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Abstract
Medical image segmentation models often strug-
gle to generalize across different domains due to
various reasons. Domain Generalization (DG)
methods overcome this either through representa-
tion learning or data augmentation (DAug). While
representation learning methods seek domain-
invariant features, they often rely on ad-hoc tech-
niques and lack formal guarantees. DAug meth-
ods, which enrich model representations through
synthetic samples, have shown comparable or
superior performance to representation learning
approaches. We propose LangDAug, a novel
Langevin Data Augmentation for multi-source
domain generalization in 2D medical image seg-
mentation. LangDAug leverages Energy-Based
Models (EBMs) trained via contrastive divergence
to traverse between source domains, generating
intermediate samples through Langevin dynam-
ics. Theoretical analysis shows that LangDAug
induces a regularization effect, and for GLMs,
it upper-bounds the Rademacher complexity by
the intrinsic dimensionality of the data manifold.
Through extensive experiments on Fundus seg-
mentation and 2D MRI prostate segmentation
benchmarks, we show that LangDAug outper-
forms state-of-the-art domain generalization meth-
ods and effectively complements existing domain-
randomization approaches. The codebase for
our method is available at https://github.
com/backpropagator/LangDAug.

1. Introduction
Recent years have seen remarkable advancements in the
field of Medical image segmentation, particularly through
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supervised learning approaches leveraging Convolutional
Neural Networks (CNNs) (Milletari et al., 2016; Falk et al.,
2019; Zhou et al., 2019; Jin et al., 2019; Isensee et al.,
2020; Shen et al., 2017; Olabarriaga & Smeulders, 2001;
Asgari Taghanaki et al., 2021; Tiwary et al., 2023). However,
a persistent challenge remains: these models often struggle
to generalize from the training set (source domain) to unseen
test sets (target domain) (Ganin et al., 2016; Kamnitsas et al.,
2017; Li et al., 2018b).

The generalization problem stems from the limitations of
the Empirical Risk Minimization (ERM) framework, which
often performs poorly on out-of-distribution (OOD) test or
target domains (Shalev-Shwartz & Ben-David, 2014; Mur-
phy, 2022; Hart et al., 2000; Hajek & Raginsky, 2021). This
is primarily due to the i.i.d. assumption underlying ERM,
where models minimize the loss solely with respect to the
training data distribution. As a result, ERM-trained models
exhibit degraded performance on test data from different
distributions, violating the i.i.d. assumption and leading
to sub-optimal generalization to unseen domains (Vapnik,
1999).

The challenge is particularly pronounced in medical imag-
ing, where domain shifts significantly impact model per-
formance. These shifts arise from factors such as differ-
ences in imaging protocols across institutions, variations
in equipment specifications, diverse patient attributes (e.g.,
age, gender, demographics), and disparities between modal-
ities (e.g., CT, MRI, Ultrasound). As noted by Guan &
Liu (2021), such shifts hinder the deployment of machine
learning models in new clinical settings. The discrepancies
between training and target domains can result in incon-
sistent performance, potentially compromising the model’s
clinical utility and patient care. Addressing these issues is
critical for developing robust and generalizable models.

Various approaches have been proposed to address domain
generalization. A key strategy is representation learning,
which seeks to learn either domain-invariant (DI) features
or sufficiently diverse features to generalize to unseen do-
mains. These methods often disentangle domain-invariant
and domain-specific (DS) features, with some approaches
discarding domain-specific features entirely and others com-
bining DI-DS pairs to create richer features. Another ap-
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Figure 1: Overview of the proposed method: (a) We run Langevin dynamics (LD) using trained EBMs to transverse between
different domains. The intermediate iterates of LD (called Langevin samples) are stored and used for augmentation, (b) The
segmentation model is trained with original domain samples as well as Langevin samples, (c) The trained model is then
deployed on unseen target domains.

proach is data augmentation, which enhances model rep-
resentations by supplementing original samples with aug-
mented ones. As shown by (Gulrajani & Lopez-Paz, 2021),
data augmentation can achieve comparable performance to
representation learning while being simpler to implement.

Our work adopts the data augmentation approach to im-
prove multi-source domain generalization in 2D medical
image segmentation. We propose a novel Langevin Data
Augmentation (LangDAug) scheme that leverages Langevin
dynamics (LD) iterates to augment the original dataset.
Specifically, we train Energy-Based Models (EBMs) to tra-
verse between different source domains using a contrastive-
divergence (CD) objective. This traversal is achieved via
iterative gradient-based MCMC methods like LD, with the
iterates representing samples from the manifold bridging the
source domains. These samples are then incorporated into
the ERM framework for downstream task training, poten-
tially enhancing the model’s ability to generalize to unseen
domains. Our key contributions are:

1. We introduce LangDAug, an augmentation technique
for multi-source domain generalization in 2D medi-
cal image segmentation. By training EBMs for each
pair of source domains via CD, we generate intermedi-
ate domain samples that augment the source domains
within the ERM framework.

2. We provide theoretical insights into LangDAug’s ef-
fects, demonstrating its regularization impact on ERM
training. This leads to Hessian-smoothing and flatter
minima, aiding generalization to unseen domains.

3. We conduct rigorous evaluations on two medical im-
age segmentation benchmarks: fundus segmentation
and 2D MRI image segmentation. Our results show
that LangDAug outperforms state-of-the-art domain
generalization methods and can enhance the perfor-
mance of domain-randomization based generalization
approaches.

2. Related Works
2.1. Domain Generalization

Domain Generalization (DG) frameworks (Motiian et al.,
2017; Wang et al., 2022; Zhou et al., 2022a; Dou et al., 2019;
Gu et al., 2021; Cong et al., 2022) aim to train a single model
using one or multiple source domains to achieve robust
performance on unseen target domains. These methods
typically focus on either learning domain-invariant features
or developing diverse features capable of generalizing to
target domains. Meta-learning DG methods (Li et al., 2018a;
Liu et al., 2021b;a; 2020; Finn et al., 2017; Balaji et al.,
2018; Du et al., 2020b; Tiwary et al., 2024; 2025) simulate
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domain shifts by splitting source data into meta-train/test
sets.

Current state-of-the-art DG approaches can be broadly cate-
gorized into two main types (Wang et al., 2022): representa-
tion learning-based methods and data manipulation-based
methods. Representation learning methods (Li et al., 2018c;
Muandet et al., 2013; Upchurch et al., 2017; Gardner et al.,
2015; Zhang et al., 2022; Li et al., 2022b; 2021b; Zhou et al.,
2021; Wang et al., 2020; Chen et al., 2023; Pan et al., 2018;
Hu et al., 2022) are further subdivided into domain-invariant
(DI) representation learning and feature disentanglement
approaches. Domain-invariant methods (Blanchard et al.,
2021; Hu et al., 2020; Li et al., 2018b; Garg et al., 2021; Pan
et al., 2018; Arjovsky et al., 2019) minimize cross-domain
feature discrepancies—e.g., Fish aligns inter-domain gradi-
ents, Fishr regularizes gradient variances, and Hutchinson
matches Hessian matrices. While effective, these may sac-
rifice domain-specific (DS) features to balance single- and
multi-domain performance. Another line of work uses test
time adaptation (TTA) for DAug using EBMs (Xiao et al.,
2023; Yuan et al., 2024; Tiwary et al., 2023). E.g., Xiao
et al. (2023) first trains EBM on source domain and during
testing, they use LD to convert test samples using these
trained EBMs. However, this method has a fundamental
flaw akin to that of data coverage problem faced in score-
based models (Song & Ermon, 2019). Specifically, since
the trained EBMs have never seen the test data, the assigned
energy to test data manifold could be arbitrary. This renders
TTA unreliable for domain adaptation.

Feature disentanglement approaches (Zunino et al., 2021;
Peng et al., 2020; Ilse et al., 2020; Qiao et al., 2020; Zhang
et al., 2021; Mahajan et al., 2021) aim to separate repre-
sentations into domain-invariant and domain-specific com-
ponents, allowing combinations that yield diverse repre-
sentations for downstream tasks. Mixstyle (Zhou et al.,
2021) facilitates generalization by blending instance-level
feature statistics across domains, generating novel styles
in feature space. RAM (Zhou et al., 2022b) promotes seg-
mentation generalization by mixing amplitude spectra from
different domains and incorporating a domain-specific im-
age restoration module. TriD (Chen et al., 2023) supports
generalization in 2D medical image segmentation through
uniform sampling and channel-wise style mixing of feature
statistics, broadening feature space coverage and enhancing
robustness. Our work focuses on this promising stream of
data manipulation methods and propose a novel approach
called Langevin Data Augmentation (LangDAug) for do-
main generalization.

2.2. Data Manipulation based DG

Owing to the difficulty in obtaining large datasets, data
manipulation-based domain generalization (DG) methods

(Xu et al., 2021; Liu et al., 2022; Peng et al., 2021; Zhang
et al., 2020b; Zhou et al., 2020c; Robey et al., 2021; Liu
et al., 2018; Fick et al., 2021; Li et al., 2022a; Zhou et al.,
2022b; Liu et al., 2021a) are often sought in medical settings,
to enhance training set diversity. These methods are catego-
rized (Wang et al., 2022) into (i) data augmentation (DAug)
and (ii) data generation. DAug techniques (Honarvar Nazari
& Kovashka, 2020; Prakash et al., 2019; Zhou et al., 2020a;
2023) apply some combination of operations such as flip-
ping, rotation, scaling, cropping, or model-based transfor-
mations to reduce overfitting, while data generation meth-
ods (Rahman et al., 2019; Somavarapu et al., 2020; Zhang,
2017; Zhou et al., 2020b; Li et al., 2021a) utilize generative
models to create diverse data that mirrors the training dis-
tribution. MTS (Li et al., 2022a) enhances model-agnostic
meta-learning for DG via task augmentation through mixed
task sampling and a meta-update objective, effectively mit-
igating task-level overfitting. RandConv(Xu et al., 2021)
uses multi-scale random convolutions as a DAug technique
to improve model robustness. FedDG (Liu et al., 2021a)
adopts a federated DG strategy that preserves privacy by
exchanging amplitude spectra between clients and employs
continuous frequency space interpolation and boundary-
oriented episodic learning to bolster model generalization
to unseen domains.

3. Proposed Methodology
3.1. Problem Setup and Method Overview

We consider the standard domain generalization setup in
which, we have n domains (also called source domains)
{Di}ni=1 where each domain admits and underlying prob-
ability density Di ∼ PDi

(x, y) on a common support
X × Y . Further, we are given ni samples from do-
main Di that are independent and identically distributed,
{xj ,yj}ni

j=1
i.i.d∼PDi(x, y). The goal of an ERM-framework

is to learn a parametric mapping fθ(·) : X → Y such that
it minimizes the empirical risk. Particularly, the parame-
ters θ are obtained via solving the following optimization
problem:

argmin
θ

E [ℓ (fθ(x),y)] ≈ argmin
θ

1

N

N∑
i=1

ℓ (fθ(xi),yi)

where N =
∑

i ni. Formally, the True risk is approximated
with an unbiased estimate using law of large numbers to
get the Empirical risk. This is done in order to obtain a
tractable objective function which can be minimized using
gradient-based optimization methods. However, since the
approximation only takes the provided n domains into ac-
count, it is not able to generalize on unseen domain (also
called target domain) Dn+1 /∈ {Di}ni=1. The goal of do-
main generalization is to aleviate this issue by obtaining
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parameter θ that is able to generalize well on unseen do-
mains.

To address this issue, we adopt a data-augmentation-based
approach by introducing new samples in the ERM frame-
work to cover broader support in the X ×Y domain, improv-
ing the True risk estimate. Specifically, we train Energy-
Based Models (EBMs) to traverse between source domain
pairs using gradient-based Markov Chain Monte Carlo
(MCMC) methods, such as Langevin dynamics (LD). The
intermediate iterates generated during this process act as
‘bridge’ samples between domains. We leverage these in-
termediate samples as augmentation data, referred to as
Langevin-data Augmentation, to enhance the model’s gener-
alization to unseen target domains.

While LangDAug can be potentially used for normal DG
scenarios, we note that there are certain factors that guided
our application design. The effectiveness of LangDAug de-
pends on the ability of EBMs to effectively traverse and in-
terpolate between source domain distributions. Such traver-
sal becomes especially natural when source domains share
structured similarities or consistent underlying factors of
variation. Medical imaging data typically demonstrates
structured variations, predominantly reflected through dif-
ferences in amplitude spectra across domains (Zhou et al.,
2022b; Liu et al., 2021a). EBMs have been shown to excel at
capturing and modeling variations in amplitude spectra (Tan-
cik et al., 2020; Du et al., 2020a), making them suited for the
domain variations characteristic of medical imaging data.
Thus, LangDAug’s capability aligns well with the domain
shift challenges encountered specifically in medical image
segmentation.

3.2. EBMs for Inter-Domain Transversal

We train Energy-Based Models (EBMs) (Du & Mordatch,
2019; Zhao & Chen, 2021) to traverse between pairs of
source domains. Consider two distinct domains Di and Dj

where i ̸= j. To train an EBM,Eθij that can transverse from
Di to Dj , we employ the contrastive divergence loss objec-
tive (Hinton, 2002), LCD. The gradient of this objective
is:

∇θijLCD = E
PDj

[
∇θijEθij (x)

]
− E

Pθij

[
∇θijEθij (x)

]
(1)

where,Pθij =
exp

(
−Eθij (x)

)(
Zθij =

∫
X exp

(
−Eθij (x)

)
dx
) (2)

We approximate the expectations in Eq. 1 using finite sample
averages from their respective distributions. Since sampling
directly from Pθij is intractable due to the partition function
Zθij , we employ MCMC methods, specifically Langevin
dynamics (LD).

The LD iteration is initialized with a sample from domain

Di and then runs for K steps using Eθij as the kernel to
approximate sampling from Pθij . Mathematically,

xt+1 = xt −
α2

2
∇xt

Eθij (xt) + αϵ, (3)

where, x0 ∼ PDi
(x). Thus, we learn θij using Eq. 1, where

the second term is approximated using samples from LD
initialized with a sample from Di. The LD iteration can be
interpreted as starting from a sample under distribution PDi

and gradually transforming it into a sample from PDj
. In

other words, the LD updates traverse from domain Di to
domain Dj . The intermediate samples generated during the
LD process can be viewed as forming a bridge between the
two domains. We train such an EBM for all 2

(
n
2

)
possible

pairs within n source domains.

3.3. Langevin Data Augmentation

As explained previously, we learn an EBM for transversal
between each pair of domains. Here, we explain how to
generate the augmentation samples. Consider the EBM
Eθij which can transverse from domain Di to domain Dj .
To generate samples for augmentation, we take a sample
{xj ,yj} ∈ Di and run LD for K steps, starting from xj :

xt+1
j = xt

j −
β2

2
∇xt

j
Eθij (x

t
j) + βϵ, where, x0

j = xj

(4)

The above process gives rise to K-intermediate samples
{xt

j}Kt=1. We use the samples {xt
j ,yj}ni,K

j=1,t=1 (named
‘Langevin’ data) for augmentation during ERM-based learn-
ing1. On a closer look, we can see that for a given k,
Dk

ij ≜ {xk
j ,yj}ni

j=1 follow the same distribution as they
are obtained via k-step LD updates. This can be viewed as
samples from a new domain altogether. Hence, we can see
that we are able to obtain data from new novel domains by
transversing between the original source domains. While the
original dataset consisted of Dsrc ≜

⋃
i

Di, the augmented

dataset consists of Daug ≜
⋃

i ̸=j,k

Dk
ij . This shows that we

can generate novel data-points by simply transversing be-
tween source domains in a meaningful way. We refer the
reader to Supplementary for all the implementation details.

4. Theoretical Analysis
Analysis Overview: Our theoretical analysis reveals how
LangDAug naturally induces regularization and improves
generalization. We follow steps similar to Arora et al.
(2021); Zhang et al. (2020a) by first demonstrating that

1Note that we retain original labels while augmentation be-
cause, we empirically observe that the Langevin samples preserve
the content of xj (see Supplementary for visualizations).

4



LangDAug: Langevin Data Augmentation for Multi-Source Domain Generalization in Medical Image Segmentation

LangDAug regularizes the directional derivatives of fθ(·)
for any parametric model (Thm. 4.1). This insight leads
us to examine generalized linear models (GLMs), where
we characterize these regularization effects more precisely
(Cor. 4.2). We then establish bounds on the Rademacher
complexity of the resulting function class (Thm. 4.3) and
use these to bound the generalization gap between true and
empirical risk (Cor. 4.4).

Notations: We denote a general parametric loss function
ℓ(θ, z), where θ ∈ Θ ⊆ Rd and z = (x,y) denotes the
input output pair. Further, we consider the training dataset
D = {xi,yi}ki=1 ∈ X × Y such that they follow an un-
derlying distribution, zi = (xi,yi)

i.i.d∼PD(·). Further, we
denote x̃i(β) = xi − β2

2 ∇x log p(xi) + βε, ε ∼ N (0, I)
which is the sample obtained by running one-step LD start-
ing from x0 ∼ PD(x) (we drop the dependence on β for
brevity). We denote z̃i = (x̃i,yi) as the data pair used for
augmentation. Further, we denote the model parameterized
by θ as fθ : X → Y , the gradient w.r.t x and θ is denoted
by ∇fθ(x) and ∇θfθ(x) respectively.
Lastly, we denote the true risk as L(θ) = E[ℓ(θ, z)] where
the expectation is w.r.t true data distribution. The standard
empirical and the augmented empirical risks are denoted
by:

Lstd (θ,D) = 1

k

∑
i

ℓ(θ, zi) (5)

Laug (θ,D) = 1

k

∑
i

E
ε∼N (0,I)

[ℓ(θ, z̃i)] (6)

We start our alalysis by characterizing the regularization
effect of LangDAug:

Theorem 4.1. Consider a real-valued loss function of the
form ℓ(θ, (x,y)) = h(fθ(x)) − y(fθ(x)) where h(·) and
fθ(·) are twice differentiable for all θ ∈ Θ. Then given a
dataset D = {xi,yi}ki=1, the augmented empirical risk as
denoted in Eq. 6 can be written as:

Laug (θ,D) = Lstd (θ,D) +
3∑

i=1

Ri(θ,D) (7)

where,

R1(θ,D) = −
1

k

k∑
i=1

β2(h′(fθ(xi))− yi)∇fθ(xi)
T∇ log p(xi)

R2(θ,D) =
1

k

k∑
i=1

β2h′′(fθ(xi)) Tr(∇fθ(xi)∇fθ(xi)
T )

R3(θ,D) =
1

k

k∑
i=1

β2(h′(fθ(xi))− yi) Tr(∇2fθ(xi)).

The regularization terms reveal how LangDAug controls
model behavior through derivatives of the prediction func-
tion. To understand these effects more concretely, we ex-
amine GLMs, which model predictive densities using ex-
ponential families with linear sufficient statistics (Murphy,
2022):

p(y|x, θ) = r(x) exp
(
yθTx−A(θTx)

)
(8)

where r(x) is the base measure and A(·) is the log parti-
tion function. The negative log-likelihood takes the form
A(θTx)− yθTx, allowing us to apply Thm. 4.1 to obtain:

Corollary 4.2. For a GLM, if A(·) is twice differentiable,
then the regularization terms obtained via second-order
approximation is given by:

RGLM ≜
β2

2n

k∑
i=1

(
A′′(θTxi)θ

T θ −A′(θTxi)θ
T s(xi)

)
where, s(xi) = ∇ log p(xi) is the Stein’s score function.

Having obtained the above regularization term, we use the
techniques in Arora et al. (2021); Zhang et al. (2020a) to
bound the Rademacher complexity of the following class of
functions which are used in optimization of dual of above
regularization term:

Wγ ≜
{
x→ θTx : θT E

x

[
A

′′
(θTx)θ −A

′
(θTx)s(x)

]
≤ γ

}
The following provides an upper-bound on Rademacher
complexity of such class of functions:

Theorem 4.3. Assume that the distribution of xi is ρ-
retentive, and let Σx = E[xxT ] have bounded singular
values. Further assume that the norm of the parameters
and Ex[∥∇ log p(x)∥2] are bounded. Then the empirical
Rademacher complexity ofWγ satisfies:

Rad(Wγ ,D) ≤ C
√
rank(Σx)

k
(9)

where, C =

(
γ

ρ

)1/2

∨
(
γ

ρσ

)1/4

(10)

here, σ denotes the lowest singular values of Σx.

Now, using this result, we can directly use the results of
Bartlett & Mendelson (2002) to bound the generalization
gap as follows:

Corollary 4.4. If A(·) is LA-Lipchitz continuous, X , Y , Θ
are all bounded, then there exists constant L,B > 0 such
that for all θ satisfying the constraint inWγ , we have:

L ≤ Lstd + 2LLA

(
C

√
rank(Σx)

k

)
+B

√
log(1/δ)

2k

with probability atleast 1− δ.
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We note that the appearance of rank(Σx) rather than the
full dimensionality of x suggests that LangDAug’s gener-
alization bound depends on how many “true” degrees of
freedom the data has (intrinsic dimension) rather than how
many numbers we use to store each data point (ambient
dimension). The dependence on intrinsic dimensionality
rather than ambient dimension is particularly valuable for
high-dimensional problems where the data lies on a lower-
dimensional manifold (Gorban & Tyukin, 2018; Cayton
et al., 2008).

5. Experiments
5.1. Datasets and Baselines

Datasets and Metrics: We evaluate LangDAug’s effective-
ness under domain shift using two widely-used medical
imaging datasets: Retinal Fundus Segmentation (RFS) (Al-
mazroa et al., 2018; Orlando et al., 2020; Zhang et al.,
2010; Sivaswamy et al., 2014) and Prostate MRI Segmen-
tation (Liu et al., 2020). For both datasets, we employ a
leave-one-out protocol (Gulrajani & Lopez-Paz, 2021) to
assess domain generalization performance.

The RFS dataset challenges models to segment the optical
cup (OC) and optical disc (OD) in retinal images. It contains
samples from four clinical sites, each representing a distinct
domain with its own train/test split. We use the training
splits for training and resize all images to 256× 256 pixels
during preprocessing. Segmentation accuracy is evaluated
using Intersection-over-Union (IoU) and Dice Similarity
Score (DSC) metrics.

The Prostate MRI dataset includes 116 T2-weighted MRI
scans from six clinical sites (domains). Preprocessing in-
volves cropping each scan to the 3D prostate region, extract-
ing 2D axial slices, and resizing them to 384× 384 pixels.
We train on these 2D slices and evaluate using: (1) DSC
between predicted and ground truth slices, and (2) Average
Surface Distance (ASD) for reconstructed 3D volumes, ob-
tained by concatenating model-predicted slices. Results are
reported as the mean of three independent runs.

Baselines: We evaluate our method against two categories
of domain generalization approaches. First, we consider
three recent methods from the DomainBed benchmark (Gul-
rajani & Lopez-Paz, 2021): Hutchinson (Hemati et al.,
2023), which matches domain statistics using Hessian in-
formation; Fish (Shi et al., 2022), which employs gradient-
based domain alignment; and Fishr (Rame et al., 2022),
which utilizes gradient variance matching. Further, we
compare against recent approaches specifically tailored
for medical image segmentation: RandConv (Xu et al.,
2021), which leverages random convolution for style in-
variance; MixStyle (Zhou et al., 2021), which performs
feature-level style mixing; FedDG (Liu et al., 2021a), which

Figure 2: t-SNE visualization comparing domain distribu-
tions: (a) the original four domains, and (b) LangDAug
generated augmented domains. Origin x denotes samples
generated by LangDAug starting from Domain x.
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Figure 3: Visualization of retinal fundus segmentation per-
formance of different domain generalization methods.

employs federated learning for domain generalization; and
TriD (Chen et al., 2023), which exploits distribution-level
information. Since, we follow similar steps as Zhang et al.
(2020a) for our analysis2 we also compare our method with
RAM (Zhou et al., 2022b) which is a variant of MixUp
designed for medical image segmentation. Additionally, we
provide comparisons with CORAL (Sun & Saenko, 2016),
RSC (Huang et al., 2020), For a fair comparison we use
ResNet34 model (He et al., 2016) as the segmentation back-
bone for all the methods. All the implementation details
including hyperparameters and Ablation studies are pro-
vided in Supplementary.

5.2. Results

t-SNE Visualization: Before presenting the main results,
we visualize the RFS dataset samples in the feature space
using t-SNE plots (Figure 2). The original domain sam-
ples show a concentrated distribution, while Langevin sam-
ples significantly expand feature space coverage. Notably,
Langevin samples bridge gaps between domains, consistent
with the framework in Section 3.2. This inter-domain traver-
sal property allows the model to learn a more comprehensive

2while the proof steps share similarities, we use different tech-
niques and arrive at an independent verification of the result
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representation of the domain space. These observations sup-
port our hypothesis on the effectiveness of LangDAug in im-
proving domain generalization. Visualizations of Langevin
samples are provided in Supplementary.

5.2.1. FUNDUS SEGMENTATION

We provide the results of optical cup (OC) and optical disc
(OD) segmentation on retinal fundus images in Table 1.
We present the metrics in the form of (OC, OD) for con-
venience, further, we also provide the mean metric across
OC and OD. We also provide visual qualitative compari-
son of segmentation results in Figure 3. We observe that
LangDAug performs most consistently across all domains.

Among the DomainBed approaches (Hutchinson, Fish, and
Fishr), performance is generally underwhelming. Hutchin-
son performed the poorest, with average IoU and DSC of
67.39 and 78.14 respectively. While Fishr showed some im-
provement over the others, reaching average IoU and DSC
of 72.28 and 82.16 respectively. Overall these methods
lagged behind other approaches. This pattern was consistent
across different domains and metrics.

Domain B emerges as the most challenging for generaliza-
tion, with most methods failing to achieve mDSC above
80. The reason for this is significantly different conditions
under which the fundus images are acquired. In other words,
the distribution of Domain B is very different from that of
other domains. In this domain, LangDAug demonstrates
superior performance with an mIoU of 75.05, surpassing
the next best method (RAM) by 1.26%. For optical disc seg-
mentation, LangDAug achieves the highest DSC of 91.64,
followed by RAM at 90.52. While RAM leads in optical cup
segmentation with a DSC of 82.82, LangDAug maintains
competitive performance at 80.11, demonstrating consistent
effectiveness across all metrics in this challenging domain.
This also shows robustness of LangDAug in limited source
distribution setting where source domains are not able to
cover the target domain. In such scenarios, previous method
fail to generalize effectively whereas LangDAug maintains
edge over these methods.

In Domain C, LangDAug demonstrates good performance
with the highest mIoU of 81.01, while maintaining com-
petitive mDSC metrics second only to TriD. The method
shows balanced effectiveness across both optical cup and
disc segmentation, surpassing established approaches like
FedDG and RAM. This performance extends to Domain D,
where LangDAug leads in both mIoU and mDSC metrics,
outperforming comparable methods like TriD and RAM.

While established methods MixStyle, RandConv, and TriD
demonstrate marginally better performance in Domain A
(mDSC: 88.62, 87.90, and 87.80 respectively), they exhibit
substantial performance deterioration in Domain B, with
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Figure 4: Visualization of prostate segmentation perfor-
mance of different domain generalization methods.

mDSC values dropping to approximately 78. In contrast,
LangDAug maintains remarkable consistency across both
domains, achieving competitive mDSC of 86.99 on Domain
A while maintaining its performance with an mDSC of
85.87 on Domain B.

LangDAug demonstrates superior overall performance,
achieving the highest average IoU (78.84%) and DSC
(87.61%) across all domains. Notably, it exhibits better
stability in cross-domain performance, as evidenced by sig-
nificantly lower standard deviations (mIoU: ±2.43, mDSC:
±1.89) compared to its counterparts TriD (mIoU: ±3.76,
mDSC: ±5.12) and RAM (mIoU: ±2.89, mDSC: ±3.42).
This reduced variance underscores LangDAug’s consistent
generalization capabilities.

5.2.2. PROSTATE SEGMENTATION

Table 2 presents our results for 2D MRI prostate segmenta-
tion. We provide visual results in Figure 4. Consistent with
the findings from fundus segmentation, the DomainBed
methods (Hutchinson, Fish, and Fishr) generally demon-
strate lower performance, with Fishr showing the best per-
formance and Hutchinson showing the worst performance
among the three.

LangDAug demonstrates best performance across Domains
A through D, consistently outperforming the second-best
methods in both ASD and DSC. Specifically, in Domains
A and B, LangDAug achieves approximately 0.1mm lower
ASD and nearly 0.6% higher DSC compared to the next
best method, TriD. In Domain D, LangDAug surpasses
other methods with a substantial reduction of 0.14mm in
ASD and an increase in DSC by over 4%. Even in the
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Table 1: Cross-domain generalization performance on Retinal Fundus Segmentation. IoU (%) (↑) and DSC (%) (↑) are
presented in pairs (x, y) where, x denotes OC and y denotes OD segmentation metric. Bold (x) and Underlined (x) values
indicate best and second-best performance respectively for each metric in their respective columns. Average denotes the
average metric across all domains.

Domain A B C D Average

IoU mIoU DSC mDSC IoU mIoU DSC mDSC IoU mIoU DSC mDSC IoU mIoU DSC mDSC IoU DSC

CORAL (66.59,90.14) 78.37 (78.79, 94.31) 86.55 (54.80, 73.07) 63.94 (66.95, 81.46) 74.20 (71.34, 86.54) 78.94 (82.82, 92.59) 87.71 (67.82, 83.87) 75.85 (80.19, 91.10) 85.65 74.27 83.53
RSC (64.67, 88.97) 76.82 (77.98, 94.24) 86.11 (53.34, 71.74) 62.54 (64.94, 79.90) 72.42 (72.78, 86.67) 79.73 (83.53, 92.32) 87.92 (68.39, 81.11) 74.75 (80.70, 89.38) 85.04 73.46 82.87
SagNet (64.45, 86.38) 75.42 (77.34, 92.64) 84.99 (46.82, 62.21) 54.51 (57.44, 69.94) 63.69 (67.29, 83.76) 75.52 (79.73, 90.86) 85.29 (55.14, 79.48) 67.31 (70.04, 88.36) 79.20 68.19 78.29
SWAD (65.32, 87.06) 76.19 (77.09, 92.89) 84.99 (55.63, 75.01) 65.32 (68.21, 83.92) 76.07 (67.94, 85.89) 76.91 (80.43, 92.17) 86.30 (61.57, 82.60) 72.09 (75.37, 90.26) 82.82 72.63 82.54
Hutchinson (55.19, 78.27) 66.73 (68.10, 86.81) 77.46 (55.19, 78.27) 66.73 (68.10, 86.81) 77.46 (56.17, 82.54) 69.36 (70.16, 90.17) 80.17 (50.45, 72.36) 66.73 (64.42, 83.07) 77.46 67.39 78.14
Fish (63.16, 85.73) 74.44 (76.76, 91.16) 83.96 (48.91, 74.87) 64.44 (64.38, 87.01) 75.70 (63.61, 82.92) 73.26 (79.99, 88.87) 84.43 (56.27, 80.59) 72.50 (76.54, 89.94) 83.24 71.16 81.83
Fishr (65.35, 86.35) 75.85 (77.33, 91.45) 84.39 (54.23, 73.82) 64.03 (65.17, 82.32) 73.75 (68.32, 82.95) 75.63 (80.53, 89.45) 84.99 (64.09, 83.11) 73.60 (79.99, 91.02) 85.50 72.28 82.16
RandConv (71.44, 88.49) 79.96 (81.99, 93.81) 87.90 (52.96, 82.28) 67.62 (66.35, 90.11) 78.23 (67.78, 85.68) 76.73 (80.03, 92.12) 86.07 (67.78, 85.68) 74.73 (78.15, 91.52) 84.84 74.76 84.26
MixStyle (71.76, 89.77) 80.76 (82.68, 94.56) 88.62 (58.15, 77.23) 67.69 (71.17, 86.75) 78.96 (71.65, 87.93) 79.79 (83.38, 93.39) 88.38 (67.56, 86.62) 77.09 (80.03, 92.72) 86.37 76.33 85.58
FedDG (73.30, 80.01) 76.65 (78.52, 84.42) 81.47 (68.70, 75.58) 72.14 (77.81, 88.35) 83.08 (69.92, 82.28) 76.10 (83.11, 87.32) 85.21 (69.01, 82.91) 75.96 (81.63, 88.17) 84.90 75.21 83.67
RAM (67.28, 87.56) 77.42 (78.09, 91.66) 84.87 (68.92, 78.66) 73.79 (82.82, 90.52) 86.67 (72.21, 86.11) 79.66 (81.32, 90.02) 85.67 (71.61, 85.88) 78.74 (77.17, 91.54) 84.35 77.40 85.39
TriD (71.83, 90.01) 80.92 (79.44,96.16) 87.80 (68.31, 76.59) 72.45 (66.01, 90.42) 78.21 (72.66, 86.03) 79.34 (86.22, 93.83) 90.02 (70.52, 87.41) 78.96 (83.08, 92.45) 87.76 77.92 85.95
LangDAug (68.31, 89.26) 78.79 (79.75, 94.24) 86.99 (70.61,79.50) 75.05 (80.11,91.64) 85.87 (73.07,88.94) 81.01 (83.88,93.96) 88.91 (72.33,88.70) 80.51 (83.43,93.93) 88.68 78.84 87.61

Table 2: Cross-domain generalization performance on T2-weighted Prostate MRI Segmentation. ASD (mm) (↓) and DSC
(%) (↑) are presented in pairs (x, y) where, x denotes OC and y denotes OD segmentation metric. Bold (x) and Underlined
(x) values indicate best and second-best performance respectively for each metric in their respective columns. Average
denotes the average metric across all domains.

Unseen Domain
A B C D E F Average

ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC

Hutchinson 3.28 82.26 1.48 85.85 2.07 72.65 3.98 77.41 2.78 71.75 1.64 81.79 2.54 78.62

Fish 1.58 84.40 1.46 85.09 3.74 70.59 3.37 78.45 3.72 74.26 0.76 83.43 2.44 79.37

Fishr 1.10 88.03 0.94 88.41 2.07 83.21 1.08 83.94 1.78 81.41 0.61 84.41 1.26 84.90

RandConv 1.27 87.90 1.18 88.24 1.90 81.96 0.84 84.44 1.54 83.04 0.44 86.37 1.20 85.33

MixStyle 0.72 88.59 0.88 88.42 1.62 87.10 0.65 85.62 1.59 82.18 0.51 85.72 1.00 86.27

FedDG 1.09 86.10 0.93 87.03 1.31 88.23 0.88 87.52 1.73 81.55 0.50 85.27 1.07 85.95

RAM 0.93 88.72 0.98 87.20 1.26 88.78 0.74 89.18 1.78 81.01 0.32 87.25 1.00 87.02

TriD 0.70 91.52 0.72 89.60 1.39 87.71 0.71 89.45 1.43 82.41 0.46 85.41 0.90 87.68

LangDAug 0.58 92.15 0.64 90.31 1.21 89.53 0.57 93.41 1.49 83.17 0.38 86.41 0.81 89.16

Table 3: Cross-domain generalization performance on Retinal Fundus Segmentation of Domain Randomization method,
with and without LangDAug. Values in parentheses for Average columns show absolute improvement over base method.

Unseen Domain A B C D Average

IoU mIoU DSC mDSC IoU mIoU DSC mDSC IoU mIoU DSC mDSC IoU mIoU DSC mDSC mIoU mDSC

FedDG (73.30, 80.01) 76.65 (78.52, 84.42) 81.47 (68.70, 75.58) 72.14 (77.81, 88.35) 83.08 (69.92, 82.28) 76.10 (83.11, 87.32) 85.21 (69.01, 82.91) 75.96 (81.63, 88.17) 84.90 75.21 83.67
FedDG + Ours (74.28,82.37) 78.32 (79.66,85.29) 82.47 (70.03,76.10) 73.06 (79.12,90.62) 84.87 (71.80,84.41) 78.10 (83.68,88.58) 86.13 (70.57,83.22) 76.89 (82.79,91.37) 87.08 76.59 (+1.38) 85.14 (+1.47)

RAM (67.28, 87.56) 77.42 (78.09, 91.66) 84.87 (68.92, 78.66) 73.79 (82.82, 90.52) 86.67 (72.21, 86.11) 79.66 (81.32, 90.02) 85.67 (71.61, 85.88) 78.74 (77.17, 91.54) 84.35 77.40 85.39
RAM + Ours (70.29,90.51) 80.40 (80.66,94.76) 87.71 (70.38,80.11) 75.24 (83.38,91.47) 87.42 (74.71,87.99) 81.35 (83.84,92.64) 88.24 (73.70,86.37) 80.03 (79.81,92.89) 86.35 79.26 (+1.86) 87.43 (+2.04)

TriD (71.83, 90.01) 80.92 (79.44, 96.16) 87.80 (68.31, 76.59) 72.45 (66.01, 90.42) 78.21 (72.66, 86.03) 79.34 (86.22, 93.83) 90.02 (70.52, 87.41) 78.96 (83.08, 92.45) 87.76 77.92 85.95
TriD + Ours (72.89,92.73) 82.81 (80.34,97.82) 89.08 (81.67,78.52) 80.09 (73.02,90.95) 81.98 (73.16,87.93) 80.54 (87.32,96.35) 91.83 (71.83,89.02) 80.42 (85.40,94.09) 89.74 80.97 (+3.05) 88.16 (+2.21)

Table 4: Cross-domain generalization performance on 2D
MRI Prostate Segmentation of Domain Randomization
method, with and without LangDAug. Values in paren-
theses for Average columns show absolute improvement
over base method.

Unseen Domain
A B C D E F Average

ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC

FedDG 1.09 86.10 0.93 87.03 1.31 88.23 0.88 87.52 1.73 81.55 0.50 85.27 1.07 85.95

FedDG + Ours 0.90 88.24 0.66 89.31 1.16 90.22 0.75 88.19 1.68 82.03 0.48 86.10 0.94 (−0.13) 87.35 (+1.40)

RAM 0.93 88.72 0.98 87.20 1.26 88.78 0.74 89.18 1.78 81.01 0.32 87.25 1.00 87.02

RAM + Ours 0.89 89.62 0.69 89.11 1.15 89.03 0.62 91.63 1.41 83.92 0.24 88.85 0.83 (−0.17) 88.69 (+1.67)

TriD 0.70 91.52 0.72 89.60 1.39 87.71 0.71 89.45 1.43 82.41 0.46 85.41 0.90 87.68

TriD + Ours 0.64 92.73 0.61 91.05 1.09 92.31 0.55 94.22 1.29 85.17 0.35 87.99 0.76 (−0.14) 90.58 (+2.90)

challenging Domain C, LangDAug maintains a significant
performance advantage, outperforming other methods by
0.18mm in ASD and 1.82% in DSC. Furthermore, in the
most difficult Domain E (identified by the highest average
ASD and lowest average DSC across methods), LangDAug
secures the best DSC, demonstrating its performance con-
sistency across domains.

While RAM achieves the best performance in Domain F
(ASD: 0.32 mm, DSC: 87.25%), LangDAug remains com-
petitive in this domain (ASD: 0.38 mm, DSC: 86.41%) and
demonstrates the most consistent performance across all
domains. This consistency is highlighted by LangDAug’s
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best overall average performance across domains, which is
lower by 0.09 mm in ASD and higher by 1.48% in DSC
compared to the second-best TriD, similar to its trend in
Fundus segmentation results.

5.3. LangDAug with Domain Randomization

LangDAug, described in Section 3, generates samples from
intermediate domains using Langevin dynamics. This can
enhance domain randomization methods, which combine
domain-invariant (DI) and domain-specific (DS) features
from source domains. The key assumption is that test
domain features lie within the feature space formed by
mixing DI-DS features from source domains. Thus, more
source domains produce more diverse features, improving
target domain performance. By creating new domains via
Langevin dynamics, LangDAug enhances domain random-
ization methods. We validate this on retinal fundus and
prostate segmentation datasets, testing with three leading
methods: FedDG (Liu et al., 2021a), RAM (Zhou et al.,
2022b), and TriD (Chen et al., 2023).

Fundus Segmentation: Table 3 presents the performance
comparison of domain randomization methods augmented
with LangDAug on fundus segmentation. LangDAug
demonstrates consistent performance improvements across
all baseline methods and domains. Specifically, FedDG aug-
mented with LangDAug shows significant enhancements
of +1.38% in average IoU and +1.47% in average DSC
across all domains. RAM exhibits even more substantial
gains, with improvements of +1.86% and +2.04% in aver-
age IoU and DSC respectively, notably achieving an mDSC
increase from 84.87% to 87.71% on Domain A. Most re-
markably, TriD combined with LangDAug demonstrates
the highest improvements of +3.05% and +2.21% in aver-
age IoU and DSC respectively, with particularly significant
enhancement in Domain B (mDSC increase from 78.21%
to 81.98%).These consistent improvements across methods
and domains demonstrate LangDAug ’s effectiveness in
enhancing domain randomization methods.

Prostate Segmentation: Table 4 demonstrates LangDAug’s
effectiveness in enhancing cross-domain generalization for
prostate segmentation. Across all six domains, LangDAug
consistently improves both ASD and DSC metrics, paral-
leling the improvements observed in fundus segmentation.
The most substantial improvements are observed with TriD,
yielding average ASD reduction of 0.14mm and DSC im-
provement of +2.90%. RAM augmented with LangDAug
shows similar gains, with average ASD and DSC improve-
ments of −0.17mm and +1.67% respectively, particularly
notable in Domain E where ASD decreased from 1.78 to
1.41mm. FedDG, despite moderate baseline performance,
demonstrates significant improvement when combined with
LangDAug , especially in Domain B (ASD reduction: 0.93

to 0.66mm, DSC increase: 87.03% to 89.31%), with overall
metrics improving by −0.13mm ASD and +1.40% DSC.
Notably, while Domain E looks most challenging across all
methods, LangDAug consistently enhances performance,
underscoring its efficacy in challenging cross-domain sce-
narios.

These observations conclusively show that LangDAug sig-
nificantly boosts the performance of all domain randomiza-
tion baselines.

6. Conclusion
In this work, we propose LangDAug, a novel Langevin data
augmentation method for multi-source domain generaliza-
tion in 2D medical image segmentation. LangDAug lever-
ages Energy-Based Models (EBMs) trained via contrastive
divergence to generate intermediate samples between source
domains using Langevin dynamics. These samples act as
bridges across domain distributions. We establish a theoreti-
cal foundation for LangDAug, showing its induced regular-
ization effect on parametric models. For Generalized Linear
Models (GLMs), we prove that LangDAug’s regularization
terms upper-bound the Rademacher complexity based on
the data manifold’s intrinsic dimension. Comprehensive
experiments on retinal fundus and prostate MRI segmen-
tation demonstrate LangDAug’s superiority over existing
methods. Moreover, LangDAug effectively complements
domain randomization approaches, achieving state-of-the-
art performance in domain generalization tasks.
Limitations: While LangDAug delivers strong perfor-
mance, it has two primary limitations. First, the larger
number of training samples results in longer training times,
though selective sampling can mitigate this. Second, the
number of required EBMs scales with the source domains,
posing scalability challenges. Future work could address
this by adopting shared architectures with domain condi-
tioning. We provide detailes quantitative computational cost
in Supplementary. Further, we process 3D volumes as 2D
slices. Future work could explore training EBMs directly
on 3D data to bypass slicing and better model 3D spatial
relationships.
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Impact Statement
LangDAug advances domain generalization in medical im-
age segmentation by enabling robust adaptation to diverse
imaging environments, a critical challenge in deploying
AI models across clinical settings. By generating domain-
bridging samples through Langevin dynamics and Energy-
Based Models, the method enhances segmentation accuracy
in scenarios affected by domain shifts (e.g., variations in
scanners or protocols), directly supporting more reliable di-
agnostics and treatment planning. Its theoretical grounding
in bounding model complexity via intrinsic data dimension-
ality offers a principled framework for future research.

While computational costs and scalability limitations cur-
rently constrain its adoption, LangDAug’s compatibility
with domain randomization and its ability to preserve
anatomical fidelity position it as a versatile tool for real-
world applications. Future efforts to optimize training ef-
ficiency and extend the framework to 3D volumetric data
could further unlock its potential, paving the way for AI
systems that generalize seamlessly across evolving medical
imaging technologies.
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A. Proof of Theoretical Results
Theorem A.1. Consider a loss function of the form
ℓ(θ, (x,y)) = h(fθ(x)) − y(fθ(x)) where h(·) and fθ(·)
are twice differentiable for all θ ∈ Θ. Then given a dataset
D = {xi,yi}ki=1, the augmented empirical risk as denoted
in Eq. 6 can be written as:

Laug (θ,D) = Lstd (θ,D) +
3∑

i=1

Ri(θ,D) (11)

where,

R1(θ,D) = −
1

k

k∑
i=1

β2(h′(fθ(xi))− yi)∇fθ(xi)
T∇ log p(xi)

R2(θ,D) =
1

k

k∑
i=1

β2h′′(fθ(xi)) Tr(∇fθ(xi)∇fθ(xi)
T )

R3(θ,D) =
1

k

k∑
i=1

β2(h′(fθ(xi))− yi) Tr(∇2fθ(xi))

Proof. By definition, we have:

Laug (θ,D) = 1

k

∑
i

E
ε∼N (0,I)

[ℓ(θ, z̃i)] (12)

Consider one term of the above summation:

ℓ(θ, z̃i) = h(fθ(x̃i(β)))− yi(fθ(x̃i(β))) ≜ ψi(β) (13)

= ψi(0) + βψ
′

i(0) +
β2

2
ψ

′′

i (0) + β2φ(β) (14)

where, we have used Taylor expansion to approximate ψi(·)
around β = 0 and lim

β→0
φ(β) = 0. We will evaluate each of

the above terms below.
Recall that x̃i(β) = xi − β2

2 ∇x log p(xi) + βε, hence,
x̃i(0) = xi. Using this, we have:

ψi(0) = h(fθ(xi))− yi(fθ(xi)) = ℓ(θ, zi) (15)

Now,

ψ
′

i(β) = h
′
(fθ(x̃i))

(
∂fθ(x̃i)

∂x̃i

)T
∂x̃i

∂β

− yi

(
∂fθ(x̃i)

∂x̃i

)T
∂x̃i

∂β
(16)

=
[
h

′
(fθ(x̃i))− yi

]
∇fθ(x̃i)

T
[
ε− β∇ log p(xi)

]
(17)

=
[
h

′
(fθ(x̃i))− yi

]
∇fθ(x̃i)

T rε(β) (18)

where, rε(β) ≜ ε − β∇ log p(xi) = ∂x̃i/∂β. Hence, we
have:

ψ
′

i(0) = (h
′
(fθ(xi))− yi)∇fθ(xi)

T ε (19)

=⇒ E
ε
[ψ

′

i(0)] = (h
′
(fθ(xi))− yi)∇fθ(xi)

T E
ε
[ε] = 0

(20)

Next, for the second derivative, we differentiate the above
expression:

ψ
′′

i (β) = h
′′
(fθ(x̃i))

(
∇fθ(x̃i)

T rε(β)
)2

+
[
h

′
(fθ(x̃i))− yi

][
εT∇2fθ(x̃i)rε(β)

]
−
[
h

′
(fθ(x̃i))− yi

][
β∇ log p(xi)

T∇2fθ(x̃i)rε(β)

+∇ log p(xi)
T∇fθ(x̃i)

]
(21)

= h
′′
(fθ(x̃i))rε(β)

T
(
∇fθ(x̃i)∇fθ(x̃i)

T
)
rε(β)

+
[
h

′
(fθ(x̃i))− yi

]
rε(β)

T
(
∇2fθ(x̃i)

)
rε(β)

−
[
h

′
(fθ(x̃i))− yi

]
∇fθ(x̃i)

T∇ log p(xi)
(22)

Substituting β = 0 in the above gives:

ψ
′′

i (0) = h
′′
(fθ(xi))ε

T
(
∇fθ(xi)∇fθ(xi)

T
)
ε

+
[
h

′
(fθ(xi))− yi

]
εT
(
∇2fθ(xi)

)
ε

−
[
h

′
(fθ(xi))− yi

]
∇fθ(xi)

T∇ log p(xi) (23)

Taking expectation w.r.t ε:

E
ε
[ψ

′′

i (0)] = h
′′
(fθ(xi)) Tr(∇fθ(xi)∇fθ(xi)

T )

+ (h
′
(fθ(xi))− yi) Tr(∇2fθ(xi))

− (h
′
(fθ(xi))− yi)∇fθ(xi)

T∇ log p(xi)
(24)

Now, combining results from Eq. 15, 20, 24 into Eq. 14 and
Eq. 6:

Laug (θ,D) = 1

k

∑
i

{
ℓ(θ, zi)

− β2

2
(h

′
(fθ(xi))− yi)∇fθ(xi)

T∇ log p(xi)

+
β2

2
h

′′
(fθ(xi)) Tr(∇fθ(xi)∇fθ(xi)

T )

+
β2

2
(h

′
(fθ(xi))− yi) Tr(∇2fθ(xi))

}
(25)

=⇒ Laug (θ,D) = Lstd (θ,D) +
3∑

i=1

Ri(θ,D)

(26)

Corollary A.2. For a GLM, if A(·) is twice differentiable,
then the regularization terms obtained via second-order
approximation is given by:

β2

2n

k∑
i=1

(
A′′(θTxi)θ

T θ −A′(θTxi)θ
T s(xi)

)
(27)

where, s(xi) = ∇ log p(xi) is the Stein’s score function.
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Proof. Using the result of Theorem 4.1 with h(·) = A(·)
and fθ(x) = θTx, we get:

ℓ(θ, z̃i) = ℓ(θ, zi)−
β2

2
A

′
(θTxi)θ

T∇ log p(xi)

+
β2

2
A

′′
(θTxi)θ

T θ (28)

where we use the fact that for GLMs, ∇2fθ(·) = 0 and
Tr(θθT ) = θT θ. This completes the proof.

Theorem A.3. Assume that the distribution of xi is ρ-
retentive, and let Σx = E[xxT ] have bounded singular
values. Further assume that the norm of the parameters
and Ex[∥∇ log p(x)∥2] are bounded. Then the empirical
Rademacher complexity ofWγ satisfies:

Rad(Wγ ,D) ≤ C
√
rank(Σx)

k
(29)

where, C =

(
γ

ρ

)1/2

∨
(
γ

ρσ

)1/4

(30)

here, σ denotes the lowest singular values of Σx.

Proof. The function class under consideration is:

Wγ ≜
{
x→ θTx : θT E

x

[
A

′′
(θTx)θ −A

′
(θTx)s(x)

]
≤ γ

}
The above constraint can be written as:

γ ≥ E
x
[A

′′
(θTx)]θT θ − E

x
[A

′
(θTx)θT s(x)] (31)

≥ E
x
[A

′′
(θTx)]θT θ −

√
E
x
(A′(θTx))2

√
E
x
(θT s(x))2

(32)

≥ E
x
[A

′′
(θTx)]θT θ −

√
E
x
(A′(θTx))2

√
∥θ∥2 E

x
[∥s(x)∥2]

(33)

≥ E
x
[A

′′
(θTx)]θT θ − κ1∥θ∥

√
E
x
(A′(θTx))2 (34)

≥ E
x
[A

′′
(θTx)]θT θ − κ1

κ2
∥θ∥2

√
E
x
(A′(θTx))2 (35)

≥ ∥θ∥2
(
E
x
[A

′′
(θTx)]− κ1

κ2

√
E
x
(A′(θTx))2

)
(36)

where, Ex[∥s(x)∥2] ≤ κ1 and ∥θ∥2 ≥ κ2. From ρ-
retentiveness, we have:

ρmin{1,E
x
(θTx)2} ≤ E

x

[
A

′′
(θTx)− κ1

κ2
A

′
(θTx)

]
(37)

ρmin{1, θTΣxθ} ≤ E
x

[
A

′′
(θTx)

]
− κ1
κ2

√
E
x
[A′(θTx)2]

(38)

Combining this with constraint in Eq. 36, we get:

∥θ∥2 ≤ γ

ρmin{1, θTΣxθ}
≤ max

{
γ

ρ
,

γ

ρθTΣxθ

}
(39)

=⇒ ∥θ∥2 ≤ γ

ρ
∨
√

γ

ρσ
(40)

where σ is the lowest singular value of Σx. Now, the empir-
ical Rademacher complexity is given by:

Rad(Wγ ,D) = E
ξ

[
sup
Wγ

1

k

∑
i

ξiθ
Txi

]
(41)

≤ E
ξ

 sup
∥θ∥2≤ γ

ρ∨
√

γ
ρσ

1

k

∑
i

ξiθ
Txi

 (42)

≤ 1

k

(
γ

ρ

)1/2

∨
(
γ

ρσ

)1/4

E
ξ

[
∥
∑
i=1

ξixi∥

]
(43)

≤ 1

k
C

√
E
ξ
∥
∑
i

ξixi∥2 (44)

≤ 1

k
C

√∑
i

xT
i xi (45)

Taking expectation over dataset distribution completes the
proof:

Rad(Wγ ,D) = E
D
[Rad(Wγ ,D)] ≤

C

k

√∑
i

E[xT
i xi]

(46)

≤ C

k

√∑
i

E[Tr(xixT
i )] (47)

≤ C

k

√∑
i

Tr(Σx) (48)

≤ C
√
rank(Σx)

k
(49)

Lemma A.4 (Bartlett & Mendelson (2002)). For any B-
uniformly bounded and L-Lipchitz function ζ , for all ϕ ∈ Φ,
with probability atleast 1− δ:

E[ζ(ϕ(x))] ≤ 1

k

∑
i

ζ(ϕ(xi)) + 2LRad(Φ,D) +B

√
log(1/δ)

2k

(50)
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Corollary A.5. If A(·) is LA-Lipchitz continuous, X , Y , Θ
are all bounded, then there exists constant L,B > 0 such
that for all θ satisfying the constraint inWγ , we have:

L ≤ Lstd + 2LLA

(
C

√
rank(Σx)

k

)
+B

√
log(1/δ)

2k

(51)

with probability atleast 1− δ.

Proof. The results follow directly from Lemma A.4 and
result of Theorem 4.3.

B. Implementation Details
This section outlines the implementation specifics of
LangDAug. The code and relevant resources are avail-
able at https://github.com/backpropagator/
LangDAug.

Energy-based Models: LangDAug leverages trained
Energy-Based Models (EBMs) to generate augmented sam-
ples, as described in the main text. Following the approach
in (Zhao & Chen, 2021), we train EBMs in the latent space
of a VQ-VAE 2 model3. The energy model is implemented
using the discriminator architecture of StyleGAN24.

First, the VQ-VAE 2 model is trained on all source do-
mains. Subsequently, EBMs are trained in the latent space
of this VQ-VAE 2 model to enable domain traversal using
Langevin dynamics. The VQ-VAE 2 configuration includes
a codebook dimension of 32 and a codebook size of 256.
Similar to (Zhao & Chen, 2021), we train the VQ-VAE us-
ing only the reconstruction loss, omitting the second-stage
PixelCNN training. The EBMs are optimized using the
Adam optimizer with a learning rate of 0.001. During do-
main traversal, the Langevin step size (β in Eq. 4) is set
to β = 1, and the number of Langevin steps (K) is set to
K = 40.

LangDAug: For n source domains, we train 2
(
n
2

)
EBMs

to model domain pairs in both directions5. To generate
Langevin samples, as outlined in Section 3.3, we execute
Langevin Dynamics (LD) and store intermediate samples
as per Eq. 4. Instead of retaining all K = 40 intermedi-
ate samples, we store a subset of these samples for two
reasons: (a) to manage storage and computational over-
head, and (b) to reduce the correlation between MCMC

3Implementation taken from https://github.com/
rosinality/vq-vae-2-pytorch

4Implementation taken from https://github.com/
rosinality/stylegan2-pytorch

5As mentioned in limitations, this can be problematic if the
number of source domains is too large. In that case, shared archi-
tectures can be explored with conditioning on desired domains

samples. Specifically, we store 13 samples for fundus seg-
mentation (uniformly at iterations k = 3, 6, . . . , 39)6 and
5 samples for 2D MRI prostate segmentation (at iterations
k = 5, 10, . . . , 40). These samples are precomputed for
each EBM to save computational time in downstream seg-
mentation network training. We provide a pseudo-code in
Algorithm 1.

Segmentation Network: For downstream segmentation,
we employ a ResNet34-based network (He et al., 2016)7. It
comprises of a ResNet34 encoder and ASPP-based decoder.
The network is trained using a combination of cross-entropy
and DICE loss, with the AdamW optimizer. The learning
rate (lr) is selected from {1 × 10−4, 1 × 10−6}, and the
batch size (bs) is chosen from {8, 32, 64}. The running
average parameters are set to β1 = 0.9 and β2 = 0.99.
Empirically, we observed that (lr = 1× 10−4, bs = 8) yields
optimal performance for fundus segmentation, whereas (lr
= 1 × 10−6, bs = 32/64) works best for 2D MRI prostate
segmentation.

Baselines: For all the baselines, we use the same ResNet34-
based segmentation network. The DomainBed methods
(Fish, Fishr, and Hutchinson) are primarily used in classi-
fication tasks. For segmentation, we re-implemented these
methods to ensure compatibility with the retinal fundus and
prostate datasets, utilizing the ResNet-34 backbone. These
adaptations were closely aligned with the original imple-
mentations provided in DomainBed8. In addition to the
default implementation, we re-scaled the losses for better
stability and training of network.

We use the publicly available codebase for RandConv9,
MixStyle10, FedDG11, RAM12 and TriD13. For MixStyle,
we add additional layers after the first two ResNet blocks
of segmentation model to transfer the instance level fea-
ture statistics between source domains. Further, for RAM
and FedDG, instead of UNet encoder-decoder, we use the
ResNet34 blocks and ASPP decoder for training.

6For RFS dataset, we use an L-channel replacement strategy
to maintain the position of optical disc and optical cup while
running LD. Specifically, after each LD step, we replace the L
channel of the updated sample with L channel of original sample.
This ensures that the position of OC and OD are preserved and
segmentation masks remain valid.

7Implementation taken from https://github.com/
kazuto1011/deeplab-pytorch/tree/master/
libs/models

8https://github.com/facebookresearch/
DomainBed/tree/main

9https://github.com/wildphoton/RandConv
10https://github.com/KaiyangZhou/

mixstyle-release
11https://github.com/liuquande/FedDG-ELCFS
12https://github.com/zzzqzhou/RAM-DSIR/

tree/main
13https://github.com/Chen-Ziyang/TriD
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Datasets: The datasets can be found publicly.
The Retinal Fundus Dataset can be found at:
https://drive.google.com/file/d/
1p33nsWQaiZMAgsruDoJLyatoq5XAH-TH/view,
2D MRI Prostate Dataset can be found at:
https://liuquande.github.io/SAML/. We
have used the same convention as earlier works (Liu et al.,
2021a; Zhou et al., 2022b; Chen et al., 2023) for naming
the datasets.

C. Additional Results
C.1. Ablation Studies on EBM Hyperparameters

We analyze the impact of various Energy-Based Model
(EBM) hyperparameters on cross-domain generalization
for the Retinal Fundus Segmentation task. The results are
summarized below:

• Langevin Steps (K): First row of Figure 5 shows
the performance across different numbers of Langevin
steps used during EBM sampling. LangDAug main-
tains stable performance at higher values of K.

• Step Size (β): Second row of Figure 5 illustrates the
effect of varying the step size in Langevin dynamics.
Lower values of β lead to more stable and reliable
performance.

• EBM Complexity (#conv blocks): We vary the
number of convolutional blocks in the EBM to control
model complexity. As shown in the third row of Fig-
ure 5, performance remains consistent, suggesting that
even lightweight EBMs are sufficient.

• Number of Augmented Samples
(#samples/chain): Fourth row of Figure 5
examines the number of intermediate samples stored
per Langevin chain. Too few samples fail to capture
vicinal distributions, while too many introduce high
auto-correlation between langevin samples leading to
biased learning. A moderate, well-spaced selection of
samples yields the best results.

C.2. Computational Cost Analysis

We acknowledge the increased computational cost of Lang-
DAug in our limitations. In Table 5, we provide a detailed
comparison of training time and peak memory usage across
methods on the Retinal Fundus Segmentation (RFS) task.
All experiments were conducted on a single NVIDIA A6000
GPU with 48GB memory, and results are averaged across
domains.

Although LangDAug increases training time, it remains
comparable to methods like RAM (2.75 hrs) and is notably

Algorithm 1 Langevin Data Augmentation
Input: Source domains {Di}ni=1, Langevin step size β,
Number of Langevin steps K.
Output: Augmentation datasets {Dk

ij}
n,n,K
i=1,j=1,k=1.

1: Initialize parameters {θij}ni,j=1, where i ̸= j.

2: Energy-Based Model (EBM) Training

% Loop over all domain pairs
3: for i ∈ {1, . . . , n}; j ∈ {1, . . . , n}; i ̸= j do
4: repeat
5: Sample x ∼ Dj , x0 ∼ Di.

% Perform Langevin Dynamics
6: for k = 1, . . . ,K do
7: Sample ϵ ∼ N (0, I).
8: xk = xk−1 − β2

2 ∇xk−1
Eθij (xk−1) + βϵ.

9: end for
10: x̃← xK .

% Compute gradient
11: ∇θijL = ∇θijEθij (x)−∇θijEθij (x̃).
12: θij ← θij − λ∇θijL.
13: until convergence
14: end for

15: Generation of Langevin Samples

% Storage for augmented datasets
16: Initialize empty sets {Dk

ij}
n,n,K
i=1,j=1,k=1.

% Loop over all domain pairs
17: for i ∈ {1, . . . , n}; j ∈ {1, . . . , n}; i ̸= j do
17: % Loop through samples in source

domain i
18: for xi ∈ Di do
19: x0 ← xi.

% Perform Langevin steps
20: for k = 1, . . . ,K do
21: Sample ϵ ∼ N (0, I).
22: xk = xk−1 − β2

2 ∇xk−1
Eθij (xk−1) + βϵ.

% Store augmented sample
23: (Dk

ij).append(xk).
24: end for
25: end for
26: end for

% Return all augmented datasets
27: return {Dk

ij}
n,n,K
i=1,j=1,k=1.

more efficient than FedDG (4.60 hrs), while providing supe-
rior performance.

Additionally, the average Energy-Based Model (EBM) train-
ing time is approximately 0.357 hours per source-target
domain pair. The inference cost of running a Langevin

4

https://drive.google.com/file/d/1p33nsWQaiZMAgsruDoJLyatoq5XAH-TH/view
https://drive.google.com/file/d/1p33nsWQaiZMAgsruDoJLyatoq5XAH-TH/view
https://liuquande.github.io/SAML/


LangDAug: Langevin Data Augmentation for Multi-Source Domain Generalization in Medical Image Segmentation

20 40 60 80

70

80

90

Sc
or

e
(%

)

Domain A

20 40 60 80

70

80

90

Domain B

20 40 60 80

70

80

90

Domain C

20 40 60 80

70

80

90

Domain D

K (Langevin steps)

10−1 100 101

70

80

90

Sc
or

e
(%

)

10−1 100 101

70

80

90

10−1 100 101

70

80

90

10−1 100 101

70

80

90

β (Step size)

1 4 7

70

80

90

Sc
or

e
(%

)

1 4 7

70

80

90

1 4 7

70

80

90

1 4 7

70

80

90

#conv blocks

2 13 40

70

80

90

Sc
or

e
(%

)

2 13 40

70

80

90

2 13 40

70

80

90

2 13 40

70

80

90

#samples/chain

mIoU mDSC

Figure 5: Ablation analysis across four domains. The first row shows the effect of varying the number of Langevin steps (k);
the second row shows the effect of varying the step size (β); the third row depicts the impact of changing the number of
convolutional blocks; and the fourth row presents the effect of varying the number of Langevin samples per chain. Metrics
reported are mIoU and mDSC.
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Table 5: Training time (in GPU hours) and peak memory usage (in GB) for all methods. “+Ours” refers to integration of
LangDAug into the baseline.

Metric ERM Ours FedDG FedDG+Ours RAM RAM+Ours TriD TriD+Ours

GPU hrs 1.51 3.14 4.60 6.13 2.75 3.77 5.53 7.49
Memory (GB) 10.36 19.41 16.77 23.16 12.58 20.24 24.87 30.11

Dynamics (LD) chain is minimal, taking roughly 2 seconds.

Apart from this, the proposed method also requires addi-
tional storage requirements to store the Langevin samples.
Particularly, for n data points, and a saving frequency of f ,
the additional data points will equal nK/f .

As with many domain augmentation (DA) methods that rely
on synthetic sample generation, increased training cost is
an inherent trade-off. Potential directions for optimization
include selective sampling strategies (e.g., coresets) and
architectural sharing for EBMs to enable conditioning across
domains.

D. Inter-Domain Transversal Visualizations
We present visual examples of the inter-domain transver-
sal process over K = 40 Langevin dynamics steps. The
transversal sequences for the retinal fundus dataset are de-
picted in Figures 6 to 9, while those for the prostate dataset
are shown in Figures 10 to 15. In each figure, rows corre-
spond to distinct samples starting from the source domain,
with each row capturing the intermediate Langevin samples,
while columns represent the specific steps in the Langevin
Dynamics process at which the transversal are recorded.
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(a) Ex. 1: Domain A → Domain B (b) Ex. 2: Domain A → Domain B

(c) Ex. 1: Domain A → Domain C (d) Ex. 2: Domain A → Domain C

(e) Ex. 1: Domain A → Domain D (f) Ex. 2: Domain A → Domain D

Figure 6: Examples of translation from Domain A to Domains B, C and D using the proposed method on the retinal fundus
dataset.
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(a) Ex. 1: Domain B → Domain A (b) Ex. 2: Domain B → Domain A

(c) Ex. 1: Domain B → Domain C (d) Ex. 2: Domain B → Domain C

(e) Ex. 1: Domain B → Domain D (f) Ex. 2: Domain B → Domain D

Figure 7: Examples of translation from Domain B to Domains A, C and D using the proposed method on the retinal fundus
dataset.
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(a) Ex. 1: Domain C → Domain A (b) Ex. 2: Domain C → Domain A

(c) Ex. 1: Domain C → Domain B (d) Ex. 2: Domain C → Domain B

(e) Ex. 1: Domain C → Domain D (f) Ex. 2: Domain C → Domain D

Figure 8: Examples of translation from Domain C to Domains A, B and D using the proposed method on the retinal fundus
dataset.
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(a) Ex. 1: Domain D → Domain A (b) Ex. 2: Domain D → Domain A

(c) Ex. 1: Domain D → Domain B (d) Ex. 2: Domain D → Domain B

(e) Ex. 1: Domain D → Domain C (f) Ex. 2: Domain D → Domain C

Figure 9: Examples of translation from Domain D to Domains A, B and C using the proposed method on the retinal fundus
dataset.
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(a) Ex. 1: Domain A → Domain B (b) Ex. 2: Domain A → Domain B

(c) Ex. 1: Domain A → Domain C (d) Ex. 2: Domain A → Domain C

(e) Ex. 1: Domain A → Domain D (f) Ex. 2: Domain A → Domain D

Figure 10: Examples of translation from Domain A to Domains B, C and D using the proposed method on the prostate
dataset.
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(g) Ex. 1: Domain A → Domain E (h) Ex. 2: Domain A → Domain E

(i) Ex. 1: Domain A → Domain F (j) Ex. 2: Domain A → Domain F

Figure 10: Examples of translation from Domain A to Domains E and F using the proposed method on the prostate dataset.

12



LangDAug: Langevin Data Augmentation for Multi-Source Domain Generalization in Medical Image Segmentation

(a) Ex. 1: Domain B → Domain A (b) Ex. 2: Domain B → Domain A

(c) Ex. 1: Domain B → Domain C (d) Ex. 2: Domain B → Domain C

(e) Ex. 1: Domain B → Domain D (f) Ex. 2: Domain B → Domain D

Figure 11: Examples of translation from Domain B to Domains A, C and D using the proposed method on the prostate
dataset.
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(g) Ex. 1: Domain B → Domain E (h) Ex. 2: Domain B → Domain E

(i) Ex. 1: Domain B → Domain F (j) Ex. 2: Domain B → Domain F

Figure 11: Examples of translation from Domain B to Domains E and F using the proposed method on the prostate dataset.
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(a) Ex. 1: Domain C → Domain A (b) Ex. 2: Domain C → Domain A

(c) Ex. 1: Domain C → Domain B (d) Ex. 2: Domain C → Domain B

(e) Ex. 1: Domain C → Domain D (f) Ex. 2: Domain C → Domain D

Figure 12: Examples of translation from Domain C to Domains A, B, and D using the proposed method on the prostate
dataset.
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(g) Ex. 1: Domain C → Domain E (h) Ex. 2: Domain C → Domain E

(i) Ex. 1: Domain C → Domain F (j) Ex. 2: Domain C → Domain F

Figure 12: Examples of translation from Domain C to Domains E and F using the proposed method on the prostate dataset.
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(a) Ex. 1: Domain D → Domain A (b) Ex. 2: Domain D → Domain A

(c) Ex. 1: Domain D → Domain B (d) Ex. 2: Domain D → Domain B

(e) Ex. 1: Domain D → Domain C (f) Ex. 2: Domain D → Domain C

Figure 13: Examples of translation from Domain D to Domains A, B and C using the proposed method on the prostate
dataset.
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(g) Ex. 1: Domain D → Domain E (h) Ex. 2: Domain D → Domain E

(i) Ex. 1: Domain D → Domain F (j) Ex. 2: Domain D → Domain F

Figure 13: Examples of translation from Domain D to Domains E and F using the proposed method on the prostate dataset.
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(a) Ex. 1: Domain E → Domain A (b) Ex. 2: Domain E → Domain A

(c) Ex. 1: Domain E → Domain B (d) Ex. 2: Domain E → Domain B

(e) Ex. 1: Domain E → Domain C (f) Ex. 2: Domain E → Domain C

Figure 14: Examples of translation from Domain E to Domains A, B and C using the proposed method on the prostate
dataset.
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(g) Ex. 1: Domain E → Domain D (h) Ex. 2: Domain E → Domain D

(i) Ex. 1: Domain E → Domain F (j) Ex. 2: Domain E → Domain F

Figure 14: Examples of translation from Domain E to Domains D and F using the proposed method on the prostate dataset.
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(a) Ex. 1: Domain F → Domain A (b) Ex. 2: Domain F → Domain A

(c) Ex. 1: Domain F → Domain B (d) Ex. 2: Domain F → Domain B

(e) Ex. 1: Domain F → Domain C (f) Ex. 2: Domain F → Domain C

Figure 15: Examples of translation from Domain F to Domains A, B and C using the proposed method on the prostate
dataset.
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(g) Ex. 1: Domain F → Domain D (h) Ex. 2: Domain F → Domain D

(i) Ex. 1: Domain F → Domain E (j) Ex. 2: Domain F → Domain E

Figure 15: Examples of translation from Domain F to Domains D and E using the proposed method on the prostate dataset.
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