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Abstract001

While large language model (LLM) agents can002
effectively use external tools for complex real-003
world tasks, they require memory systems to004
leverage historical experiences. Current mem-005
ory systems enable basic storage and retrieval006
but lack sophisticated memory organization,007
despite recent attempts to incorporate graph008
databases. Moreover, these systems’ fixed op-009
erations and structures limit their adaptability010
across diverse tasks. To address this limitation,011
this paper proposes a novel agentic memory012
system for LLM agents that can dynamically or-013
ganize memories in an agentic way. Following014
the basic principles of the Zettelkasten method,015
we designed our memory system to create in-016
terconnected knowledge networks through dy-017
namic indexing and linking. When a new mem-018
ory is added, we generate a comprehensive note019
containing multiple structured attributes, in-020
cluding contextual descriptions, keywords, and021
tags. The system then analyzes historical mem-022
ories to identify relevant connections, establish-023
ing links where meaningful similarities exist.024
Additionally, this process enables memory evo-025
lution - as new memories are integrated, they026
can trigger updates to the contextual representa-027
tions and attributes of existing historical mem-028
ories, allowing the memory network to contin-029
uously refine its understanding. Our approach030
combines the structured organization principles031
of Zettelkasten with the flexibility of agent-032
driven decision making, allowing for more033
adaptive and context-aware memory manage-034
ment. Empirical experiments on six foundation035
models show superior improvement against036
existing SOTA baselines. The source code037
is available at https://anonymous.4open.038
science/r/AgenticMemory-76B4.039

1 Introduction040

Large Language Model (LLM) agents have demon-041

strated remarkable capabilities in various tasks,042

with recent advances enabling them to interact with043
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(a) Traditional memory system.
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(b) Our proposed agentic memory.

Figure 1: Traditional memory systems require prede-
fined memory access patterns specified in the workflow,
limiting their adaptability to diverse scenarios. Con-
trastly, our A-MEM enhances the flexibility of LLM
agents by enabling dynamic memory operations.

environments, execute tasks, and make decisions 044

autonomously (Mei et al., 2024; Wang et al., 2024; 045

Deng et al., 2023). They integrate LLMs with exter- 046

nal tools and delicate workflows to improve reason- 047

ing and planning abilities. Though LLM agent has 048

strong reasoning performance, it still needs a mem- 049

ory system to provide long-term interaction ability 050

with the external environment (Weng, 2023). 051

Existing memory systems (Packer et al., 2023; 052

Zhong et al., 2024; Roucher et al., 2025; Liu et al., 053

2024) for LLM agents provide basic memory stor- 054

age functionality. These systems require agent 055

developers to predefine memory storage struc- 056

tures, specify storage points within the workflow, 057

and establish retrieval timing. Meanwhile, to im- 058

prove structured memory organization, Mem0 (Dev 059

and Taranjeet, 2024), following the principles of 060

RAG (Edge et al., 2024; Lewis et al., 2020; Shi 061

et al., 2024), incorporates graph databases for stor- 062

age and retrieval processes. While graph databases 063

provide structured organization for memory sys- 064

tems, their reliance on predefined schemas and 065

relationships fundamentally limits their adaptabil- 066

ity. This limitation manifests clearly in practical 067
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scenarios - when an agent learns a novel mathe-068

matical solution, current systems can only catego-069

rize and link this information within their preset070

framework, unable to forge innovative connections071

or develop new organizational patterns as knowl-072

edge evolves. Such rigid structures, coupled with073

fixed agent workflows, severely restrict these sys-074

tems’ ability to generalize across new environments075

and maintain effectiveness in long-term interac-076

tions. The challenge becomes increasingly critical077

as LLM agents tackle more complex, open-ended078

tasks, where flexible knowledge organization and079

continuous adaptation are essential. Therefore, how080

to design a flexible and universal memory system081

that supports LLM agents’ long-term interactions082

remains a crucial challenge.083

In this paper, we introduce a novel agentic mem-084

ory system, named as A-MEM, for LLM agents085

that enables dynamic memory structuring with-086

out relying on static, predetermined memory op-087

erations. Our approach draws inspiration from088

the Zettelkasten method (Kadavy, 2021; Ahrens,089

2017), a sophisticated knowledge management sys-090

tem that creates interconnected information net-091

works through atomic notes and flexible linking092

mechanisms. Our system introduces an agentic093

memory architecture that enables autonomous and094

flexible memory management for LLM agents.095

For each new memory, we construct comprehen-096

sive notes, which integrates multiple representa-097

tions: structured textual attributes including sev-098

eral attributes and embedding vectors for similarity099

matching. Then A-MEM analyzes the historical100

memory repository to establish meaningful con-101

nections based on semantic similarities and shared102

attributes. This integration process not only cre-103

ates new links but also enables dynamic evolution104

when new memories are incorporated, they can105

trigger updates to the contextual representations of106

existing memories, allowing the entire memories to107

continuously refine and deepen its understanding108

over time. The contributions are summarized as:109

•We present A-MEM, an agentic memory sys-110

tem for LLM agents that enables autonomous gen-111

eration of contextual descriptions, dynamic estab-112

lishment of memory connections, and intelligent113

evolution of existing memories based on new ex-114

periences. This system equips LLM agents with115

long-term interaction capabilities without requiring116

predetermined memory operations.117

• We design an agentic memory update mech-118

anism where new memories automatically trigger119

two key operations: (1) Link Generation - automat- 120

ically establishing connections between memories 121

by identifying shared attributes and similar con- 122

textual descriptions, and (2) Memory Evolution - 123

enabling existing memories to dynamically evolve 124

as new experiences are analyzed, leading to the 125

emergence of higher-order patterns and attributes. 126

•We conduct comprehensive evaluations of our 127

system using a long-term conversational dataset, 128

comparing performance across six foundation mod- 129

els using six distinct evaluation metrics, demon- 130

strating significant improvements. Moreover, we 131

provide T-SNE visualizations to illustrate the struc- 132

tured organization of our agentic memory system. 133

2 Related Work 134

2.1 Memory for LLM Agents 135

Prior works on LLM agent memory systems have 136

explored various mechanisms for memory manage- 137

ment and utilization (Mei et al., 2024; Liu et al., 138

2024; Dev and Taranjeet, 2024; Zhong et al., 2024). 139

Some approaches complete interaction storage, 140

which maintains comprehensive historical records 141

through dense retrieval models (Zhong et al., 2024) 142

or read-write memory structures (Modarressi et al., 143

2023). Moreover, MemGPT (Packer et al., 2023) 144

leverages cache-like architectures to prioritize re- 145

cent information. Similarly, SCM (Wang et al., 146

2023a) proposes a Self-Controlled Memory frame- 147

work that enhances LLMs’ capability to maintain 148

long-term memory through a memory stream and 149

controller mechanism. However, these approaches 150

face significant limitations in handling diverse real- 151

world tasks. While they can provide basic memory 152

functionality, their operations are typically con- 153

strained by predefined structures and fixed work- 154

flows. These constraints stem from their reliance on 155

rigid operational patterns, particularly in memory 156

writing and retrieval processes. Such inflexibility 157

leads to poor generalization in new environments 158

and limited effectiveness in long-term interactions. 159

Therefore, designing a flexible and universal mem- 160

ory system that supports agents’ long-term interac- 161

tions remains a crucial challenge. 162

2.2 Retrieval-Augmented Generation 163

Retrieval-Augmented Generation (RAG) has 164

emerged as a powerful approach to enhance 165

LLMs by incorporating external knowledge 166

sources (Lewis et al., 2020; Borgeaud et al., 2022; 167

Gao et al., 2023). The standard RAG (Yu et al., 168
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2023a; Wang et al., 2023b) process involves in-169

dexing documents into chunks, retrieving relevant170

chunks based on semantic similarity, and augment-171

ing the LLM’s prompt with this retrieved context172

for generation. Advanced RAG systems (Lin et al.,173

2023; Ilin, 2023) have evolved to include sophisti-174

cated pre-retrieval and post-retrieval optimizations.175

Building upon these foundations, recent researches176

has introduced agentic RAG systems that demon-177

strate more autonomous and adaptive behaviors in178

the retrieval process. These systems can dynam-179

ically determine when and what to retrieve (Asai180

et al., 2023; Jiang et al., 2023), generate hypothet-181

ical responses to guide retrieval, and iteratively182

refine their search strategies based on intermediate183

results (Trivedi et al., 2022; Shao et al., 2023).184

However, while agentic RAG approaches demon-185

strate agency in the retrieval phase by au-186

tonomously deciding when and what to re-187

trieve (Asai et al., 2023; Jiang et al., 2023; Yu188

et al., 2023b), our agentic memory system exhibits189

agency at a more fundamental level through the190

autonomous evolution of its memory structure. In-191

spired by the Zettelkasten method, our system al-192

lows memories to actively generate their own con-193

textual descriptions, form meaningful connections194

with related memories, and evolve both their con-195

tent and relationships as new experiences emerge.196

This fundamental distinction in agency between197

retrieval versus storage and evolution distinguishes198

our approach from agentic RAG systems, which199

maintain static knowledge bases despite their so-200

phisticated retrieval mechanisms.201

3 Methodolodgy202

Our proposed agentic memory system draws inspi-203

ration from the Zettelkasten method, implementing204

a dynamic and self-evolving memory system that205

enables LLM agents to maintain long-term mem-206

ory without predetermined operations. The sys-207

tem’s design emphasizes atomic note-taking, flexi-208

ble linking mechanisms, and continuous evolution209

of knowledge structures.210

3.1 Note Construction211

Building upon the Zettelkasten method’s principles212

of atomic note-taking and flexible organization, we213

introduce an LLM-driven approach to memory note214

construction. When an agent interacts with its en-215

vironment, we construct structured memory notes216

that capture both explicit information and LLM-217

generated contextual understanding. Each memory 218

note mi in our collectionM = {m1,m2, ...,mN} 219

is represented as: 220

mi = {ci, ti,Ki, Gi, Xi, ei, Li} (1) 221

where ci represents the original interaction con- 222

tent, ti is the timestamp of the interaction, Ki de- 223

notes LLM-generated keywords that capture key 224

concepts, Gi contains LLM-generated tags for cat- 225

egorization, Xi represents the LLM-generated con- 226

textual description that provides rich semantic un- 227

derstanding, and Li maintains the set of linked 228

memories that share semantic relationships. To en- 229

rich each memory note with meaningful context 230

beyond its basic content and timestamp, we lever- 231

age an LLM to analyze the interaction and generate 232

these semantic components. The note construction 233

process involves prompting the LLM with carefully 234

designed templates Ps1: 235

Ki, Gi, Xi ← LLM(ci ∥ti ∥Ps1) (2) 236

Following the Zettelkasten principle of atomicity, 237

each note captures a single, self-contained unit of 238

knowledge. To enable efficient retrieval and link- 239

ing, we compute a dense vector representation via 240

a text encoder (Reimers and Gurevych, 2019) that 241

encapsulates all textual components of the note: 242

ei = fenc[ concat(ci,Ki, Gi, Xi) ] (3) 243

By using LLMs to generate enriched components, 244

we enable autonomous extraction of implicit knowl- 245

edge from raw interactions. The multi-faceted note 246

structure (Ki, Gi, Xi) creates rich representations 247

that capture different aspects of the memory, facili- 248

tating nuanced organization and retrieval. Addition- 249

ally, the combination of LLM-generated semantic 250

components with dense vector representations pro- 251

vides both human-interpretable context and com- 252

putationally efficient similarity matching. 253

3.2 Link Generation 254

Our system implements an autonomous link gener- 255

ation mechanism that enables new memory notes to 256

form meaningful connections without predefined 257

rules. When the constrctd memory note mn is 258

added to the system, we first leverage its semantic 259

embedding for similarity-based retrieval. For each 260

existing memory note mj ∈ M, we compute a 261

similarity score: 262

sn,j =
en · ej
|en||ej |

(4) 263
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Figure 2: Our A-MEM architecture comprises three integral parts in memory storage. During note construction, the
system processes new interaction memories and stores them as notes with multiple attributes. The link generation
process first retrieves the most relevant historical memories and then decide whether to establish connections
between them. The concept of a ’box’ describes that related memories become interconnected through their similar
contextual descriptions, analogous to the Zettelkasten method. However, our approach allows individual memories
to exist simultaneously within multiple different boxes. In the memory retrieval stage, the system analyzes queries
into constituent keywords and utilizes these keywords to search through the memory network.

The system then identifies the top-k most rele-264

vant memories:265

Mn
near = {mj | rank(sn,j) ≤ k,mj ∈M} (5)266

Based on these candidate nearest memories, we267

prompt the LLM to analyze potential connections268

based on their potential common attributes. For-269

mally, the link set of memory mn update like:270

Li ← LLM(mn ∥Mn
near ∥Ps2) (6)271

Each generated link li is structured as: Li =272

{mi, ...,mk}. By using embedding-based retrieval273

as an initial filter, we enable efficient scalability274

while maintaining semantic relevance. A-MEM275

can quickly identify potential connections even in276

large memory collections without exhaustive com-277

parison. More importantly, the LLM-driven anal-278

ysis allows for nuanced understanding of relation-279

ships that goes beyond simple similarity metrics.280

The language model can identify subtle patterns,281

causal relationships, and conceptual connections282

that might not be apparent from embedding simi-283

larity alone. We implements the Zettelkasten prin-284

ciple of flexible linking while leveraging modern285

language models. The resulting network emerges286

organically from memory content and context, en-287

abling natural knowledge organization.288

3.3 Memory Evolution 289

After creating links for the new memory, A-MEM 290

evolves the retrieved memories based on their tex- 291

tual information and relationships with the new 292

memory. For each memory mj in the nearest neigh- 293

bor setMn
near, the system determines whether to 294

update its context, keywords, and tags. This evolu- 295

tion process can be formally expressed as: 296

m∗
j ← LLM(mn ∥Mn

near \mj ∥mj ∥Ps3) (7) 297

The evolved memory m∗
j then replaces the origi- 298

nal memory mj in the memory setM. This evolu- 299

tionary approach enables continuous updates and 300

new connections, mimicking human learning pro- 301

cesses. As the system processes more memories 302

over time, it develops increasingly sophisticated 303

knowledge structures, discovering higher-order pat- 304

terns and concepts across multiple memories. This 305

creates a foundation for autonomous memory learn- 306

ing where knowledge organization becomes pro- 307

gressively richer through the ongoing interaction 308

between new experiences and existing memories. 309

3.4 Retrieve Relative Memory 310

In each interaction, our A-MEM performs context- 311

aware memory retrieval to provide the agent with 312

relevant historical information. Given a query text 313
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q from the current interaction, we first compute314

its dense vector representation using the same text315

encoder used for memory notes:316

eq = fenc(q) (8)317

The system then computes similarity scores be-318

tween the query embedding and all existing mem-319

ory notes inM using cosine similarity:320

sq,i =
eq · ei
|eq||ei|

,where ei ∈ mi, ∀mi ∈M (9)321

Then we retrieve the k most relevant memories322

from the historical memory storage to construct a323

contextually appropriate prompt.324

Mretrieved = {mi|rank(sq,i) ≤ k,mi ∈M}
(10)325

These retrieved memories provide relevant his-326

torical context that helps the agent better under-327

stand and respond to the current interaction. The328

retrieved context enriches the agent’s reasoning329

process by connecting the current interaction with330

related past experiences and knowledge stored in331

the memory system.332

4 Experiment333

4.1 Dataset and Evaluation334

To evaluate the effectiveness of instruction-aware335

recommendation in long-term conversations, we336

utilize the LoCoMo dataset (Maharana et al., 2024),337

which contains significantly longer dialogues com-338

pared to existing conversational datasets (Xu, 2021;339

Jang et al., 2023). While previous datasets con-340

tain dialogues with around 1K tokens over 4-5341

sessions, LoCoMo features much longer conver-342

sations averaging 9K tokens spanning up to 35 ses-343

sions, making it particularly suitable for evaluating344

models’ ability to handle long-range dependencies345

and maintain consistency over extended conver-346

sations. The LoCoMo dataset comprises diverse347

question types designed to comprehensively eval-348

uate different aspects of model understanding: (1)349

single-hop questions answerable from a single ses-350

sion; (2) multi-hop questions requiring information351

synthesis across sessions; (3) temporal reasoning352

questions testing understanding of time-related in-353

formation; (4) open-domain knowledge questions354

requiring integration of conversation context with355

external knowledge; and (5) adversarial questions356

assessing models’ ability to identify unanswerable 357

queries. In total, LoCoMo contains 7,512 question- 358

answer pairs across these categories. 359

For evaluation, we employ two primary metrics: 360

the F1 score to assess answer accuracy by balanc- 361

ing precision and recall, and BLEU-1 (Papineni 362

et al., 2002) to evaluate generated response quality 363

by measuring word overlap with ground truth re- 364

sponses. Also, we report the average token length 365

for answering one question. Besides, we report the 366

experiment results with four extra metrics includ- 367

ing ROUGE-L, ROUGE-2, METEOR and SBERT 368

Similarity in the Appendix A.2. 369

4.2 Implementation Details 370

For all baselines and our proposed method, we 371

maintain consistency by employing identical sys- 372

tem prompts as detailed in Appendix B. The de- 373

ployment of Qwen-1.5B/3B and Llama 3.2 1B/3B 374

models is accomplished through local instantiation 375

using Ollama 1, with LiteLLM 2 managing struc- 376

tured output generation. For GPT models, we uti- 377

lize the official structured output API. In our mem- 378

ory retrieval process, we primarily employ k=10 379

for top-k memory selection to maintain computa- 380

tional efficiency, while adjusting this parameter for 381

specific categories to optimize performance. The 382

detailed configurations of k can be found in Ap- 383

pendix A.4. For text embedding, we implement the 384

all-minilm-l6-v2 model across all experiments. 385

4.3 Baselines 386

LoCoMo (Maharana et al., 2024) takes a direct 387

approach by leveraging foundation models without 388

memory mechanisms for question answering tasks. 389

For each query, it incorporates the complete pre- 390

ceding conversation and questions into the prompt, 391

evaluating the model’s reasoning capabilities. 392

ReadAgent (Lee et al., 2024) tackles long-context 393

document processing through a sophisticated three- 394

step methodology: it begins with episode pagina- 395

tion to segment content into manageable chunks, 396

followed by memory gisting to distill each page 397

into concise memory representations, and con- 398

cludes with interactive look-up to retrieve pertinent 399

information as needed. 400

MemoryBank (Zhong et al., 2024) introduces an 401

innovative memory management system that main- 402

tains and efficiently retrieves historical interactions. 403

The system features a dynamic memory updating 404

1https://github.com/ollama/ollama
2https://github.com/BerriAI/litellm
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Table 1: Experimental results on LoCoMo dataset of QA tasks across five categories (Single Hop, Multi Hop,
Temporal, Open Domain, and Adversial) using different methods. Results are reported in F1 and BLEU-1 (%) scores.
The best performance is marked in bold, and our proposed method A-MEM (highlighted in gray) demonstrates
competitive performance across six foundation language models.

Model Method
Category Average

Single Hop Multi Hop Temporal Open Domain Adversial Ranking Token
F1 BLEU-1 F1 BLEU-1 F1 BLEU-1 F1 BLEU-1 F1 BLEU-1 F1 BLEU-1 Length

G
PT

4o
-m

in
i

LOCOMO 25.02 19.75 18.41 14.77 12.04 11.16 40.36 29.05 69.23 68.75 2.4 2.4 16,910
READAGENT 9.15 6.48 12.60 8.87 5.31 5.12 9.67 7.66 9.81 9.02 4.2 4.2 643
MEMORYBANK 5.00 4.77 9.68 6.99 5.56 5.94 6.61 5.16 7.36 6.48 4.8 4.8 432
MEMGPT 26.65 17.72 25.52 19.44 9.15 7.44 41.04 34.34 43.29 42.73 2.4 2.4 16,977
A-MEM 27.02 20.09 45.85 36.67 12.14 12.00 44.65 37.06 50.03 49.47 1.2 1.2 2,520

4o

LOCOMO 28.00 18.47 9.09 5.78 16.47 14.80 61.56 54.19 52.61 51.13 2.0 2.0 16,910
READAGENT 14.61 9.95 4.16 3.19 8.84 8.37 12.46 10.29 6.81 6.13 4.0 4.0 805
MEMORYBANK 6.49 4.69 2.47 2.43 6.43 5.30 8.28 7.10 4.42 3.67 5.0 5.0 569
MEMGPT 30.36 22.83 17.29 13.18 12.24 11.87 60.16 53.35 34.96 34.25 2.4 2.4 16,987
A-MEM 32.86 23.76 39.41 31.23 17.10 15.84 48.43 42.97 36.35 35.53 1.6 1.6 1,216

Q
w

en
2.

5

1.
5b

LOCOMO 9.05 6.55 4.25 4.04 9.91 8.50 11.15 8.67 40.38 40.23 3.4 3.4 16,910
READAGENT 6.61 4.93 2.55 2.51 5.31 12.24 10.13 7.54 5.42 27.32 4.6 4.6 752
MEMORYBANK 11.14 8.25 4.46 2.87 8.05 6.21 13.42 11.01 36.76 34.00 2.6 2.6 284
MEMGPT 10.44 7.61 4.21 3.89 13.42 11.64 9.56 7.34 31.51 28.90 3.4 3.4 16,953
A-MEM 18.23 11.94 24.32 19.74 16.48 14.31 23.63 19.23 46.00 43.26 1.0 1.0 1,300

3b

LOCOMO 4.61 4.29 3.11 2.71 4.55 5.97 7.03 5.69 16.95 14.81 3.2 3.2 16,910
READAGENT 2.47 1.78 3.01 3.01 5.57 5.22 3.25 2.51 15.78 14.01 4.2 4.2 776
MEMORYBANK 3.60 3.39 1.72 1.97 6.63 6.58 4.11 3.32 13.07 10.30 4.2 4.2 298
MEMGPT 5.07 4.31 2.94 2.95 7.04 7.10 7.26 5.52 14.47 12.39 2.4 2.4 16,961
A-MEM 12.57 9.01 27.59 25.07 7.12 7.28 17.23 13.12 27.91 25.15 1.0 1.0 1,137

L
la

m
a

3.
2

1b

LOCOMO 11.25 9.18 7.38 6.82 11.90 10.38 12.86 10.50 51.89 48.27 3.4 3.4 16,910
READAGENT 5.96 5.12 1.93 2.30 12.46 11.17 7.75 6.03 44.64 40.15 4.6 4.6 665
MEMORYBANK 13.18 10.03 7.61 6.27 15.78 12.94 17.30 14.03 52.61 47.53 2.0 2.0 274
MEMGPT 9.19 6.96 4.02 4.79 11.14 8.24 10.16 7.68 49.75 45.11 4.0 4.0 16,950
A-MEM 19.06 11.71 17.80 10.28 17.55 14.67 28.51 24.13 58.81 54.28 1.0 1.0 1,376

3b

LOCOMO 6.88 5.77 4.37 4.40 10.65 9.29 8.37 6.93 30.25 28.46 2.8 2.8 16,910
READAGENT 2.47 1.78 3.01 3.01 5.57 5.22 3.25 2.51 15.78 14.01 4.2 4.2 461
MEMORYBANK 6.19 4.47 3.49 3.13 4.07 4.57 7.61 6.03 18.65 17.05 3.2 3.2 263
MEMGPT 5.32 3.99 2.68 2.72 5.64 5.54 4.32 3.51 21.45 19.37 3.8 3.8 16,956
A-MEM 17.44 11.74 26.38 19.50 12.53 11.83 28.14 23.87 42.04 40.60 1.0 1.0 1,126

mechanism based on the Ebbinghaus Forgetting405

Curve theory, which intelligently adjusts memory406

strength according to time and significance. Ad-407

ditionally, it incorporates a user portrait building408

system that progressively refines its understanding409

of user personality through continuous interaction410

analysis.411

MemGPT (Packer et al., 2023) presents a novel412

virtual context management system drawing inspi-413

ration from traditional operating systems’ mem-414

ory hierarchies. The architecture implements a415

dual-tier structure: a main context (analogous to416

RAM) that provides immediate access during LLM417

inference, and an external context (analogous to418

disk storage) that maintains information beyond419

the fixed context window.420

4.4 Empricial Results421

In our empirical evaluation, we compared A-MEM422

with four competitive baselines including LoCoMo,423

ReadAgent, MemoryBank, and MemGPT on the424

LoCoMo dataset. For non-GPT foundation models,425

our A-MEM consistently outperforms all baselines426

across different categories, demonstrating the ef-427

fectiveness of our agentic memory approach. For 428

GPT-based models, while LoCoMo and MemGPT 429

show strong performance in certain categories like 430

Open Domain and Adversial tasks due to their ro- 431

bust pre-trained knowledge in simple fact retrieval, 432

our A-MEM demonstrates superior performance in 433

Multi-Hop tasks achieves at least two times better 434

performance that require complex reasoning chains. 435

The effectiveness of A-MEM stems from its novel 436

agentic memory architecture that enables dynamic 437

and structured memory management. Unlike tra- 438

ditional approaches that use static memory opera- 439

tions, our system creates interconnected memory 440

networks through atomic notes with rich contex- 441

tual descriptions, enabling more effective multi- 442

hop reasoning. The system’s ability to dynamically 443

establish connections between memories based on 444

shared attributes and continuously update existing 445

memory descriptions with new contextual informa- 446

tion allows it to better capture and utilize the rela- 447

tionships between different pieces of information. 448

Notably, A-MEM achieves these improvements 449

while maintaining significantly lower token length 450

requirements compared to LoCoMo and MemGPT 451
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Table 2: An ablation study was conducted to evaluate our proposed method against the GPT-4-mini base model.
The notation ’w/o’ indicates experiments where specific modules were removed. The abbreviations LG and ME
denote the link generation module and memory evolution module, respectively.

Method
Category

Single Hop Multi Hop Temporal Open Domain Adversial
F1 BLEU-1 F1 BLEU-1 F1 BLEU-1 F1 BLEU-1 F1 BLEU-1

w/o LG & ME 9.65 7.09 24.55 19.48 7.77 6.70 13.28 10.30 15.32 18.02
w/o ME 21.35 15.13 31.24 27.31 10.13 10.85 39.17 34.70 44.16 45.33
A-MEM 27.02 20.09 45.85 36.67 12.14 12.00 44.65 37.06 50.03 49.47

10 20 30 40 50
k values

12.5

15.0

17.5

20.0

22.5

25.0

27.5

19.91

25.87
26.97 27.02 26.81

14.36

19.45
20.19 20.09 20.15

F1
BLEU-1

(a) Single Hop

10 20 30 40 50
k values

35.0

37.5

40.0

42.5

45.0

47.5

43.60
45.08 45.22

45.85 45.60

35.53 35.85 36.44 36.67
35.76

F1
BLEU-1

(b) Multi Hop

10 20 30 40 50
k values

6

8

10

12

14

7.38

10.29

12.24

10.35

12.14

7.03

9.61
10.57

9.76

12.00
F1
BLEU-1

(c) Temporal

10 20 30 40 50
k values

25

30

35

40

45

31.15

33.67

38.15

41.55

44.55

25.43

28.31

32.12
34.32

37.02

F1
BLEU-1

(d) Open Domain

10 20 30 40 50
k values

30

35

40

45

50

30.29

39.11

43.86

50.03
47.76

29.49

38.35

43.19

49.47
47.24

F1
BLEU-1

(e) Adverisal

Figure 3: Impact of memory retrieval parameter k across different task categories with GPT-4o-mini as the base
model. While larger k values generally improve performance by providing richer historical context, the gains
diminish beyond certain thresholds, suggesting a trade-off between context richness and effective information
processing. This pattern is consistent across all evaluation categories, indicating the importance of balanced context
retrieval for optimal performance.

(around 1,200-2,500 tokens versus 16,900 tokens)452

through our selective top-k retrieval mechanism. In453

conclusion, our empirical results demonstrate that454

A-MEM successfully combines structured memory455

organization with dynamic memory evolution, lead-456

ing to superior performance in complex reasoning457

tasks while maintaining computational efficiency.458

4.5 Ablation Study459

To evaluate the effectiveness of the Link Generation460

(LG) and Memory Evolution (ME) modules, we461

conduct the ablation study by systematically remov-462

ing key components of our model. When both LG463

and ME modules are removed, the system exhibits464

substantial performance degradation, particularly465

in Multi Hop reasoning and Open Domain tasks.466

The system with only LG active (w/o ME) shows467

intermediate performance levels, maintaining sig- 468

nificantly better results than the version without 469

both modules, which demonstrates the fundamen- 470

tal importance of link generation in establishing 471

memory connections. Our full model, A-MEM, 472

consistently achieves the best performance across 473

all evaluation categories, with particularly strong 474

results in complex reasoning tasks. These results 475

reveal that while the link generation module serves 476

as a critical foundation for memory organization, 477

the memory evolution module provides essential 478

refinements to the memory structure. The ablation 479

study validates our architectural design choices and 480

highlights the complementary nature of these two 481

modules in creating an effective memory system. 482
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4.6 Hyperparameter Analysis483

We conducted extensive experiments to analyze484

the impact of the memory retrieval parameter k,485

which controls the number of relevant memories486

retrieved for each interaction. As shown in Fig-487

ure 3, we evaluated performance across different488

k values (10, 20, 30, 40, 50) on five categories of489

tasks using GPT-4-mini as our base model. The re-490

sults reveal an interesting pattern: while increasing491

k generally leads to improved performance, this492

improvement gradually plateaus and sometimes493

slightly decreases at higher values. This trend is494

particularly evident in Multi Hop and Open Do-495

main tasks. The observation suggests a delicate496

balance in memory retrieval - while larger k val-497

ues provide richer historical context for reasoning,498

they may also introduce noise and challenge the499

model’s capacity to process longer sequences ef-500

fectively. Our analysis indicates that moderate k501

values strike an optimal balance between context502

richness and information processing efficiency.503

4.7 Memory Analysis504

We present the t-SNE visualization in Figure 4 of505

memory embeddings to demonstrate the structural506

advantages of our agentic memory system. Ana-507

lyzing two dialogues sampled from long-term con-508

versations in LoCoMo (Maharana et al., 2024), we509

observe that A-MEM (shown in blue) consistently510

exhibits more coherent clustering patterns com-511

pared to the baseline system (shown in red). This512

structural organization is particularly evident in Di-513

alogue 2, where well-defined clusters emerge in514

the central region, providing empirical evidence for515

the effectiveness of our memory evolution mech-516

anism and contextual description generation. In517

contrast, the baseline memory embeddings dis-518

play a more dispersed distribution, demonstrating519

that memories lack structural organization without520

our link generation and memory evolution com-521

ponents. These visualization results validate that522

A-MEM can autonomously maintain meaningful523

memory structures through dynamic evolution and524

linking mechanisms. More results can be seen in525

Appendix A.3.526

5 Conclusion527

In this work, we introduced A-MEM, a novel agen-528

tic memory system that enables LLM agents to529

dynamically organize and evolve their memories530

without relying on predefined structures. Drawing531

−20 −10 0 10 20

−20

−10

0

10

20
A-mem
Base

(a) Dialogue 1

−20 −10 0 10 20

−20

−10

0

10

20

30 A-mem
Base

(b) Dialogue 2

Figure 4: T-SNE Visualization of Memory Embeddings
Showing More Organized Distribution with A-MEM
(blue) Compared to Base Memory (red) Across Dif-
ferent Dialogues. Base Memory represents A-MEM
without link generation and memory evolution.

inspiration from the Zettelkasten method, our sys- 532

tem creates an interconnected knowledge network 533

through dynamic indexing and linking mechanisms 534

that adapt to diverse real-world tasks. The system’s 535

core architecture features autonomous generation 536

of contextual descriptions for new memories and 537

intelligent establishment of connections with exist- 538

ing memories based on shared attributes. Further- 539

more, our approach enables continuous evolution 540

of historical memories by incorporating new ex- 541

periences and developing higher-order attributes 542

through ongoing interactions. Through extensive 543

empirical evaluation across six foundation models, 544

we demonstrated that A-MEM achieves superior 545

performance compared to existing state-of-the-art 546

baselines in long-term conversational tasks. Visual- 547

ization analysis further validates the effectiveness 548

of our memory organization approach. These re- 549

sults suggest that agentic memory systems can sig- 550

nificantly enhance LLM agents’ ability to utilize 551

long-term knowledge in complex environments. 552
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6 Limitation553

While our agentic memory system achieves promis-554

ing results, we acknowledge several areas for poten-555

tial future exploration. First, although our system556

dynamically organizes memories, the quality of557

these organizations may still be influenced by the558

inherent capabilities of the underlying language559

models. Different LLMs might generate slightly560

different contextual descriptions or establish vary-561

ing connections between memories. Additionally,562

while our current implementation focuses on text-563

based interactions, future work could explore ex-564

tending the system to handle multimodal informa-565

tion, such as images or audio, which could provide566

richer contextual representations.567
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APPENDIX753

A Experiment754

A.1 Evaluation Metric755

The F1 score represents the harmonic mean of precision and recall, offering a balanced metric that756

combines both measures into a single value. This metric is particularly valuable when we need to balance757

between complete and accurate responses:758

F1 = 2 · precision · recall
precision + recall

(11)759

where760

precision =
true positives

true positives + false positives
(12)761

recall =
true positives

true positives + false negatives
(13)762

In question-answering systems, the F1 score serves a crucial role in evaluating exact matches between763

predicted and reference answers. This is especially important for span-based QA tasks, where systems764

must identify precise text segments while maintaining comprehensive coverage of the answer.765

BLEU-1 (Papineni et al., 2002) provides a method for evaluating the precision of unigram matches766

between system outputs and reference texts:767

BLEU-1 = BP · exp(
1∑

n=1

wn log pn) (14)768

where769

BP =

{
1 if c > r

e1−r/c if c ≤ r
(15)770

pn =

∑
i

∑
k min(hik,mik)∑
i

∑
k hik

(16)771

Here, c is candidate length, r is reference length, hik is the count of n-gram i in candidate k, and mik772

is the maximum count in any reference. In QA, BLEU-1 evaluates the lexical precision of generated773

answers, particularly useful for generative QA systems where exact matching might be too strict.774

ROUGE-L (Lin, 2004) measures the longest common subsequence between the generated and reference775

texts.776

ROUGE-L =
(1 + β2)RlPl

Rl + β2Pl
(17)777

778

Rl =
LCS(X,Y )

|X|
(18)779

780

Pl =
LCS(X,Y )

|Y |
(19)781

where X is reference text, Y is candidate text, and LCS is the Longest Common Subsequence.782

ROUGE-2 (Lin, 2004) calculates the overlap of bigrams between the generated and reference texts.783

ROUGE-2 =

∑
bigram∈ref min(Countref(bigram),Countcand(bigram))∑

bigram∈ref Countref(bigram)
(20)784

Both ROUGE-L and ROUGE-2 are particularly useful for evaluating the fluency and coherence of785

generated answers, with ROUGE-L focusing on sequence matching and ROUGE-2 on local word order.786
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Table 3: Experimental results on LoCoMo dataset of QA tasks across five categories (Single Hop, Multi Hop,
Temporal, Open Domain, and Adversial) using different methods. Results are reported in ROUGE-2 and ROUGE-L
scores, abbreviated to RGE-2 and RGE-L. The best performance is marked in bold, and our proposed method
A-MEM (highlighted in gray) demonstrates competitive performance across six foundation language models.

Model Method
Category

Single Hop Multi Hop Temporal Open Domain Adversial
RGE-2 RGE-L RGE-2 RGE-L RGE-2 RGE-L RGE-2 RGE-L RGE-2 RGE-L

G
PT

4o
-m

in
i

LOCOMO 9.64 23.92 2.01 18.09 3.40 11.58 26.48 40.20 60.46 69.59
READAGENT 2.47 9.45 0.95 13.12 0.55 5.76 2.99 9.92 6.66 9.79
MEMORYBANK 1.18 5.43 0.52 9.64 0.97 5.77 1.64 6.63 4.55 7.35
MEMGPT 10.58 25.60 4.76 25.22 0.76 9.14 28.44 42.24 36.62 43.75
A-MEM 10.61 25.86 21.39 44.27 3.42 12.09 29.50 45.18 42.62 50.04

4o

LOCOMO 11.53 30.65 1.68 8.17 3.21 16.33 45.42 63.86 45.13 52.67
READAGENT 3.91 14.36 0.43 3.96 0.52 8.58 4.75 13.41 4.24 6.81
MEMORYBANK 1.84 7.36 0.36 2.29 2.13 6.85 3.02 9.35 1.22 4.41
MEMGPT 11.55 30.18 4.66 15.83 3.27 14.02 43.27 62.75 28.72 35.08
A-MEM 12.76 31.71 9.82 25.04 6.09 16.63 33.67 50.31 30.31 36.34

Q
w

en
2.

5

1.
5b

LOCOMO 1.39 9.24 0.00 4.68 3.42 10.59 3.25 11.15 35.10 43.61
READAGENT 0.74 7.14 0.10 2.81 3.05 12.63 1.47 7.88 20.73 27.82
MEMORYBANK 1.51 11.18 0.14 5.39 1.80 8.44 5.07 13.72 29.24 36.95
MEMGPT 1.16 11.35 0.00 7.88 2.87 14.62 2.18 9.82 23.96 31.69
A-MEM 4.88 17.94 5.88 27.23 3.44 16.87 12.32 24.38 36.32 46.60

3b

LOCOMO 0.49 4.83 0.14 3.20 1.31 5.38 1.97 6.98 12.66 17.10
READAGENT 0.08 4.08 0.00 1.96 1.26 6.19 0.73 4.34 7.35 10.64
MEMORYBANK 0.43 3.76 0.05 1.61 0.24 6.32 1.03 4.22 9.55 13.41
MEMGPT 0.69 5.55 0.05 3.17 1.90 7.90 2.05 7.32 10.46 14.39
A-MEM 2.91 12.42 8.11 27.74 1.51 7.51 8.80 17.57 21.39 27.98

L
la

m
a

3.
2

1b

LOCOMO 2.51 11.48 0.44 8.25 1.69 13.06 2.94 13.00 39.85 52.74
READAGENT 0.53 6.49 0.00 4.62 5.47 14.29 1.19 8.03 34.52 45.55
MEMORYBANK 2.96 13.57 0.23 10.53 4.01 18.38 6.41 17.66 41.15 53.31
MEMGPT 1.82 9.91 0.06 6.56 2.13 11.36 2.00 10.37 38.59 50.31
A-MEM 4.82 19.31 1.84 20.47 5.99 18.49 14.82 29.78 46.76 60.23

3b

LOCOMO 0.98 7.22 0.03 4.45 2.36 11.39 2.85 8.45 25.47 30.26
READAGENT 2.47 1.78 3.01 3.01 5.07 5.22 3.25 2.51 15.78 14.01
MEMORYBANK 1.83 6.96 0.25 3.41 0.43 4.43 2.73 7.83 14.64 18.59
MEMGPT 0.72 5.39 0.11 2.85 0.61 5.74 1.45 4.42 16.62 21.47
A-MEM 6.02 17.62 7.93 27.97 5.38 13.00 16.89 28.55 35.48 42.25

METEOR (Banerjee and Lavie, 2005) computes a score based on aligned unigrams between the 787

candidate and reference texts, considering synonyms and paraphrases. 788

METEOR = Fmean · (1− Penalty) (21) 789
790

Fmean =
10P ·R
R+ 9P

(22) 791

792

Penalty = 0.5 · (ch
m

)3 (23) 793

where P is precision, R is recall, ch is number of chunks, and m is number of matched unigrams. 794

METEOR is valuable for QA evaluation as it considers semantic similarity beyond exact matching, 795

making it suitable for evaluating paraphrased answers. 796

SBERT Similarity (Reimers and Gurevych, 2019) measures the semantic similarity between two texts 797

using sentence embeddings. 798

SBERT_Similarity = cos(SBERT(x),SBERT(y)) (24) 799
800

cos(a, b) =
a · b
∥a∥∥b∥

(25) 801

SBERT(x ) represents the sentence embedding of text. SBERT Similarity is particularly useful for 802

evaluating semantic understanding in QA systems, as it can capture meaning similarities even when the 803

lexical overlap is low. 804

13



Table 4: Experimental results on LoCoMo dataset of QA tasks across five categories (Single Hop, Multi Hop,
Temporal, Open Domain, and Adversial) using different methods. Results are reported in METEOR and SBERT
Similarity scores, abbreviated to ME and SBERT. The best performance is marked in bold, and our proposed method
A-MEM (highlighted in gray) demonstrates competitive performance across six foundation language models.

Model Method
Category

Single Hop Multi Hop Temporal Open Domain Adversial
ME SBERT ME SBERT ME SBERT ME SBERT ME SBERT

G
PT

4o
-m

in
i

LOCOMO 15.81 47.97 7.61 52.30 8.16 35.00 40.42 57.78 63.28 71.93
READAGENT 5.46 28.67 4.76 45.07 3.69 26.72 8.01 26.78 8.38 15.20
MEMORYBANK 3.42 21.71 4.07 37.58 4.21 23.71 5.81 20.76 6.24 13.00
MEMGPT 15.79 49.33 13.25 61.53 4.59 32.77 41.40 58.19 39.16 47.24
A-MEM 16.36 49.46 23.43 70.49 8.36 38.48 42.32 59.38 45.64 53.26

4o

LOCOMO 16.34 53.82 7.21 32.15 8.98 43.72 53.39 73.40 47.72 56.09
READAGENT 7.86 37.41 3.76 26.22 4.42 30.75 9.36 31.37 5.47 12.34
MEMORYBANK 3.22 26.23 2.29 23.49 4.18 24.89 6.64 23.90 2.93 10.01
MEMGPT 16.64 55.12 12.68 35.93 7.78 37.91 52.14 72.83 31.15 39.08
A-MEM 17.53 55.96 13.10 45.40 10.62 38.87 41.93 62.47 32.34 40.11

Q
w

en
2.

5

1.
5b

LOCOMO 4.99 32.23 2.86 34.03 5.89 35.61 8.57 29.47 40.53 50.49
READAGENT 3.67 28.20 1.88 27.27 8.97 35.13 5.52 26.33 24.04 34.12
MEMORYBANK 5.57 35.40 2.80 32.47 4.27 33.85 10.59 32.16 32.93 42.83
MEMGPT 5.40 35.64 2.35 39.04 7.68 40.36 7.07 30.16 27.24 40.63
A-MEM 9.49 43.49 11.92 61.65 9.11 42.58 19.69 41.93 40.64 52.44

3b

LOCOMO 2.00 24.37 1.92 25.24 3.45 25.38 6.00 21.28 16.67 23.14
READAGENT 1.78 21.10 1.69 20.78 4.43 25.15 3.37 18.20 10.46 17.39
MEMORYBANK 2.37 17.81 2.22 21.93 3.86 20.65 3.99 16.26 15.49 20.77
MEMGPT 3.74 24.31 2.25 27.67 6.44 29.59 6.24 22.40 13.19 20.83
A-MEM 6.25 33.72 14.04 62.54 6.56 30.60 15.98 33.98 27.36 33.72

L
la

m
a

3.
2

1b

LOCOMO 5.77 38.02 3.38 45.44 6.20 42.69 9.33 34.19 46.79 60.74
READAGENT 2.97 29.26 1.31 26.45 7.13 39.19 5.36 26.44 42.39 54.35
MEMORYBANK 6.77 39.33 4.43 45.63 7.76 42.81 13.01 37.32 50.43 60.81
MEMGPT 5.10 32.99 2.54 41.81 3.26 35.99 6.62 30.68 45.00 61.33
A-MEM 9.01 45.16 7.50 54.79 8.30 43.42 22.46 47.07 53.72 68.00

3b

LOCOMO 3.69 27.94 2.96 20.40 6.46 32.17 6.58 22.92 29.02 35.74
READAGENT 1.21 17.40 2.33 12.02 3.39 19.63 2.46 14.63 14.37 21.25
MEMORYBANK 3.84 25.06 2.73 13.65 3.05 21.08 6.35 22.02 17.14 24.39
MEMGPT 2.78 22.06 2.21 14.97 3.63 23.18 3.47 17.81 20.50 26.87
A-MEM 9.74 39.32 13.19 59.70 8.09 32.27 24.30 42.86 39.74 46.76

A.2 Comparison Results805

Our comprehensive evaluation using ROUGE-2, ROUGE-L, METEOR, and SBERT metrics demonstrates806

that A-MEM achieves superior performance while maintaining remarkable computational efficiency.807

Through extensive empirical testing across various model sizes and task categories, we have established808

A-MEM as a more effective approach compared to existing baselines, supported by several compelling809

findings. In our analysis of non-GPT models, specifically Qwen2.5 and Llama 3.2, A-MEM consistently810

outperforms all baseline approaches across all metrics. The Multi-Hop category showcases particularly811

striking results, where Qwen2.5-15b with A-MEM achieves a ROUGE-L score of 27.23, dramatically812

surpassing LoComo’s 4.68 and ReadAgent’s 2.81 - representing a nearly six-fold improvement. This813

pattern of superiority extends consistently across METEOR and SBERT scores. When examining GPT-814

based models, our results reveal an interesting pattern. While LoComo and MemGPT demonstrate strong815

capabilities in Open Domain and Adversarial tasks, A-MEM shows remarkable superiority in Multi-816

Hop reasoning tasks. Using GPT-4o-mini, A-MEM achieves a ROUGE-L score of 44.27 in Multi-Hop817

tasks, more than doubling LoComo’s 18.09. This significant advantage maintains consistency across818

other metrics, with METEOR scores of 23.43 versus 7.61 and SBERT scores of 70.49 versus 52.30.819

The significance of these results is amplified by A-MEM’s exceptional computational efficiency. Our820

approach requires only 1,200-2,500 tokens, compared to the substantial 16,900 tokens needed by LoComo821

and MemGPT. This efficiency stems from two key architectural innovations: First, our novel agentic822
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Table 5: Selection of k values in retriever across specific categories and model choices.

Model Single Hop Multi Hop Temporal Open Domain Adversial

GPT-4o-mini 40 40 50 50 40
GPT-4o 40 40 50 50 40
Qwen2.5-1.5b 10 10 10 10 10
Qwen2.5-3b 10 10 50 10 10
Llama3.2-1b 10 10 10 10 10
Llama3.2-3b 10 20 10 10 10

memory architecture creates interconnected memory networks through atomic notes with rich contextual 823

descriptions, enabling more effective capture and utilization of information relationships. Second, our 824

selective top-k retrieval mechanism facilitates dynamic memory evolution and structured organization. 825

The effectiveness of these innovations is particularly evident in complex reasoning tasks, as demonstrated 826

by the consistently strong Multi-Hop performance across all evaluation metrics. 827

A.3 Memory Analysis 828

In addition to the memory visualizations of the first two dialogues shown in the main text, we present 829

additional visualizations in Fig.5 that demonstrate the structural advantages of our agentic memory 830

system. Through analysis of two dialogues sampled from long-term conversations in LoCoMo(Maharana 831

et al., 2024), we observe that A-MEM (shown in blue) consistently produces more coherent clustering 832

patterns compared to the baseline system (shown in red). This structural organization is particularly 833

evident in Dialogue 2, where distinct clusters emerge in the central region, providing empirical support 834

for the effectiveness of our memory evolution mechanism and contextual description generation. In 835

contrast, the baseline memory embeddings exhibit a more scattered distribution, indicating that memories 836

lack structural organization without our link generation and memory evolution components. These 837

visualizations validate that A-MEM can autonomously maintain meaningful memory structures through 838

its dynamic evolution and linking mechanisms. 839

A.4 Hyperparameters setting 840

All hyperparameter k values are presented in Table 5. For models that have already achieved state-of-the- 841

art (SOTA) performance with k=10, we maintain this value without further tuning. 842
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Figure 5: T-SNE Visualization of Memory Embeddings Showing More Organized Distribution with A-MEM (blue)
Compared to Base Memory (red) Across Different Dialogues. Base Memory represents A-MEM without link
generation and memory evolution.
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B Prompt Templates and Examples 843

844

B.1 Prompt Template of Note Construction 845

The prompt template in Note Construction: Ps1

Generate a structured analysis of the following content by:
1. Identifying the most salient keywords (focus on nouns, verbs, and key
concepts)
2. Extracting core themes and contextual elements
3. Creating relevant categorical tags
Format the response as a JSON object:
{
"keywords": [ // several specific, distinct keywords that capture key concepts
and terminology // Order from most to least important // Don’t include keywords
that are the name of the speaker or time // At least three keywords, but don’t
be too redundant. ],
"context": // one sentence summarizing: // - Main topic/domain // - Key
arguments/points // - Intended audience/purpose ,
"tags": [ // several broad categories/themes for classification // Include
domain, format, and type tags // At least three tags, but don’t be too redundant.
]
}
Content for analysis:

846

B.2 Prompt Template of Link Generation 847

The prompt template in Link Generation: Ps2

You are an AI memory evolution agent responsible for managing and evolving a
knowledge base.
Analyze the the new memory note according to keywords and context, also with
their several nearest neighbors memory.
The new memory context:
{context} content: {content}
keywords: {keywords}
The nearest neighbors memories: {nearest_neighbors_memories}
Based on this information, determine:
Should this memory be evolved? Consider its relationships with other memories.

848
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B.3 Prompt Template of Memory Evolution849

The prompt template in Memory Evolution: Ps3

You are an AI memory evolution agent responsible for managing and evolving a
knowledge base.
Analyze the the new memory note according to keywords and context, also with
their several nearest neighbors memory.
Make decisions about its evolution.
The new memory context:{context}
content: {content}
keywords: {keywords}
The nearest neighbors memories:{nearest_neighbors_memories}
Based on this information, determine:
1. What specific actions should be taken (strengthen, update_neighbor)?
1.1 If choose to strengthen the connection, which memory should it be connected
to? Can you give the updated tags of this memory?
1.2 If choose to update neighbor, you can update the context and tags of these
memories based on the understanding of these memories.
Tags should be determined by the content of these characteristic of these
memories, which can be used to retrieve them later and categorize them.
All the above information should be returned in a list format according to the
sequence: [[new_memory],[neighbor_memory_1],...[neighbor_memory_n]]
These actions can be combined.
Return your decision in JSON format with the following structure: {{
"should_evolve": true/false,
"actions": ["strengthen", "merge", "prune"],
"suggested_connections": ["neighbor_memory_ids"],
"tags_to_update": ["tag_1",..."tag_n"],
"new_context_neighborhood": ["new context",...,"new context"],
"new_tags_neighborhood": [["tag_1",...,"tag_n"],...["tag_1",...,"tag_n"]],
}}

850
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B.4 Examples of Q/A with A-MEM 851

Example:
Question 686: Which hobby did Dave pick up in October 2023?
Prediction: photography
Reference: photography
talk start time:10:54 am on 17 November, 2023
memory content: Speaker Davesays : Hey Calvin, long time no talk! A lot has
happened. I’ve taken up photography and it’s been great - been taking pics of
the scenery around here which is really cool.
memory context: The main topic is the speaker’s new hobby of photography,
highlighting their enjoyment of capturing local scenery, aimed at engaging a
friend in conversation about personal experiences.
memory keywords: [’photography’, ’scenery’, ’conversation’, ’experience’,
’hobby’]
memory tags: [’hobby’, ’photography’, ’personal development’, ’conversation’,
’leisure’]
talk start time:6:38 pm on 21 July, 2023
memory content: Speaker Calvinsays : Thanks, Dave! It feels great having my
own space to work in. I’ve been experimenting with different genres lately,
pushing myself out of my comfort zone. Adding electronic elements to my songs
gives them a fresh vibe. It’s been an exciting process of self-discovery and
growth!
memory context: The speaker discusses their creative process in music,
highlighting experimentation with genres and the incorporation of electronic
elements for personal growth and artistic evolution.
memory keywords: [’space’, ’experimentation’, ’genres’, ’electronic’,
’self-discovery’, ’growth’]
memory tags: [’music’, ’creativity’, ’self-improvement’, ’artistic expression’]

852
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