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ABSTRACT

Concurrent coaching of humans with language instruction has the potential to dra-
matically accelerate skill acquisition in high-stakes domains like driving and sports.
However, effective concurrent coaching requires two key capabilities: determining
when to intervene with fast, proactive timing decisions, and determining what to
say through free-form instruction generation for diverse scenarios. Existing ap-
proaches struggle because they either sacrifice real-time responsiveness for content
quality or sacrifice content flexibility for speed. Our key insight is to decompose
concurrent coaching into two stages: deciding when to intervene and determining
what to say, bridged by a shared representation. We introduce STREAMCOACH, a
two-stage coaching framework that encodes learner state into lightweight language
embeddings, enabling intervention decisions within 17 ms that trigger generation
of contextually appropriate instructions. In the fast inference stage, STREAM-
COACH compares current state embeddings against past coaching scenarios to
trigger interventions. In the slow reasoning stage, the same embeddings retrieve
relevant examples for Retrieval-Augmented Generation of adaptive instructions.
By separating timing-critical decisions from content generation, STREAMCOACH
achieves both key capabilities simultaneously. Evaluated in high-performance
driving, STREAMCOACH significantly outperforms existing approaches in both
intervention timing and instruction quality, demonstrating effective concurrent
coaching of humans through language.

1 INTRODUCTION

Concurrent coaching with language instruction, where coaches provide real-time guidance to humans
during task execution, is a powerful tool for accelerating human skill acquisition (Magill & Anderson,
2017). A human driving coach, for example, might say “brake earlier here” or “steer tighter around
this corner” to help a human learner adjust their technique on the fly. Unlike terminal coaching,
which provides feedback to humans only after task completion when intervention opportunities are
lost (see Figure 1), concurrent coaching offers immediate, context-aware guidance that helps humans
prevent errors as they unfold (Hattie & Timperley, 2007; Denys Brand & Tortolero, 2020; Hula
et al., 2008; Hodges & Williams, 2012). These timely interventions are especially critical for human
performance in high-speed, high-stakes domains where delayed feedback arrives too late to help
humans adjust their actions (Gopinath et al., 2025). Automating such human coaching with AI could
dramatically expand access to expert feedback and provide personalized support for human learners
where human coaches are unavailable.

However, effective concurrent human coaching with AI systems requires two key capabilities (see Ta-
ble 1): determining when to intervene with fast, proactive timing decisions, and determining what
to say through free-form instruction generation for diverse scenarios and human learner behaviors.
Terminal approaches like CORGI (Srivastava et al., 2023) generate quality instructions but operate
post-task, causing learners to repeat errors without timely correction. Conversational systems like
GPTCoach (Jörke et al., 2025) provide flexible dialogue but remain passive, missing critical inter-
vention opportunities while waiting for user queries. Concurrent systems like Gopinath et al. (2025)
achieve fast timing but use fixed rule sets, potentially providing inappropriate guidance in novel
situations. End-to-end approaches like Panchal et al. (2024) attempt both capabilities in a single
vision-language model but struggle with timing complexity, causing learners to miss intervention
windows during slow joint optimization.
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“Shift to the right 
slowly”

“Turn left now”

“Gas up to the hill!”

Concurrent Coaching with Free-form LanguageConcurrent Coaching with Fixed Instruction Set

“Please follow
the reference
line closely and
make the turn as
early as possible
when you notice
the hint.”

Terminal Coaching

Turn

Accelerate

Decelerate

…..

Time

Figure 1: Comparison of Coaching Methods: Terminal coaching, where feedback is given after the
session for overall performance improvement; Concurrent coaching with fixed instructions, which
provides real-time guidance using structured commands; and Concurrent coaching with free-form
language. The gray lines represent the track borders, while the red line illustrates the reference
driving line for the optimal path. The dotted line indicates the actual driving trajectory of the driver.
Table 1: Comparison of Coaching Systems: Two key capabilities for effective concurrent coaching.
When to intervene: Concurrent (provides guidance during task execution), Fast Intervention (makes
timing decisions <100ms), Proactive (actively determines intervention moments vs. waiting for
queries). What to say: Free-form (generates flexible instructions for diverse scenarios).

Coaching System Concurrent Fast Intervention Proactive Free-form

CORGI (Srivastava et al., 2023) — — — ✓
Gopinath et al. (2025) ✓ ✓ — —
GPTCoach (Jörke et al., 2025) — — — ✓
Panchal et al. (2024) ✓ — ✓ ✓
STREAMCOACH (Ours) ✓ ✓ ✓ ✓

To address these challenges, our main insight is to decompose concurrent coaching into two stages:
deciding when to intervene and determining what to say, bridged by a shared representation. We
introduce STREAMCOACH, a two-stage coaching framework inspired by (Sinha et al., 2024), which
pairs fast inference for intervention timing with slow reasoning for instruction generation, as il-
lustrated in Figure 2. In the fast inference stage, STREAMCOACH encodes the learner’s real-time
state, including actions, trajectories, and environmental cues, into lightweight language embed-
dings (Reimers & Gurevych, 2019), continuously comparing these against past coaching scenarios
with expert feedback. Critically, STREAMCOACH can determine whether to intervene within 17ms,
meeting fast intervention requirements.

Crucially, this same embedding space powers the content generation stage: once intervention is
triggered, the similarity scores are used to retrieve relevant prior coaching episodes, which are then
used in a Retrieval-Augmented Generation (RAG) pipeline. These examples ground a language
model to compose tailored, domain-specific instructions, thus bypassing the need for densely labeled
training data, unlike prior systems. The shared embedding acts as a bridge between timing and
content, enabling efficient, consistent, and context-aware coaching.

In this work, we explore the application of STREAMCOACH for concurrent coaching in high-
performance driving (Betz et al., 2022; Wurman et al., 2022; Werner et al., 2023; Chen et al.,
2023; DeCastro et al., 2024; Gopinath et al., 2025), with a focus on evaluating the timing and quality
of the generated instructions. Our results show that STREAMCOACH delivers accurate, contextually
relevant guidance with fast intervention timing, outperforming baselines in both intervention timing
and instruction quality. By unifying fast intervention detection and slow instruction generation
through a shared embedding space, STREAMCOACH enables scalable, concurrent language-based
coaching.

2 RELATED WORK

LLMs for Education. LLMs offer personalized and scalable learning experiences through natural
language interaction (Xu et al., 2024; Wang et al., 2024a). They have been applied to problem-
solving (Wu et al., 2023b; Bommarito II & Katz, 2022; Cui et al., 2023b; Liévin et al., 2023;
Thirunavukarasu et al., 2023; Wu et al., 2023a; Yang et al., 2023; Kazemitabaar et al., 2023; Savelka
et al., 2023; OpenAI, 2023; Zhang et al., 2024), error correction (Zhang et al., 2023; Zhao et al., 2023),
question generation (Doughty et al., 2024; Lee et al., 2023; Xiao et al., 2023), etc. Fine-tuning on
domain-specific data enhances their pedagogical alignment, yet most applications target conceptual
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Driver's actions: 
throttle=0.86 brake=0.0 
steering=-0.02

Position of the car is: 
[-663.29, -75.16, 0.94] 
in meters.

Orientation of the 
car is: [-0.0, -0.02, 0.7, 
0.71] in quaternion.

Velocity of the car is: 
[0.06, 10.44] in mph.

Speedometer
reading is: 23.0 in mph.

......

Map & Reference

Car State

Driver’s Action
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Positive Embedding

Negative Cache

Negative Embedding

“Accelerate!”
“Turn Left”

“Gas up to the hill”
“Straighten the wheel”

Positive Cache

“Stay in the middle 
of the track”

Retrieve Instructions

State 
Description 

𝑠!"#$%$&'

𝑠(')*%$&'

Continue

LLMEmbedding-Based
Inference 

Figure 2: Overview of STREAMCOACH during Inference Time. Left: STREAMCOACH converts
the current driver action, car state, and map data into a language description. Middle: The description
is embedded using a language model. Cosine similarity with cached positive/negative embeddings
and a trained classifier determine whether to trigger slow reasoning. Right: If triggered, relevant
instructions are retrieved from the positive cache together with the state description for retrieval-
augmented generation.

tasks rather than physical skills. Teaching physical skills requires LLMs to interpret multimodal
inputs and actions. A pioneering work has used LLMs for terminal feedback (Srivastava et al., 2023),
but this approach only offers post-task evaluation. In contrast, concurrent teaching requires real-time,
context-sensitive guidance that allows learners to adjust their actions on the fly. In this work, we
present STREAMCOACH, a model that generates immediate, precise instructions through a fast-slow
inference framework for real-time skill learning.
LLMs for Autonomous Driving. LLMs are being explored in autonomous driving to enhance
high-level reasoning—such as interpreting traffic laws, generating behavior strategies, and assisting
with path planning (Shao et al., 2024; Wang et al., 2023; Mao et al., 2023b;a; Sima et al., 2024). They
also improve human-vehicle interaction by enabling natural language commands and are used in
retrieval-augmented systems to explain agents’ behaviors (Yuan et al., 2024; Hussien et al., 2024;
Cui et al., 2023a; 2024a; Ma et al., 2024; Cui et al., 2024b). Unlike these applications that generate
vehicle behavior, our work focuses on producing timely instructional feedback for human learners.
Rather than replicating expert driving behavior, STREAMCOACH observes and analyzes the learner’s
actions to provide corrective guidance that promotes proper technique and decision-making.
Retrieval Augmented Generation. Retrieval Augmented Generation integrates LLMs with external
retrieval mechanisms to enrich generation with domain-specific knowledge (Gupta et al., 2024; Li
et al., 2025; Rau et al., 2024; Wang et al., 2024b; Zhao et al., 2024; Shen et al., 2024; Han et al.,
2025; Li et al., 2024; Gao et al., 2024; Lewis et al., 2020). By querying a curated repository during
inference, RAG incorporates relevant examples or expert annotations, leading to more informed
responses (Yuan et al., 2024; Hussien et al., 2024). In our framework, the slow reasoning stage
employs RAG to retrieve relevant experiences and generate nuanced, context-aware instructions.

3 PROBLEM FORMULATION

We treat concurrent teaching as a sequential process in which the system operates at discrete time
steps t = 1, 2, . . . , T . At each time t, the system observes inputs ot =

{
ostate
t , obehavior

t , otask
t

}
, where

ostate
t captures the current state of the environment (e.g. position of the car), obehavior

t represents the
human’s ongoing behavior (e.g., brake), and otask

t encodes task-specific information such as map
information, and produces a free-form instruction It ∈ L∪ {∅}, where ∅ indicates that no instruction
is given and L is the language instructions can be generated. Our goal is to generate well-timed
instructions with content closely aligned to expert instructions. To quantify this, we define a teaching
score at each step, Rt = rtiming

t ∗ rcontent
t and consider the total score over the whole task horizon

as the overall measure of teaching quality. We assume access to a dataset D =
{(

o
∗(i)
1:T , I∗(i)

1:T

)}N
i=1

,

where I∗
t = ∅ indicates that no expert instruction was given at time t. The timing score rtiming

t
evaluates whether the generated instruction It (when it is not ∅) is issued within a valid interval
[tstart, tend] computed with respect to the timing of the ground truth instruction:

rtiming
t =

{
1, if tgeneration ∈ [tstart, tend],

0, otherwise.
(1)
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Here, tgeneration denotes the time step at which the model issues the instruction It. The content score
rcontent
t measures the similarity between the generated instruction It and the expert instruction I∗

t .
Common metrics include cosine similarity or BLEU/ROUGE (Papineni et al., 2002; Lin, 2004):
rcontent
t = sim

(
It, I∗

t

)
.

Road
Refline
Cones

Figure 3: Map of the Racing
Track. The green stars repre-
sent cones placed along the lap
to mark key points, the grey
lines indicate the track, and
the red line illustrates the ref-
erence driving line for optimal
driving path.

The teaching strategy should yield a high average score across the
entire duration of human training. Over the dataset D, the system
aims to learn a mapping from past observations o1:t to instructions
It that maximizes this measure of both timely and relevant feedback.

3.1 TASK DOMAIN:
CONCURRENT COACHING FOR HIGH PERFORMANCE DRIVING

High performance driving is a dynamic, high-stakes environment
where split-second decisions and precise maneuvers are crucial. This
work focuses on the domain of concurrent coaching for high per-
formance driving, where the goal is to deliver real-time, actionable
feedback that enables drivers to adjust their driving technique in real
time. We use CARLA (Dosovitskiy et al., 2017) as the simulation
platform and adopt the Thunderhill West track (Willows, CA) as the
driving circuit; see Figure 3 for an illustration.

4 STREAMCOACH

Algorithm 1 STREAMCOACH

1: Input: Observation ot, embedding function ϕ, pos-
itive cache Dpositive, negative cache Dnegative, clas-
sifier f , threshold τ , retrieval parameter k, RAG
model.

2: Output: Instruction It or no instruction.
3: ▽ Fast Inference Stage
4: Compute embedding: et ← ϕ(ot)
5: Compute similarity scores:

spos ← maxe∗∈Dpositive
e∗⊤et

∥e∗∥∥et∥ ,

sneg ← maxe∗∈Dnegative
e∗⊤et

∥e∗∥∥et∥
6: Compute decision score: ∆s← (spos − sneg)
7: if ∆s < 0 and f(et) = 0 then
8: Return It = ∅
9: end if

10: ▽ Slow Reasoning Stage
11: Retrieve top-k similar experiences: Et ←

Top-k
{
e∗ ∈ Dpos :

e∗⊤et
∥e∗∥∥et∥

}
12: Retrieve corresponding instructions for each e∗ ∈
Et

13: Generate instruction: It ← RAG(Et, ot)
14: Return It

To address these challenges, we propose a fast-
slow inference framework. STREAMCOACH op-
erates in two key stages, as illustrated in Figure 2
and algorithm 1.

4.1 FAST INFERENCE

Fast inference serves as the first stage in our
fast-slow framework, quickly assessing the need
for intervention. It combines precomputed lan-
guage embeddings with a task-specific classifier,
enabling efficient, context-aware decisions. The
hybrid approach balances speed and adaptabil-
ity: embeddings support rapid semantic match-
ing, while the classifier handles subtle variations
for robust performance.

To enable embedding-based reasoning, each ob-
servation ot ∈ o1:T is first converted into a
natural language description using templates
(Appendix H), similar to Hwang et al. (2024)
and Sinha et al. (2024). These templates extract
key features from the system state, task objec-
tives, and learner behavior, and transform them
into structured, natural language statements that preserve essential contextual information. For nota-
tional simplicity, we continue to denote these text-based representations as ot, with the understanding
that they refer to the language descriptions derived from raw observations.

Given a training dataset D =
{(

o
∗(i)
1:T , I∗(i)

1:T

)}N

i=1
, each observation o∗t ∈ o

∗(i)
1:T is mapped to an

embedding e∗t ∈ Rd using an off-the-shelf pretrained language embedding model ϕ(·) (Song et al.,
2020). These embeddings are then partitioned into:

Dpositive = {e∗t | I∗
t ̸= ∅}, Dnegative = {e∗t | I∗

t = ∅}, (2)

which enables the system to differentiate between scenarios that require intervention (Dpositive) and
those that do not (Dnegative). Together, Dpositive and Dnegative constitute the embedding retrieval cache.

Fast inference determines whether to generate an instruction by leveraging prior experiences stored in
the embedding retrieval cache. Conversely, all other scenarios are categorized as negative scenarios.

4
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While embeddings effectively capture general semantic meanings, they may not adequately represent
task-specific patterns. For example, two observations involving a sharp left turn and a gentle left
curve may yield similar embeddings due to shared lexical cues, despite requiring different instructions
and intervention strategies. This semantic overlap can lead to ambiguous or suboptimal guidance if
the retrieval mechanism lacks sensitivity to task-relevant nuances such as motion dynamics.

To enhance embedding-based reasoning, we train a binary classifier that maps language embeddings
to an instruction occurrence indicator: f : Rd → {0, 1}, where the output denotes whether an
instruction was issued (1) or not (0) for a given state embedding. Although the classifier improves
task-specific adaptability, it may compromise some of the broader semantic information inherent in
the embeddings due to in-domain fine-tuning (Kotha et al., 2024; Luo et al., 2023). To address this,
we implement a hybrid decision strategy that combines the classifier’s output with embedding-based
similarity comparisons. At runtime, the embedding et = ϕ(ot) for a new observation is computed.
Its similarity to both Dpositive and Dnegative is measured using cosine similarity:

spositive(et) = max
e∗∈Dpositive

e∗⊤et
∥e∗∥ ∥et∥

, snegative(et) = max
e∗∈Dnegative

e∗⊤et
∥e∗∥ ∥et∥

. (3)

The final decision combines this score with the classifier’s prediction:

It =
{

generate instruction, if spositive(et) < snegative(et) or f(et) = 1,

∅, otherwise.
(4)

For all states within the time window [tstart, tend], we classify them as a positive scenario, assuming
the entire window shares the same instruction. This hybrid approach ensures that instructions are
generated based on either a stronger similarity to the most positive experience compared to the
most negative experience or the classifier’s positive prediction. In practice, we use two frames of
observation, the current frame and the previous frame, to extract embeddings (see Appendix H for
details). For clarity of notation, this detail is omitted in the equations.

4.2 SLOW REASONING

Slow reasoning refines the decision-making process by leveraging the embedding generated during
fast inference to retrieve relevant past experiences and generate a contextually appropriate free-form
instruction It.
We denote the reasoning model as R, which maps a composite prompt Pt to a free-form instruction
It. Given the current observation ot, its embedding et = ϕ(ot) is computed during fast inference.
This embedding is used to retrieve a set of relevant past experiences from the positive cache Dpositive.
Specifically, the retrieval set

Et = Top-k

(
e∗t

⊤et
∥e∗t ∥∥et∥

| e∗t ∈ Dpositive

)
(5)

is constructed by selecting the top k embeddings e∗t with the highest cosine similarity to et. Each
retrieved embedding e∗t ∈ Et is linked to its historical instruction I∗

t from the dataset D, providing
contextually relevant instruction examples to inform the generation of It.
The retrieved instruction-embedding pairs

{
(e∗t , I∗

t )
}
e∗t∈Et

serve as the basis for constructing the
composite prompt Pt (Appendix I and F.2). The prompt Pt integrates these retrieved examples with
additional contextual details from the current observation ot. The reasoning model R then processes
the prompt Pt to generate a new instruction: It = R(Pt), ensuring that the generated instruction is
both semantically aligned with historical examples and adapted to the current context.

We present two ways to implement the RAG model (i.e., the reasoning model R) for slow reasoning:
Prompting-Based Approach. A large pretrained LLM is used as is. This approach is straightforward
to deploy and requires no additional training, making it flexible and easily adapted to new tasks.
Fine-Tuned Approach. In this variant, the LLM is further trained on the positive cache Dpositive.
Each training example is augmented with the top-k retrieved instructions, incorporating them into the
prompt Pt during fine-tuning. Note in this variant, we encode the state ot directly into embeddings,
rather than converting it into textual form (Appendix F.2 for details). This process teaches the model
to leverage past examples and domain-specific context when generating new instructions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENT

We aim to investigate the following questions in the experiment section: RQ1: Can our proposed
framework accurately determine when to provide instructions in real time (i.e., timing) while learners
perform dynamic tasks? RQ2: Does our approach generate instructions whose content aligns well
with expert guidance across diverse scenarios? RQ3: How does our fast-slow inference framework
compare to existing baselines in terms of both timing and content quality?

5.1 DATA CURATION

We collected the dataset from a study involving 15 participants who were instructed by an expert
coach during a simulated high-performance driving task in CARLA (Dosovitskiy et al., 2017) on
a single race track. This study was reviewed and approved by an IRB (name and details upon
publication). Participants were given $150 for their participation. Prior to participation, participants
were given a consent form that outlined the risks of the study (potential motion sickness and
eyestrain). After completing the consent form, the study began. Each study session lasted 2
hours. Participants drove with instruction from a professional driving coach. Every 15 minutes,
participants took a short break. Subjects were instructed to listen to the coach and try their best
to improve their lap time and racing-line adherence. The dataset includes 339 coaching trials
sampled at 10Hz, resulting in 383,303 frames, covering 13,576 expert instructions after preprocessing.
The model input ot consists of the following components: ostate

t , including Position (⟨x, y, z⟩),
Velocity (⟨vx, vy⟩), and Orientation (⟨ox, oy, oz, ow⟩) as quaternions; obehavior

t , capturing the Driver’s
Actions (⟨Steering, Speedometer,Throttle,Brake⟩); and otask

t , which includes Racing line and map
information, such as the nearest 20 coordinates on the reference optimal path and track borders
relative to the current position. The dataset is divided into a training set (67%) and the remaining
33% for evaluation. The train-test split is based on different participants, ensuring no overlap and
enabling robust testing on unseen individuals. More details can be found in Appendix G.

The data is collected from one expert coach to ensure consistency of the instructions for different
students. By training on a single, highly-calibrated expert, we could isolate the core challenge of
learning a coherent coaching policy before introducing the additional complexity of multi-expert
disagreement. On average, the coach issues instruction every three seconds. We provide more
qualitative demonstration of coach instructions in Appendix A.

5.2 BASELINES

Baselines for Timing: 1. Classifier Only: A neural network predicts binary outputs based on the
embedding (details in Appendix F.3). 2. Embedding Only: Instruction timing is determined by
comparing the current state embedding to positive and negative embeddings in the retrieval pool:
if the closest match is positive, an instruction is triggered; otherwise, it is not. 3. Rule-Based:
Manual rules trigger instructions when deviations from the optimal trajectory in position or velocity
exceed predefined thresholds. We select the threshold that yields the best timing performance. 4.
VideoLLM-Online (Chen et al., 2024): processes streaming input by continuously outputting a
special token to indicate no intervention and generates instructions only when necessary as in existing
coaching system (Panchal et al., 2024). We adapt this model to take ot as input instead of images.
Baselines for Content Evaluation:
Prompting-Based: 1. Zero-shot LLM: Generates instructions directly from state descriptions
without domain-specific examples. 2. Few-shot LLM: Generates instructions using 30 in-domain
examples (randomly selected from Dpositive) for grounding as existing AI coaching system (Jörke
et al., 2025). 3. Retrieval Top 1: Retrieves the closest instruction from the training set via cosine
similarity of observation embeddings.
Fine-tuned Models: 1. Latest Observation LLM: Generates instructions using only the latest 3
observations. 2. Full History LLM: Similar to VideoLLM-Online, but generates instructions based
on the full observation history without managing timing as in existing coaching system (Srivastava
et al., 2023). 3. VideoLLM-Online: Same as above.

5.3 IMPLEMENTATION DETAILS

STREAMCOACH can be implemented using two approaches, both leveraging MPNet (Song et al.,
2020) for fast instruction retrieval via Sentence-Transformer (Reimers & Gurevych, 2019).
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GROUND TRUTH “Take the left.”
“We’re going to stay in the “Now the next cone is going

middle of the racetrack here.” to be on the right-hand side.”
LATEST LLM “Right.” “Aim for the tower” “Keep looking for the cone”

STREAMCOACH “Over to the left” “Stay in the middle of the track’ “Let the car go out to the right”

Figure 4: Qualitative Results: The blue dot represents the car’s position, the green arrow shows its
direction of movement, the red line marks the reference driving line, and the gray line outlines the
track border. More qualitative results can be found in Appendix A.

The prompting-based method uses GPT-4o-Mini (OpenAI, 2023) without additional training.
Current observations ot are converted into language descriptions along with context (past observations,
task states, retrieved instructions) and input to the LLM for instruction generation using pre-trained
reasoning abilities. The fine-tuned method trains LLaMa-3.1-8B-Instruct (Meta, 2024) on dataset
Dpositive using LoRA (Hu et al., 2022), with three two-layer MLP encoders handling different ot input
types, following LLaVA (Liu et al., 2023). We set k = 30 retrieved samples for prompting (Jin et al.,
2024) and k = 10 for fine-tuned approaches. All results are averaged over three runs for stability.
Our approach achieves real-time performance: 0.017s for embedding extraction and 0.54s/0.35s for
instruction generation (prompting/fine-tuned) on A6000 GPU. These latencies are comparable to
human instructor response times
While our state-based retrieval approach naturally adapts to changing driving scenarios, potential
repetition within short time windows could occur in static situations. If needed, a simple temporal
suppression mechanism comparing recent instruction embeddings could address this.

5.4 EVALUATION METRICS

The evaluation of STREAMCOACH focuses on two key aspects: content similarity and timing.

Content Evaluation: We measure content similarity rcontent
t using Cosine Similarity (Manning et al.,

2008), BLEU-4 (Papineni et al., 2002), ROUGE (Lin, 2004), BERTScore (Zhang et al., 2020), and
METEOR (Banerjee & Lavie, 2005) with embeddings from a paraphrase model (Wang et al., 2020).
Additionally, GPT-4o (OpenAI, 2023) performs pairwise comparisons between generated instructions
and ground truth I∗

t , with randomized ordering to prevent bias.
Timing Evaluation: Timing accuracy rtiming

t measures whether instructions occur within a 1.5-second
window centered on expert timestamps. This stricter window (vs. 3-second in prior work (Panchal
et al., 2024)) reflects real-time coaching demands. We report True Positive Rate (TPR), Balanced
Accuracy, and Fβ=2 Score.
Overall Performance: We define overall performance Rt as the product of timing prediction accuracy
(binary) and content similarity (cosine), capturing both decision-making and instruction quality in a
unified metric.

5.5 EXPERIMENT RESULTS

The main content evaluation results are presented in Table 2 and Figure 5, with qualitative results
in Figure 4. Zero-shot LLMs perform poorly due to their lack of task-specific knowledge, while few-
shot LLMs, using limited in-domain examples, show improved performance by incorporating domain
grounding. Methods like VideoLLM-Online, which handle both timing and content generation
simultaneously, struggle to achieve both accuracy and contextual relevance. Embedding-based
retrieval approaches perform well, as observation embeddings effectively capture task-relevant
information. Even retrieving the top-1 instruction based on embeddings yields reasonable results,
demonstrating their robustness for retrieval-augmented generation and domain-specific reasoning.
Among all methods, STREAMCOACH achieves the best overall performance, with the fine-tuned
version further improving results across all metrics by leveraging domain-specific training to achieve
the highest scores and win rates.
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Table 2: Content Evaluation: Generated Instruction Semantic Similarity Comparison. The table
compares both prompting-based and finetuned-based approaches. CS stands for Cosine Similarity.

METHOD CS BLEU BERTSCORE METEOR ROUGE

PROMPTING

ZERO-SHOT LLM 0.2572±0.0062 0.0000±0.0000 0.8294±0.0007 0.0183±0.0029 0.0328±0.0040
FEW-SHOT LLM 0.3204±0.0034 0.0206±0.0018 0.8627±0.0002 0.1620±0.0018 0.2209±0.0025(JÖRKE ET AL., 2025)

RETRIEVAL TOP 1 0.4168±0.0000 0.0545±0.0000 0.8721±0.0000 0.2186±0.0000 0.2747±0.0000
STREAMCOACH 0.4512±0.0028 0.0927±0.0019 0.8766±0.0004 0.2769±0.0016 0.3352±0.0028

FINETUNED

LATEST OBSERVATION LLM 0.3116±0.0040 0.0395±0.0058 0.8680±0.0034 0.1696±0.0153 0.2333±0.0211
FULL HISTORY LLM 0.3277±0.0160 0.0431±0.0046 0.8671±0.0034 0.1557±0.0125 0.2132±0.0168(SRIVASTAVA ET AL., 2023)
VIDEOLLM-ONLINE 0.2280±0.0001 0.0056±0.0004 0.8368±0.0004 0.1240±0.0003 0.1343±0.0025(CHEN ET AL., 2024)

STREAMCOACH 0.4966±0.0061 0.1017±0.0050 0.8879±0.0008 0.2908±0.0063 0.3746±0.0066

Table 3: Timing Evaluation: Timing perfor-
mance of various models is evaluated using a
1.5-second time window.

METHOD TPR ACCURACY Fβ=2

CLASSIFIER ONLY 0.5592 0.6213 0.5676
EMBEDDING ONLY 0.5513 0.5631 0.5465

RULE-BASED 0.3186 0.4353 0.3293
VIDEOLLM-ONLINE 0.0110 0.5029 0.0136(CHEN ET AL., 2024)

STREAMCOACH 0.7017 0.6133 0.6677

Table 4: Overall Evaluation: All models, except
VideoLLM-Online, utilize the fine-tuned reasoning
model from STREAMCOACH.

TIMING MODEL REASONING MODEL TEACHING SCORE Rt

CLASSIFIER ONLY OURS 0.2979±0.0033

EMBEDDING ONLY OURS 0.2813±0.0038

RULE-BASED OURS 0.2060±0.0032

VIDEOLLM-ONLINE 0.0025±0.0000(CHEN ET AL., 2024)
STREAMCOACH 0.3865±0.0049

Figure 5 presents the results of a head-to-head comparison using GPT-4o as a judge to evaluate
the quality of generated instructions. In this evaluation, the fine-tuned version of StreamCoach is
compared against three other models: the Latest Observation LLM, the Full History LLM, and
the prompting-based version of StreamCoach. For each test case, the judge is presented with the
ground-truth instruction and the instructions generated by both models in a randomized order.

0 20 40 60 80 100

% Rate

(c)

(b)

(a)

GPT-4o as Judge

Win
Tie
Loss

Figure 5: LLM as Judge Results: (a) STREAM-
COACH (FT) vs. Latest State LLM, (b) STREAM-
COACH (FT) vs. Full History State LLM,
(c) STREAMCOACH (FT) vs. STREAMCOACH
(Prompting). FT refers to the fine-tuned version of
the reasoning model.

Table 3 summarizes the timing performance for
each method using a 1.5-second window. The
Classifier Only method relies on task-specific
features for binary predictions, while Embed-
ding Only uses embeddings to compare the cur-
rent state with positive/negative examples. Both
achieve moderate performance but lack deeper
task awareness. Our hybrid approach, combin-
ing these methods, achieves the best results over-
all by leveraging pretrained embeddings’ seman-
tic understanding and task-specific knowledge
from the classifier. The Rule-Based method per-
forms poorly, as expert instructions depend not
only on deviations from a reference trajectory
or velocity but also on the driver’s performance.

Table 4 presents the overall evaluation results, aligning with the standalone evaluations of timing and
content. Leveraging the fast-slow framework, STREAMCOACH significantly outperforms methods
that attempt to jointly learn timing and content, while maintaining real-time responsiveness.

5.5.1 ABLATION STUDY AND FURTHER ANALYSIS

We conduct ablation studies on the prompting-based variant for greater experimental flexibility.
Retrieved Samples (k): Performance stabilizes beyond k = 30 retrieved examples, indicating
diminishing returns from additional context. While more examples provide diversity, excessive
retrieval introduces noise in real-time systems. Figure 6 (a) shows this trade-off between contextual
richness and accuracy.
Time Window Size: Larger windows improve performance by relaxing timing constraints but risk
delayed feedback and overlapping instructions (expert intervals: 3 seconds). Small windows miss
valid interventions due to human variability. We adopt 1.5 seconds as optimal: accommodating
variability while maintaining responsiveness and tolerating generation latency ( 0.35s). Figure 6 (c)
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Figure 6: Ablation Analysis: a) Effect of the number of retrieved samples; b) Effect of retrieval
cache size; c) Effect of time window size.
Table 5: Ablation Study on Reasoning Models for Instruction Generation (Prompting Based):
All models use MPNet as the embedding model.

METHOD COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE
GPT-4O-MINI 0.4512±0.0028 0.0927±0.0019 0.8766±0.0004 0.2769±0.0016 0.3352±0.0028

GEMINI 2.5 FLASH LITE 0.4009±0.0021 0.0663±0.0019 0.8697±0.0013 0.2176±0.0063 0.2700±0.0065
CLAUDE 3.5 HAIKU 0.4302±0.0077 0.0758±0.0068 0.8688±0.0028 0.2493±0.0151 0.2997±0.0179

Table 6: Ablation on Inference Speed vs. Retrieved Samples for Fine-tuned Models.
#k COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE INFERENCE TIME (SECOND)
1 0.4397 0.0662 0.8785 0.2259 0.3031 0.3168
5 0.4811 0.0937 0.8849 0.2702 0.3549 0.3343

10 0.4966 0.1017 0.8879 0.2908 0.3746 0.3503

demonstrates this trade-off.
Retrieval Cache Size: Performance stabilizes at 60% of training data, indicating that scenario
diversity matters more than quantity. While larger caches provide broader scenario coverage, they
increase retrieval complexity without proportional gains. Quality-diverse examples outweigh raw
dataset size for effective retrieval.

Table 7: Slow Reasoning Time of Different Models.
METHOD INFERENCE TIME (SECOND)

LATEST OBSERVATION LLM 0.3728
FULL HISTORY LLM 1.6030
VIDEOLLM-ONLINE 0.8610

STREAMCOACH 0.3503

Inference Speed: Inference time remains stable
across different k values due to short instruction
length, while retrieval count significantly affects
output quality. Table 6 shows this decoupling
of speed and accuracy, enabling real-time per-
formance without sacrificing instruction quality.
Our current implementation achieves 0.35s for content generation (reasoning time) on fine-tuned
models with A6000 GPU, plus 0.017s for embedding extraction used in timing determination. This
can be further accelerated using optimized inference frameworks like vLLM (Kwon et al., 2023).
We also present the inference time of each fine-tuned model evaluated in the main paper in Table 7.
Notably, for VideoLLM-Online, the reported time represents the total time required to determine when
to intervene and generate instructions, as these processes are coupled rather than decoupled. Using
full history as input increases inference time without significant performance gains, highlighting the
effectiveness of our decoupled timing-content approach.

6 CONCLUSION

In this paper, we tackled the challenge of concurrent coaching for high performance driving using
a fast-slow inference framework. Our approach combines quick decision-making with detailed,
context-aware reasoning to generate clear and actionable free-form instructions. By using language
embeddings and retrieval-augmented generation, the system integrates historical expert knowledge
with the current context, ensuring timely and relevant feedback. We showed that our framework
effectively balances the trade-offs between timing precision and content accuracy in demanding
environments, even with limited annotated data. While our approach shows promise for real-time
coaching, it has limitations. Although STREAMCOACH is a multimodal model that processes both
tokenized state and language inputs, it lacks task-specific visual inputs such as driving scenes.
Training vision-language models to handle such inputs would require large and diverse datasets,
which are currently unavailable.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and exper-
imental specifications throughout the paper and supplementary materials. The main paper includes
detailed implementation information in Section 5.3, data collection procedures in Section 5.1, experi-
mental setup in Section 5.4, and ablation studies in Section 5.5.1. Complete training and inference
details, including hyperparameters, model architectures, and optimization settings for both prompting-
based and fine-tuned approaches, are provided in Appendix F.1. The simulation environment setup
and data collection protocol are described in Appendix G, while the complete prompt templates
used for instruction generation are included in Appendix H.Appendix I contains the LLM-as-judge
evaluation prompts and rubrics used for content quality assessment. Additional experimental details,
including embedding model selections (Appendix C), inference time analysis (Appendix E), and
extended qualitative results (Appendix A) are provided for comprehensive evaluation. All code,
trained models, and datasets will be made available upon publication to facilitate reproduction and
extension of this work.

ETHICS STATEMENT

The STREAMCOACH is developed and evaluated exclusively within a simulated driving environment,
with no direct or indirect control over real-world vehicles or physical systems. This strict simulation-
only setup is central to our ethical positioning and ensures that the current work poses no physical,
psychological, or safety risks to users.

Controlled Setting and No Physical Actuation All instructions used to train STREAMCOACH
are presented to human participants operating in a virtual car racing simulator. The system provides
verbal feedback in natural language, but does not issue control commands or perform autonomous
driving. This distinction is critical: the model operates purely as an assistive agent, with no actuation
authority or embedded control loop with the environment. As such, there is no path from model
output to real-world action that could lead to harm.

Conservative Design for Instruction Timing and Content STREAMCOACH is designed with
multiple safeguards that limit spurious or inappropriate interventions. The system only generates
instructions when the current learner state closely matches expert-annotated examples from past data,
based on embedding similarity and a trained classifier. In all other cases, it remains silent. Moreover,
the use of retrieval-augmented generation ensures that the guidance provided is grounded in domain-
relevant, expert-derived prior experience, rather than open-ended generation. This mitigates the risk
of hallucinated or misleading instructions.

No Ethical Risk from Data Use or Model Deployment The data used in this study was collected
under Institutional Review Board (IRB) approval, with informed consent from all participants. The
dataset contains no personally identifiable information, and is used solely for model training and
evaluation in the simulator setting. The system is not deployed publicly, nor is it integrated into any
real-world driving system or product. The entire pipeline—from data to evaluation—remains within
a research sandbox, further limiting any potential downstream risks.

Supportive, Not Prescriptive, Human-AI Interaction STREAMCOACH is fundamentally designed
to support human learning, not to direct or override it. All generated instructions are suggestions,
presented in natural language, and interpreted at the learner’s discretion. There is no closed-loop
automation or enforcement. This ensures that user agency is preserved and that learners remain in
full control of the decision-making process throughout the task.

In conclusion, STREAMCOACH is ethically scoped by design. It operates in a simulated domain, with
non-binding outputs, conservative intervention policies, and human-in-the-loop control. As such,
the system introduces no new ethical risks in its current form, and we believe it provides a safe and
responsible platform for exploring the potential of LLM-based real-time instruction.
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A ADDITIONAL QUALITATIVE RESULTS

Here, we showcase more qualitative results in Figure 7.

B EXPERIMENTS WITH LLMS USING LONG-COT

Given the strong performance of reasoning-focused models on complex tasks, we evaluate one of the
most capable publicly available models, o4-mini from OpenAI. Due to its relatively slow inference
speed, we limit our evaluation to 10% of the total test set.

Our results in Table 8 indicate that incorporating Long Chain-of-Thought (Long-CoT) reasoning does
not lead to performance gains. On the contrary, it introduces substantial computational overhead.
Consequently, we exclude further experiments with Long-CoT in this work.

C ABLATION ON EMBEDDING MODEL SELECTIONS

Table 9: Ablation on Embedding Models for Timing: Performance of different embedding models
is evaluated using the embedding-only method.

METHOD TPR ACCURACY Fβ=2
MPNET 0.5513 0.5631 0.5465

TEXT-EMBEDDING-3-SMALL 0.5547 0.5603 0.5484
TEXT-EMBEDDING-3-LARGE 0.5473 0.5631 0.5435
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GROUND TRUTH “Keep your eyes to the right side.”
“Lift off the gas a little bit “When you see the cones, get
as you’re approaching.” close to them for better control.”

LATEST LLM “So we’re going to stay left-hand side.” “Turn.” “Get close to it.”
STREAMCOACH “We’re going to look for the “Come off the gas “Little bit of steering

cone on the right hand side.” a little bit.” to the right.”

GROUND TRUTH “stay to the right hand side” “So stay to the right side.” “Stay all the way left hand side”
LATEST LLM “Stay to the left” “Over” “Get close to that one”

STREAMCOACH “Stay to the right hand side” “Stay to the right hand side” “Stay to the left-hand side”

GROUND TRUTH “over to the left hand side.” “Let the car come out.” “Let the car go out to the right.”
LATEST LLM “Now turn left” “All the way” “Stay to the right”

STREAMCOACH “Over to the left” “Back on the gas” “Back on the gas”

Figure 7: More Qualitative Results. The blue dot represents the car’s position, the green arrow
shows its direction of movement, the red line marks the reference driving line, and the gray line
outlines the track border.

Table 8: Comparison with Long-CoT Reasoning Models for Instruction Generation.

MODEL COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE INFERENCE TIME (SECOND)
GPT-4O-MINI 0.4767 0.1503 0.8803 0.2994 0.3525 0.3335

O4-MINI 0.4152 0.0804 0.8672 0.1966 0.2443 9.0110

The embedding model and reasoning model are critical components of STREAMCOACH. To evaluate
their impact, we conducted ablation studies with different configurations for each. For the embed-
ding model, we tested MPNet, TEXT-EMBEDDING-3-SMALL, and TEXT-EMBEDDING-3-LARGE
from OpenAI. As shown in Table 9, consistent with previous findings in (Sinha et al., 2024), the
performance across these models was comparable, indicating that larger, commercialized embed-
ding models do not provide significant advantages. In contrast, the reasoning model had a more
pronounced impact on performance, as shown in Table 5. We compared three commercialized fast
LLMs: GPT-4o-Mini, Gemini 2.0 Flash, and Claude Haiku. GPT-4o-Mini outperformed the other
two.

D ADDITIONAL LLM AS JUDGE RESULTS

Here, we provide more results using LLM as Judge as the metrics in figure 8. We compare the
finetuned version of STREAMCOACH with different number of retrieved examples.
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Figure 8: Additional LLM as Judge Results: (a) STREAMCOACH (FT, k=10) vs. STREAMCOACH
(FT, k=1), STREAMCOACH (FT, k=10) vs. STREAMCOACH (FT, k=5)

Semantic Similarity Lexical Overlap Paraphrasing Quality
0.0

0.5

1.0

1.5

2.0

2.5

Sc
or

e

Comparison of Metrics: 1 vs 10 Examples

1 Example
10 Examples

Semantic Similarity Lexical Overlap Paraphrasing Quality
0.0

0.5

1.0

1.5

2.0

2.5

Sc
or

e

Comparison of Metrics: 5 vs 10 Examples

5 Examples
10 Examples

Figure 9: LLM as Scorer with Rubric Results: Upper: STREAMCOACH (FT, k=10) vs. STREAM-
COACH (FT, k=1), Lower: STREAMCOACH (FT, k=10) vs. STREAMCOACH (FT, k=5)

In addition to the LLM-as-a-Judge results, we further evaluate the generated instructions using a
rubric-based comparison. Specifically, given a pair consisting of a generated instruction and its
corresponding ground-truth instruction, we prompt the LLM to assess both according to a set of
predefined evaluation metrics:

1. Semantic Similarity – How closely does the candidate convey the meaning of the reference
sentence? (score each from 1 to 5)

2. Lexical Overlap – How much lexical content (e.g., key terms or phrases) is shared with the
reference? (score each from 1 to 5)

3. Paraphrasing Quality – Does the candidate preserve meaning while using different wording
effectively? (score each from 1 to 5)

The result is presented in figure 9 and we put the prompt used in section J. The comparison reveals
a consistent trend across all metrics—performance improves slightly as the number of examples
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increases. Overall, increasing the number of examples contributes to better paraphrasing performance,
but the benefit tapers off beyond a certain point.

E INFERENCE TIME VS. PERFORMANCE ANALYSIS

We present a detailed analysis of the trade-off between inference time and performance as a function
of the number of retrieved samples (k). This analysis is conducted for both prompting-based and
fine-tuned models.

Prompting-based Model. We first evaluate the prompting-based version of STREAMCOACH,
varying the number of retrieved samples while keeping all other factors constant. All experiments are
conducted under identical network conditions and time constraints to minimize the impact of external
variables such as bandwidth or server response time. The result is shown in Table 10.

Table 10: Latency vs. number of retrieved samples for the prompting-based model.

#k COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE INFERENCE TIME (SECOND)
5 0.4409 0.0719 0.8745 0.2457 0.3048 0.5981

10 0.4492 0.0852 0.8757 0.2632 0.3223 0.5220
20 0.4488 0.0938 0.8762 0.2759 0.3326 0.5040
30 0.4512 0.0927 0.8766 0.2769 0.3352 0.5377
40 0.4505 0.0977 0.8770 0.2809 0.3410 0.5729

F TRAINING AND INFERENCE DETAILS

In this section, we provide more information about training details of timing and reasoning models.

F.1 INFERENCE DETAILS

For the prompting-based approach, which relies on a commercial language model, we set the
temperature to 0 to ensure deterministic outputs. Since we have limited control over the model’s
internal behavior and parameters, enforcing determinism helps isolate the effects of our retrieval and
prompt design. For the fine-tuned model, we use a temperature of 0.3 to introduce slight variability
during decoding. This controlled randomness can improve generalization and output diversity,
especially in models we can directly optimize and evaluate across multiple runs.

F.2 FINETUNED LLM

To fine-tune the LLM using retrieved instructions as input, we employ LoRA with a rank of r = 32.
Specifically, all fine-tuned models are trained for 4 epochs with an initial learning rate of 2× 10−4,
a cosine learning rate schedule, and a warmup phase spanning the first 0.05 epochs using AdamW
optimizer.

For the Latest Observation LLM, the input prompts the model to generate the instruction that the
assistant is expected to provide based on the latest observation (consisting of three consecutive
frames):

Latest Observation LLM Input

<|begin_of_text|>A multimodal AI assistant is helping coach driver to do car racing in a lap. Below is
the stream of state of the ego car, interleaved with the instruction from the assistant.

[<s><s><s>;<s><s><s>;<s><s><s>]
Assistant:

For Full History LLM and VideoLLM Online, the input would look like:
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Full History LLM and VideoLLM Online Input

<|begin_of_text|>A multimodal AI assistant is helping coach driver to do car racing in a lap. Below is
the stream of state of the ego car, interleaved with the instruction from the assistant.

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>]
Assistant: A little more gas.

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>]
Assistant: turn now

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>]
Assistant:

The difference in VideoLLM Online lies in whether the LLM is prompted to generate a ; token, which
determines the timing of instruction generation.

For STREAMCOACH, the input would look like:

STREAMCOACH Input

<|begin_of_text|>A multimodal AI assistant is helping coach driver to do car racing in a lap. Below is
the stream of state of the ego car, interleaved with the instruction from the assistant.

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>]
In the similar scenario, instructions given to the driver are: ["A little more gas.", "over to the left.", "turn
now,", "over to the left.", "over to the left", "over to the left hand side.", "over to the left.", "get close to
that cone.", "over to the left.", "over to the left,"]
Assistant:

Here, ⟨s⟩ is a special token encoded using a two-layer MLP to represent contextual information. Each
contextual input is composed of three ⟨s⟩ tokens:

• The first ⟨s⟩ encodes Position (⟨x, y, z⟩), Velocity (⟨vx, vy⟩), Orientation (⟨ox, oy, oz, ow⟩)
as quaternions, and Driver’s Actions (⟨Steering, Speedometer,Throttle,Brake⟩).

• The second ⟨s⟩ encodes map information, including the 20 nearest borders of the track.
• The third ⟨s⟩ encodes reference line information, specifically the 20 nearest sample points

of the reference line.

For each type of contextual information, we train a separate MLP to encode it into the embedding
space, following an approach similar to LLaVa (Liu et al., 2023).

F.3 CLASSIFIER TRAINING

We construct a MLP neural network as the classifier, with an input size of 768, corresponding to the
MPNet embedding size. The network consists of three sequential blocks:

• First block: A fully connected layer maps the input (768 dimensions) to 1024 channels,
followed by a ReLU activation, and then another fully connected layer maps 1024 channels
to 512, also followed by ReLU activation.

• Second block: Takes the 512-channel output from the first block and applies two fully
connected layers, each maintaining 512 channels. A ReLU activation follows the first layer.
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• Third block: Maps the 512-channel input from the second block to 256 channels, followed
by ReLU activation. It further reduces the size sequentially through 128, 64, and finally 1
channel, with ReLU activations between layers.

The network incorporates a skip connection, where the output of the first block is added to the input
of the third block before proceeding through the final layers. This design allows the model to learn
residual mappings, improving its ability to capture complex relationships in the data.

The model is trained for 100 epochs using a learning rate of 1 × 10−4 and Binary Cross Entropy
Loss. A StepLR scheduler is applied, reducing the learning rate by a factor of 0.1 every 30 epochs.
To address class imbalance, we adopt a resampling strategy to ensure an equal number of negative
and positive samples during training.

G SIMULATION ENVIRONMENT AND DATA COLLECTION

In this section, we provide additional details about the simulation environment used for data collection.
The simulator runs CARLA (Dosovitskiy et al., 2017) and leverages Robot Operating System (ROS)
for hardware integration and for logging vehicle state, controls, video and audio signals. The
simulation environment uses Thunderhill West (Willows, CA) track map as the driving circuit. The
setup of data collection is shown in figure 10, where the coach is giving instructions to a student who
is practicing in the simulation environment.

The overall study session lasted approximately 2 hours and consisted of three main phases:

1. Familiarization Phase: The coach introduced the experimental setup, the driving task, and
the map layout while performing a sight lap. This was followed by two baseline laps driven
by the participant.

2. Coaching Phase: As shown in the figure, the coach provided concurrent feedback while the
participant drove around the track. After each lap, the coach was given the opportunity to
provide additional feedback (terminal feedback). This phase was divided into 15-minute
segments. After each segment, participants and the coach completed additional surveys and
were checked for signs of motion sickness.

3. Retention Phase: Participants completed two laps without any coaching to assess retention
of the learned behaviors.

All audio data was transcribed using Whisper and subsequently manually corrected and time synced
for accuracy. Concurrent feedback was categorized into instruction types using GPT via in-context
learning, with expert-annotated examples provided as prompts.

Figure 10: Data Collection Setup.

In this setup, the expert delivers frequent (on average every 3 seconds), fine-grained utterances
because high-performance driving demands sub-second corrections. Typical guidance includes short,
actionable phrases such as “Lift off the gas a little bit,” “Stay to the right hand side,” or “Let the car
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go out to the right,” which help the learner adjust line, throttle, and steering continuously. Additional
qualitative examples are provided in the appendix (see Appendix A).

This instruction density does not indicate an easy task; rather, it reflects the domain’s speed and
complexity. The coach must convey what to say and, critically, when to say it as the learner’s state
evolves non-uniformly over time—motivating our decomposition of fast timing and slow content
reasoning. Moreover, because the state space is continuous and language naturally varies (e.g., “Brake
now” vs. “Hit the brakes”), we trained with a single, highly calibrated expert to control variability
while focusing on learning a coherent coaching policy.

Generating appropriate instructions is challenging even for powerful LLMs with domain context in a
low-data regime. As shown in Table 1, baselines struggle even when considering content alone: the
Zero-shot LLM performs poorly, and models given in-domain examples (Few-shot LLM) or fine-tuned
on the data (Latest Observation LLM; Full History LLM) still fail to generate high-quality guidance.
The task is further complicated by real-time timing constraints. The system must decide not only
what to say but also when to say it, under non-uniformly distributed utterances. The difficulty of
solving both problems jointly is highlighted by the VideoLLM-Online baseline, which attempts to
manage timing and content simultaneously and performs the worst on content while failing almost
completely on timing.

Regarding supervision consistency, our dataset was collected with a highly experienced professional
coach whose feedback is validated in real-world high-performance driving training. In practice,
different coaches—or even the same coach at different times—may provide different instructions
for similar situations due to two factors. First, human instruction is inherently stochastic: even if
the exact same state could be reproduced, a coach is not a deterministic function. Natural linguistic
variation means the same corrective intent might be expressed as “Brake now” or “Hit the brakes,”
differing in phrasing but not in semantic intent. Second, identical states are rare in this continuous,
high-dimensional domain; small differences in speed, trajectory, or throttle produce distinct states that
can elicit different corrective feedback (e.g., “turn now” vs. “hold the line”) depending on momentary
vehicle dynamics.

These factors make learning especially challenging: the model must generalize from a sparse set
of unique state–instruction pairs, where each instruction reflects one valid choice among many. As
shown in Table 1, baselines such as the Few-shot LLM and the Full History LLM perform poorly in
this setting, lacking mechanisms to handle sparse supervision and expressive variation. By training
on a single, highly calibrated expert, we isolate the core challenge of learning a coherent coaching
policy before introducing the additional complexity of multi-expert disagreement.
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H STATE DESCRIPTION

We use description of current frame and one previous frame as the input to the embedding model for
retrieval. Here is an example:

Frame Description Example

Step 1:
The position of the car is: [-663.29, -75.16, 0.94] in meters.
The orientation of the car is: [-0.0, -0.02, 0.7, 0.71] in quaternion.
The velocity of the car is: [0.06, 10.44] in mph.
The speedometer reading is: 23.0 in mph.
The driver’s actions are: throttle=0.86 brake=0.0 steering=-0.02
The inner edge of the road is: [[-669.23 -75.52], [-669.47 -73.53], [-669.7 -71.55], [-669.93 -69.56],
[-670.17 -67.58]] in meters.
The outer edge of the road is: [[-662.11 -74.86], [-662.35 -72.87], [-662.6 -70.89], [-662.85 -68.9 ],
[-663.11 -66.92]] in meters.

Step 2:
The position of the car is: [-663.28, -74.28, 0.96] in meters.
The orientation of the car is: [-0.0, -0.02, 0.7, 0.71] in quaternion.
The velocity of the car is: [0.02, 10.75] in mph.
The speedometer reading is: 24.0 in mph.
The driver’s actions are: throttle=0.86 brake=0.0 steering=-0.01
The inner edge of the road is: [[-669.35 -74.52], [-669.59 -72.54], [-669.82 -70.56], [-670.05 -68.57],
[-670.29 -66.59]] in meters.
The outer edge of the road is: [[-662.23 -73.86], [-662.47 -71.88], [-662.73 -69.89], [-662.98 -67.91],
[-663.24 -65.92]] in meters.
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I PROMPT

Here, we present the prompt used for prompting-based reasoning models. The key difference between
models lies in whether the phrase “In a similar situation, the instructions given were:” is included in
the prompt.

Prompt for Prompting-based Reasoning Models

You are a Driving Coach. You are responsible for providing driving instructions to the driver to learn
car racing, here are some instructions you given in some similar situations as reference:

In the similar situation, the instruction have been given are: ["full throttle", "Over to the left,", "A
little more gas.", "Over to the left.", "Steer now.", "Over to the left.", "over to the left hand side.",
"Over to the left now", "over to the left,", "so small turn to the left", "now turn,", "Now start going
over to the left.", "over to the left hand side.", "Now get close to this cone here.", "over to the
left.", "a little bit of steering", "over to the left,", "from the right", "Stay to the right,", "over to the left.", ]

Now, The current position of the car is: [-664.59, -47.47, 1.43] in meters.
The current orientation of the car is: [-0.01, -0.02, 0.74, 0.67] in quaternion.
The current velocity of the car is: [-1.87, 17.23] in mph.
The current speedometer reading is: 39.0 in mph.
The driver’s actions are: throttle=0.9 brake=0.0 steering=-0.0
The inner edge of the road is: [[-866.23 -455.3 ], [-866.57 -457.24], [-866.82 -459.19], [-867.02
-461.15], [-867.18 -463.11]] in meters.
The outer edge of the road is: [[-874.32 -454.28], [-874.68 -456.36], [-874.98 -458.46], [-875.24
-460.57], [-875.44 -462.69]] in meters.

Inner edge is on the left-hand side and outer side is on the right-hand side. Please provide the next
instruction to the driver in a concise way. No more than 10 words. One instruction at once, do not
combine. Put your final instruction starting with ’The final instruction is:’ without any formatting.
Think Step by Step.

J LLM AS JUDGE PROMPT

Here we present the prompt used for content evaluation under the LLM as judge and LLM as scorer
with rubric paradigm. In practice, we ran each comparison twice by switching the order of generated
instructions and record the average.

J.1 LLM AS JUDGE

LLM-as-Judge Prompt

These are two sentences, pick the one that is semantically closer to the reference sentence, output 1 if
the first setence is sematically closer, output 2 if the second one is semantically closer. If they are too
similar with each other or both different from the reference semantically, output 0, the reference is:
Take the left turn

1. Over to the left
2. Head over to the cone
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J.2 LLM AS SCORER WITH RUBRIC

LLM-as-Scorer Prompt

You are given a reference sentence and two candidate sentences. Your task is to evaluate each candidate
sentence independently using the rubric below, and provide a score for each criterion. Do not choose a
winner, simply assess both candidates.

Rubric (score each from 1 to 5):
1. Semantic Similarity: How closely does the candidate convey the meaning of the reference sentence?
2. Lexical Overlap: How much lexical content (e.g., key terms or phrases) is shared with the reference?
3. Paraphrasing Quality: Does the candidate preserve meaning while using different wording effectively?

Reference sentence:
“Take the left turn”

Candidate 1:
“Over to the left”

Candidate 2:
“Head over to the cone”

Output Format (JSON):
{
“candidate_1”: {
“semantic_similarity”: X,
“lexical_overlap”: X,
“paraphrasing_quality”: X
},
“candidate_2”: {
“semantic_similarity”: X,
“lexical_overlap”: X,
“paraphrasing_quality”: X
}
}
(Replace X with scores from 1 to 5, where 5 is best.)

K DETAILED PROMPTING PROCEDURE

We first encode the language-based descriptions of environment states from the training set where
expert instructions were provided, using a pretrained sentence embedding model ϕ(·). Specifically,
each observation o∗t with a non-empty expert instruction I∗

t ̸= ∅ is translated into a language
description and mapped to an embedding e∗t = ϕ(o∗t ), which is stored in the positive retrieval cache
Dpositive.

At inference time, the current observation ot is similarly converted into a language description using
the same predefined template and embedded as et = ϕ(ot). We then compute the cosine similarity
between et and each embedding e∗t ∈ Dpositive as:

sim(et, e
∗
t ) =

e⊤t e
∗
t

∥et∥ · ∥e∗t ∥
.

The top-k most similar embeddings, denoted as {e∗t1 , e
∗
t2 , . . . , e

∗
tk
}, are selected based on cosine

similarity. For each retrieved embedding e∗ti , we retrieve the corresponding expert instruction I∗
ti .

These k retrieved instruction-context pairs are then aggregated to form a composite prompt Pt that
includes both the retrieved examples and the current state description.

This prompt Pt is passed to the LLM within a retrieval-augmented generation (RAG) framework
to produce a new, context-sensitive instruction:

It = R(Pt),
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where R(·) denotes the reasoning model (either prompting-based or fine-tuned) that generates free-
form language instructions.

L THE USE OF LARGE LANGUAGE MODELS

Beyond their use described in the main text, LLMs were also employed to refine the writing of this
paper
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