
Graph Neural Networks for Tensor Product
Decompositions of Lie Algebra Representations

Max Vargas 1 Helen Jenne 1 Davis Brown 1 2 Henry Kvinge 1 3

Abstract
Advances in AI promise to accelerate progress
in mathematics by automating the process of
pattern recognition within large mathematically-
motivated datasets. In this extended abstract, we
report on work-in-progress using graph neural
networks (GNNs) to predict properties of tensor
products of Lie algebra representations. First,
we impose a graph structure on the weight lat-
tice associated to a finite-dimensional semisimple
Lie algabra g. This structure is used to generate
datasets for predicting decomposition factors of
tensor products between finite-dimensional irre-
ducible representations of g. We find that while
this problem quickly grows in complexity, GNNs
have the potential to learn algorithmic rules for
predicting the structure of tensor products.

1. Introduction
In mathematics, the exhaustive analysis of large collections
of examples is a key step in extracting new mathematical
insights. At the same time, innovation in machine learn-
ing has increased the ability of domain scientists to un-
cover complex patterns in large repositories of data. This
includes datasets that have been curated for the purpose
of AI-assisted mathematical discovery (Chau et al., 2025).
Further, graph-based techniques have proven capable of ad-
vancing these frontiers in cases where individual instances
in the dataset can have complex pairwise relationships, and
have proven useful in several problems in discrete math (He
et al.; Cappart et al., 2023).

In this work we describe how graph neural networks (GNNs)
can be trained to predict the decomposition factors appear-
ing in tensor products of Lie algebra representations (a fun-

1Pacific Northwest National Laboratory, Seattle, USA
2University of Washington, Seattle, USA 3University of Penn-
sylvania, Philadelphia, USA. Correspondence to: Max Vargas
<max.vargas@pnnl.gov>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

damental problem in the field of representation theory). Sim-
ilar problems abound in representation theory, several of
which are open such as calculation of Kronecker coefficients
and tensor decompositions of symmetric group representa-
tions (Lee, 2023; Butbaia et al., 2025).

2. Background
Unless otherwise noted, all vector spaces considered
throughout will be finite-dimensional over the complex num-
bers. More detail can be found in the appendix.

2.1. Lie Algebras and Representations

Lie algebras play a foundational role in representation the-
ory with connections in (but not limited to) combinatorics,
number theory, and particle physics (Ray, 2006; Georgi,
2019). Stated briefly, they are vector spaces g which come
equipped with a special kind of noncommutative, nonasso-
ciative multiplication rule often written with bracket nota-
tion [·, ·] : g× g → g.

Rather than directly study g itself, it is standard to study
representations of g; these are vector spaces V together with
the data of an operation g×V → V, (x, v) 7→ x·v satisfying
certain properties. While it may seem circuitous to study
representations rather than g itself, it is well-known how to
recover the Lie algebra from its representations.

Among the first major achievements in a course on (semisim-
ple) Lie algebras is the classification of irreducible repre-
sentations. These are the representations, V , of g for which
there exists no proper linear subspace W ⊊ V which is
also a representation of g. The classic result identifies a
correspondence between irreducible representations and a
set, Λ+, known as the dominant weights of g. Elements of
Λ+ can be written as nonnegative integral combinations of
distinguished fundamental weights. We will denote by L(λ)
the irreducible representation associated to λ ∈ Λ+.

2.2. Tensor Products

Given two representations V and W of a Lie algebra g, the
vector space V ⊗ W naturally inherits the structure of a
representation of g. If L(λ) and L(µ) are two irreducible

1

GNNs for Tensor Product Decompositions

Table 1. Classification accuracies for GNNs trained for binary clas-
sification on tensor product decompositions.

g λ #LAYERS TEST ACC. BASELINE

sl3 (3,2) 3 99.7 75.8
sl3 (4,4) 9 99.8 85.7
sl3 (11,8) 18 93.0 82.7
sl4 (3,2,0) 3 99.9 85.4
sl4 (3,2,2) 6 99.0 93.4
sp6 (3,2,0) 6 96.4 51.6

representations associated to the dominant weights λ, µ ∈
Λ+, then L(λ)⊗ L(µ) will typically not be irreducible. We
can, however, decompose this tensor product as a direct sum
of irreducible representations:

L(λ)⊗ L(µ) ≃
⊕
ν∈Λ+

L(ν)⊕cνλµ ,

where the coefficients cνλµ are the multiplicities of L(ν). As
we are dealing with finite-dimensional representations, only
finitely many cνλµ are nonzero for any pair λ, µ.

3. Experiments and Results
In our experiments, we fix a Lie algebra g and dominant
weight λ ∈ Λ+. Our goal is to train a neural network
to predict which coefficients cνλµ are nonzero as µ and ν

vary. To take advantage of structural properties of Λ+, we
construct a graph using fundamental weights to define edges.

3.1. Graph Structures

We build a directed, weighted, graph Q whose vertices are
the dominant weights Λ+. Two vertices µ, ν are connected
if there exists a fundamental weight, λ∗, so that λ∗ = µ− ν.
The edge will be weighted by λ∗ itself. There will also be
an edge in the opposite direction weighted by −λ∗. Sample
data will consist of finite subgraphs Qµ ⊂ Q for each µ ∈
Λ+, corresponding to the product L(λ)⊗L(µ). The vertices
are given by

V(Qµ) = {ν ∈ Λ+ | ||µ− ν|| ≤ ||λ||} ∪ {src}.

We introduce a source vertex connected to µ to indicate
where the tensor product is taken. A GNN is then trained on
the graphs Qµ to predict, for each vertex ν ∈ Qµ, whether
or not the coefficient cνλν is nonzero.

3.2. Results

GNNs are able to learn features related to tensor product
decompositions, but the classification task quickly grows
in complexity. Results in several cases are shown in Ta-
ble 1. We learned that choices of successful architecture

Figure 1. Principal Component embeddings of graph vertices. Top:
Colored by graph distance from µ. Bottom: Colored whether the
coefficient cνλµ is zero.

will depend on properties of λ. In particular, the depth of
the network should grow with ||λ||. For example, with sl3, a
3-layer GNN trained on a dataset for λ = (3, 2) succeeded
in learning which coefficients cνλµ are nonzero, but even a
18-layer network struggled with the largest weight.

3.3. Exploring Embeddings

In order to glean information about the algorithmic process
underpinning a neural network trained on this task, we pro-
vide a brief exploration of the embeddings in a simple case
in Figure 1. In the first layer, the network is able to separate
a cluster of vertices ν with uniform values of cνλµ. This
cluster corresponds to some of the nearest vertices to µ for
each graph Qµ. Layer 2 shows improved clustering with
respect to the binary classification task with striations cor-
responding to the distance of a vertices from µ, suggesting
that this is a quick proxy for determining if cνλµ is nonzero.

4. Limitations and Future Work
Our experiments show the potential of using GNNs to learn
tensor product decompositions, but currently require us to
train a network for each weight λ. That said, there is value
in learning the rules for specific families of λ. Another
limitation is training efficiency and stability; a single model
can take over 12 hours to converge on an H100 GPU. Opti-
mizations to accelerate this process will let us explore the
algorithmic reasoning of GNNs that much quicker.

Structures that are strikingly analogous to those in this in-
vestigation persist throughout mathematics. It will be in-
teresting to apply this technique to new cases where the
combinatorics is less familiar.

2

GNNs for Tensor Product Decompositions

References
Butbaia, G., Lee, K.-H., and Ruehle, F. Interpretable ma-

chine learning for kronecker coefficients, 2025. URL
https://arxiv.org/abs/2502.11774.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Chau, H., Jenne, H., Brown, D., He, J., Raugas, M., Billey,
S., and Kvinge, H. Machine learning meets algebraic
combinatorics: A suite of datasets capturing research-
level conjecturing ability in pure mathematics, 2025. URL
https://arxiv.org/abs/2503.06366.

Georgi, H. Lie Algebras in Particle Physics: From Isospin
to Unified Theory. CRC Press, Boca Raton, FL, 2019.

He, J., Jenne, H., Chau, H., Brown, D., Raugas, M., Bil-
ley, S., and Kvinge, H. Machines and mathematical
mutations: Using GNNs to characterize quiver mutation
classes. Preprint. Accepted to ICML 2025.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks, 2020. URL https://arxiv.org/abs/
1905.12265.

Humphreys, J. E. Introduction to Lie Algebras and Repre-
sentation Theory. Springer, New York, NY, 1972.

Lee, K.-H. Machine-learning kronecker coefficients, 2023.
URL https://arxiv.org/abs/2306.04734.

Ray, U. Automorphic Forms and Lie Superalgebras.
Springer Dordrecht, 2006.

The Sage Developers. SageMath, the Sage Math-
ematics Software System (Version x.y.z), 2025.
https://www.sagemath.org.

3

https://arxiv.org/abs/2502.11774
https://arxiv.org/abs/2503.06366
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/2306.04734

GNNs for Tensor Product Decompositions

A. Extra Mathematical Background
Here, we provide basic information about Lie algebras. A
standard reference on the subject is (Humphreys, 1972).
Throughout this report, a Lie algebra g is a vector space
over the complex numbers, C, with a binary multiplication
operation [·, ·] : g × g → g that satisfies the following
properties for all a, b ∈ C and x, y, z ∈ g.

• (Bilinearity) [ax+ by, z] = a[x, y] + b[y, z]

• (Skew-symmetric) [x, x] = 0

• (Jacobi Identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

Notice that a Lie algebra does not satisfy the traditional
properties one might expect from a multiplication rule. In
particular, the Lie bracket does not have the associative prop-
erty ([x, [y, z]] ̸= [[x, y], z])) nor the commutative property
([x, y] ̸= [y, x]). In fact, g is guaranteed to always be anti-
commutative in that [x, y] = −[y, x] for all x, y ∈ g.

A.1. Representations and Weight Spaces

Rather than directly study g itself, it is standard to study rep-
resentations of g. A representation of g is the data of a vector
space V along with an operation g×V → V, (x, v) 7→ x · v
that satisfies the following properties.

• For any a, b ∈ C, x, y ∈ g and v ∈ V :

(ax+ by) · v = a(x · v) + b(y · v)

• For any a, b ∈ C, x ∈ g and v, w ∈ V :

x · (av + bw) = a(x · v) + b(y · v)

• For any x, y ∈ g and v ∈ V :

[x, y] · v = x · v − y · v

Given a representation V , there is a well-known decompo-
sition of V into weight spaces, V =

⊕
λ Vλ. While the

linear subspaces Vλ are generally not themselves proper
representations of g, they still carry a rich linear-algebraic
structure. The values of λ are called weights, and for any g
the permissible values of λ turn out to form a lattice inside
of some ambient Euclidean space.

A.2. Examples

We briefly present some introductory examples to illustrate
the type of combinatorial and graph-based data that we use
in our experiments. Many classical examples of Lie alge-
bras can be realized as vector subspaces of matrix algebras

— a vector space consisting of square matrices whose multi-
plication rule is given by matrix multiplication. We stress,
however, that the Lie bracket is not given by matrix multi-
plication. If we let Matn denote the set of n × n matrices
with coefficients in C, we can always view Matn as a Lie
algebra with a Lie bracket defined by

[X,Y] = XY − Y X (1)

for all matrices X,Y ∈ Matn. In the following examples,
the Lie bracket will be defined through this formula.

sl2:

The simplest Lie algebra with nontrivial structure is g = sl2,
the smallest in the family of special linear Lie algebras. This
Lie algebra can be explicitly described as a 3-dimensional
subspace of 2 × 2 matrices with trace zero. It has a basis
given by e = (0 1

0 0), f = (0 0
1 0), and h =

(
1 0
0 −1

)
. The Lie

bracket [·, ·] : g× g → g is given by Equation 1.

The weight lattice of sl2 is given by Z, with dominant
weights being those elements of Z+. There is a single fun-
damental weight corresponding to 1. Given two m,n ∈ Z+,
the tensor product L(m)⊗ L(n) can be decomposed using
the Clebsch-Gordon rule:

L(m)⊗ L(n) ≃
min(m,n)⊕

i=0

L(m+ n− 2i).

sl3:

The next simplest case is g = sl3. As before, this comprises
the linear subspace consisting of matrices whose trace is
zero. It is 8-dimensional with a basis given by the following
matrices.

e1 =
(

0 1 0
0 0 0
0 0 0

)
, f1 =

(
0 0 0
1 0 0
0 0 0

)
, h1 =

(
1 0 0
0 −1 0
0 0 0

)
e2 =

(
0 0 0
0 0 1
0 0 0

)
, f2 =

(
0 0 0
0 0 0
0 1 0

)
, h2 =

(
0 0 0
0 1 0
0 0 −1

)
[e1, e2] =

(
0 0 1
0 0 0
0 0 0

)
, [f1, f2] =

(
0 0 0
0 0 0
1 0 0

)

The fundamental weights of sl3 are given by λ1 =
(2/3,−1/3,−1/3) and λ2 = (2/3,−1/3,−1/3) and are
conventionally projected into two dimensions as shown in
Figure 2. However, here it is more convenient to identify
them with λ1 = (1, 0) and λ2 = (1, 1) using the SageMath
package (The Sage Developers, 2025). This identification
can be made through an intimate connection between sl3
and gl3, the general linear Lie algebra. The weight lattice
is those points of the form {aλ1 + bλ2 | a, b ∈ Z} ⊂ C2.
In Figure 2, we illustrate a standard depiction of the weight
lattice and dominant weights for sl3, as well as the nonzero
summands of the tensor product L((4.2))⊗ L((3, 2)).

4

GNNs for Tensor Product Decompositions

Figure 2. Illustration of the sl3 weight lattice and nonzero sum-
mands for the tensor product of representations L1 = (4, 2) and
L2 = (3, 2). Dominant weights are illustrated in teal, and nonzero
summands are in pink.

B. Neural Network Training
B.1. Architecture

Our experiments use the DirGINE architecture for message
passing (He et al.). This is a modified version of the Graph
Isomorphism Network (GIN) (Hu et al., 2020) to support
edge features that is built to operate with a message passing
scheme. The features for vertex v in the ℓ-th layer of the
network is given by

x(ℓ)
v = ReLU

(
W (ℓ)x(ℓ−1)

v +
∑
(u,v)

φ
(ℓ)
in (x(ℓ−1)

v , euv)

+
∑
(v,w)

φ
(ℓ)
out(x

(ℓ−1)
v , evw)

)
,

where W (ℓ), φ(ℓ)
in and φ

(ℓ)
out are learnable parameters and

functions.

B.2. Hyperparameters

We found that batch size did not play a critical role in the
convergence of our networks. Networks reported herein
were trained with a batch size of 512.

We swept over learning rates within [1e-1, 5e-2, 1e-2, 5e-3,
1e-3, 5e-4, 1e-4], in many cases finding that choices between
1e-3 and 1e-2 performed well. In cases where a GNN was
not able to considerably improve upon a baseline, we found
that the learning rate still had minor effect.

Other parameters that we experimented with included the
depth of the model and the dimension of the hidden layers.
As the size of λ grew, it was critical to also increase the
number of layers. This is likely due to the message passing

Table 2. Dataset sizes for various Lie algebras and λ.

g λ # GRAPHS MAX VERTICES COEFFS.

sl3 (3,2) 2271 49 107K
sl3 (4,4) 2271 113 237K
sl3 (11,8) 2271 613 1.1M
sl4 (3,2,0) 4343 257 852K
sl4 (3,2,2) 4343 515 1.6M
sp6 (3,2,0) 4340 257 852K

mechanism providing a limit on the rate that information
can propagate as the graph passes through the network. We
did not observe a significant effect from changing the hidden
dimension and found that 32 dimensions worked well.

B.3. Datasets

Table 2 presents some basic statistics regarding the datasets
generated for each Lie algebra and each dominant weight λ.
We focus on several examples where g is a Lie algebra of
classical type, specifically sl2, sl3, and sp3 corresponding
to special linear and symplectic Lie algebras. Fixing a
dominant weight λ ∈ Λ+, we use the SageMath software
package to compute a dataset of coefficients cνλµ for a set
µ ∈ Λ+ bounded by some fixed constant; |µ| ≤ C. We
then store this data using the graph structure outlined above.
After first constructing Qµ and then populating vertices ν
with nonzero coefficients cνλµ, the remaining vertices in Qµ

are stored with a null coefficient value.

B.4. Training Efficiency

Training the GNNs takes a surprising amount of wall-clock
time, and it would be a useful challenge to optimize the train-
ing efficiency of our method. Given that training efficiency
is not our main objective, a single training epoch could take
longer than 23 seconds on an H100 GPU for a 9-layer net-
work with a batch size of 512, a training set of 1580 graphs
(50 vertices each), and a batch size of 512. In the worst
case, training a GNN with g = sp6 and λ = (3, 2, 0) took
1.5 min/epoch and took 12 hours to complete 480 epochs
training epochs. Another artifact seen during training is that
it is common to see collapses. For example, in the training
metrics recorded in Figure 3, we see that the training loss
will suddenly and drastically shoot up and performance will
drop. The network then needs time to recover the lost gains.

5

GNNs for Tensor Product Decompositions

Figure 3. Training metrics for GNN training. In order of rows,
GNNs were trained with 3, 6, 18, 3, 6, and 6 layers.

6

