
Representation Learning for
Event-based Visuomotor Policies

Sai Vemprala
Microsoft Research

Redmond, WA - 98052
savempra@microsoft.com

Sami Mian ∗
University of Pittsburgh
Pittsburgh, PA - 15260
sami.mian@pitt.edu

Ashish Kapoor
Microsoft Research

Redmond, WA - 98052
akapoor@microsoft.com

Abstract

Event-based cameras are dynamic vision sensors that provide asynchronous mea-
surements of changes in per-pixel brightness at a microsecond level. This makes
them significantly faster than conventional frame-based cameras, and an appealing
choice for high-speed navigation. While an interesting sensor modality, this asyn-
chronously streamed event data poses a challenge for machine learning techniques
that are more suited for frame-based data. In this paper, we present an event vari-
ational autoencoder and show that it is feasible to learn compact representations
directly from asynchronous spatiotemporal event data. Furthermore, we show that
such pretrained representations can be used for event-based reinforcement learning
instead of end-to-end reward driven perception. We validate this framework of
learning event-based visuomotor policies by applying it to an obstacle avoidance
scenario in simulation. Compared to techniques that treat event data as images, we
show that representations learnt from event streams result in faster policy training,
adapt to different control capacities, and demonstrate a higher degree of robustness.

1 Introduction

Autonomous navigation, which is driven by a tight coupling between perception and action, is
particularly challenging for fast, agile robots such as unmanned micro aerial vehicles (MAV) that are
often deployed in cluttered and low altitude areas. For such reactive navigation applications such
as obstacle avoidance, low sensor latency is the key to performing agile maneuvers successfully [1].
MAVs are also limited in their size and payload capacity, which constrains onboard sensor choices to
small, low-power sensors, and the computational load of the processing algorithms to be minimal.

Modern computer vision and machine learning techniques for perception and navigation typically
focus on analyzing data from conventional CMOS based cameras, in various modalities such as RGB
images, depth maps etc. While these cameras provide high resolution data, the main drawback of
these sensors is their speed, with most averaging output at a rate of 30-60 Hz. This makes such
sensors unable to scale up to the perception data rate required by agile navigation.

Inspired by biological vision, neuromorphic engineering has resulted in a novel sensor known as the
dynamic vision sensor, or an event-based camera [2]. These cameras detect and measure changes in
log-luminance on a per-pixel basis, and return information about ‘events’ with a temporal resolution
on the order of microseconds. Due to the increased sampling speed of these cameras and the minimal
processing needed to parse the data, perception using event cameras can be much faster than traditional
approaches. This can allow for faster control schemes to be used, as enough relevant environmental
information can be collected quickly in order to make informed control choices. Moreover, the events
are inherently generated by changes in brightness typically arising from motion. This makes event
cameras natural motion detectors and a good fit for learning control policies.

∗Work done while interning at Microsoft Research

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: Event cameras provide fast, asynchronous measurements of per-pixel log luminance changes. We
present a representation learning technique that can encode context from such spatiotemporal event bytestreams.
Subsequently, we show these low-dimensional representations are beneficial for learning visuomotor policies
through a simulated UAV obstacle avoidance task.

But the fundamentally different visual representation of event cameras poses significant challenges
to quick adoption. Event cameras produce fast and asynchronous spatiotemporal data, significantly
different from synchronous frame-based data expected by conventional machine learning algorithms.
In addition, the quality of the data recorded by an event camera is different from traditional perception
sensors; the sensors return low-level data that could vary significantly based on the firing order of
pixels, lighting conditions, reflections or shadows.

Previous research has approached this modality through two main classes of techniques. Some
approaches [3, 4] accumulate event data over time into a two dimensional frame, and use traditional
computer vision/convolutional neural network based techniques with these frame-based inputs.
Traditional CNN approaches combined with such accumulation fail to exploit the true advantages of
event cameras such as the microsecond-scale temporal resolution, and may prove to be too intensive
for high-speed action generation onboard constrained platforms. Another class of techniques involves
the usage of spiking neural networks (SNN) [5]. SNNs operate through spiking neurons to identify
spatio-temporal firings, making it a natural match for event cameras. Yet, training spiking neural
networks is hard, as they do not use standard backpropagation, and often require specialized hardware
to truly realize their efficiency [6, 7].

In this paper, we propose learning representations directly from raw event camera streams using
conventional (non-spiking) machine learning methods, and learning visuomotor policies over such
representations (Figure 1). We present an event variational autoencoder (eVAE) framework for
learning representations from event data in a way that allows for high temporal resolution as well
as invariance to data permutations and sparsity. The eVAE is equipped with an event feature
computation network that can process asynchronous data from arbitrary sequence lengths, or in a
recursive fashion. Inspired by the recent success of Transformer networks [8, 9, 10], the eVAE uses
a temporal embedding method that preserves the event timing information when computing latent
representations. Next, we show that such representations can be beneficial for reactive navigation, by
applying them as observations in a reinforcement learning (RL) framework. We show how training
RL policies over eVAE representations allows the control policy to generalize to different data rates
and even to out-of-distribution environments. We define obstacle avoidance for UAVs as our task
of interest and demonstrate how event camera data can be effectively utilized for avoidance at high
control rates. Through an event data simulator, we simulate scenarios where the UAV is assumed to
be controlled at up to 400 Hz, and show that the ability of the representations to handle sparse data
allows the policy to adapt to high control rates. The key contributions of our work are listed below.

1. We present an event variational autoencoder for unsupervised representation learning from
fast and asynchronous spatiotemporal event bytestream data.

2. We show that these event representations capture sufficient contextual information to be
useful in learning reactive visuomotor policies.

3. We train policies over event representations using reinforcement learning for obstacle
avoidance for UAVs in simulation and show that they outperform current state of the art in
event-based reinforcement learning.

4. We discuss advantages of using bytestream representations for policies, such as: adaptation
to different control capacities, robustness to environmental variations and noise.

2

2 Related Work

Vision-based representations and navigation: Variational autoencoders have been shown to be
effective in learning well structured low-dimensional representations from complex visual data
[11, 12, 13]. Leveraging such methods, recent research has focused on the decoupling of perception
and planning, showing that separate networks for representation and navigation is effective [14, 15].
As the representation is expected to capture rich salient information about the world with a degree of
invariance, this combination allows for higher sample efficiency and smaller policy network sizes
[16].

Feature learning from Event Cameras: Some of the early work conducted on processing event data
resulted in computing optical flow using the asynchronous data, focusing on high-speed computations
with minimal bandwidth [17]. Event representations included histograms of averaged time surfaces
(HATS), where temporal data is aggregated to create averaged data points capable of being used as
input for traditional techniques [18] and hierarchy of event-based time surfaces (HOTS), another
representation for pattern recognition [19].

Learning from Sequences and Sets: Learning from event data can be treated as a case of learning long,
variable length sequences. While conventional RNNs are found to be infeasible for such lengths,
approaches such as Phased LSTM [20] propose adding a time gate to LSTM for long sequences. If the
spatial and temporal parts were decoupled, the problem can be reformulated as permutation-invariant
learning from sets. Qi et al [21] present PointNet, which is a one such permutation invariant approach
aimed at learning from 3D point cloud data. Similarly, Lee et al [22] present the Set Transformer, an
attention-based learning method for sets.

Event Cameras and Machine Learning: From a machine learning perspective, Gehrig et al [23]
introduced a full end-to-end pipeline for learning to represent event-based data, which discusses
several variants such as event data aggregated into a grid-based representation, event spike tensors,
and 3D voxel grids. Asynchronous versions of convolutional neural networks are also being developed
to take advantage of the sparsity in data such as that of event cameras [24, 25]. Stacked spatial
LSTM networks were used with event sequences for pose relocalization in [4]. EV-FlowNet [26] is
an encoder-decoder architecture for self-supervised optical flow for events, which uses frame-based
inputs processed through convolutional layers. The asynchronous nature of event data was handled
through a permutation-invariant and recursive approach in EventNet [27]. Event camera based
perception was used in other applications as well, such as self-supervised learning of optical flow
[28], steering prediction for self driving cars [3]. Spiking neural networks were also used to examine
event-based data [29, 30, 31, 32, 33, 34].

Sensorimotor Policies with Event Cameras: Only very recently has there been work on combining
event camera data with sensorimotor policies. Event camera data was coupled with control for
autonomous UAV landing in [35], [36]. EVDodge [37] creates an avoidance system for UAVs
by using event data to track moving objects and infer safe avoidance maneuvers based on these
measurements, combining multiple modules such as homography, segmentation, with the actions
driven by a classical control policy. Event camera data was also used to power a closed-loop
control scheme for a UAV on a fixed bench setup by tracking roll angles and angular velocities in
[38]. Reinforcement learning using event camera data has only been explored very recently, using
accumulated event frames fed into CNN-based policy networks for ground robots [39] and for UAV
obstacle avoidance [40].

3 Representation Learning for Event Cameras

3.1 Event-based camera

An event based camera is a special vision sensor that measures changes in intensity levels inde-
pendently at each of its pixels. Given a pixel location (x, y), the fundamental working principle
of an event-based camera is to measure the change in logarithmic brightness at that pixel, i.e.,
∆log I({x, y}, t) where I is the photometric intensity. When this change in logarithmic brightness
exceeds a set threshold, the camera generates an ‘event’, reporting the time and location of change,
along with the ‘sign’ of the change. In contrast to conventional cameras which output a set number of
frames per second, an event camera outputs events sparsely and asynchronously in time as a stream
of bytes, which we refer to as an event ‘bytestream’. These events are produced at a non-uniform

3

rate, and the number can range from zero to millions of events per second. For example, the DAVIS
240 camera [41] has a theoretical maximum limit of 12 million events per second.

3.2 Definitions and Notations

For an event camera of resolution (H,W), an event can be defined as a tuple of four quantities
e = (t, x, y, p) where t is a global timestamp at which the event was reported by the camera, (x, y)
the pixel coordinates, and p the polarity. A sequence of events over a time window of τ can thus be
represented as Eτ = {ei|t < i < t+ τ}. When sliding a constant time window of τ over a longer
sequence of events, we can see that the length of Eτ will not be constant as the number of events
fired in that interval would change based on environmental or sensory considerations. The events in
Eτ can also be accumulated and represented as a corresponding event image frame IEτ .

3.3 Event bytestream processing

Given event data as an arbitrarily long bytestream Eτ , the objective of representation learning is to
map it to a compressed vector representing the latent state of the environment zτ through an encoder
function qe(Eτ). The challenges here are two-fold. First, due to the non-uniform and asynchronous
nature of the event camera data, the same scene when imaged multiple times by an event camera
could result in different permutations of the output. Hence, to handle the asynchronicity of event
cameras, we require a feature computation technique that is invariant to data ordering. Secondly,
while event sequences are time-based data, recurrent neural networks would prove to be infeasible
due to the often long sequence lengths. Decoupling the temporal information from the spatial/polarity
information alleviates this problem. We propose a backbone called the event context network (ECN)
to achieve this for event data.

The ECN can be thought of as a preprocessing neural network for event streams, similar to archi-
tectures aimed at learning unordered spatial data such as PointNet [21] and EventNet [27]. The
ECN takes an arbitrarily long list of events, and first computes a feature for each event. Eventually,
these features are passed through a symmetric function (similar to PointNet, we also use a max
operation), resulting in a global feature that is expected to condense information from all the events.
The symmetric nature of this function ensures that these events in a given list can be processed either
as a single batch, or recursively with any minibatch size to compute the output. We call the output of
this feature network a ‘context vector’. The ECN consists of three dense layers which, for N input
events, output an N ×D set of features. The data passed into these dense layers is only the (x, y, p)
part of the events - and we discuss how we handle the temporal information next.

3.3.1 Temporal embedding

Timestamps in the event data inherently encode the continuous-time representation of the scene
that was perceived during the given time slice, and it is important to retain them so the compressed
representation is sufficiently informative of the evolution of the world state. On the other hand,
incorporating the timestamp is not straightforward. Due to the asynchronicity of the data, a particular
event may have any arbitrary timestamp within a given sequence. Hence, including the temporal data
as an input to the ECN directly would interfere with the feature computation, as the global timestamps
are arbitrary values, and even the relative time difference of each event would change every time new
events are is received, necessitating a recomputation of the features.

Instead, we propose using ‘temporal embeddings’, inspired by the positional encoding principle
that was first proposed for Transformer networks in [8]. For an event set En with n events, we first
normalize the timestamps to [0, 1] such that the timestamp corresponding to the end of the window
maps to 1. This allows the model to encode recency of events in a generalizable way, thus allowing the
model to understand which events are more important than the others, as they represent recent activity
in the scene, regardless of the length of the event sequence. The ECN computes a d-dimensional
temporal feature for each normalized timestamp as follows.

te(t, 2i) = sin

(
100t

1000i/d

)
, te(t, 2i+ 1) = cos

(
100t

1000i/d

)
(1)

where i ∈ [0, d/2], t ∈ [0, 1]

4

Figure 2: Architecture of the event variational autoencoder (eVAE). Events from the bytestream are directly
processed by a PointNet-styled network to compute individual features. Temporal embeddings are added to
these features and the max operation results in a global context vector. This is then projected into a latent space,
and subsequently decoded into an ‘event image’.

These embeddings are summed up with their corresponding features. The ECN passes this N ×D
feature set through the symmetric function max to obtain a 1 ×D final context vector. The ECN
contains three dense layers for the feature computation along with the temporal embedding module
and the max pool operator (Figure 2).

3.4 Event Variational Autoencoder

When learning representations for control, it is important for an efficient dimensionality reduction
technique to create a smooth, continuous, and consistent representation. It is also desirable to have the
encoded vectors’ dimensions map to specific learned attributes of the perceived information, which
can then be exploited by the control policies for interpretable learning. To achieve this, we extend the
feature computation described in the previous section using variational autoencoders.

A variational autoencoder (VAE) [11] provides a probabilistic framework for mapping observations
into a latent space. A VAE thus requires its encoder to describe a probability distribution for each
latent attribute, instead of mapping attributes to outputs randomly. In the current framework, the
event VAE (eVAE) operates on the context vector computed by the ECN and attempts to project it
into a compressed latent space. Our encoder is composed of two dense layers as seen in Figure 2.
In the decoding phase, instead of trying to reconstruct the entire input stream, we use an ‘event
image decoder’ which attempts to decode the latent vector back to an approximate event image
corresponding to the input sequence. This event image is a single channel image frame that is the
result of accumulating all the events according to their pixel locations and polarity values, scaled by
the relative timestamps. Similar to a standard VAE loss, the eVAE attempts to learn a parametric
latent variable model by maximizing the marginal log-likelihood of the training data, composed of
the event image reconstruction loss and a KL-divergence loss. The combined loss can be expressed
as follows where the first term denotes the reconstruction loss, P (z) is the distribution over the latent
variable and Q(z|x) is the approximated posterior by the VAE.

l(θ) ≥
M∑

i=1

EQi(zi)[logpθ(xi|zi)]−DKL(Qi(zi|xi)||p(zi)) (2)

A key thing to note here is that this deviates from the conventional definition of an autoencoder, where
perfect reconstruction of input is sought. Instead, the eVAE’s encoder-decoder structure operates
upon the ‘context vector’, or the event features; and not the input stream itself. Hence, the goal is to
encode the essence of the environment in a generalizable fashion, thus utilizing the low-level nature
of the data. The decoder qD is another two dense-layer network that takes the (sampled) latent vector
zτ and outputs a reconstructed image ÎEτ .

The training is performed end-to-end, so the weights for the ECN and encoder-decoder are all learnt
simultaneously. While training, the eVAE can receive input data in two ways. The data can be passed
as a set of batches with a predefined number of events per batch, or can be sliced according to a
predefined time window where each window has a different number of events. During inference, as

5

in our application, the eVAE is expected to drive control commands, the length of the time window
corresponds to the control frequency of the vehicle. This allows the context vectors to be computed
either once at the end of the time window, or recursively at a faster rate where the context is computed
and updated internally, and mapped to the latent vector when the control command is needed. More
details about the eVAE training, computational effort etc. can be found in Appendices A and C.

4 Event-based Reinforcement Learning

Next, we focus on using event-based representations for navigation/planning purposes. While a
straightforward approach would be to learn perceptual features together with actions, this would
not scale well to event streams. As event cameras return data at a very high rate, relying on slow,
sparse rewards to learn features in an end-to-end manner would be a disadvantage. Recent research
has identified that generally, decoupling perception and policy networks and using intermediate
representations enables faster training, higher performance and generalization ability [42]. We adapt
this approach to event cameras, and propose using the eVAE representations in a reactive navigation
framework. We define our task as collision avoidance for a quadrotor drone: where in simulation, the
drone is expected to navigate from a start region to a goal region through an obstacle course, while
avoiding collisions with any obstacle. Regardless of global positions of the drone or the obstacle(s),
the drone should move in a particular direction that allows it to continue in collision-free areas, and
repeat this behavior till the drone reaches its goal state. Hence, navigation and obstacle avoidance
constitute a sequential decision making problem, which we address through reinforcement learning.

4.1 Background

We follow a conventional RL problem formulation for the reactive navigation task. As the quadrotor
navigates in the environment and obtains event camera data, we pass the sequences output by the
camera through the eVAE’s encoder and consider the output latent vector z to be the observation of
the world state, such that zt = O(.|st). The objective of the reinforcement learning approach is to
learn a good policy πθ(a|z).

We train our policies using the Proximal Policy Optimization (PPO) [43] algorithm. PPO is an
on-policy policy gradient method, a class of methods that generally seek to compute an estimator of
the policy gradient and use a stochastic gradient ascent algorithm over the network weights. The core
principle of PPO is to ‘clip’ the extent of policy updates in order to avoid disastrously large changes
to the policy. At time t, for an advantage function At and for a given ratio of probability under new
and old policies rt, PPO solves a modified objective function for the estimator that can be written as:

LclipPG (θ) = Ê
[
min(rt(θ)Ât, clip

1+ε
1−ε(rt(θ))Ât)

]
(3)

4.2 Implementation

We create an obstacle avoidance scenario within the high fidelity quadrotor simulator AirSim [44],
where a quadrotor drone is assumed to be equipped with a forward-facing event camera. We use an
event simulator using the logarithmic image difference event generation model simulate events. To
generate events across a span of time, it is necessary to first capture two images and compute the
difference. Particularly when a high control frequency is desired (i.e., events should be computed
and processed at a high rate), this complicates real time operation of the task. Due to this limitation,
we instead use a steppable simulation. To emulate different control frequencies, we assume that the
drone is moving at a constant predefined velocity and vary the step size of the actions dependent on
the desired frequency. We assume the drone to be a simplistic model capable of moving at a speed of
20 m/s; thus, for example, the step size for a 200 Hz control would be 0.1 m. Further details about
the RL training procedure and the environment can be found in Appendix D. In Figure 3, we show
the environments used for training and testing the policies. In the interest of furthering research,
we open source our representation learning and reinforcement learning framework along with the
environments 2.

For the evaluation, we use a total of four policies, with two policies using the eVAE representations
and two baselines.

2Our code and environments can be found at https://github.com/microsoft/event-vae-rl

6

(a) RL Training
environment

(b) RL Test environment (c) RL Test - Texture
change

(d) RL Test - Shape
change

Figure 3: Environments used for RL training/evaluation

• BRP-xy: Policy learnt over pretrained eVAE representations encoding only XY locations
from event data.

• BRP-full: Policy learnt over pretrained eVAE representations encoding full event data with
timestamps and polarities.

• EIP: A policy with a CNN trained end-to-end, using the event image as input (similar to
[39, 40])

• EIVAE: Policy learnt over a pretrained VAE that was trained using event images and a CNN
backbone.

5 Results and Discussion

5.1 Representation Learning

Our first set of experiments aims to validate the learning of compressed representations encoded from
the event sequences, and analyze the context-capturing ability of the eVAE. To train the eVAE, we
simulate event data through AirSim’s event simulator in three environments named poles, cones, and
gates (drone racing gates), each indicative of the object of interest in it. More details about these
environments can be found in Appendix B. The simulated event camera is assumed to be of 64× 64
resolution and the data is collected by navigating in 2D around the objects.

Qualitative performance: Figure 4a displays the general performance of the eVAE at learning context
out of event bytestreams. From the reconstructions, we observe that the eVAE latent space is able to
encode the underlying essence of the input bytestream: locations of the objects, patterns of polarities,
and information regarding the time of firing (brighter pixels in original/reconstruction indicate recent
firings) are captured. We note that by encoding the arrangement of polarities, the latent space
implicitly captures direction of motion, which in this case is due to the egomotion of the vehicle as
we assume the environments to be static. In Appendix F, we show through a qualitative comparison
that our proposed temporal embeddings result in better representation learning than the temporal
coding approach proposed for event data in [27].

Invariance to sparsity: A key feature of the eVAE is its generalization to varying lengths of an event
sequence, as the number of events at the input to the network can vary greatly. In Figure 4b, we show
a comparison of the decoded image, when the eVAE is given sequences of different lengths starting
at the same timestamp. The eVAE is quickly able to represent the object as a ‘gate’ once a minimum
number of events matching that spatial arrangement are seen, and this projection into the latent space
stays constant as more events are accumulated. Because the eVAE operates upon the context that is
extracted from the stream, even short sequences are mapped to informative parts of the latent space
based on the locations of the events. We compare this with a VAE trained on event images using a
CNN encoder (Figure 4c), whose reconstruction quality degrades with decreasing sequence length,
indicating the CNN’s difficulty at handling sparse images.

Generalization: This context capturing ability also extends to unseen appearances of obstacles,
highlighting the advantages of using low-level event data. In Figure 4e, we show samples of an eVAE
trained on the poles data trying to decode data from the cones environment, and vice versa. Main
environmental features (location of object, polarities etc.) are still captured by the latent vector, while
the decoded image maps to the objects the eVAE has seen during training. This creates a degree of
robustness in the eVAE specifically for reactive navigation: where the goal is to avoid obstacles no

7

(a) Comparison of expected event frames (top) and reconstructed (bottom). The eVAE
encodes locations of the obstacles and motion information from input sequences.

(b) eVAE reconstructions stay similar with
changing data lengths (100, 200, 500 events).

(c) EIVAE reconstructions degrade for
shorter lengths of event sequences.

(d) Latent space transitions corresponding
to the actions from a control policy form a
structured trajectory in the space.

(e) eVAE representations when applied to out-
of-distribution data, decode to seen objects
while preserving context.

Figure 4: Qualitative results of the event variational autoencoder learning from various types of sequences.

matter what their shape/appearance is. We show in the later sections that this allows policies to work
on radically different obstacle appearances without needing to retrain the policy.

Smoothness of latent space: As the eVAE combines the inherent manifold smoothness advantage of
VAEs with high frequency input data, we observe that the smoothness automatically arises within
the latent space as similar environmental factors map to the same latent variable values. We show
an example in Figure 4d where we take a representation trained on the gates environment, which
contains a set of drone racing gates, and observe the latent vectors when a drone navigates through
the gates while collecting event observations. As the drone executes this set of actions, we see that the
eVAE-encoded representation also shows a certain amount of structure. This way, state information
from event data can potentially be projected into an approximately locally linear latent space, which
has been shown to benefit high speed optimal control [45].

5.2 Reinforcement Learning for Obstacle Avoidance

Policy training and control performance: Next, we evaluate the results of using these pretrained
representations as observations in a reinforcement learning framework for collision avoidance.

Considering that the bytestream-based policies are being trained over well structured lower dimen-
sional representations, we observe improved performance during training. Comparison of the training
rewards over the first 500000 timesteps can be seen in Figure 5a, where the bytestream representation
policy (BRP) training is seen to have lower sample complexity than the event image policy (EIP)

8

0 100000 200000 300000 400000 500000
Timestep

−100

0

100

200

R
ew

ar
d

Training performance

BRP-xy
BRP-full
EIP
RGB
EIVAE

(a) eVAE representations allow faster train-
ing of policies compared to image-based poli-
cies.

45 Hz 100 Hz 200 Hz 400 Hz
Control frequency (Hz)

0

25

50

75

100

P
er

ce
n

ta
g

e
o

f
su

cc
es

s

Effect of control frequency on navigation performance

BRP-full

BRP-xy

EIP

(b) eVAE representations benefit high speed
control by being able to handle sparse se-
quences.

Normal Texture change Shape change
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)

Effect of environmental changes on policy performance
BRP-full

BRP-xy

EIP

(c) eVAE based policies generalize better to
obstacles of unseen textures or shapes.

THR: 0.05 THR: 0.2 THR: 0.5
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)

Effect of camera threshold on policy performance
BRP-full

BRP-xy

EIP

(d) eVAE based policies generalize to differ-
ent event thresholds than seen in training.

Off: 0% Off: 20% Off: 50%
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)

Effect of pixels not firing on policy performance
BRP-full

BRP-xy

EIP

(e) Policies trained over eVAE representa-
tions exhibit robustness to induced sparsity
in event data.

BA: 0% BA: 5% BA: 10%
0

25

50

75

100

125

D
is

ta
n

ce
tr

av
el

ed
(m

)
Effect of random pixel noise on policy performance

BRP-full

BRP-xy

EIP

(f) Policies trained over eVAE representa-
tions exhibit robustness to additional noisy
event firing.

Figure 5: Analysis of policy learning using event bytestream representations, compared against end-to-end
trained event image + CNN policy.

or RGB images. We also find that the EIVAE policy it results in worse performance, which we
hypothesize is due to its lower generalization ability to changing sequence lengths (e.g. very sparse
images), which causes the latent representations to vary greatly for sequences that are too short or too
long, making it harder to learn the corresponding actions.

Given the high data rate from event cameras, it is possible to control the vehicles at a higher
frequency than with standard RGB camera images. We conduct an experiment where different control
frequencies are simulated for the drone (varying the step size as discussed in section 4), and the
trained BRP and EIP policies are tested. As conventional CMOS cameras often output data around
30-60 Hz, we choose 45 Hz as the minimum for the test, and 400 Hz (motor level control frequency
of quadrotors) as the maximum. The results are seen in Figure 5b as success percentage over 40 trials
in two environments, with success defined as whether or not the drone navigates through a 100m long
obstacle course without collisions. We observe that all modalities suffer from low rate of success
at 45 Hz, demonstrating the drawbacks of slow control in densely populated obstacle courses. At
higher control frequencies, the motion of the camera and subsequently the number of events tend
to be smaller. Even in these cases, similar to the observation in figure Figure 4b, extracting a latent
representation allows the BRPs to be accurate, maintaining a high policy success rate at a simulated
data rate of even 400 Hz. Intuitively, being able to perceive and control faster also means that the
agent has enough chances to recover even in case of the occasional bad action. In contrast, we notice
a falloff in the accuracy of EIP at higher control frequencies, as the event images get much sparser,
which could prove to be problematic for a CNN.

9

Robustness to environmental changes: In the context of reactive navigation, the idea is to be able
to avoid any obstacle regardless of characteristics like shape, appearance, texture etc. Through the
BRP, we observe a key strength of the eVAE representations which is the generalization ability.
First, we evaluate the performance when transferring a policy trained on the poles environment to
unseen environments: one involving a change in texture of the obstacles, and another involving
a change in shape (Figure 3). From the results in Figure 5c, we see that the EIP exhibits good
performance on the environment it was trained on, but fails when applied to other environments due
to the radically different obstacle appearances. Whereas, as seen in section 5.1, the eVAE brings
a degree of invariance to the latent space projection, and hence the both BRPs perform better than
the EIP with differently textured/shaped obstacles. We analyze this by running 20 trials of a policy
under the test settings, and comparing the mean and standard error of the distance traveled without
collision. In Appendix F, we show an additional experiment with a more complex out-of-distribution
environment with obstacles that are of both different shape and texture containing moving textures,
where the BRPs still maintain better performance.

Robustness to camera parameters: Similarly, we examine the effect of event camera sensor parameters
on policy performance. For instance, in Figure 5d we examine the effect of the event threshold: which
is the parameter that determines at what level of intensity change should an event be fired. A low
value of threshold thus means a large number of events are fired, making the camera more sensitive
to motion. When tested with different camera thresholds, which results in changing amounts of detail
in the sequences, BRPs outperform the EIP. The eVAE affords the policies a degree of invariance to
this redundant/unnecessary data, whereas the end-to-end CNN policy does not.

We also observe the bytestream representations benefiting the policy in case of induced sparsity in
the event data. For this, we manually ‘turn off’, i.e., skip certain pixel locations in the event data.
Figure 5e shows that the bytestream representation helps the policy maintain accuracy even up to
the case where the event data is 50% sparser. Finally, event cameras are also prone to background
activity (BA) [46], i.e., events being fired when there is no real intensity change. To simulate this, we
add random events to the sequences. We observe that the BRPs still outperform the EIP (Figure 5f) -
but we note that the BRPs are more sensitive to this type of noise than induced sparsity. In case of
BA noise, BRP-full exhibits lower performance than BRP-xy, likely due to spurious polarities.

6 Conclusions
The event-based camera, being a low-level modality with fast data generation rate, is a good choice
for high speed reactive behavior. Instead of treating event data as images, we present an event
variational autoencoder that combines a spatiotemporal feature computation framework with the
inherent advantages of variational autoencoders, enabling the learning of smooth and consistent
representations directly from asynchronous event streams. By applying these representations in
a reinforcement learning pipeline for navigation, we show that these representations effectively
encode environmental context from fast streams, and can extract object locations, timing and motion
information from polarity etc. in a way that generalizes over different sequence lengths and different
types of objects, outperforming event image based methods.

Limitations and Future Work. We present this work as an initial exploration towards connecting
representation and reinforcement learning for event cameras. We have not tested this approach on
large, diverse datasets, and some changes might be required to adapt these representations for more
general representation learning with complex scenes. Our RL problem also focuses on a simpler
setting due to computational issues with event simulation because complex scenes create more
rendering overhead in simulators. Interesting avenues for future work could be leveraging GPUs
for event simulation, applying these methods to harder tasks such as drone racing, and investigating
recent advances in asynchronous convolutional networks [24] for representation learning.

Broader Impact. On one hand, event cameras bring in a lot of potential for fast perception-action
loops, such as for instance, integrating high speed reactive control with slow deliberative perception
(thinking fast and slow [47]) for better robot intelligence. The low-level nature of event data also
makes it a generally interesting candidate for vision, particularly for inducing shape bias as opposed
to texture bias that is commonly seen in CNNs [48], and for privacy-preserving vision. On the other
hand, there is potential for misuse with event cameras being used for surveillance, or drones equipped
with those used in unethical applications, which requires careful consideration.

10

References
[1] Davide Falanga, Suseong Kim, and Davide Scaramuzza. How fast is too fast? the role of perception latency

in high-speed sense and avoid. IEEE Robotics and Automation Letters, 4(2):1884–1891, 2019.

[2] David Tedaldi, Guillermo Gallego, Elias Mueggler, and Davide Scaramuzza. Feature detection and tracking
with the dynamic and active-pixel vision sensor (davis). In 2016 Second International Conference on
Event-based Control, Communication, and Signal Processing (EBCCSP), pages 1–7. IEEE, 2016.

[3] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and Davide Scaramuzza. Event-
based vision meets deep learning on steering prediction for self-driving cars. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5419–5427, 2018.

[4] Anh Nguyen, Thanh-Toan Do, Darwin G Caldwell, and Nikos G Tsagarakis. Real-time 6dof pose
relocalization for event cameras with stacked spatial lstm networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[5] Moritz B Milde, Hermann Blum, Alexander Dietmüller, Dora Sumislawska, Jörg Conradt, Giacomo
Indiveri, and Yulia Sandamirskaya. Obstacle avoidance and target acquisition for robot navigation using a
mixed signal analog/digital neuromorphic processing system. Frontiers in neurorobotics, 11:28, 2017.

[6] Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and Yuan Xie.
Rethinking the performance comparison between snns and anns. Neural Networks, 121:294–307, 2020.

[7] Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. Event-driven random back-
propagation: Enabling neuromorphic deep learning machines. Frontiers in neuroscience, 11:324, 2017.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[9] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon Shlens.
Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019.

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[11] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[12] I. Higgins, Loïc Matthey, A. Pal, C. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed, and Alexander
Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. In ICLR,
2017.

[13] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[14] Rogerio Bonatti, Ratnesh Madaan, Vibhav Vineet, Sebastian Scherer, and Ashish Kapoor. Learning
controls using cross-modal representations: Bridging simulation and reality for drone racing. arXiv
preprint arXiv:1909.06993, 2019.

[15] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on Machine
Learning, pages 2555–2565. PMLR, 2019.

[16] Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. Playing atari with six neurons. arXiv
preprint arXiv:1806.01363, 2018.

[17] Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara Bartolozzi, and Mandyam Srinivasan. Asynchronous
frameless event-based optical flow. Neural Networks, 27:32–37, 2012.

[18] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benosman. Hats: Histograms
of averaged time surfaces for robust event-based object classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1731–1740, 2018.

[19] Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi, and Ryad B Benosman. Hots: a
hierarchy of event-based time-surfaces for pattern recognition. IEEE transactions on pattern analysis and
machine intelligence, 39(7):1346–1359, 2016.

11

[20] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network training for
long or event-based sequences. Advances in neural information processing systems, 29:3882–3890, 2016.

[21] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[22] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant neural networks. In International Conference on
Machine Learning, pages 3744–3753. PMLR, 2019.

[23] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Davide Scaramuzza. End-to-end learning
of representations for asynchronous event-based data. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5633–5643, 2019.

[24] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide Scaramuzza. Event-based asyn-
chronous sparse convolutional networks. arXiv preprint arXiv:2003.09148, 2020.

[25] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. Asynchronous convolutional
networks for object detection in neuromorphic cameras. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[26] Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Ev-flownet: Self-supervised optical
flow estimation for event-based cameras. In Proceedings of Robotics: Science and Systems, Pittsburgh,
Pennsylvania, June 2018.

[27] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. Eventnet: Asynchronous recursive event processing.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3887–3896,
2019.

[28] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Unsupervised event-based
optical flow using motion compensation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 0–0, 2018.

[29] Evangelos Stromatias, Miguel Soto, Teresa Serrano-Gotarredona, and Bernabé Linares-Barranco. An
event-driven classifier for spiking neural networks fed with synthetic or dynamic vision sensor data.
Frontiers in neuroscience, 11:350, 2017.

[30] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities and challenges.
Frontiers in neuroscience, 12:774, 2018.

[31] Yu Miao, Huajin Tang, and Gang Pan. A supervised multi-spike learning algorithm for spiking neural
networks. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2018.

[32] Guangzhi Tang, Neelesh Kumar, and Konstantinos P Michmizos. Reinforcement co-learning of deep
and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware. arXiv
preprint arXiv:2003.01157, 2020.

[33] Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca. Efficient processing of spatio-
temporal data streams with spiking neural networks. Frontiers in Neuroscience, 14:439, 2020.

[34] Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer. Real-time classification
and sensor fusion with a spiking deep belief network. Frontiers in neuroscience, 7:178, 2013.

[35] Bas J Pijnacker Hordijk, Kirk YW Scheper, and Guido CHE De Croon. Vertical landing for micro air
vehicles using event-based optical flow. Journal of Field Robotics, 35(1):69–90, 2018.

[36] Jesse J Hagenaars, Federico Paredes-Vallés, Sander M Bohté, and Guido CHE de Croon. Evolved
neuromorphic control for high speed divergence-based landings of mavs. arXiv preprint arXiv:2003.03118,
2020.

[37] Nitin J Sanket, Chethan M Parameshwara, Chahat Deep Singh, Ashwin V Kuruttukulam, Cornelia
Fermuller, Davide Scaramuzza, and Yiannis Aloimonos. Evdodge: Embodied ai for high-speed dodging
on a quadrotor using event cameras. arXiv preprint arXiv:1906.02919, pages 31–45, 2019.

[38] Rika Sugimoto Dimitrova, Mathias Gehrig, Dario Brescianini, and Davide Scaramuzza. Towards low-
latency high-bandwidth control of quadrotors using event cameras. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 4294–4300. IEEE, 2020.

12

[39] Riku Arakawa and Shintaro Shiba. Exploration of reinforcement learning for event camera using car-like
robots. arXiv preprint arXiv:2004.00801, 2020.

[40] Nikolaus Salvatore, Sami Mian, Collin Abidi, and Alan George. A neuro-inspired approach to intelligent
collision avoidance and navigation. In 2020 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC).
IEEE, 2020.

[41] IniVision. DAVIS 240 dynamic vision sensor. https://inivation.com/wp-content/
uploads/2019/08/DAVIS240.pdf, 2019.

[42] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. Does computer vision matter for action? Science
Robotics, 4(30), 2019.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[44] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In Field and service robotics, pages 621–635. Springer, 2018.

[45] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In Advances in neural information processing
systems, pages 2746–2754, 2015.

[46] R Baldwin, Mohammed Almatrafi, Vijayan Asari, and Keigo Hirakawa. Event probability mask (epm) and
event denoising convolutional neural network (edncnn) for neuromorphic cameras. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1701–1710, 2020.

[47] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

[48] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland
Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and
robustness. arXiv preprint arXiv:1811.12231, 2018.

[49] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

[50] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann.
Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

[51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

13

