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Abstract—Reinforcement learning from human feedback
(RLHF) has been used successfully to teach robots tasks that
are difficult to specify procedurally. However, feedback from
human annotators can be suboptimal and noisy, decreasing
accuracy and leading to potentially unsafe behavior. Further-
more, different human annotators may have varying context-
dependent expertise. In this work, we study the feasibility of
learning annotator expertise jointly with a reward model based
on annotator feedback. As opposed to prior works that assume
human annotators are perfect or that their expertise levels
are known, our method performs RLHF training without these
assumptions by estimating the expertise of every annotator given
information about annotator identities in the data. We show
that if annotators exhibit varying degrees of expertise, estimating
annotator expertise improves the ranking accuracy of the learned
reward functions. When the annotator’s expertise depends on the
context, our method shows limited success.

I. INTRODUCTION

For many tasks, such as robotics and natural language
processing, it is infeasible to procedurally specify an objective
function that can be optimized by reinforcement learning
(RL). A promising alternative to specifying an objective
function is to learn a reward function from pairwise human
preference comparisons, which is often called reinforcement
learning from human feedback (RLHF). RLHF has achieved
considerable success in domains such as natural language
processing [28, 37] and control [15, 32, 7, 24].

Current RLHF approaches, for example, those that utilize
the Bradley-Terry model [15], frequently assume that human
annotators are noisily optimal and that the noise parameters
are known and uniform across annotators. In practice, data
collection is often outsourced and collected from a diverse
set of annotators with potentially varying expertise levels. We
study the feasibility of jointly learning a reward model in
conjunction with a model of an annotator’s expertise.

In particular, we posit that the quality of human evaluations
varies not only between annotators, but also depends on the
context of a preference query. For example, a human annotator
who evaluates a cooking task might not be proficient in certain
recipes or ingredients. As another example, if comparative
labels are collected to improve a coding agent, a human’s
expertise might differ depending on the programming language
or the task at hand. Learning these variations in expertise
and incorporating them into the training process allows the
appropriate use of cheap crowd-sourced data.
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Fig. 1: Method Overview. We jointly learn a reward model
and an expertise model, which depend on a) the annotator and
b) a context derived from the state. The primary RLHF training
is done on a large-scale dataset collected from multiple an-
notators with varying levels of expertise. To help distinguish
between noise caused by a lack of expertise and noise that
is inherent to the ground-truth reward function, we use a
validation dataset of trusted human labels that makes up 10%
of our data to select model checkpoints and avoid overfitting.

In this work, we study estimating annotator expertise by
expressing an expertise model as a parameterized function and
adding the learnable parameters to regular RLHF training. Our
method learns an expertise model in an unsupervised way and
uses a small validation set of trusted human data to aid in
model selection. Our contributions are as follows.

• We propose a method (see Fig. 1) that improves the
accuracy of a learned reward function trained with noisy
annotators that have varying levels of expertise.

• We evaluate the algorithm’s performance in grid-world
environments relative to a baseline that does not model
annotator expertise, and demonstrate that modeling exper-
tise improves performance when annotators have differing
expertise from one another, with some success when the
expertise is also context-dependent.

II. RELATED WORK

To reduce risk to expensive hardware and improve the
feasibility of learning control policies under an unknown
objective function, algorithms often use human demonstra-
tions, e.g., in imitation learning [IL; 30, 2, 21, 23, 1] and
inverse reinforcement learning [IRL; 27]. When the human
demonstrations include suboptimal data, prior work has shown



that modeling human demonstrator suboptimality improves
learning performance [12, 38, 42, 6, 25, 36, 9, 5].

These methods can usually be improved upon by explic-
itly asking annotators to rate the quality of the demonstra-
tions. Consequently, offline preference learning is a popular
approach for control tasks [20, 19, 22]. Confidence-aware
imitation learning [42] bridges preference learning and IL
by modeling suboptimality of demonstrations as opposed to
learning a full reward function. However, while modeling
varying levels of quality in demonstrations, these approaches
treat human preference rankings as coming from the same
rationality model. In our work, while we also focus on
an offline preference learning setting, instead, we explicitly
consider a setting where the expertise among evaluators varies
in addition to the demonstrators.

ILEED [6] is an IL approach to learn from suboptimal
demonstrations and its successor IRLEED [5] is a similar
approach for inverse reinforcement learning. The authors show
that it is possible to jointly optimize a policy and estimate
demonstrators’ expertise in an unsupervised way. Inspired by
ILEED, we propose a method of jointly estimating expertise
that instead focuses on the RLHF setting.

Several prior works extend traditional RLHF by accounting
for multiple annotators with varying rationalities. Daniels-
Koch and Freedman [16], Barnett et al. [4], and Freedman
et al. [17] focus on leveraging annotator expertise to select an-
notators in a beneficial manner. These methods either assume
that the true expertise parameters are known or require access
to exact preference probabilities instead of binary preference
labels. In contrast, our work estimates the expertise parameters
from binary preference labels during reward model training.

Various methods focus on explicitly learning differing hu-
man expertise levels. Crowd-PrefRL [14] learns the rationality
values for a crowd of annotators. Their approach assumes
that each annotator in the crowd labels every example from
the dataset and utilizes techniques from unsupervised crowd-
sourcing to learn annotator reliabilities. This incurs significant
human labeling costs and assumes multiple (not necessarily
all) annotators are giving feedback noisily according to the
same objective. Similarly, Zhang and Kashima [41] estimate
user reliabilities, but require multiple annotators to label the
same preference query. In contrast, our method works in
settings where each sample is labeled by a single annotator,
which is common in practice as it incurs a lower annotator
burden. Singhal et al. [33] also consider unreliable preference
feedback. Unlike our approach, their method relies on external
data to estimate expertise, e.g., asking an LLM about the
difficulty of a given query. Yamagata et al. [39] also learn
annotator rationality values jointly with rewards. Their setting
is limited to annotators with constant rationality, whereas
rationality can vary across different contexts in reality.

III. PROBLEM SETTING

We consider an RLHF setting in which a reward function
must be learned from a large offline dataset of pairwise pref-
erence comparisons. As in many RLHF settings, the reward

function aims to capture an intended behavior, and the prefer-
ence comparisons are assumed to be given with respect to this
underlying reward. Such an approach is commonly used, for
example, to fine-tune large language models [44, 35, 28, 37],
or to train robotic behavior that is difficult to procedurally
formulate as an objective function [15, 32, 7, 24]. Labels over
binary choices enable learning an objective function with a low
burden on the human annotator. We consider crowd-sourced
data that is noisy, such that not all labels perfectly align with
the intended behavior, and furthermore, that varies across both
annotators and queries.

As in most RLHF setups, the preference labels are collected
from multiple annotators, for example, by crowd-sourcing.
Additionally, we collect an ID for every annotator during this
process, to identify which annotator labeled each preference
query. Importantly, while our approach requires annotator IDs
at training time, they are not needed at inference time, as at
inference time, we leverage the learned reward model without
modeling noise in the reward predictions.

Whereas this large dataset of pairwise preferences comes
from untrusted sources, we assume access to an additional
smaller validation dataset that is labeled by experts we trust
(see Fig. 1). For example, a company might train a robot
to perform challenging household tasks, such as cooking.
To cheaply collect data for these tasks, the company might
make use of crowd-sourcing. Instead of manually verifying
the collected labels, the company could collect a small trusted
dataset to facilitate safe training with the crowd-sourced one.

Though we assume annotators to be noisy with respect to
a single ground-truth function, in this work, we assume that
they are not explicitly adversarial. In practice, annotators could
provide labels maliciously [11] and collude [10]. We leave
further study of these settings for future work.

IV. ESTIMATING ANNOTATOR EXPERTISE FOR OFFLINE
REWARD LEARNING

Following the established approach for RLHF, we model
the annotators’ choices using the Bradley-Terry model [8]. We
learn a reward function r(s, a) in a contextual bandit setting
with preferences over pairs of actions a1 and a2 given a state
s. For example, states can be sensor inputs and proprioceptive
state of a robot, and actions control signals to the robot’s
actuators. The annotator’s probability of preferring a1 over
a2 is modeled as:

P [a1 ≻ a2 | s] = exp(β · r(s, a1))
exp(β · r(s, a1)) + exp(β · r(s, a2))

,

where β is a hyperparameter modeling rationality in the human
feedback and is often set to β = 1 for convenience. We
parameterize the reward function as a neural network and learn
its parameters using a standard maximum-likelihood approach.

Instead of assuming a constant β, Daniels-Koch and Freed-
man [16] model β as a function over arbitrary preference
queries, βi(s, a

1, a2). In this way, the inverse temperature
parameter β can now be interpreted as an annotator-specific
expertise. Unlike Daniels-Koch and Freedman, we hypothesize



that in most cases, rather than varying as an arbitrary function
of the preference query, the expertise varies only with respect
to the annotator and a relevant context. In other words, for a
given context, the expertise may differ between each annotator,
but does not generally vary for different action choices in the
same context. We further hypothesize that this “context” is a
function of the current state s only. For example, the context
could represent different tasks in which annotators might have
different expertise, or, in a question-answering setting, the
context might be the question topic.

Consequently, we define the expertise as βi(s), where i is
the annotator for the current query. This formulation is similar
to the state-dependent expertise for imitation learning used in
ILEED [6]. The full formulation now becomes,

P (a1 ≻ a2 | i, s) =
exp(βi(s) · r(s, a1))

exp(βi(s) · r(s, a1)) + exp(βi(s) · r(s, a2))
.

(1)

This formulation generalizes previous approaches [14, 33, 39]
that assume a constant annotator-dependent βi.

A. Learning the Annotator Expertise

In our formulation, the annotator- and context-dependent
expertise is a function of an anonymous annotator ID and the
state s. We use two approaches to estimate the expertise values.

First, similar to ILEED [6], we consider a normalized dot
product of a learned annotator embedding ωi and a flattened
representation of the state s. We also add a bias bi to allow
the model to learn a constant expertise for all inputs, and
normalize the expertise values over the number of annotators,
N . The function to determine the expertise is therefore,

βi(s) =
1

N
(⟨s, ωi⟩+ bi) .

Secondly, we consider a neural network-based approach to
estimate the expertise, where βi(s) = fθ(i, s) is a network
parameterized by θ. Since we assume that no annotator
gives adversarial feedback, it makes sense to enforce non-
negative learned expertise values, βi(s) ≥ 0. We compare
the application of various activation functions to the output
of βi(s), as a way to ensure this. To learn either the linear or
neural network-based expertise models, we incorporate their
learnable parameters into the maximum likelihood formulation
of standard reward learning.

Since it can be challenging to disentangle the varying
annotator noise and query difficulty, we found in preliminary
experiments that access to a trusted validation set is useful (see
Fig. 1). This smaller dataset is labeled by noiseless annotators,
i.e., experts whose labels we trust. We use this validation
dataset to select the best checkpoint for inference for both
our method and the baseline. Additional experiments ablating
whether the validation set contains trusted labels can be found
in Table VII of Appendix C.

(a) Empty (b) Lava (c) Obstacles (d) Unlock

Fig. 2: For our experiments, we use the MiniGrid [13] en-
vironments Empty, Lava, Obstacles, and Unlock. All
environments have partially observable states, and the goal for
the agent is to reach the green square. In Lava, if the agent
touches a lava cell, it receives a large negative reward and
the episode ends. In Obstacles, if the agent touches one
of several blue obstacles that randomly move around the grid,
it receives a large penalty and the episode ends. In Unlock,
the agent must collect a key to open a door.

V. EXPERIMENTS

We design experiments to answer the following questions:
(Q1) Can we learn the annotator expertise from preferences

in an unsupervised manner?
(Q2) Does jointly learning the annotator expertise and reward

function help us to learn better reward functions?
(Q3) What architectural decisions affect the expertise model?

A. Data Collection

Our proposed training method requires preferences over
binary queries in addition to annotator identifiers. Because
existing preference datasets do not contain annotator identi-
fiers, we simulate noisy annotators on newly-collected Mini-
Grid [13] environments. While existing preference datasets do
not contain annotator identifiers, we emphasize that it would
be easy to collect them for new preference datasets.

1) Environments: Mirroring the setup of Beliaev et al. [6],
we perform experiments in four MiniGrid [13] environments
illustrated in Figure 2. In all environments, states are only
partially observable, and initial states are randomized. Reward
functions are learned from partial observations in place of
states, which is common in RLHF.

2) Annotator Labels: We mirror the data collection setup
of Beliaev et al. [6]. First, we train an expert “oracle” policy
using RL on the MiniGrid environment rewards. Details of the
RL training are given in Appendix A. For each environment,
we use the trained RL policy as an oracle.

We simulate annotators of varying expertise levels who
provide trajectory demonstrations and subsequently provide
pairwise preferences in which they prefer their own demon-
strated actions over any other actions. We assign a probability
pi to each annotator, representing that annotator’s probabil-
ity of taking the oracle’s action as opposed to a randomly
sampled action. Then, we collect preferences using a bandit-
like approach in which at every step, we compare a randomly
sampled action with the oracle’s action. The ground-truth
preference corresponds to the oracle’s action; the annotator’s
preference is whichever action the annotator took at that state.
Each preference query for training the reward model consists



of a state, two alternative actions, the annotator’s preference,
and an integer ID identifying the annotator.

Depending on whether we generate data from an annotator
with constant or context-dependent expertise, we either model
a constant probability pi of that annotator taking the correct
action or have multiple pi that vary depending on the context.

We note that, despite labels being binary, there are more
than two possible actions in any given state. Thus, a very noisy
annotator, such as one with p = 0.01, will have less than 50%
chance of preferring the “oracle” action. This means that the
reward function’s ranking accuracy is likely to be less than
50% if it does not account for annotator expertise or learns an
incorrect expertise level.

B. Experiment Setup

1) Algorithmic Comparisons: To study the effect of learn-
ing annotator expertise, we compare several algorithms across
two sets of experiments. First, in Section V-C, we study a
simulated MiniGrid setting in which each annotator has a
predefined constant expertise level. Second, in Section V-D
we study preference learning with context-dependent annotator
expertise in MiniGrid, such that the annotators’ expertise
values vary depending on the context.

In Section V-C, with constant annotator expertise, we eval-
uate the following algorithms:

• Baseline: The baseline performs preference learning
without learning expertise, rather assuming a constant
β = 1.

• Ours: We consider four different conditions which vary
the final activation function on the user reliability model,
specifically no activation (No Ac.), ReLU, sigmoid
(Sigm.), and exponential (Exp).

In Section V-D, all comparisons use a ReLU activation.
We consider the same baseline, and evaluate three variations
of learning the expertise (described in Section IV-A): We
compare estimating the expertise model using a dot product
(LearnDot) and a neural network (LearnNN), as well as a
simple model that assumes the expertise is constant across all
contexts and only learns a single β parameter per annotator
(LearnConst). Finally, we compare to a model that receives
privileged information (OracleContext) in the form of a
context vector that correctly identifies the context as used to
generate the data.

2) Evaluation Metric: To evaluate the performance of our
method, we compare the labeling accuracy on unseen ground-
truth labels, which are obtained by querying a noiseless
annotator (β → ∞). The learned models’ labels are chosen
by selecting the action with the highest reward assigned by
the learned reward model, i.e., generating preference labels
without noise.

C. Learning Constant Annotator Expertise

Our first set of experiments evaluates our method’s perfor-
mance in settings where the algorithm learns to perform a
single task and where different annotators can have varying
expertise levels, although each annotator’s expertise is constant

across all states. For example, if humans give feedback on
shooting a soccer ball, then different annotators might have
varying qualifications to assess the robot’s shooting technique.

Similar to Beliaev et al. [6], we simulate 10 annotators for
three sets of annotator expertise levels, P-1, P-5, and P-unif:

• P-1 = {p1 = 0.99, p2:10 = 0.01},
• P-5 = {p1:5 = 0.99, p6:10 = 0.01},
• P-unif = {pi = 0.05 + 0.1(i− 1)},

where pi is the ith annotator’s probability of taking the oracle’s
action instead of a uniformly random one at each time step.
Note that we omit settings where most annotators are close to
noiseless, since we expect modeling annotator expertise to be
most useful when annotators exhibit varying noise.

We evaluate the effect of learning annotator expertise over
varying expertise combinations; e.g., P-1 has a relatively
low number of accurate annotators. We train separate reward
models for each of the four environments described in Fig-
ure 2. Because the expertise is constant across all states in
these experiments, we learn a constant βi parameter for each
annotator. These experiments serve to evaluate the approach
of learning expertise models via simple maximum likelihood
optimization in a simplified setting.

We collect 10,000 preference comparisons, equally dis-
tributed across the ten annotators for every setting, and calcu-
late average ranking accuracy across 20 seeds. Additional de-
tails regarding our training setup can be found in Appendix B.

Method P-1 (%) P-5 (%) P-unif (%)

Baseline 58.0± 11.0 53.8± 2.6 46.4± 5.7
Ours (ReLU) 72.3± 8.8 54.4± 10.7 51.2± 5.7
Ours (No Ac.) 69.9± 12.9 52.7± 2.1 52.1± 2.0
Ours (Sigm.) 63.1± 15.4 56.3± 7.7 49.0± 6.9
Ours (Exp) 59.7± 12.4 51.0± 7.3 50.8± 6.9

TABLE I: Preference prediction accuracy in Obstacles.
Mean and standard deviation for different noise settings,
calculated over 20 runs. We find that learning the expertise
benefits the accuracy on unseen data.

1) Results: Table I reports the results of these experiments.
Due to the large number of noisy annotators, the reward
model predictions have a high variance, both with and without
estimating the expertise. While we find that, on average, the
models that estimate expertise outperform the baseline that
does not account for varying annotator expertise, for most
methods, the effect is fairly small. We observe the largest
average improvement with the noisiest annotators (P-1). In
this setting, despite many labels being chosen uniformly at
random, our reward model manages to achieve a preference
prediction accuracy of over 70% on held-out preference pairs.

Since we assume that annotators are not actively adversarial
(see Section III), it is safe to assume that β is non-negative.
Thus, in the same table, we ablate the choice of activation
function applied to the learned β values, and also consider
the identity activation function (No Ac.), which could poten-
tially learn negative β values. Among the activation functions
evaluated, there is not a clear preferred choice; however, in the



highest-noise setting (P-1), where learning the expertise yields
the greatest benefit, we find that ReLU activations perform
best.

We repeat these experiments for the noisy set of annotators
P-1 with various activations on the three other environments:
Empty, Lava, and Unlock. The results are reported in
Table II. Again, variances are high. We observe the clearest
benefit from learning the expertise in the Unlock environ-
ment. Similar to Table I, we find that the ReLU activation
function is beneficial in both Unlock and Empty. In future
work, we plan to extend these results to the more typical
setting in which preferences are collected over trajectories,
which may ameliorate this problem. Overall, we note that there
is some positive signal for estimating the expertise and for
ensuring that β is positive by applying ReLU activations.

Environment Empty (%) Lava (%) Unlock (%)

Baseline 39.8± 32.1 28.1± 16.6 28.8± 3.1
Ours (ReLU) 60.6± 15.4 57.8± 11.5 62.7± 14.1
Ours (No Ac.) 54.0± 13.0 58.2± 15.9 52.7± 7.9
Ours (Sigm.) 27.3± 20.5 25.0± 6.8 32.3± 10.9
Ours (Exp) 38.6± 29.2 27.6± 13.4 29.9± 5.8

TABLE II: Preference prediction accuracy in three addi-
tional environments. Mean and standard deviation, calculated
over 20 runs, with the P-1 noise setting. We use the ReLU
activation function, based on the results in Table I.

D. Learning Context-Dependent Annotator Expertise

In our second set of experiments, we study whether our
method can learn from annotators whose expertise varies
depending on the context. The different minigrid environments
in these experiments simulate “sub-tasks,” or “skills.” For ex-
ample, a soccer robot might be trained to play in all positions,
but the humans providing feedback could be specialized.

As before, we follow an experimental procedure similar to
ILEED [6], but transferred to the setting of “learning from
binary preferences”. Expertise varies across different contexts
by combining the three MiniGrid environments Empty, Lava,
and Unlock. In the resulting merged environment, state-
action pairs can come from any of the three environments
with equal probability.

Each of the three annotators is an expert in a different “sub-
environment,” performing the oracle’s action with probability
1 in that environment, while in the other two environments,
the annotator has probability pi of selecting the oracle action
and probability 1 − pi of choosing an action at random. We
evaluate the three noise sets P-0.01, P-0.10, and P-0.50, in
which pi = 0.01, pi = 0.10, pi = 0.50, respectively. We
report implementation details in Appendix B.

We learn reward models with context-dependent annotator
expertise to estimate the reward for state-action pairs from all
three environments. Our expertise models utilize the ReLU
activation function due to its strong performance in Sec-
tion V-C1.

Algorithm comparisons are as outlined in Section V-B1,
where the OracleContext comparison’s expertise model re-
ceives privileged information consisting of a one-hot encoding
representing the environment to which a state-action pair
belongs, instead of the state. In this oracle comparison case,
the algorithm still needs to learn a reward function and the
annotator’s expertise, but its expertise model does not need
to infer context information from the state. This method lets
us study whether learning the context is a challenge in our
setting.

Expertise Set P-0.01 (%) P-0.10 (%) P-0.50 (%)

Baseline 66.9± 2.4 63.9± 4.6 73.1± 5.3
LearnConst 67.4± 2.7 61.3± 3.0 51.3± 11.6
LearnDot 69.4± 3.3 65.2± 3.7 47.2± 9.8
LearnNN 63.4± 7.3 63.1± 5.1 51.0± 15.8

OracleContext 68.2± 3.8 64.6± 5.7 49.7± 7.5

TABLE III: Context Dependent Experiments. Results for
three sets of noisy annotators when annotator expertise de-
pends on context (mean and standard deviation over 20 runs).
Modeling annotator expertise yields a slight improvement
when learning the expertise from relatively-noisy users; how-
ever there is a high variance in the results. Results indicate that
the dot-product approach may be the best approach to learn
context-dependent expertise.

1) Results: Table III shows the results of these experiments.
Again, the resulting accuracies have relatively high variance
compared to the observed average improvements. As in the
constant expertise case, we find that, on average, the benefit
of learning the annotator expertise model decreases as the
annotators become less noisy. In fact, when half of the
annotators give correct responses with a probability of 0.5 in
the states in which they are not skilled (P-0.50), learning an
expertise estimate with our method seems to decrease accuracy
compared to the baseline. We hypothesize that accurately
learning the additional expertise parameter is difficult, given
the low amount of signal about an annotator’s expertise in the
data. When all annotators’ expertise is constant, every data
sample labeled by an annotator provides information about
that annotator’s expertise. In the context-dependent expertise
case, a datapoint only provides useful information about other
datapoints of the same context. This is further reflected by the
fact that the neural network-based method LearnNN performs
worse than the less parameter-intensive LearnDot.

Surprisingly, when we provide “oracle contexts” to the
expertise method, we do not observe an improvement in the
accuracy. This suggests that identifying the context is not a
significant impediment to our expertise estimation method.
Likely, even when the correct context is known, it is chal-
lenging to determine the correct context-dependent expertise
from only preference labels.

To address the limited but positive success of learning
from annotators with context-dependent expertise, we plan to
evaluate the data distribution and modeling assumptions in
future work. Potentially, other architectures for the expertise



model could alleviate current problems, or the learned exper-
tise values could be grounded with additional external data.

VI. CONCLUSION

We find that modeling annotator expertise can benefit
reward learning in RLHF when annotators exhibit a range
of degrees of noise in their feedback. Comparing against a
baseline that does not model differences between annotators,
we find that the benefit of our method becomes more pro-
nounced as the noisiness of the annotators increases. We also
find that in our setting, reward model accuracy is improved
by ensuring non-negativity of the learned expertise via an
activation function. For learning context-dependent expertise,
the results are mixed and require further research.

VII. LIMITATIONS AND FUTURE WORK

In this work, we collect preference feedback in a contextual
bandit setting, in which annotators give pairwise preferences
over actions given a state. In practice, with human annotators,
it is usually more feasible to collect preference feedback over
full trajectories. An interesting research question is whether
expertise should be modeled as constant across the trajectory
or whether it should be allowed to vary within a trajectory.
Additionally, we plan to extend the current experiments to
more complicated control settings such as MetaWorld [40] and
CALVIN [26], as well as real-world robotics settings.

In this work, we evaluate the performance of reward models
by their ranking accuracy with respect to the ground truth
reward. A common approach in preference learning for control
is to instead use the learned reward function to generate
reward values to train either offline or online RL algorithms
[24, 19, 20, 22]. An evaluation based on policies instead of
reward function accuracies gives a more accurate picture of
the downstream performance of the reward learning method.

Because we model the annotator’s expertise as a temperature
parameter in the Bradley-Terry model, our method is compat-
ible with any Bradley-Terry-based method that learns from
binary preferences. In future work, we aim to evaluate our
method with interactive RLHF approaches, where the reward
model is used to iteratively improve the policy and humans
are actively queried [15, 32, 7], in addition to methods that
directly learn policies from preference data, such as DPO [31].

Currently, we explicitly assume that for every task, there
is a single ground-truth reward function and that annotators
give noisy preference feedback with respect to this reward
function. Other works have considered cases where human
feedback depends on multiple reward functions and where
rankings can subjectively vary across humans. Considering the
pluralistic nature of rankings might help to align performance
with different underlying human values [43, 3, 34] or to
achieve personalization [29].

Additionally, when learning expertise in an unsupervised
manner, we assume that the majority opinion is correct.
In reality, this might not be true, for example, if human
preferences are swayed by common misconceptions. It is
conceivable that combining a large set of untrusted data with

a smaller set of trusted evaluators could be useful. Potentially,
unsupervised clustering of trusted evaluators with unknown
evaluators could help to ensure the correctness of the learned
expertise and ameliorate this problem. Additional avenues
to consider include further integration with crowd-sourcing
techniques to infer reliable evaluators in unsupervised settings.

Lastly, while we perform offline estimation of annotator
expertise, prior work has shown that when annotator expertise
is known, it is possible to improve the efficiency of the learning
process by actively selecting annotators to query [16, 4, 17].
As our method learns annotator expertise jointly with the
reward, it remains an open question how to best navigate the
tradeoff between querying annotators to learn better expertise
estimates and exploiting current expertise estimates.
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APPENDIX

Parameter Value

Policy Class MlpPolicy
Update Steps 128

Num. of Environments 8
Batch Size 4

Learning Rate 0.00025
Timesteps 200,000

Timesteps for Unlock 400,000

TABLE IV: Hyperparameters for expert policy training.

Environment Expert Return

Empty 0.967
Lava 0.935

Obstacles 0.933
Unlock 0.821

TABLE V: Returns achieved by the expert policies in the
MiniGrid environments, according to the true reward.

A. RL Policy Training

Because we study the same environments as Beliaev et al.
[6], we mirror their hyperparameters and setup. Details of the
hyperparameters are given in Table IV. Note that in this setup,
we train multiple policies in parallel for each environment
and use the best-performing one as our expert, including old
checkpoints, if they perform better. The returns achieved by
the chosen experts are reported in Table V. Note that the
Unlock environment is the only one where the trained RL
policies did not achieve satisfactory performance with the
provided hyperparameters, which is why we report results
for an Unlock expert that trained for twice the number of
timesteps (400K).

B. Reward Model Training Details

Parameter Value

Epochs 500
Batch Size 1024

Learning Rate 0.01
Num. of Preference Comparisons 10000

Validation Dataset 10%
Test Dataset 10%

Num. of Seeds 20
NN-RM Architecture 2-Layer Feed Forward
NN-RM Hidden Sizes 4

TABLE VI: Hyperparameters for reward model training.

Table VI shows various hyperparameter choices for reward
model training. Multiple hyperparameters were adapted from
Beliaev et al. [6], as they study a similar setting. We make
use of various auxiliary methods for learning from pairwise
preference comparisons from the library imitation [18].

Method Trusted Validation Untrusted Validation

Baseline 58.0%± 0.110 59.1%± 0.146
Ours (ReLU) 72.3%± 0.088 69.8%± 0.074
Ours (No Ac.) 69.9%± 0.129 54.6%± 0.025
Ours (Sigm.) 63.1%± 0.154 56.5%± 0.114
Ours (Exp) 59.7%± 0.124 55.1%± 0.130

TABLE VII: Mean accuracies in Obstacles. With the P-
1 noisy annotator setting, we compare selecting checkpoints
based on a trusted or untrusted validation dataset. Learning the
expertise with a ReLU activation is beneficial in both settings.

C. Using a Trusted Validation Set

We ablate on the choice of what kind of validation set we
use to select the final checkpoint to evaluate. These exper-
iments are for a constant-expertise setting with significantly
noisy annotators (P-1) in the Obstacles environment. Other
experiments in this paper use a small validation set with trusted
labels, and select the checkpoint that maximizes the accuracy
on this validation set. It is reasonable to assume that such a
dataset could be generated for many tasks, while keeping the
cost low, due to the small size of the validation set (< 10%
of the training dataset size).

We compare this to using an “untrusted validation set.” This
validation set is labeled by the same annotators as the training
set and thus contains noisy labels. In this setting, we choose
checkpoints based on the lowest loss on the annotator-provided
labels. Intuitively, using a trusted validation set selects for
checkpoints that are better at predicting the rewards, whereas
using an untrusted validation set selects for checkpoints that
more accurately predict the annotator’s choices.

Table VII compares the performance when using the two
approaches of selecting annotators. We find that for the base-
line, there is little difference in what type of validation dataset
we use. This is likely because the baseline does not distinguish
between the label an annotator would give and the label from
the current estimate of the true reward function. However,
when learning the expertise while using a ReLU activation
function, we observe a slight decrease in performance with
the untrusted validation set. Importantly, however, this method
outperforms the baseline and most other methods, no matter
which type of validation set we use. In other words, even when
a trusted validation set is not available, in the noisy annotator
setting, learning the expertise is beneficial.

Additionally, we find that with other activation functions,
the performance with an untrusted validation set decreases
below that of the baseline. This suggests that these methods
might struggle more with distinguishing annotator expertise
and reward labels. The trusted validation set provides an
additional source of information that grounds these methods.

We posit that further adding information regarding the
annotators’ expertise, or integrating known reward information
into the training process directly, could serve as a promising
direction to improve learning expertise.
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