
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REAL-TIME COACHING OF HUMAN PHYSICAL SKILLS
WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Concurrent coaching of humans with language instruction has the potential to dra-
matically accelerate skill acquisition in high-stakes domains like driving and sports.
However, effective concurrent coaching requires two key capabilities: determining
when to intervene with fast, proactive timing decisions, and determining what to
say through free-form instruction generation for diverse scenarios. Existing ap-
proaches struggle because they either sacrifice real-time responsiveness for content
quality or sacrifice content flexibility for speed. Our key insight is to decompose
concurrent coaching into two stages: deciding when to intervene and determining
what to say, bridged by a shared representation. We introduce STREAMCOACH, a
two-stage coaching framework that encodes learner state into lightweight language
embeddings, enabling intervention decisions within 17 ms that trigger generation
of contextually appropriate instructions. In the fast inference stage, STREAM-
COACH compares current state embeddings against past coaching scenarios to
trigger interventions. In the slow reasoning stage, the same embeddings retrieve
relevant examples for Retrieval-Augmented Generation of adaptive instructions.
By separating timing-critical decisions from content generation, STREAMCOACH
achieves both key capabilities simultaneously. Evaluated in high-performance
driving, STREAMCOACH significantly outperforms existing approaches in both
intervention timing and instruction quality, demonstrating effective concurrent
coaching of humans through language.

1 INTRODUCTION

Concurrent coaching with language instruction, where coaches provide real-time guidance to humans
during task execution, is a powerful tool for accelerating human skill acquisition (Magill & Anderson,
2017). A human driving coach, for example, might say “brake earlier here” or “steer tighter around
this corner” to help a human learner adjust their technique on the fly. Unlike terminal coaching,
which provides feedback to humans only after task completion when intervention opportunities are
lost (see Figure 1), concurrent coaching offers immediate, context-aware guidance that helps humans
prevent errors as they unfold (Hattie & Timperley, 2007; Denys Brand & Tortolero, 2020; Hula
et al., 2008; Hodges & Williams, 2012). These timely interventions are especially critical for human
performance in high-speed, high-stakes domains where delayed feedback arrives too late to help
humans adjust their actions (Gopinath et al., 2025). Automating such human coaching with AI could
dramatically expand access to expert feedback and provide personalized support for human learners
where human coaches are unavailable.

However, effective concurrent human coaching with AI systems requires two key capabilities (see Ta-
ble 1): determining when to intervene with fast, proactive timing decisions, and determining what
to say through free-form instruction generation for diverse scenarios and human learner behaviors.
Terminal approaches like CORGI (Srivastava et al., 2023) generate quality instructions but operate
post-task, causing learners to repeat errors without timely correction. Conversational systems like
GPTCoach (Jörke et al., 2025) provide flexible dialogue but remain passive, missing critical inter-
vention opportunities while waiting for user queries. Concurrent systems like Gopinath et al. (2025)
achieve fast timing but use fixed rule sets, potentially providing inappropriate guidance in novel
situations. End-to-end approaches like Panchal et al. (2024) attempt both capabilities in a single
vision-language model but struggle with timing complexity, causing learners to miss intervention
windows during slow joint optimization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

“Shift to the right
slowly”

“Turn left now”

“Gas up to the hill!”

Concurrent Coaching with Free-form LanguageConcurrent Coaching with Fixed Instruction Set

“Please follow
the reference
line closely and
make the turn as
early as possible
when you notice
the hint.”

Terminal Coaching

Turn

Accelerate

Decelerate

…..

Time

Figure 1: Comparison of Coaching Methods: Terminal coaching, where feedback is given after the
session for overall performance improvement; Concurrent coaching with fixed instructions, which
provides real-time guidance using structured commands; and Concurrent coaching with free-form
language. The gray lines represent the track borders, while the red line illustrates the reference
driving line for the optimal path. The dotted line indicates the actual driving trajectory of the driver.
Table 1: Comparison of Coaching Systems: Two key capabilities for effective concurrent coaching.
When to intervene: Concurrent (provides guidance during task execution), Fast Intervention (makes
timing decisions <100ms), Proactive (actively determines intervention moments vs. waiting for
queries). What to say: Free-form (generates flexible instructions for diverse scenarios).

Coaching System Concurrent Fast Intervention Proactive Free-form

CORGI (Srivastava et al., 2023) — — — ✓
Gopinath et al. (2025) ✓ ✓ — —
GPTCoach (Jörke et al., 2025) — — — ✓
Panchal et al. (2024) ✓ — ✓ ✓
STREAMCOACH (Ours) ✓ ✓ ✓ ✓

To address these challenges, our main insight is to decompose concurrent coaching into two stages:
deciding when to intervene and determining what to say, bridged by a shared representation. We
introduce STREAMCOACH, a two-stage coaching framework inspired by (Sinha et al., 2024), which
pairs fast inference for intervention timing with slow reasoning for instruction generation, as il-
lustrated in Figure 2. In the fast inference stage, STREAMCOACH encodes the learner’s real-time
state, including actions, trajectories, and environmental cues, into lightweight language embed-
dings (Reimers & Gurevych, 2019), continuously comparing these against past coaching scenarios
with expert feedback. Critically, STREAMCOACH can determine whether to intervene within 17ms,
meeting fast intervention requirements.

Crucially, this same embedding space powers the content generation stage: once intervention is
triggered, the similarity scores are used to retrieve relevant prior coaching episodes, which are then
used in a Retrieval-Augmented Generation (RAG) pipeline. These examples ground a language
model to compose tailored, domain-specific instructions, thus bypassing the need for densely labeled
training data, unlike prior systems. The shared embedding acts as a bridge between timing and
content, enabling efficient, consistent, and context-aware coaching.

In this work, we explore the application of STREAMCOACH for concurrent coaching in high-
performance driving (Betz et al., 2022; Wurman et al., 2022; Werner et al., 2023; Chen et al.,
2023; DeCastro et al., 2024; Gopinath et al., 2025), with a focus on evaluating the timing and quality
of the generated instructions. Our results show that STREAMCOACH delivers accurate, contextually
relevant guidance with fast intervention timing, outperforming baselines in both intervention timing
and instruction quality. By unifying fast intervention detection and slow instruction generation
through a shared embedding space, STREAMCOACH enables scalable, concurrent language-based
coaching.

2 RELATED WORK

LLMs for Education. LLMs offer personalized and scalable learning experiences through natural
language interaction (Xu et al., 2024; Wang et al., 2024a). They have been applied to problem-
solving (Wu et al., 2023b; Bommarito II & Katz, 2022; Cui et al., 2023b; Liévin et al., 2023;
Thirunavukarasu et al., 2023; Wu et al., 2023a; Yang et al., 2023; Kazemitabaar et al., 2023; Savelka
et al., 2023; OpenAI, 2023; Zhang et al., 2024), error correction (Zhang et al., 2023; Zhao et al., 2023),
question generation (Doughty et al., 2024; Lee et al., 2023; Xiao et al., 2023), etc. Fine-tuning on
domain-specific data enhances their pedagogical alignment, yet most applications target conceptual

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Driver's actions:
throttle=0.86 brake=0.0
steering=-0.02

Position of the car is:
[-663.29, -75.16, 0.94]
in meters.

Orientation of the
car is: [-0.0, -0.02, 0.7,
0.71] in quaternion.

Velocity of the car is:
[0.06, 10.44] in mph.

Speedometer
reading is: 23.0 in mph.

......

Map & Reference

Car State

Driver’s Action

Em
be

dd
in

g
M

od
el

Positive Embedding

Negative Cache

Negative Embedding

“Accelerate!”
“Turn Left”

“Gas up to the hill”
“Straighten the wheel”

Positive Cache

“Stay in the middle
of the track”

Retrieve Instructions

State
Description

𝑠!"#$%$&'

𝑠(')*%$&'

Continue

LLMEmbedding-Based
Inference

Figure 2: Overview of STREAMCOACH during Inference Time. Left: STREAMCOACH converts
the current driver action, car state, and map data into a language description. Middle: The description
is embedded using a language model. Cosine similarity with cached positive/negative embeddings
and a trained classifier determine whether to trigger slow reasoning. Right: If triggered, relevant
instructions are retrieved from the positive cache together with the state description for retrieval-
augmented generation.

tasks rather than physical skills. Teaching physical skills requires LLMs to interpret multimodal
inputs and actions. A pioneering work has used LLMs for terminal feedback (Srivastava et al., 2023),
but this approach only offers post-task evaluation. In contrast, concurrent teaching requires real-time,
context-sensitive guidance that allows learners to adjust their actions on the fly. In this work, we
present STREAMCOACH, a model that generates immediate, precise instructions through a fast-slow
inference framework for real-time skill learning.
LLMs for Autonomous Driving. LLMs are being explored in autonomous driving to enhance
high-level reasoning—such as interpreting traffic laws, generating behavior strategies, and assisting
with path planning (Shao et al., 2024; Wang et al., 2023; Mao et al., 2023b;a; Sima et al., 2024). They
also improve human-vehicle interaction by enabling natural language commands and are used in
retrieval-augmented systems to explain agents’ behaviors (Yuan et al., 2024; Hussien et al., 2024;
Cui et al., 2023a; 2024a; Ma et al., 2024; Cui et al., 2024b). Unlike these applications that generate
vehicle behavior, our work focuses on producing timely instructional feedback for human learners.
Rather than replicating expert driving behavior, STREAMCOACH observes and analyzes the learner’s
actions to provide corrective guidance that promotes proper technique and decision-making.
Retrieval Augmented Generation. Retrieval Augmented Generation integrates LLMs with external
retrieval mechanisms to enrich generation with domain-specific knowledge (Gupta et al., 2024; Li
et al., 2025; Rau et al., 2024; Wang et al., 2024b; Zhao et al., 2024; Shen et al., 2024; Han et al.,
2025; Li et al., 2024; Gao et al., 2024; Lewis et al., 2020). By querying a curated repository during
inference, RAG incorporates relevant examples or expert annotations, leading to more informed
responses (Yuan et al., 2024; Hussien et al., 2024). In our framework, the slow reasoning stage
employs RAG to retrieve relevant experiences and generate nuanced, context-aware instructions.

3 PROBLEM FORMULATION

We treat concurrent teaching as a sequential process in which the system operates at discrete time
steps t = 1, 2, . . . , T . At each time t, the system observes inputs ot =

{
ostate
t , obehavior

t , otask
t

}
, where

ostate
t captures the current state of the environment (e.g. position of the car), obehavior

t represents the
human’s ongoing behavior (e.g., brake), and otask

t encodes task-specific information such as map
information, and produces a free-form instruction It ∈ L∪ {∅}, where ∅ indicates that no instruction
is given and L is the language instructions can be generated. Our goal is to generate well-timed
instructions with content closely aligned to expert instructions. To quantify this, we define a teaching
score at each step, Rt = rtiming

t ∗ rcontent
t and consider the total score over the whole task horizon

as the overall measure of teaching quality. We assume access to a dataset D =
{(

o
∗(i)
1:T , I∗(i)

1:T

)}N
i=1

,

where I∗
t = ∅ indicates that no expert instruction was given at time t. The timing score rtiming

t
evaluates whether the generated instruction It (when it is not ∅) is issued within a valid interval
[tstart, tend] computed with respect to the timing of the ground truth instruction:

rtiming
t =

{
1, if tgeneration ∈ [tstart, tend],

0, otherwise.
(1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Here, tgeneration denotes the time step at which the model issues the instruction It. The content score
rcontent
t measures the similarity between the generated instruction It and the expert instruction I∗

t .
Common metrics include cosine similarity or BLEU/ROUGE (Papineni et al., 2002; Lin, 2004):
rcontent
t = sim

(
It, I∗

t

)
.

Road
Refline
Cones

Figure 3: Map of the Racing
Track. The green stars repre-
sent cones placed along the lap
to mark key points, the grey
lines indicate the track, and
the red line illustrates the ref-
erence driving line for optimal
driving path.

The teaching strategy should yield a high average score across the
entire duration of human training. Over the dataset D, the system
aims to learn a mapping from past observations o1:t to instructions
It that maximizes this measure of both timely and relevant feedback.

3.1 TASK DOMAIN:
CONCURRENT COACHING FOR HIGH PERFORMANCE DRIVING

High performance driving is a dynamic, high-stakes environment
where split-second decisions and precise maneuvers are crucial. This
work focuses on the domain of concurrent coaching for high per-
formance driving, where the goal is to deliver real-time, actionable
feedback that enables drivers to adjust their driving technique in real
time. We use CARLA (Dosovitskiy et al., 2017) as the simulation
platform and adopt the Thunderhill West track (Willows, CA) as the
driving circuit; see Figure 3 for an illustration.

4 STREAMCOACH

Algorithm 1 STREAMCOACH

1: Input: Observation ot, embedding function ϕ, pos-
itive cache Dpositive, negative cache Dnegative, clas-
sifier f , threshold τ , retrieval parameter k, RAG
model.

2: Output: Instruction It or no instruction.
3: ▽ Fast Inference Stage
4: Compute embedding: et ← ϕ(ot)
5: Compute similarity scores:

spos ← maxe∗∈Dpositive
e∗⊤et

∥e∗∥∥et∥ ,

sneg ← maxe∗∈Dnegative
e∗⊤et

∥e∗∥∥et∥
6: Compute decision score: ∆s← (spos − sneg)
7: if ∆s < 0 and f(et) = 0 then
8: Return It = ∅
9: end if

10: ▽ Slow Reasoning Stage
11: Retrieve top-k similar experiences: Et ←

Top-k
{
e∗ ∈ Dpos :

e∗⊤et
∥e∗∥∥et∥

}
12: Retrieve corresponding instructions for each e∗ ∈
Et

13: Generate instruction: It ← RAG(Et, ot)
14: Return It

To address these challenges, we propose a fast-
slow inference framework. STREAMCOACH op-
erates in two key stages, as illustrated in Figure 2
and algorithm 1.

4.1 FAST INFERENCE

Fast inference serves as the first stage in our
fast-slow framework, quickly assessing the need
for intervention. It combines precomputed lan-
guage embeddings with a task-specific classifier,
enabling efficient, context-aware decisions. The
hybrid approach balances speed and adaptabil-
ity: embeddings support rapid semantic match-
ing, while the classifier handles subtle variations
for robust performance.

To enable embedding-based reasoning, each ob-
servation ot ∈ o1:T is first converted into a
natural language description using templates
(Appendix H), similar to Hwang et al. (2024)
and Sinha et al. (2024). These templates extract
key features from the system state, task objec-
tives, and learner behavior, and transform them
into structured, natural language statements that preserve essential contextual information. For nota-
tional simplicity, we continue to denote these text-based representations as ot, with the understanding
that they refer to the language descriptions derived from raw observations.

Given a training dataset D =
{(

o
∗(i)
1:T , I∗(i)

1:T

)}N

i=1
, each observation o∗t ∈ o

∗(i)
1:T is mapped to an

embedding e∗t ∈ Rd using an off-the-shelf pretrained language embedding model ϕ(·) (Song et al.,
2020). These embeddings are then partitioned into:

Dpositive = {e∗t | I∗
t ̸= ∅}, Dnegative = {e∗t | I∗

t = ∅}, (2)

which enables the system to differentiate between scenarios that require intervention (Dpositive) and
those that do not (Dnegative). Together, Dpositive and Dnegative constitute the embedding retrieval cache.

Fast inference determines whether to generate an instruction by leveraging prior experiences stored in
the embedding retrieval cache. Conversely, all other scenarios are categorized as negative scenarios.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

While embeddings effectively capture general semantic meanings, they may not adequately represent
task-specific patterns. For example, two observations involving a sharp left turn and a gentle left
curve may yield similar embeddings due to shared lexical cues, despite requiring different instructions
and intervention strategies. This semantic overlap can lead to ambiguous or suboptimal guidance if
the retrieval mechanism lacks sensitivity to task-relevant nuances such as motion dynamics.

To enhance embedding-based reasoning, we train a binary classifier that maps language embeddings
to an instruction occurrence indicator: f : Rd → {0, 1}, where the output denotes whether an
instruction was issued (1) or not (0) for a given state embedding. Although the classifier improves
task-specific adaptability, it may compromise some of the broader semantic information inherent in
the embeddings due to in-domain fine-tuning (Kotha et al., 2024; Luo et al., 2023). To address this,
we implement a hybrid decision strategy that combines the classifier’s output with embedding-based
similarity comparisons. At runtime, the embedding et = ϕ(ot) for a new observation is computed.
Its similarity to both Dpositive and Dnegative is measured using cosine similarity:

spositive(et) = max
e∗∈Dpositive

e∗⊤et
∥e∗∥ ∥et∥

, snegative(et) = max
e∗∈Dnegative

e∗⊤et
∥e∗∥ ∥et∥

. (3)

The final decision combines this score with the classifier’s prediction:

It =
{

generate instruction, if spositive(et) < snegative(et) or f(et) = 1,

∅, otherwise.
(4)

For all states within the time window [tstart, tend], we classify them as a positive scenario, assuming
the entire window shares the same instruction. This hybrid approach ensures that instructions are
generated based on either a stronger similarity to the most positive experience compared to the
most negative experience or the classifier’s positive prediction. In practice, we use two frames of
observation, the current frame and the previous frame, to extract embeddings (see Appendix H for
details). For clarity of notation, this detail is omitted in the equations.

4.2 SLOW REASONING

Slow reasoning refines the decision-making process by leveraging the embedding generated during
fast inference to retrieve relevant past experiences and generate a contextually appropriate free-form
instruction It.
We denote the reasoning model as R, which maps a composite prompt Pt to a free-form instruction
It. Given the current observation ot, its embedding et = ϕ(ot) is computed during fast inference.
This embedding is used to retrieve a set of relevant past experiences from the positive cache Dpositive.
Specifically, the retrieval set

Et = Top-k

(
e∗t

⊤et
∥e∗t ∥∥et∥

| e∗t ∈ Dpositive

)
(5)

is constructed by selecting the top k embeddings e∗t with the highest cosine similarity to et. Each
retrieved embedding e∗t ∈ Et is linked to its historical instruction I∗

t from the dataset D, providing
contextually relevant instruction examples to inform the generation of It.
The retrieved instruction-embedding pairs

{
(e∗t , I∗

t)
}
e∗t∈Et

serve as the basis for constructing the
composite prompt Pt (Appendix I and F.2). The prompt Pt integrates these retrieved examples with
additional contextual details from the current observation ot. The reasoning model R then processes
the prompt Pt to generate a new instruction: It = R(Pt), ensuring that the generated instruction is
both semantically aligned with historical examples and adapted to the current context.

We present two ways to implement the RAG model (i.e., the reasoning model R) for slow reasoning:
Prompting-Based Approach. A large pretrained LLM is used as is. This approach is straightforward
to deploy and requires no additional training, making it flexible and easily adapted to new tasks.
Fine-Tuned Approach. In this variant, the LLM is further trained on the positive cache Dpositive.
Each training example is augmented with the top-k retrieved instructions, incorporating them into the
prompt Pt during fine-tuning. Note in this variant, we encode the state ot directly into embeddings,
rather than converting it into textual form (Appendix F.2 for details). This process teaches the model
to leverage past examples and domain-specific context when generating new instructions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENT

We aim to investigate the following questions in the experiment section: RQ1: Can our proposed
framework accurately determine when to provide instructions in real time (i.e., timing) while learners
perform dynamic tasks? RQ2: Does our approach generate instructions whose content aligns well
with expert guidance across diverse scenarios? RQ3: How does our fast-slow inference framework
compare to existing baselines in terms of both timing and content quality?

5.1 DATA CURATION

We collected the dataset from a study involving 15 participants who were instructed by an expert
coach during a simulated high-performance driving task in CARLA (Dosovitskiy et al., 2017) on
a single race track. This study was reviewed and approved by an IRB (name and details upon
publication). Participants were given $150 for their participation. Prior to participation, participants
were given a consent form that outlined the risks of the study (potential motion sickness and
eyestrain). After completing the consent form, the study began. Each study session lasted 2
hours. Participants drove with instruction from a professional driving coach. Every 15 minutes,
participants took a short break. Subjects were instructed to listen to the coach and try their best
to improve their lap time and racing-line adherence. The dataset includes 339 coaching trials
sampled at 10Hz, resulting in 383,303 frames, covering 13,576 expert instructions after preprocessing.
The model input ot consists of the following components: ostate

t , including Position (⟨x, y, z⟩),
Velocity (⟨vx, vy⟩), and Orientation (⟨ox, oy, oz, ow⟩) as quaternions; obehavior

t , capturing the Driver’s
Actions (⟨Steering, Speedometer,Throttle,Brake⟩); and otask

t , which includes Racing line and map
information, such as the nearest 20 coordinates on the reference optimal path and track borders
relative to the current position. The dataset is divided into a training set (67%) and the remaining
33% for evaluation. The train-test split is based on different participants, ensuring no overlap and
enabling robust testing on unseen individuals. More details can be found in Appendix G.

The data is collected from one expert coach to ensure consistency of the instructions for different
students. By training on a single, highly-calibrated expert, we could isolate the core challenge of
learning a coherent coaching policy before introducing the additional complexity of multi-expert
disagreement. On average, the coach issues instruction every three seconds. We provide more
qualitative demonstration of coach instructions in Appendix A.

5.2 BASELINES

Baselines for Timing: 1. Classifier Only: A neural network predicts binary outputs based on the
embedding (details in Appendix F.3). 2. Embedding Only: Instruction timing is determined by
comparing the current state embedding to positive and negative embeddings in the retrieval pool:
if the closest match is positive, an instruction is triggered; otherwise, it is not. 3. Rule-Based:
Manual rules trigger instructions when deviations from the optimal trajectory in position or velocity
exceed predefined thresholds. We select the threshold that yields the best timing performance. 4.
VideoLLM-Online (Chen et al., 2024): processes streaming input by continuously outputting a
special token to indicate no intervention and generates instructions only when necessary as in existing
coaching system (Panchal et al., 2024). We adapt this model to take ot as input instead of images.
Baselines for Content Evaluation:
Prompting-Based: 1. Zero-shot LLM: Generates instructions directly from state descriptions
without domain-specific examples. 2. Few-shot LLM: Generates instructions using 30 in-domain
examples (randomly selected from Dpositive) for grounding as existing AI coaching system (Jörke
et al., 2025). 3. Retrieval Top 1: Retrieves the closest instruction from the training set via cosine
similarity of observation embeddings.
Fine-tuned Models: 1. Latest Observation LLM: Generates instructions using only the latest 3
observations. 2. Full History LLM: Similar to VideoLLM-Online, but generates instructions based
on the full observation history without managing timing as in existing coaching system (Srivastava
et al., 2023). 3. VideoLLM-Online: Same as above.

5.3 IMPLEMENTATION DETAILS

STREAMCOACH can be implemented using two approaches, both leveraging MPNet (Song et al.,
2020) for fast instruction retrieval via Sentence-Transformer (Reimers & Gurevych, 2019).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GROUND TRUTH “Take the left.”
“We’re going to stay in the “Now the next cone is going

middle of the racetrack here.” to be on the right-hand side.”
LATEST LLM “Right.” “Aim for the tower” “Keep looking for the cone”

STREAMCOACH “Over to the left” “Stay in the middle of the track’ “Let the car go out to the right”

Figure 4: Qualitative Results: The blue dot represents the car’s position, the green arrow shows its
direction of movement, the red line marks the reference driving line, and the gray line outlines the
track border. More qualitative results can be found in Appendix A.

The prompting-based method uses GPT-4o-Mini (OpenAI, 2023) without additional training.
Current observations ot are converted into language descriptions along with context (past observations,
task states, retrieved instructions) and input to the LLM for instruction generation using pre-trained
reasoning abilities. The fine-tuned method trains LLaMa-3.1-8B-Instruct (Meta, 2024) on dataset
Dpositive using LoRA (Hu et al., 2022), with three two-layer MLP encoders handling different ot input
types, following LLaVA (Liu et al., 2023). We set k = 30 retrieved samples for prompting (Jin et al.,
2024) and k = 10 for fine-tuned approaches. All results are averaged over three runs for stability.
Our approach achieves real-time performance: 0.017s for embedding extraction and 0.54s/0.35s for
instruction generation (prompting/fine-tuned) on A6000 GPU. These latencies are comparable to
human instructor response times
While our state-based retrieval approach naturally adapts to changing driving scenarios, potential
repetition within short time windows could occur in static situations. If needed, a simple temporal
suppression mechanism comparing recent instruction embeddings could address this.

5.4 EVALUATION METRICS

The evaluation of STREAMCOACH focuses on two key aspects: content similarity and timing.

Content Evaluation: We measure content similarity rcontent
t using Cosine Similarity (Manning et al.,

2008), BLEU-4 (Papineni et al., 2002), ROUGE (Lin, 2004), BERTScore (Zhang et al., 2020), and
METEOR (Banerjee & Lavie, 2005) with embeddings from a paraphrase model (Wang et al., 2020).
Additionally, GPT-4o (OpenAI, 2023) performs pairwise comparisons between generated instructions
and ground truth I∗

t , with randomized ordering to prevent bias.
Timing Evaluation: Timing accuracy rtiming

t measures whether instructions occur within a 1.5-second
window centered on expert timestamps. This stricter window (vs. 3-second in prior work (Panchal
et al., 2024)) reflects real-time coaching demands. We report True Positive Rate (TPR), Balanced
Accuracy, and Fβ=2 Score.
Overall Performance: We define overall performance Rt as the product of timing prediction accuracy
(binary) and content similarity (cosine), capturing both decision-making and instruction quality in a
unified metric.

5.5 EXPERIMENT RESULTS

The main content evaluation results are presented in Table 2 and Figure 5, with qualitative results
in Figure 4. Zero-shot LLMs perform poorly due to their lack of task-specific knowledge, while few-
shot LLMs, using limited in-domain examples, show improved performance by incorporating domain
grounding. Methods like VideoLLM-Online, which handle both timing and content generation
simultaneously, struggle to achieve both accuracy and contextual relevance. Embedding-based
retrieval approaches perform well, as observation embeddings effectively capture task-relevant
information. Even retrieving the top-1 instruction based on embeddings yields reasonable results,
demonstrating their robustness for retrieval-augmented generation and domain-specific reasoning.
Among all methods, STREAMCOACH achieves the best overall performance, with the fine-tuned
version further improving results across all metrics by leveraging domain-specific training to achieve
the highest scores and win rates.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Content Evaluation: Generated Instruction Semantic Similarity Comparison. The table
compares both prompting-based and finetuned-based approaches. CS stands for Cosine Similarity.

METHOD CS BLEU BERTSCORE METEOR ROUGE

PROMPTING

ZERO-SHOT LLM 0.2572±0.0062 0.0000±0.0000 0.8294±0.0007 0.0183±0.0029 0.0328±0.0040
FEW-SHOT LLM 0.3204±0.0034 0.0206±0.0018 0.8627±0.0002 0.1620±0.0018 0.2209±0.0025(JÖRKE ET AL., 2025)

RETRIEVAL TOP 1 0.4168±0.0000 0.0545±0.0000 0.8721±0.0000 0.2186±0.0000 0.2747±0.0000
STREAMCOACH 0.4512±0.0028 0.0927±0.0019 0.8766±0.0004 0.2769±0.0016 0.3352±0.0028

FINETUNED

LATEST OBSERVATION LLM 0.3116±0.0040 0.0395±0.0058 0.8680±0.0034 0.1696±0.0153 0.2333±0.0211
FULL HISTORY LLM 0.3277±0.0160 0.0431±0.0046 0.8671±0.0034 0.1557±0.0125 0.2132±0.0168(SRIVASTAVA ET AL., 2023)
VIDEOLLM-ONLINE 0.2280±0.0001 0.0056±0.0004 0.8368±0.0004 0.1240±0.0003 0.1343±0.0025(CHEN ET AL., 2024)

STREAMCOACH 0.4966±0.0061 0.1017±0.0050 0.8879±0.0008 0.2908±0.0063 0.3746±0.0066

Table 3: Timing Evaluation: Timing perfor-
mance of various models is evaluated using a
1.5-second time window.

METHOD TPR ACCURACY Fβ=2

CLASSIFIER ONLY 0.5592 0.6213 0.5676
EMBEDDING ONLY 0.5513 0.5631 0.5465

RULE-BASED 0.3186 0.4353 0.3293
VIDEOLLM-ONLINE 0.0110 0.5029 0.0136(CHEN ET AL., 2024)

STREAMCOACH 0.7017 0.6133 0.6677

Table 4: Overall Evaluation: All models, except
VideoLLM-Online, utilize the fine-tuned reasoning
model from STREAMCOACH.

TIMING MODEL REASONING MODEL TEACHING SCORE Rt

CLASSIFIER ONLY OURS 0.2979±0.0033

EMBEDDING ONLY OURS 0.2813±0.0038

RULE-BASED OURS 0.2060±0.0032

VIDEOLLM-ONLINE 0.0025±0.0000(CHEN ET AL., 2024)
STREAMCOACH 0.3865±0.0049

Figure 5 presents the results of a head-to-head comparison using GPT-4o as a judge to evaluate
the quality of generated instructions. In this evaluation, the fine-tuned version of StreamCoach is
compared against three other models: the Latest Observation LLM, the Full History LLM, and
the prompting-based version of StreamCoach. For each test case, the judge is presented with the
ground-truth instruction and the instructions generated by both models in a randomized order.

0 20 40 60 80 100

% Rate

(c)

(b)

(a)

GPT-4o as Judge

Win
Tie
Loss

Figure 5: LLM as Judge Results: (a) STREAM-
COACH (FT) vs. Latest State LLM, (b) STREAM-
COACH (FT) vs. Full History State LLM,
(c) STREAMCOACH (FT) vs. STREAMCOACH
(Prompting). FT refers to the fine-tuned version of
the reasoning model.

Table 3 summarizes the timing performance for
each method using a 1.5-second window. The
Classifier Only method relies on task-specific
features for binary predictions, while Embed-
ding Only uses embeddings to compare the cur-
rent state with positive/negative examples. Both
achieve moderate performance but lack deeper
task awareness. Our hybrid approach, combin-
ing these methods, achieves the best results over-
all by leveraging pretrained embeddings’ seman-
tic understanding and task-specific knowledge
from the classifier. The Rule-Based method per-
forms poorly, as expert instructions depend not
only on deviations from a reference trajectory
or velocity but also on the driver’s performance.

Table 4 presents the overall evaluation results, aligning with the standalone evaluations of timing and
content. Leveraging the fast-slow framework, STREAMCOACH significantly outperforms methods
that attempt to jointly learn timing and content, while maintaining real-time responsiveness.

5.5.1 ABLATION STUDY AND FURTHER ANALYSIS

We conduct ablation studies on the prompting-based variant for greater experimental flexibility.
Retrieved Samples (k): Performance stabilizes beyond k = 30 retrieved examples, indicating
diminishing returns from additional context. While more examples provide diversity, excessive
retrieval introduces noise in real-time systems. Figure 6 (a) shows this trade-off between contextual
richness and accuracy.
Time Window Size: Larger windows improve performance by relaxing timing constraints but risk
delayed feedback and overlapping instructions (expert intervals: 3 seconds). Small windows miss
valid interventions due to human variability. We adopt 1.5 seconds as optimal: accommodating
variability while maintaining responsiveness and tolerating generation latency (0.35s). Figure 6 (c)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 5 10 20 30 40
Number of Retrived Samples

0.0

0.1

0.2

0.3

0.4

0.5

Cosine Similarity
BLEU
ROUGE
METEOR

0.2 0.4 0.6 0.8 1.0
Percentage of All Data

0.0

0.1

0.2

0.3

0.4

0.5

Cosine Similarity
BLEU
ROUGE
METEOR

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Window (in sec)

0.1

0.2

0.3

0.4

0.5

TPR
Accuracy
F1

a) b) c)
Figure 6: Ablation Analysis: a) Effect of the number of retrieved samples; b) Effect of retrieval
cache size; c) Effect of time window size.
Table 5: Ablation Study on Reasoning Models for Instruction Generation (Prompting Based):
All models use MPNet as the embedding model.

METHOD COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE
GPT-4O-MINI 0.4512±0.0028 0.0927±0.0019 0.8766±0.0004 0.2769±0.0016 0.3352±0.0028

GEMINI 2.5 FLASH LITE 0.4009±0.0021 0.0663±0.0019 0.8697±0.0013 0.2176±0.0063 0.2700±0.0065
CLAUDE 3.5 HAIKU 0.4302±0.0077 0.0758±0.0068 0.8688±0.0028 0.2493±0.0151 0.2997±0.0179

Table 6: Ablation on Inference Speed vs. Retrieved Samples for Fine-tuned Models.
#k COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE INFERENCE TIME (SECOND)
1 0.4397 0.0662 0.8785 0.2259 0.3031 0.3168
5 0.4811 0.0937 0.8849 0.2702 0.3549 0.3343

10 0.4966 0.1017 0.8879 0.2908 0.3746 0.3503

demonstrates this trade-off.
Retrieval Cache Size: Performance stabilizes at 60% of training data, indicating that scenario
diversity matters more than quantity. While larger caches provide broader scenario coverage, they
increase retrieval complexity without proportional gains. Quality-diverse examples outweigh raw
dataset size for effective retrieval.

Table 7: Slow Reasoning Time of Different Models.
METHOD INFERENCE TIME (SECOND)

LATEST OBSERVATION LLM 0.3728
FULL HISTORY LLM 1.6030
VIDEOLLM-ONLINE 0.8610

STREAMCOACH 0.3503

Inference Speed: Inference time remains stable
across different k values due to short instruction
length, while retrieval count significantly affects
output quality. Table 6 shows this decoupling
of speed and accuracy, enabling real-time per-
formance without sacrificing instruction quality.
Our current implementation achieves 0.35s for content generation (reasoning time) on fine-tuned
models with A6000 GPU, plus 0.017s for embedding extraction used in timing determination. This
can be further accelerated using optimized inference frameworks like vLLM (Kwon et al., 2023).
We also present the inference time of each fine-tuned model evaluated in the main paper in Table 7.
Notably, for VideoLLM-Online, the reported time represents the total time required to determine when
to intervene and generate instructions, as these processes are coupled rather than decoupled. Using
full history as input increases inference time without significant performance gains, highlighting the
effectiveness of our decoupled timing-content approach.

6 CONCLUSION

In this paper, we tackled the challenge of concurrent coaching for high performance driving using
a fast-slow inference framework. Our approach combines quick decision-making with detailed,
context-aware reasoning to generate clear and actionable free-form instructions. By using language
embeddings and retrieval-augmented generation, the system integrates historical expert knowledge
with the current context, ensuring timely and relevant feedback. We showed that our framework
effectively balances the trade-offs between timing precision and content accuracy in demanding
environments, even with limited annotated data. While our approach shows promise for real-time
coaching, it has limitations. Although STREAMCOACH is a multimodal model that processes both
tokenized state and language inputs, it lacks task-specific visual inputs such as driving scenes.
Training vision-language models to handle such inputs would require large and diverse datasets,
which are currently unavailable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and exper-
imental specifications throughout the paper and supplementary materials. The main paper includes
detailed implementation information in Section 5.3, data collection procedures in Section 5.1, experi-
mental setup in Section 5.4, and ablation studies in Section 5.5.1. Complete training and inference
details, including hyperparameters, model architectures, and optimization settings for both prompting-
based and fine-tuned approaches, are provided in Appendix F.1. The simulation environment setup
and data collection protocol are described in Appendix G, while the complete prompt templates
used for instruction generation are included in Appendix H.Appendix I contains the LLM-as-judge
evaluation prompts and rubrics used for content quality assessment. Additional experimental details,
including embedding model selections (Appendix C), inference time analysis (Appendix E), and
extended qualitative results (Appendix A) are provided for comprehensive evaluation. All code,
trained models, and datasets will be made available upon publication to facilitate reproduction and
extension of this work.

ETHICS STATEMENT

The STREAMCOACH is developed and evaluated exclusively within a simulated driving environment,
with no direct or indirect control over real-world vehicles or physical systems. This strict simulation-
only setup is central to our ethical positioning and ensures that the current work poses no physical,
psychological, or safety risks to users.

Controlled Setting and No Physical Actuation All instructions used to train STREAMCOACH
are presented to human participants operating in a virtual car racing simulator. The system provides
verbal feedback in natural language, but does not issue control commands or perform autonomous
driving. This distinction is critical: the model operates purely as an assistive agent, with no actuation
authority or embedded control loop with the environment. As such, there is no path from model
output to real-world action that could lead to harm.

Conservative Design for Instruction Timing and Content STREAMCOACH is designed with
multiple safeguards that limit spurious or inappropriate interventions. The system only generates
instructions when the current learner state closely matches expert-annotated examples from past data,
based on embedding similarity and a trained classifier. In all other cases, it remains silent. Moreover,
the use of retrieval-augmented generation ensures that the guidance provided is grounded in domain-
relevant, expert-derived prior experience, rather than open-ended generation. This mitigates the risk
of hallucinated or misleading instructions.

No Ethical Risk from Data Use or Model Deployment The data used in this study was collected
under Institutional Review Board (IRB) approval, with informed consent from all participants. The
dataset contains no personally identifiable information, and is used solely for model training and
evaluation in the simulator setting. The system is not deployed publicly, nor is it integrated into any
real-world driving system or product. The entire pipeline—from data to evaluation—remains within
a research sandbox, further limiting any potential downstream risks.

Supportive, Not Prescriptive, Human-AI Interaction STREAMCOACH is fundamentally designed
to support human learning, not to direct or override it. All generated instructions are suggestions,
presented in natural language, and interpreted at the learner’s discretion. There is no closed-loop
automation or enforcement. This ensures that user agency is preserved and that learners remain in
full control of the decision-making process throughout the task.

In conclusion, STREAMCOACH is ethically scoped by design. It operates in a simulated domain, with
non-binding outputs, conservative intervention policies, and human-in-the-loop control. As such,
the system introduces no new ethical risks in its current form, and we believe it provides a safe and
responsible platform for exploring the potential of LLM-based real-time instruction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization, 2005.

Johannes Betz, Tobias Betz, Felix Fent, Maximilian Geisslinger, Alexander Heilmeier, Leonhard Her-
mansdorfer, Thomas Herrmann, Sebastian Huch, Phillip Karle, Markus Lienkamp, Boris Lohmann,
Felix Nobis, Levent Ögretmen, Matthias Rowold, Florian Sauerbeck, Tim Stahl, Rainer Trauth,
Frederik Werner, and Alexander Wischnewski. Tum autonomous motorsport: An autonomous
racing software for the indy autonomous challenge. Journal of Field Robotics, 2022.

Michael Bommarito II and Daniel Martin Katz. GPT takes the bar exam. arXiv preprint
arXiv:2212.14402, 2022.

Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu,
Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large language
model for streaming video. In CVPR, 2024.

Letian Chen, Shawn Manuel, James Delgado, John K. Subosits, and Paul Tylkin. Learn thy enemy:
Online, task-aware opponent modeling in autonomous racing. In ML4AD, 2023.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu,
Zichong Yang, Kuei-Da Liao, Tianren Gao, Erlong Li, Kun Tang, Zhipeng Cao, Tong Zhou, Ao Liu,
Xinrui Yan, Shuqi Mei, Jianguo Cao, Ziran Wang, and Chao Zheng. A survey on multimodal large
language models for autonomous driving. CoRR, abs/2311.12320, 2023a.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Ziran Wang. Drive as you speak: Enabling
human-like interaction with large language models in autonomous vehicles. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024a.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Ziran Wang. Receive, reason, and react: Drive
as you say, with large language models in autonomous vehicles. IEEE Intelligent Transportation
Systems Magazine, 16(4), July 2024b.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. Chatlaw: Open-source legal large
language model with integrated external knowledge bases. arXiv preprint arXiv:2306.16092,
2023b.

Jonathan DeCastro, Andrew Silva, Deepak Gopinath, Emily Sumner, Thomas M. Balch, Laporsha
Dees, and Guy Rosman. Dreaming to assist: Learning to align with human objectives for shared
control in high-speed racing. In Proceedings of the 8th Conference on Robot Learning (CoRL),
2024.

Florence D. DiGennaro Reed Denys Brand, Matthew D. Novak and Samara A. Tortolero. Examining
the effects of feedback accuracy and timing on skill acquisition. Journal of Organizational
Behavior Management, 40(1-2), 2020.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning,
2017.

Jacob Doughty, Zipiao Wan, Anishka Bompelli, Jubahed Qayum, Taozhi Wang, Juran Zhang, Yujia
Zheng, Aidan Doyle, Pragnya Sridhar, Arav Agarwal, et al. A comparative study of ai-generated
(gpt-4) and human-crafted mcqs in programming education. In Proceedings of the 26th Australasian
Computing Education Conference, 2024.

Xuan Gao, Zhenghua Wang, Feiran Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi, Zhengyuan Wang,
Shizheng Li, Qi Qian, Ruicheng Yin, et al. Towards cross-cultural machine translation with
retrieval-augmented generation. arXiv preprint arXiv:2412.18431, 2024.

Deepak Gopinath, Xiongyi Cui, Jonathan DeCastro, Emily Sumner, Jean Costa, Hiroshi Yasuda,
Allison Morgan, Laporsha Dees, Sheryl Chau, John Leonard, et al. Computational teaching
for driving via multi-task imitation learning. IEEE International Conference on Robotics and
Automation (ICRA), 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shailja Gupta, Rajesh Ranjan, and Surya Narayan Singh. A comprehensive survey of retrieval-
augmented generation (rag): Evolution, current landscape and future directions. arXiv preprint
arXiv:2410.12837, 2024.

Haoyu Han, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, Qi He, Zhigang Hua, Bo Long,
Tong Zhao, Neil Shah, Amin Javari, et al. Retrieval-augmented generation with graphs (graphrag).
arXiv preprint arXiv:2501.00309, 2025.

John Hattie and Helen Timperley. The power of feedback. Review of Educational Researcgh, 77,
2007.

Nicola Hodges and A Mark Mark Williams. Skill acquisition in sport. Taylor & Francis, 2012.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022.

Shannon N Austermann Hula, Donald A Robin, Edwin Maas, Kirrie J Ballard, and Richard A
Schmidt. Effects of feedback frequency and timing on acquisition, retention, and transfer of speech
skills in acquired apraxia of speech. 2008.

Mohamed Manzour Hussien, Angie Nataly Melo, Augusto Luis Ballardini, Carlota Salinas Mal-
donado, Rubén Izquierdo, and Miguel Ángel Sotelo. Rag-based explainable prediction of road
users behaviors for automated driving using knowledge graphs and large language models. arXiv
preprint arXiv:2405.00449, 2024.

Jyh-Jing Hwang, Runsheng Xu, Hubert Lin, Wei-Chih Hung, Jingwei Ji, Kristy Choi, Di Huang, Tong
He, Paul Covington, Benjamin Sapp, James Guo, Drago Anguelov, and Mingxing Tan. Emma:
End-to-end multimodal model for autonomous driving. ArXiv, abs/2410.23262, 2024.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan Ö. Arik. Long-context llms meet rag: Overcoming
challenges for long inputs in rag. ArXiv, abs/2410.05983, 2024.

Matthew Jörke, Shardul Sapkota, Lyndsea Warkenthien, Niklas Vainio, Paul Schmiedmayer, Emma
Brunskill, and James A. Landay. Gptcoach: Towards llm-based physical activity coaching. In
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems, CHI ’25, New
York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400713941.

Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David Weintrop, and
Tovi Grossman. How novices use llm-based code generators to solve cs1 coding tasks in a self-
paced learning environment. In Proceedings of the 23rd Koli Calling International Conference on
Computing Education Research, 2023.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forgetting
in language models via implicit inference. In The Twelfth International Conference on Learning
Representations, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Unggi Lee, Haewon Jung, Younghoon Jeon, Younghoon Sohn, Wonhee Hwang, Jewoong Moon,
and Hyeoncheol Kim. Few-shot is enough: exploring chatgpt prompt engineering method for
automatic question generation in english education. Education and Information Technologies,
2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33,
2020.

Siran Li, Linus Stenzel, Carsten Eickhoff, and Seyed Ali Bahrainian. Accelerating retrieval-
augmented generation. arXiv preprint arXiv:2412.15246, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Siran Li, Linus Stenzel, Carsten Eickhoff, and Seyed Ali Bahrainian. Enhancing retrieval-augmented
generation: A study of best practices. arXiv preprint arXiv:2501.07391, 2025.

Valentin Liévin, Christoffer Egeberg Hother, Andreas Geert Motzfeldt, and Ole Winther. Can large
language models reason about medical questions? Patterns, 2023.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop, 2004.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Advances
in Neural Information Processing Systems, 2023.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Yunsheng Ma, Can Cui, Xu Cao, Wenqian Ye, Peiran Liu, Juanwu Lu, Amr Abdelraouf, Rohit Gupta,
Kyungtae Han, Aniket Bera, James M. Rehg, and Ziran Wang. Lampilot: An open benchmark
dataset for autonomous driving with language model programs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Richard A. Magill and David I. Anderson. Motor Learning and Control: Concepts and Applications.
11th edition, 2017.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. 2008.

Jiageng Mao, Yuxi Qian, Junjie Ye, Hang Zhao, and Yue Wang. GPT-Driver: Learning to drive with
GPT. arXiv preprint arXiv:2310.01415, 2023a.

Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone, and Yue Wang. A language agent for autonomous
driving. arXiv preprint arXiv:2311.10813, 2023b.

Meta. The llama 3 herd of models, 2024.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Sunny Panchal, Apratim Bhattacharyya, Guillaume Berger, Antoine Mercier, Cornelius Böhm,
Florian Dietrichkeit, Reza Pourreza, Xuanlin Li, Pulkit Madan, Mingu Lee, Mark Todorovich,
Ingo Bax, and Roland Memisevic. Live fitness coaching as a testbed for situated interaction. In
The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, 2002.

David Rau, Hervé Déjean, Nadezhda Chirkova, Thibault Formal, Shuai Wang, Stéphane Clinchant,
and Vassilina Nikoulina. Bergen: A benchmarking library for retrieval-augmented generation. In
Findings of the Association for Computational Linguistics: EMNLP 2024, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 11
2019.

Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. Thrilled by your
progress! large language models (gpt-4) no longer struggle to pass assessments in higher education
programming courses. In Proceedings of the 2023 ACM Conference on International Computing
Education Research-Volume 1, 2023.

Hao Shao, Yuxuan Hu, Letian Wang, Guanglu Song, Steven L. Waslander, Yu Liu, and Hongsheng Li.
LMDrive: Closed-Loop End-to-End Driving with Large Language Models . In 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhili Shen, Siran Li, Linus Stenzel, Carsten Eickhoff, and Seyed Ali Bahrainian. Gear: Graph-
enhanced agent for retrieval-augmented generation. arXiv preprint arXiv:2412.18431, 2024.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanming Deng, Silei Wu, Wenwen Tong,
Tai Wang, Lewei Lu, Dahua Lin, et al. DriveLM: Driving with graph visual question answering.
In European Conference on Computer Vision (ECCV), 2024.

Rohan Sinha, Amine Elhafsi, Christopher Agia, Matt Foutter, Edward Schmerling, and Marco Pavone.
Real-time anomaly detection and reactive planning with large language models. In Proceedings of
Robotics: Science and Systems, July 2024.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MPNet: Masked and permuted
pre-training for language understanding. In Advances in Neural Information Processing Systems,
volume 33, 2020.

Megha Srivastava, Noah Goodman, and Dorsa Sadigh. Generating language corrections for teaching
physical control tasks. In 40th International Conference on Machine Learning (ICML), 2023.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature Medicine, 29(8), 2023.

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu, and
Qingsong Wen. Large language models for education: A survey and outlook. arXiv preprint
arXiv:2403.18105, 2024a.

Wenhai Wang, Jiangwei Xie, ChuanYang Hu, Haoming Zou, Jianan Fan, Wenwen Tong, Yang Wen,
Silei Wu, Hanming Deng, Zhiqi Li, et al. DriveMLM: Aligning multi-modal large language models
with behavioral planning states for autonomous driving. arXiv preprint arXiv:2312.09245, 2023.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. MiniLM: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers. In Advances
in Neural Information Processing Systems, volume 33, 2020.

Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi,
Zhengyuan Wang, Shizheng Li, Qi Qian, et al. Searching for best practices in retrieval-augmented
generation. arXiv preprint arXiv:2407.01219, 2024b.

Peter Werner, Tim Seyde, Paul Drews, Thomas Matrai Balch, Igor Gilitschenski, Wilko Schwarting,
Guy Rosman, Sertac Karaman, and Daniela Rus. Dynamic multi-team racing: Competitive driving
on 1/10-th scale vehicles via learning in simulation. In 7th Annual Conference on Robot Learning,
2023.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. BloombergGPT: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023a.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. An empirical study on challenging math problem solving with
GPT-4. arXiv preprint arXiv:2306.01337, 2023b.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory
Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Outrac-
ing champion gran turismo drivers with deep reinforcement learning. Nature, 602, 2022.

Changrong Xiao, Sean Xin Xu, Kunpeng Zhang, Yufang Wang, and Lei Xia. Evaluating reading
comprehension exercises generated by llms: A showcase of chatgpt in education applications. In
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications
(BEA 2023), 2023.

Hanyi Xu, Wensheng Gan, Zhenlian Qi, Jiayang Wu, and Philip S. Yu. Large language models for
education: A survey. arXiv preprint arXiv:2405.13001, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. FinGPT: Open-source financial large
language models. arXiv preprint arXiv:2306.06031, 2023.

Jianhao Yuan, Shuyang Sun, Daniel Omeiza, Bo Zhao, Paul Newman, Lars Kunze, and Matthew
Gadd. Rag-driver: Generalisable driving explanations with retrieval-augmented in-context learning
in multi-modal large language model. arXiv preprint arXiv:2402.10828, 2024.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. In Proceedings of the 8th International Conference on Learning
Representations, 2020.

Wenxuan Zhang, Mahani Aljunied, Chang Gao, Yew Ken Chia, and Lidong Bing. M3exam: A
multilingual, multimodal, multilevel benchmark for examining large language models. Advances
in Neural Information Processing Systems, 36, 2024.

Xiaowu Zhang, Xiaotian Zhang, Cheng Yang, Hang Yan, and Xipeng Qiu. Does correction remain a
problem for large language models? arXiv preprint arXiv:2308.01776, 2023.

Honghong Zhao, Baoxin Wang, Honghong Day, Yaxin Fan, Feng Jiang, Peifeng Li, and Haizhou Li.
Grammargpt: Exploring open-source llms for native chinese grammatical error correction with
supervised fine-tuning. In CCF International Conference on Natural Language Processing and
Chinese Computing, 2023.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473, 2024.

CONTENTS

1 Introduction 1

2 Related Work 2

3 Problem Formulation 3

3.1 Task Domain: Concurrent Coaching for High Performance Driving 4

4 STREAMCOACH 4

4.1 Fast Inference . 4

4.2 Slow Reasoning . 5

5 Experiment 6

5.1 Data Curation . 6

5.2 Baselines . 6

5.3 Implementation Details . 6

5.4 Evaluation Metrics . 7

5.5 Experiment Results . 7

5.5.1 Ablation Study and Further Analysis . 8

6 Conclusion 9

A Additional Qualitative Results 16

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B Experiments with LLMs Using Long-CoT 16

C Ablation on Embedding Model Selections 16

D Additional LLM as Judge Results 17

E Inference Time vs. Performance Analysis 19

F Training and Inference Details 19

F.1 Inference Details . 19

F.2 Finetuned LLM . 19

F.3 Classifier Training . 20

G Simulation Environment and Data Collection 21

H State Description 23

I Prompt 24

J LLM as Judge Prompt 24

J.1 LLM as judge . 24

J.2 LLM as Scorer with Rubric . 25

K Detailed Prompting Procedure 25

L The Use of Large Language Models 26

A ADDITIONAL QUALITATIVE RESULTS

Here, we showcase more qualitative results in Figure 7.

B EXPERIMENTS WITH LLMS USING LONG-COT

Given the strong performance of reasoning-focused models on complex tasks, we evaluate one of the
most capable publicly available models, o4-mini from OpenAI. Due to its relatively slow inference
speed, we limit our evaluation to 10% of the total test set.

Our results in Table 8 indicate that incorporating Long Chain-of-Thought (Long-CoT) reasoning does
not lead to performance gains. On the contrary, it introduces substantial computational overhead.
Consequently, we exclude further experiments with Long-CoT in this work.

C ABLATION ON EMBEDDING MODEL SELECTIONS

Table 9: Ablation on Embedding Models for Timing: Performance of different embedding models
is evaluated using the embedding-only method.

METHOD TPR ACCURACY Fβ=2
MPNET 0.5513 0.5631 0.5465

TEXT-EMBEDDING-3-SMALL 0.5547 0.5603 0.5484
TEXT-EMBEDDING-3-LARGE 0.5473 0.5631 0.5435

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GROUND TRUTH “Keep your eyes to the right side.”
“Lift off the gas a little bit “When you see the cones, get
as you’re approaching.” close to them for better control.”

LATEST LLM “So we’re going to stay left-hand side.” “Turn.” “Get close to it.”
STREAMCOACH “We’re going to look for the “Come off the gas “Little bit of steering

cone on the right hand side.” a little bit.” to the right.”

GROUND TRUTH “stay to the right hand side” “So stay to the right side.” “Stay all the way left hand side”
LATEST LLM “Stay to the left” “Over” “Get close to that one”

STREAMCOACH “Stay to the right hand side” “Stay to the right hand side” “Stay to the left-hand side”

GROUND TRUTH “over to the left hand side.” “Let the car come out.” “Let the car go out to the right.”
LATEST LLM “Now turn left” “All the way” “Stay to the right”

STREAMCOACH “Over to the left” “Back on the gas” “Back on the gas”

Figure 7: More Qualitative Results. The blue dot represents the car’s position, the green arrow
shows its direction of movement, the red line marks the reference driving line, and the gray line
outlines the track border.

Table 8: Comparison with Long-CoT Reasoning Models for Instruction Generation.

MODEL COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE INFERENCE TIME (SECOND)
GPT-4O-MINI 0.4767 0.1503 0.8803 0.2994 0.3525 0.3335

O4-MINI 0.4152 0.0804 0.8672 0.1966 0.2443 9.0110

The embedding model and reasoning model are critical components of STREAMCOACH. To evaluate
their impact, we conducted ablation studies with different configurations for each. For the embed-
ding model, we tested MPNet, TEXT-EMBEDDING-3-SMALL, and TEXT-EMBEDDING-3-LARGE
from OpenAI. As shown in Table 9, consistent with previous findings in (Sinha et al., 2024), the
performance across these models was comparable, indicating that larger, commercialized embed-
ding models do not provide significant advantages. In contrast, the reasoning model had a more
pronounced impact on performance, as shown in Table 5. We compared three commercialized fast
LLMs: GPT-4o-Mini, Gemini 2.0 Flash, and Claude Haiku. GPT-4o-Mini outperformed the other
two.

D ADDITIONAL LLM AS JUDGE RESULTS

Here, we provide more results using LLM as Judge as the metrics in figure 8. We compare the
finetuned version of STREAMCOACH with different number of retrieved examples.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

% Rate

(b)

(a)

GPT-4o as Judge

Win
Tie
Loss

Figure 8: Additional LLM as Judge Results: (a) STREAMCOACH (FT, k=10) vs. STREAMCOACH
(FT, k=1), STREAMCOACH (FT, k=10) vs. STREAMCOACH (FT, k=5)

Semantic Similarity Lexical Overlap Paraphrasing Quality
0.0

0.5

1.0

1.5

2.0

2.5

Sc
or

e

Comparison of Metrics: 1 vs 10 Examples

1 Example
10 Examples

Semantic Similarity Lexical Overlap Paraphrasing Quality
0.0

0.5

1.0

1.5

2.0

2.5

Sc
or

e

Comparison of Metrics: 5 vs 10 Examples

5 Examples
10 Examples

Figure 9: LLM as Scorer with Rubric Results: Upper: STREAMCOACH (FT, k=10) vs. STREAM-
COACH (FT, k=1), Lower: STREAMCOACH (FT, k=10) vs. STREAMCOACH (FT, k=5)

In addition to the LLM-as-a-Judge results, we further evaluate the generated instructions using a
rubric-based comparison. Specifically, given a pair consisting of a generated instruction and its
corresponding ground-truth instruction, we prompt the LLM to assess both according to a set of
predefined evaluation metrics:

1. Semantic Similarity – How closely does the candidate convey the meaning of the reference
sentence? (score each from 1 to 5)

2. Lexical Overlap – How much lexical content (e.g., key terms or phrases) is shared with the
reference? (score each from 1 to 5)

3. Paraphrasing Quality – Does the candidate preserve meaning while using different wording
effectively? (score each from 1 to 5)

The result is presented in figure 9 and we put the prompt used in section J. The comparison reveals
a consistent trend across all metrics—performance improves slightly as the number of examples

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

increases. Overall, increasing the number of examples contributes to better paraphrasing performance,
but the benefit tapers off beyond a certain point.

E INFERENCE TIME VS. PERFORMANCE ANALYSIS

We present a detailed analysis of the trade-off between inference time and performance as a function
of the number of retrieved samples (k). This analysis is conducted for both prompting-based and
fine-tuned models.

Prompting-based Model. We first evaluate the prompting-based version of STREAMCOACH,
varying the number of retrieved samples while keeping all other factors constant. All experiments are
conducted under identical network conditions and time constraints to minimize the impact of external
variables such as bandwidth or server response time. The result is shown in Table 10.

Table 10: Latency vs. number of retrieved samples for the prompting-based model.

#k COSINE SIMILARITY BLEU BERTSCORE METEOR ROUGE INFERENCE TIME (SECOND)
5 0.4409 0.0719 0.8745 0.2457 0.3048 0.5981

10 0.4492 0.0852 0.8757 0.2632 0.3223 0.5220
20 0.4488 0.0938 0.8762 0.2759 0.3326 0.5040
30 0.4512 0.0927 0.8766 0.2769 0.3352 0.5377
40 0.4505 0.0977 0.8770 0.2809 0.3410 0.5729

F TRAINING AND INFERENCE DETAILS

In this section, we provide more information about training details of timing and reasoning models.

F.1 INFERENCE DETAILS

For the prompting-based approach, which relies on a commercial language model, we set the
temperature to 0 to ensure deterministic outputs. Since we have limited control over the model’s
internal behavior and parameters, enforcing determinism helps isolate the effects of our retrieval and
prompt design. For the fine-tuned model, we use a temperature of 0.3 to introduce slight variability
during decoding. This controlled randomness can improve generalization and output diversity,
especially in models we can directly optimize and evaluate across multiple runs.

F.2 FINETUNED LLM

To fine-tune the LLM using retrieved instructions as input, we employ LoRA with a rank of r = 32.
Specifically, all fine-tuned models are trained for 4 epochs with an initial learning rate of 2× 10−4,
a cosine learning rate schedule, and a warmup phase spanning the first 0.05 epochs using AdamW
optimizer.

For the Latest Observation LLM, the input prompts the model to generate the instruction that the
assistant is expected to provide based on the latest observation (consisting of three consecutive
frames):

Latest Observation LLM Input

<|begin_of_text|>A multimodal AI assistant is helping coach driver to do car racing in a lap. Below is
the stream of state of the ego car, interleaved with the instruction from the assistant.

[<s><s><s>;<s><s><s>;<s><s><s>]
Assistant:

For Full History LLM and VideoLLM Online, the input would look like:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Full History LLM and VideoLLM Online Input

<|begin_of_text|>A multimodal AI assistant is helping coach driver to do car racing in a lap. Below is
the stream of state of the ego car, interleaved with the instruction from the assistant.

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>]
Assistant: A little more gas.

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>]
Assistant: turn now

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>]
Assistant:

The difference in VideoLLM Online lies in whether the LLM is prompted to generate a ; token, which
determines the timing of instruction generation.

For STREAMCOACH, the input would look like:

STREAMCOACH Input

<|begin_of_text|>A multimodal AI assistant is helping coach driver to do car racing in a lap. Below is
the stream of state of the ego car, interleaved with the instruction from the assistant.

[<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;<s><s><s>;
<s><s><s>;<s><s><s>;<s><s><s>]
In the similar scenario, instructions given to the driver are: ["A little more gas.", "over to the left.", "turn
now,", "over to the left.", "over to the left", "over to the left hand side.", "over to the left.", "get close to
that cone.", "over to the left.", "over to the left,"]
Assistant:

Here, ⟨s⟩ is a special token encoded using a two-layer MLP to represent contextual information. Each
contextual input is composed of three ⟨s⟩ tokens:

• The first ⟨s⟩ encodes Position (⟨x, y, z⟩), Velocity (⟨vx, vy⟩), Orientation (⟨ox, oy, oz, ow⟩)
as quaternions, and Driver’s Actions (⟨Steering, Speedometer,Throttle,Brake⟩).

• The second ⟨s⟩ encodes map information, including the 20 nearest borders of the track.
• The third ⟨s⟩ encodes reference line information, specifically the 20 nearest sample points

of the reference line.

For each type of contextual information, we train a separate MLP to encode it into the embedding
space, following an approach similar to LLaVa (Liu et al., 2023).

F.3 CLASSIFIER TRAINING

We construct a MLP neural network as the classifier, with an input size of 768, corresponding to the
MPNet embedding size. The network consists of three sequential blocks:

• First block: A fully connected layer maps the input (768 dimensions) to 1024 channels,
followed by a ReLU activation, and then another fully connected layer maps 1024 channels
to 512, also followed by ReLU activation.

• Second block: Takes the 512-channel output from the first block and applies two fully
connected layers, each maintaining 512 channels. A ReLU activation follows the first layer.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Third block: Maps the 512-channel input from the second block to 256 channels, followed
by ReLU activation. It further reduces the size sequentially through 128, 64, and finally 1
channel, with ReLU activations between layers.

The network incorporates a skip connection, where the output of the first block is added to the input
of the third block before proceeding through the final layers. This design allows the model to learn
residual mappings, improving its ability to capture complex relationships in the data.

The model is trained for 100 epochs using a learning rate of 1 × 10−4 and Binary Cross Entropy
Loss. A StepLR scheduler is applied, reducing the learning rate by a factor of 0.1 every 30 epochs.
To address class imbalance, we adopt a resampling strategy to ensure an equal number of negative
and positive samples during training.

G SIMULATION ENVIRONMENT AND DATA COLLECTION

In this section, we provide additional details about the simulation environment used for data collection.
The simulator runs CARLA (Dosovitskiy et al., 2017) and leverages Robot Operating System (ROS)
for hardware integration and for logging vehicle state, controls, video and audio signals. The
simulation environment uses Thunderhill West (Willows, CA) track map as the driving circuit. The
setup of data collection is shown in figure 10, where the coach is giving instructions to a student who
is practicing in the simulation environment.

The overall study session lasted approximately 2 hours and consisted of three main phases:

1. Familiarization Phase: The coach introduced the experimental setup, the driving task, and
the map layout while performing a sight lap. This was followed by two baseline laps driven
by the participant.

2. Coaching Phase: As shown in the figure, the coach provided concurrent feedback while the
participant drove around the track. After each lap, the coach was given the opportunity to
provide additional feedback (terminal feedback). This phase was divided into 15-minute
segments. After each segment, participants and the coach completed additional surveys and
were checked for signs of motion sickness.

3. Retention Phase: Participants completed two laps without any coaching to assess retention
of the learned behaviors.

All audio data was transcribed using Whisper and subsequently manually corrected and time synced
for accuracy. Concurrent feedback was categorized into instruction types using GPT via in-context
learning, with expert-annotated examples provided as prompts.

Figure 10: Data Collection Setup.

In this setup, the expert delivers frequent (on average every 3 seconds), fine-grained utterances
because high-performance driving demands sub-second corrections. Typical guidance includes short,
actionable phrases such as “Lift off the gas a little bit,” “Stay to the right hand side,” or “Let the car

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

go out to the right,” which help the learner adjust line, throttle, and steering continuously. Additional
qualitative examples are provided in the appendix (see Appendix A).

This instruction density does not indicate an easy task; rather, it reflects the domain’s speed and
complexity. The coach must convey what to say and, critically, when to say it as the learner’s state
evolves non-uniformly over time—motivating our decomposition of fast timing and slow content
reasoning. Moreover, because the state space is continuous and language naturally varies (e.g., “Brake
now” vs. “Hit the brakes”), we trained with a single, highly calibrated expert to control variability
while focusing on learning a coherent coaching policy.

Generating appropriate instructions is challenging even for powerful LLMs with domain context in a
low-data regime. As shown in Table 1, baselines struggle even when considering content alone: the
Zero-shot LLM performs poorly, and models given in-domain examples (Few-shot LLM) or fine-tuned
on the data (Latest Observation LLM; Full History LLM) still fail to generate high-quality guidance.
The task is further complicated by real-time timing constraints. The system must decide not only
what to say but also when to say it, under non-uniformly distributed utterances. The difficulty of
solving both problems jointly is highlighted by the VideoLLM-Online baseline, which attempts to
manage timing and content simultaneously and performs the worst on content while failing almost
completely on timing.

Regarding supervision consistency, our dataset was collected with a highly experienced professional
coach whose feedback is validated in real-world high-performance driving training. In practice,
different coaches—or even the same coach at different times—may provide different instructions
for similar situations due to two factors. First, human instruction is inherently stochastic: even if
the exact same state could be reproduced, a coach is not a deterministic function. Natural linguistic
variation means the same corrective intent might be expressed as “Brake now” or “Hit the brakes,”
differing in phrasing but not in semantic intent. Second, identical states are rare in this continuous,
high-dimensional domain; small differences in speed, trajectory, or throttle produce distinct states that
can elicit different corrective feedback (e.g., “turn now” vs. “hold the line”) depending on momentary
vehicle dynamics.

These factors make learning especially challenging: the model must generalize from a sparse set
of unique state–instruction pairs, where each instruction reflects one valid choice among many. As
shown in Table 1, baselines such as the Few-shot LLM and the Full History LLM perform poorly in
this setting, lacking mechanisms to handle sparse supervision and expressive variation. By training
on a single, highly calibrated expert, we isolate the core challenge of learning a coherent coaching
policy before introducing the additional complexity of multi-expert disagreement.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H STATE DESCRIPTION

We use description of current frame and one previous frame as the input to the embedding model for
retrieval. Here is an example:

Frame Description Example

Step 1:
The position of the car is: [-663.29, -75.16, 0.94] in meters.
The orientation of the car is: [-0.0, -0.02, 0.7, 0.71] in quaternion.
The velocity of the car is: [0.06, 10.44] in mph.
The speedometer reading is: 23.0 in mph.
The driver’s actions are: throttle=0.86 brake=0.0 steering=-0.02
The inner edge of the road is: [[-669.23 -75.52], [-669.47 -73.53], [-669.7 -71.55], [-669.93 -69.56],
[-670.17 -67.58]] in meters.
The outer edge of the road is: [[-662.11 -74.86], [-662.35 -72.87], [-662.6 -70.89], [-662.85 -68.9],
[-663.11 -66.92]] in meters.

Step 2:
The position of the car is: [-663.28, -74.28, 0.96] in meters.
The orientation of the car is: [-0.0, -0.02, 0.7, 0.71] in quaternion.
The velocity of the car is: [0.02, 10.75] in mph.
The speedometer reading is: 24.0 in mph.
The driver’s actions are: throttle=0.86 brake=0.0 steering=-0.01
The inner edge of the road is: [[-669.35 -74.52], [-669.59 -72.54], [-669.82 -70.56], [-670.05 -68.57],
[-670.29 -66.59]] in meters.
The outer edge of the road is: [[-662.23 -73.86], [-662.47 -71.88], [-662.73 -69.89], [-662.98 -67.91],
[-663.24 -65.92]] in meters.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

I PROMPT

Here, we present the prompt used for prompting-based reasoning models. The key difference between
models lies in whether the phrase “In a similar situation, the instructions given were:” is included in
the prompt.

Prompt for Prompting-based Reasoning Models

You are a Driving Coach. You are responsible for providing driving instructions to the driver to learn
car racing, here are some instructions you given in some similar situations as reference:

In the similar situation, the instruction have been given are: ["full throttle", "Over to the left,", "A
little more gas.", "Over to the left.", "Steer now.", "Over to the left.", "over to the left hand side.",
"Over to the left now", "over to the left,", "so small turn to the left", "now turn,", "Now start going
over to the left.", "over to the left hand side.", "Now get close to this cone here.", "over to the
left.", "a little bit of steering", "over to the left,", "from the right", "Stay to the right,", "over to the left.",]

Now, The current position of the car is: [-664.59, -47.47, 1.43] in meters.
The current orientation of the car is: [-0.01, -0.02, 0.74, 0.67] in quaternion.
The current velocity of the car is: [-1.87, 17.23] in mph.
The current speedometer reading is: 39.0 in mph.
The driver’s actions are: throttle=0.9 brake=0.0 steering=-0.0
The inner edge of the road is: [[-866.23 -455.3], [-866.57 -457.24], [-866.82 -459.19], [-867.02
-461.15], [-867.18 -463.11]] in meters.
The outer edge of the road is: [[-874.32 -454.28], [-874.68 -456.36], [-874.98 -458.46], [-875.24
-460.57], [-875.44 -462.69]] in meters.

Inner edge is on the left-hand side and outer side is on the right-hand side. Please provide the next
instruction to the driver in a concise way. No more than 10 words. One instruction at once, do not
combine. Put your final instruction starting with ’The final instruction is:’ without any formatting.
Think Step by Step.

J LLM AS JUDGE PROMPT

Here we present the prompt used for content evaluation under the LLM as judge and LLM as scorer
with rubric paradigm. In practice, we ran each comparison twice by switching the order of generated
instructions and record the average.

J.1 LLM AS JUDGE

LLM-as-Judge Prompt

These are two sentences, pick the one that is semantically closer to the reference sentence, output 1 if
the first setence is sematically closer, output 2 if the second one is semantically closer. If they are too
similar with each other or both different from the reference semantically, output 0, the reference is:
Take the left turn

1. Over to the left
2. Head over to the cone

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J.2 LLM AS SCORER WITH RUBRIC

LLM-as-Scorer Prompt

You are given a reference sentence and two candidate sentences. Your task is to evaluate each candidate
sentence independently using the rubric below, and provide a score for each criterion. Do not choose a
winner, simply assess both candidates.

Rubric (score each from 1 to 5):
1. Semantic Similarity: How closely does the candidate convey the meaning of the reference sentence?
2. Lexical Overlap: How much lexical content (e.g., key terms or phrases) is shared with the reference?
3. Paraphrasing Quality: Does the candidate preserve meaning while using different wording effectively?

Reference sentence:
“Take the left turn”

Candidate 1:
“Over to the left”

Candidate 2:
“Head over to the cone”

Output Format (JSON):
{
“candidate_1”: {
“semantic_similarity”: X,
“lexical_overlap”: X,
“paraphrasing_quality”: X
},
“candidate_2”: {
“semantic_similarity”: X,
“lexical_overlap”: X,
“paraphrasing_quality”: X
}
}
(Replace X with scores from 1 to 5, where 5 is best.)

K DETAILED PROMPTING PROCEDURE

We first encode the language-based descriptions of environment states from the training set where
expert instructions were provided, using a pretrained sentence embedding model ϕ(·). Specifically,
each observation o∗t with a non-empty expert instruction I∗

t ̸= ∅ is translated into a language
description and mapped to an embedding e∗t = ϕ(o∗t), which is stored in the positive retrieval cache
Dpositive.

At inference time, the current observation ot is similarly converted into a language description using
the same predefined template and embedded as et = ϕ(ot). We then compute the cosine similarity
between et and each embedding e∗t ∈ Dpositive as:

sim(et, e
∗
t) =

e⊤t e
∗
t

∥et∥ · ∥e∗t ∥
.

The top-k most similar embeddings, denoted as {e∗t1 , e
∗
t2 , . . . , e

∗
tk
}, are selected based on cosine

similarity. For each retrieved embedding e∗ti , we retrieve the corresponding expert instruction I∗
ti .

These k retrieved instruction-context pairs are then aggregated to form a composite prompt Pt that
includes both the retrieved examples and the current state description.

This prompt Pt is passed to the LLM within a retrieval-augmented generation (RAG) framework
to produce a new, context-sensitive instruction:

It = R(Pt),

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where R(·) denotes the reasoning model (either prompting-based or fine-tuned) that generates free-
form language instructions.

L THE USE OF LARGE LANGUAGE MODELS

Beyond their use described in the main text, LLMs were also employed to refine the writing of this
paper

26

	Introduction
	Related Work
	Problem Formulation
	Task Domain: Concurrent Coaching for High Performance Driving

	StreamCoach
	Fast Inference
	Slow Reasoning

	Experiment
	Data Curation
	Baselines
	Implementation Details
	Evaluation Metrics
	Experiment Results
	Ablation Study and Further Analysis

	Conclusion
	Additional Qualitative Results
	Experiments with LLMs Using Long-CoT
	Ablation on Embedding Model Selections
	Additional LLM as Judge Results
	Inference Time vs. Performance Analysis
	Training and Inference Details
	Inference Details
	Finetuned LLM
	Classifier Training

	Simulation Environment and Data Collection
	State Description
	Prompt
	LLM as Judge Prompt
	LLM as judge
	LLM as Scorer with Rubric

	Detailed Prompting Procedure
	The Use of Large Language Models

