1− Yi,j) log(1− Pi,j)

)
Gi,j , (8)

where the missing-label indicator matrix G masks the effect of missing labels on the model.

2.4 SELF-DISTILLATION PREDICTION ENHANCEMENT ARCHITECTURE

After obtaining the fused prediction P , we further enhance the predictive ability of the model
through a self-distillation framework (Zhang et al., 2021). Specifically, we use the multi-view fused

5
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Table 1: The summary statistics of different datasets are presented, where c denotes the number
of classes, n/c denotes the average number of positive labels per sample, n denotes the number of
samples, and m denotes the number of views.

Dataset c n/c n m
Corel5k 260 3.396 4999 6
Pascal07 20 1.465 9963 6
Espgame 268 4.686 20770 6
Iaprtc12 291 5.719 19627 6
Mirflickr 38 4.716 25000 6

prediction P as the teacher and the prediction of each individual view P (v) as the student, where the
teacher prediction guides the learning of each student. The self-distillation loss is defined as:

Ldis =
1∑n

i=1

∑m
v=1 Wi,v

n∑
i=1

m∑
v=1

[
λDKL

(
sg[Pi,:] ∥P (v)

i,:

)
+ (1− λ)Lbce

(
P

(v)
i,: , Yi,:

)]
Wi,v (9)

where λ ∈ [0, 1] denotes the imitation parameter, sg[·] is the stop-gradient operation defined in Sec-
tion 2.2, DKL denotes the Kullback–Leibler (KL) divergence, and Lbce is the supervision loss for
each view prediction P (v), similar to Eq 8. Traditional distillation minimizes the KL divergence
between teacher and student probabilities, assuming class probabilities sum to one. This assump-
tion fails in multi-label learning. To address this, we adopt the multi-label logit distillation (MLD)
loss (Yang et al., 2023), which follows a one-versus-all strategy by decomposing the task into bi-
nary problems and minimizing teacher–student probability differences for each, enabling effective
distillation in multi-label learning.

This self-distillation framework uses the multi-view fused prediction as the teacher, which aggre-
gates information from all views and provides a comprehensive and reliable supervisory signal. Each
view-specific classifier serves as a student and learns from the teacher output, enabling it to capture
the global knowledge contained in the fused prediction while preserving its own view-specific char-
acteristics. As a result, the framework improves consistency, robustness, and generalization during
both training and inference.

2.5 OVERALL LOSS FUNCTION

Finally, we combine Eq 2, Eq 3, Eq 8, and Eq 9 to obtain the overall optimization objective of the
model:

L = Lc + Ldis + αLrec + Lvq, (10)

where α is a trade-off coefficient that balances the influence of different optimization objectives.

3 EXPERIMENTS

3.1 DATASETS AND METRICS

Datasets. We follow the experimental settings in several IMVMLC studies to comprehensively
evaluate the performance of the proposed model (Liu et al., 2024b; Yan et al., 2025). We conduct
experiments on five multi-view multi-label datasets, namely Corel5k (Duygulu et al., 2002), Pas-
cal07 (Everingham et al., 2010), Espgame (Von Ahn & Dabbish, 2004), Iaprtc12 (Grubinger et al.,
2006), and Mirflickr (Huiskes & Lew, 2008). More details about these datasets are provided in
Table 1. We use six different types of features from these datasets as six views: DenseSift (1000),
DenseHue (100), GIST (512), RGB (4096), LAB (4096), and HSV (4096), where the number in
parentheses denotes the feature dimensionality.

Evaluation Metrics. Following previous work (Liu et al., 2023b; 2024c), we evaluate our model and
all baseline methods using six commonly used metrics for multi-label classification. These include
Average Precision (AP), Hamming Loss (HL), Area Under the Receiver Operating Characteristic
Curve (AUC), Ranking Loss (RL), OneError (OE), and Coverage (Cov). For four of these metrics,
we record 1−HL, 1−RL, 1−OE, and 1−Cov in figures and tables. In this way, all six evaluation
metrics follow a consistent convention: a larger value indicates better performance.
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Table 2: The results under the setting of 50% missing views, 50% missing labels, and 70% training
data are reported. The table lists mean and standard deviation (bottom-right). Ave.R denotes the
average rank across metrics. Bold numbers indicate the best results, and underlined numbers indicate
the second best.

Dataset Metric iMvWL NAIML DDINet DICNet MTD SIP RANK DRLS SCSD
Sources IJCAI’18 TPAMI’22 TNNLS’23 AAAI’23 NeurIPS’23 ICML’24 TPAMI’25 CVPR’25 —

C
or

el
5k

AP 0.2830.008 0.3090.004 0.3600.009 0.3780.004 0.4130.007 0.4160.015 0.4250.009 0.4330.008 0.4470.4470.4470.010
1-HL 0.9780.000 0.9870.000 0.9870.000 0.9870.000 0.9880.9880.9880.000 0.9880.9880.9880.000 0.9880.9880.9880.000 0.9880.9880.9880.000 0.9880.9880.9880.000
1-RL 0.8650.005 0.8780.002 0.8650.005 0.8770.004 0.8920.004 0.9100.003 0.9130.003 0.9160.002 0.9200.9200.9200.002
AUC 0.8680.005 0.8810.002 0.8680.005 0.8810.003 0.8950.004 0.9120.003 0.9150.003 0.9180.002 0.9230.9230.9230.003
1-OE 0.3110.015 0.3500.009 0.4370.012 0.4640.012 0.4910.010 0.4920.018 0.4900.014 0.5090.019 0.5260.5260.5260.018
1-Cov 0.7020.008 0.7250.005 0.6890.012 0.7140.010 0.7480.009 0.7860.007 0.7980.005 0.8040.006 0.8110.8110.8110.006
Ave.R 8.500 6.667 7.500 6.333 4.167 3.333 3.000 1.833 1.0001.0001.000

Pa
sc

al
07

AP 0.4370.018 0.4880.003 0.5320.010 0.5020.007 0.5500.004 0.5500.009 0.5540.009 0.5670.008 0.5780.5780.5780.009
1-HL 0.8820.004 0.9280.001 0.9320.001 0.9300.001 0.9320.001 0.9310.002 0.9320.001 0.9340.9340.9340.001 0.9340.9340.9340.001
1-RL 0.7360.015 0.7830.001 0.8080.005 0.7810.007 0.8300.003 0.8250.006 0.8260.004 0.8430.004 0.8460.8460.8460.005
AUC 0.7670.015 0.8110.001 0.8290.004 0.8050.006 0.8490.004 0.8450.005 0.8480.005 0.8640.003 0.8660.8660.8660.004
1-OE 0.3620.023 0.4210.006 0.4480.015 0.4260.013 0.4570.008 0.4630.012 0.4650.015 0.4770.011 0.4890.4890.4890.011
1-Cov 0.6770.015 0.7270.002 0.7570.005 0.7280.007 0.7830.004 0.7770.005 0.7790.005 0.7980.004 0.8010.8010.8010.005
Ave.R 8.833 7.500 5.333 7.167 3.500 4.833 3.500 1.833 1.0001.0001.000

E
sp

ga
m

e

AP 0.2440.005 0.2460.002 0.2860.004 0.2990.004 0.3060.003 0.3100.004 0.3140.004 0.3260.005 0.3450.3450.3450.004
1-HL 0.9720.000 0.9830.9830.9830.000 0.9830.9830.9830.000 0.9830.9830.9830.000 0.9830.9830.9830.000 0.9830.9830.9830.000 0.9830.9830.9830.000 0.9830.9830.9830.000 0.9830.9830.9830.000
1-RL 0.8080.002 0.8180.002 0.8150.003 0.8330.003 0.8370.001 0.8490.002 0.8490.002 0.8580.002 0.8630.8630.8630.002
AUC 0.8130.002 0.8240.002 0.8190.003 0.8370.002 0.8420.001 0.8530.002 0.8530.002 0.8620.002 0.8670.8670.8670.002
1-OE 0.3430.013 0.3390.003 0.4270.010 0.4370.010 0.4480.006 0.4510.012 0.4600.010 0.4730.001 0.4910.4910.4910.010
1-Cov 0.5480.004 0.5710.003 0.5530.005 0.5980.006 0.6010.004 0.6280.004 0.6320.005 0.6520.003 0.6570.6570.6570.004
Ave.R 8.833 6.500 6.500 5.167 4.333 3.167 2.667 1.833 1.0001.0001.000

Ia
pr

tc
12

AP 0.2370.003 0.2610.001 0.3020.005 0.3270.005 0.3320.002 0.3310.007 0.3470.004 0.3560.006 0.3850.3850.3850.005
1-HL 0.9690.000 0.9800.000 0.9800.000 0.9800.000 0.9810.9810.9810.000 0.9810.9810.9810.000 0.9810.9810.9810.000 0.9810.9810.9810.000 0.9810.9810.9810.000
1-RL 0.8330.002 0.8480.001 0.8530.002 0.8720.002 0.8750.001 0.8870.004 0.8880.002 0.8960.003 0.9030.9030.9030.002
AUC 0.8350.001 0.8500.001 0.8550.003 0.8730.001 0.8760.001 0.8880.003 0.8890.002 0.8980.002 0.9050.9050.9050.002
1-OE 0.3520.008 0.3900.005 0.4350.009 0.4650.013 0.4710.006 0.4660.001 0.4860.012 0.4900.012 0.5140.5140.5140.008
1-Cov 0.5640.005 0.5920.004 0.5940.007 0.6480.005 0.6490.002 0.6790.008 0.6860.006 0.7070.007 0.7210.7210.7210.005
Ave.R 9.000 7.667 6.833 6.000 4.000 3.833 2.667 1.833 1.0001.0001.000

M
ir

fli
ck

r

AP 0.4900.012 0.5510.002 0.5880.003 0.5860.005 0.6080.004 0.6150.004 0.6060.006 0.6300.005 0.6340.6340.6340.005
1-HL 0.8390.002 0.8820.001 0.8880.001 0.8880.001 0.8910.001 0.8910.001 0.8910.001 0.8950.8950.8950.001 0.8950.8950.8950.001
1-RL 0.8030.008 0.8440.001 0.8650.002 0.8610.004 0.8750.001 0.8780.002 0.8740.002 0.8850.002 0.8880.8880.8880.002
AUC 0.7870.012 0.8370.001 0.8530.002 0.8480.004 0.8610.002 0.8640.002 0.8600.003 0.8720.003 0.8730.8730.8730.002
1-OE 0.5110.022 0.5850.003 0.6360.008 0.6420.006 0.6560.004 0.6640.006 0.6540.009 0.6860.6860.6860.009 0.6860.6860.6860.006
1-Cov 0.5720.013 0.6310.002 0.6540.003 0.6460.006 0.6770.002 0.6760.004 0.6730.004 0.6920.003 0.6950.6950.6950.004
Ave.R 9.000 8.000 6.167 6.500 3.667 3.167 4.667 1.667 1.0001.0001.000
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(c) Iaprtc12

Figure 2: The radar charts are based on results with complete views, complete labels, and 70%
training data, covering nine methods, three datasets, and six metrics. In each chart, the center
denotes the worst result and the vertex denotes the best.

3.2 COMPARED METHODS

To more comprehensively evaluate the effectiveness of the proposed method, we select eight incom-
plete multi-view multi-label learning methods specifically designed for the dual-missing problem
as baselines in the comparative experiments. This allows us to examine the model’s ability to han-
dle dual-missing scenarios under fair conditions. The specific methods include iMvWL (Tan et al.,
2018), NAIML (Li & Chen, 2021), DDINet (Wen et al., 2023), DICNet (Liu et al., 2023b), MTD
(Liu et al., 2024b), SIP (Liu et al., 2024c), RANK (Liu et al., 2025), and DRLS (Yan et al., 2025),
whose related descriptions are already provided in the Introduction 1 and Related Work A.1 sections.
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(d) Pascal07

Figure 3: The parameter sensitivity analysis of the SCSD model is conducted under the setting of
50% missing views, 50% missing labels, and 70% training data.

3.3 IMPLEMENTATION DETAILS

To simulate the random missingness of multi-view and multi-label data in real-world scenarios, we
follow previous studies to generate missing data (Tan et al., 2018; Liu et al., 2024c). Specifically, for
multi-view data, we randomly discard 50% of the views while ensuring that each sample retains at
least one available view. For multi-label data, we randomly discard 50% of the positive and negative
labels, and we use zeros to fill in the missing views and labels. The dataset is divided into 70% for
training and 30% for validation and testing. The proposed SCSD model is implemented in PyTorch
and the experiments are conducted on an Ubuntu operating system with an RTX 4090 GPU and an
i9-13900K CPU. The learning rate is set to 0.001, the optimizer is AdamW with a weight decay of
0.001, and the batch size is 128. The codebook is initialized with k-means, the codebook size k is
set to 2048, and the codebook embedding dimension dc is set to 4.

3.4 EXPERIMENTAL RESULTS

Table 2 compares eight state-of-the-art methods on five public multi-view multi-label datasets, with
both view and label missing rates set to 50%. It can be observed that the proposed SCSD model out-
performs all baseline methods, especially on the AP metric of the Espgame and Iaprtc12 datasets,
where SCSD achieves improvements of 5.83% and 8.15% over the second-best method, DRLS.
Compared with DICNet, which learns multi-view consistent features through contrastive loss, and
SIP, which suppresses non-shared information based on the information bottleneck principle to ob-
tain consistent representations, the proposed SCSD achieves average improvements of 14.94% and
8.65% in AP across the five datasets. These results clearly demonstrate the advantage of SCSD in
multi-view consistent representation learning. This comparative experiment thoroughly validates
the effectiveness of SCSD for multi-label classification under the dual-missing scenario.

In addition, we also conduct comparative experiments under the setting of complete views and com-
plete labels, as shown in Figure 2. It can be observed that SCSD achieves the best performance on
most metrics across three datasets, which strongly demonstrates the generality of SCSD. The results
on the remaining two datasets are reported in Appendix A.3.

3.5 PARAMETER ANALYSIS

Our model contains three hyperparameters: α in Lrec, λ in Ldis, and the softmax temperature
parameter τ in decision fusion. Figure 3 presents the parameter sensitivity results of the SCSD
model. Figures 3a and 3b show the AP metric of SCSD on Corel5k and Pascal07 under different
combinations of α and λ. We observe that on the Corel5k dataset, SCSD exhibits performance
fluctuations when α = 1e − 2 or α = 2e1, which are extreme values, while on Pascal07 the
performance of SCSD remains relatively stable. On Corel5k, the best results are obtained when α
takes values in the range [1e − 2, 1e0] and λ takes values in the range [1e − 2, 2e − 1], whereas on
Pascal07, better performance is achieved when α takes values in the range [5e0, 2e1] and λ takes
values in the range [1e−2, 2e−1]. Figures 3c and 3d present the influence of τ on the model, where
the left y-axis indicates AP and the right y-axis indicates AUC. The proposed method is not sensitive
to variations of the temperature parameter τ . On Corel5k, τ takes values in the range [5e − 1, 5e0]
to achieve the best results, while on Pascal07, τ takes values in the range [1e−1, 5e−1] for the best
performance.
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Table 3: The ablation results on two datasets under the setting of 50% missing views, 50% missing
labels, and 70% training data are reported. Here, ‘w/o’ denotes “without”. The bold numbers
indicate the best results, while the underlined numbers indicate the second-best results.

Method Corel5k Pascal07
AP 1-RL AUC AP 1-RL AUC

SCSD w/o Ldis 0.376 0.882 0.884 0.560 0.834 0.855
SCSD w/o Ldis KL 0.411 0.906 0.909 0.572 0.843 0.864
SCSD w/o Lrec 0.439 0.916 0.919 0.560 0.839 0.860
SCSDSCSDSCSD 0.4470.4470.447 0.9200.9200.920 0.9230.9230.923 0.5780.5780.578 0.8460.8460.846 0.8660.8660.866
SCSD w/o VQ 0.430 0.914 0.916 0.565 0.841 0.860
SCSD w/o cross view rec 0.442 0.918 0.921 0.553 0.837 0.859
SCSD w/o S fusion 0.445 0.919 0.922 0.570 0.844 0.864

3.6 ABLATION STUDY

Table 3 presents the ablation study of SCSD, where the gray background in the middle highlights
the full version of SCSD. The upper part removes different loss functions. Among them, Ldis KL

denotes the first term in Ldis, which encourages the student to imitate the output of the fused teacher.
We observe that removing any loss function leads to a performance drop of SCSD. The lower part
of the table removes certain structural designs. In the fifth row, “w/o VQ” indicates that vector
quantization is not used, and the continuous features {Z(v)}mv=1 output by the encoder are directly
employed. A clear performance drop is observed, since our multi-view shared codebook design
better supports consistent representation learning. In the sixth row, “w/o cross view rec” denotes
removing cross-view reconstruction and training with standard single-view reconstruction, which
also results in performance degradation to some extent. The last row, “w/o S fusion,” denotes re-
moving our weighted fusion strategy and replacing it with a simple masked average fusion strategy:
Pi,: = (

∑m
v=1 P

(v)
i,: Wi,v)/

∑m
v=1 Wi,v , where we observe a performance decline, especially on the

Pascal07 dataset. This is because Pascal07 has 20 labels, which provide a more reliable label correla-
tion matrix S, enabling our fusion strategy to better identify the quality of predictions from different
views. Overall, we find that the contributions of the multi-view shared codebook and self-distillation
are the most significant for the performance of SCSD.

4 CONCLUSION

In this paper, we propose a novel method for incomplete multi-view multi-label classification. First,
we use a multi-view shared codebook to learn consistent discrete representations across views, and
we further enhance the consistency of different view representations through a cross-view recon-
struction mechanism. Then, we allocate different weights by evaluating the ability of each view
prediction to preserve label correlation structures, and we perform weighted fusion to obtain the
fused prediction. Finally, we use the fused prediction as the teacher to guide the learning of each
view prediction, and we feed the knowledge of all views back into each view-specific branch through
the self-distillation loss, thereby improving the generalization ability of the model. Extensive exper-
iments demonstrate that the SCSD method effectively addresses the problem of multi-view multi-
label classification under dual-missing conditions.

REPRODUCIBILITY STATEMENT

All experiments in this paper are conducted on five publicly available multi-view multi-label
datasets, ensuring that no private or proprietary data are used. The pseudocode of the training
procedure is provided in Appendix A.2. We will make the code publicly available to ensure repro-
ducibility.
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A APPENDIX

A.1 RELATED WORK

Multi-View Multi-Label Learning. SIMM (Wu et al., 2019) jointly optimizes a confusion-
adversarial loss and a multi-label loss to exploit shared information, while imposing orthogonal
constraints on the shared subspace to preserve discriminative features. In addition, CDMM (Zhao
et al., 2021) models view consistency with independent classifiers, incorporates the Hilbert–Schmidt
independence criterion to capture diversity, and introduces label correlations and view contribution
factors to enhance performance. By contrast, D-VSM (Lyu et al., 2022) encodes view features with
deep GCNs and integrates cross-view relations within a unified graph. Furthermore, ELSMML (Liu
et al., 2023a) constructs a label correlation matrix using high-order strategies, combines dimension-
ality reduction to extract latent semantic features, introduces manifold regularization to preserve
structural information, and trains classifiers with an accelerated optimization algorithm.

Incomplete Multi-View Multi-Label Learning. iMVWL (Tan et al., 2018) learns cross-view rela-
tionships and weak label information simultaneously in the shared subspace, while capturing local
label correlations and predictor features. Similarly, NAIML (Li & Chen, 2021) alleviates label in-
sufficiency through consistency constraints and label structure modeling, and jointly models both
global and local structures in a common label space. In addition, DDINet (Wen et al., 2023) consists
of feature extraction, weighted fusion, classification, and decoding modules, effectively integrating
available data and labels under dual-missing scenarios. Meanwhile, MTD (Liu et al., 2024b) pro-
poses a masked dual-channel disentanglement framework that separates representations into shared
and private channels, and enhances feature learning with contrastive loss and graph regularization.
Furthermore, DRLS (Yan et al., 2025) extracts shared features via cross-view reconstruction, learns
view-specific features with mutual information constraints, and leverages label correlations to guide
semantic embeddings for preserving topological structures.

Algorithm 1: The training process of SCSD

Input: Incomplete multi-view data {X(v)}mv=1, missing label matrix Y , missing-view
indicator matrix W , missing-label indicator matrix G, hyperparameters α, λ, and τ ,
and training epochs H .

Output: Prediction P.
1 Initialize the model parameters. Use Eq 4 to compute the label correlation matrix S. Set

codebook initialized = False.
2 for h = 1 to H do
3 Extract multi-view continuous features {Z(v) = E(v)(X(v))}mv=1 through the encoders.
4 Split the non-missing features {Z(v)}mv=1 into feature segments

{Z̃(v)
i,: = [ z1, z2, . . . , zg ]

⊤ ∈ R g×(de/g) | i = 1, . . . , n, v = 1, . . . ,m, Wi,v ̸= 0}.
5 if codebook initialized == False then
6 Use all view features {Z̃(v)

i,: } within the current batch to perform k-means clustering
for initializing the codebook embeddings.

7 codebook initialized = True
8 Use Eq 1 to find the nearest codebook embedding et∗ for each zt, and concatenate them to

obtain the discrete features {Ẑ(v)}mv=1.
9 Obtain the cross-view reconstruction results through the decoders:

{X̂(j,v) = D(j)(Ẑ(v))}mv=1, j = 1, . . . ,m.
10 Obtain the predictions of each view through the classifiers: {P (v) = σ(F

(v)
cls (Ẑ

(v)))}mv=1.
11 Compute the weights according to Eq 5, 6, 7 and obtain the fused multi-view prediction P .
12 Compute the overall loss L according to Eq 10 and update the parameters.
13 h = h+ 1.

A.2 ALGORITHM

The training procedure of the SCSD model is provided in algorithm 1.
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Figure 4: The experimental results of the SCSD model under different view-missing rates, different
label-missing rates, and different training set proportions are reported. The figure presents two
datasets and three evaluation metrics.
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(b) Mirflickr

Figure 5: The experimental results on the remaining two datasets are obtained under the setting of
complete views, complete labels, and 70% training data. In the radar chart, the center indicates the
worst result, while the vertex indicates the best result.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Missing and training sample rates analysis. Figures 4a and 4b show the results of the SCSD
model under different view-missing rates when the label-missing rate is fixed at 50%. Figures 4c
and 4d present the results under different label-missing rates when the view-missing rate is fixed at
50%. As the view-missing rate or the label-missing rate gradually increases, the model performance
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Figure 6: The codebook utilization of the SCSD method is reported under the training setting of
50% missing views, 50% missing labels, and 70% training data, covering all five datasets.
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also decreases. However, our model is able to maintain relatively stable performance even when
the missing rate reaches 70%. Moreover, we observe that increasing the view-missing rate has a
greater impact on our model than increasing the label-missing rate. This is because our model relies
on the learned multi-view consistent representations, and the quality of the learned representations
decreases when the view-missing rate increases. Figures 4e and 4f show the results of SCSD under
50% missing views and 50% missing labels with different proportions of the training set. As the
proportion of the training set increases, the model performance also improves. Furthermore, our
model achieves a satisfactory result even under the extreme case of only 10% training data.

Additional comparative experiments. Figure 5 presents the results of SCSD on the remaining two
datasets, Pascal07 and Mirflickr. The training is conducted under the setting of complete views,
complete labels, and 70% training data. We observe that our SCSD model still outperforms the
compared methods on most metrics.

Codebook utilization analysis. Figure 6 shows the changes in codebook utilization of the SCSD
model on the validation set during the training process. We only present 10 epochs, because after-
ward all datasets maintain 100% codebook utilization until the end of training. From the figure, we
observe that SCSD reaches 100% codebook utilization within only a few epochs on all datasets and
keeps it stable throughout the subsequent training. This indicates that SCSD is able to fully activate
all embedding units in the shared codebook, thereby avoiding the codebook collapse problem (i.e.,
only a very small number of codebook vectors are frequently used while most vectors remain idle
and unactivated, leading to insufficient representation capacity and low information utilization). In
other words, the shared codebook design of SCSD not only preserves the rich representational capac-
ity of multi-view data but also effectively suppresses irrelevant features through a limited number of
codebook embeddings, thereby enhancing the generalization ability of the learned representations.

A.4 LARGE LANGUAGE MODEL USAGE STATEMENT

In this paper, we use a large language model to polish the introduction section.
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