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ABSTRACT

Model merging combines multiple “expert” models finetuned from a base foun-
dation model on diverse tasks and domains into a single, more capable model.
However, most existing model merging approaches assume that all experts are
available simultaneously. In reality, new tasks and domains emerge over time,
requiring strategies to integrate the knowledge of expert models as they become
available: a process we call temporal model merging. The temporal dimension
introduces unique challenges not addressed in prior work, raising new questions
such as: when training for a new task, should the expert model start from the
merged past experts or from the original base model? Should we merge all models
at each time step? Which merging techniques are best suited for temporal merg-
ing? Should different strategies be used to initialize the training and deploy the
model? To answer these questions, we propose a unified framework called TIME
(Temporal Integration of Model Expertise) which defines temporal model merging
across three axes: (1) initialization, (2) deployment, and (3) merging technique.
Using TIME, we study temporal model merging across model sizes, compute
budgets, and learning horizons on the FoMo-in-Flux benchmark. Our comprehen-
sive suite of experiments across TIME allows us to build a better understanding
of current challenges and best practices for effective temporal model merging.

1 INTRODUCTION
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Figure 1: Temporal Model Merging generalizes
standard model merging (yellow), which merges
multiple trained experts once, in a single step. Our
study reveals that initialization and deployment
strategies are crucial in the temporal setting.

Foundation models consolidate a wide range of
capabilities and knowledge into a single, large
model. Consequently, model merging (Re-
gent’s et al., 1996; Wortsman et al., 2022a) has
emerged as a key technique for unifying multi-
ple task-specific specialist models derived from
a shared base into a single, generalist model.

Current model merging approaches typically
assume a fixed base model that is fine-tuned in-
dependently on k diverse tasks and domains to
produce a set of independent experts (Garipov
et al., 2018; Rofin et al., 2022; Ilharco et al.,
2022; Yadav et al., 2023; Li et al., 2022), which
are then merged simultaneously. Research in
this field has therefore focused on improving merging techniques for larger or structurally different
k-sets, exploring the impact of the diversity and scale of finetuning domains, tasks and experts.

However, the world is constantly evolving, leading to continuous shifts over data distributions, do-
mains, and tasks, with new concepts emerging that may have been insufficiently covered during
large-scale pretraining (Koh et al., 2021; Hu et al., 2022; Pratt et al., 2023; Menon & Vondrick,
2023; Zhang et al., 2021; Gui et al., 2024). This dynamic nature of real-world applications motivates
a hitherto missing systematic exploration into temporal model merging (see Fig. 1) to better under-
stand model merging along an additional, understudied axis: time (Zhou et al., 2024; Don-Yehiya
et al., 2022). Specifically, in this work, we ask: (1) What is the best merging strategy to initialize
each expert model before training? (2) What is the best merging strategy to deploy each expert
model after training? (3) Which model merging techniques are most suitable for temporal merging?
To answer these questions, we propose a unified framework for studying temporal model merging:
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def train_task(t, data, ckpts, merge_params):
  # 1. init ckpt for task t
  theta_i = merge(ckpts, merge_params)

  # 2. train on current task data
  theta_s = train(theta_i, data, t)

  # 3. save current task's ckpt to buffer
  ckpts.append(theta_s)

  # 4. get output ckpt at task t
  theta_o = merge(ckpts, merge_params)

  # 5. get scores for task t
  scores = eval(theta_o)

  return ckpts, scores

t = 5 # current task t
d = next(iter(dataloader)) # data for task t
m_params = {
  'type': 'interpolation', # slerp | ties | …
  'weight_coeffs': [0.5] * t,
}
# run step at task t
ckpts, scores = train_task(t,d,ckpts,m_params) 

Figure 2: Design Space of Temporal Model Merging through TIME. We showcase our frame-
work for the per-task pipeline of temporal model merging over multiple tasks: At each task t, we first
initialize the current checkpoint to start training from, θit, by using one or more previously stored
checkpoints from previous tasks, either directly or by merging them. We train θit on current task
data Dt to yield the current task checkpoint θst , which is inserted into the checkpoint buffer. Finally,
to produce the output model, θot , we either merge previously stored checkpoints from the buffer or
use them directly. The entire framework is depicted in the pseudo-code on the right panel.

TIME (Temporal Integration of Model Expertise). It is structured around three key axes spanning
the design space of temporal merging solutions (as shown in Fig. 2): the choice of past checkpoints
to merge before training on the current task (initialization), the choice of past checkpoints to merge
after training on the current task (deployment), and the choice of the merging technique. Using our
TIME framework, we position existing model merging approaches along each key axis and conduct
a systematic study of model merging over time. For this, we leverage the multimodal FoMo-in-
Flux by Roth et al. (2024b), a benchmark comprising 63 datasets with well-documented sequential
properties, enabling a thorough investigation of temporal model merging under practical compute
constraints. Our experiments systematically explore different merging techniques, initialization, and
deployment strategies, providing several key insights:

Key Insights for Temporal Model Merging

[A] Accounting for time is crucial. Standard “offline” model merging techniques do not
generalize well to the temporal merging setting (Sec. 3.1).
[B] Complex merging techniques matter little. Choosing sophisticated merging tech-
niques beyond simple weighted averaging provides at best marginal benefits for temporal
model merging, especially for long task sequences (Sec. 3.3).
[C] Initialization and deployment are critical. Choosing how to select and combine avail-
able weights before and after each task t is most important for temporal model merging
(Sec. 3.2).
[D] Temporal model merging scales well. Larger models or compute budgets allows
greater benefits from temporal merging. Scaling enables temporal model merging to even
outperform the multitask model, trained on all tasks at once (Sec. 3.4).

2 DESIGN SPACE OF TEMPORAL MODEL MERGING

Notation. Throughout this work, we use t to refer to a given task at time t. Full model param-
eterization is denoted by θ, with the following key instantiations: θt represents model weights at
task t, while θIt , θSt , and θOt denote weights used for initialization, saved weight checkpoints at task
t (i.e. the trained expert models), and the output deployed model weights, respectively. Note that
while standard model merging considers model weights as elements of a fixed set {θk}Kk=1, temporal
model merging organizes them along the time axis θt.
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Table 1: Comparison of model merging techniques.
Method Sparsification Consensus Scaling
Weight averaging Regent’s et al. (1996); Wortsman et al. (2022a) ✗ Linear Int. Weight coeff.
SLERP Ramé et al. (2024) ✗ Spherical Int. Weight coeff.
Task Arithmetic Ilharco et al. (2023) ✗ Linear Int. Scaling factor
MagMax Marczak et al. (2024) ✗ Max. Magnitude Scaling factor
TIES Yadav et al. (2023) Top-k Sign Agreement Scaling factor
DARE-TIES Yu et al. (2024) Random Sign Agreement Scaling factor
Breadcrumbs-TIES Davari & Belilovsky (2025) Top/Bottom-k Sign Agreement Scaling factor
Model Stock Jang et al. (2024) ✗ Geometric Adaptive ratio
LiNeS Wang et al. (2024a) ✗ ✗ Layer weights

2.1 TEMPORAL MODEL MERGING THROUGH TIME

Standard model merging is typically performed offline, after all experts have been trained to conver-
gence. In contrast, model merging in continual pretraining is generally done sequentially, using past
checkpoints. Both approaches are specific instances of our more general temporal merging frame-
work, TIME, which defines temporal merging along three key axes: initialization of each expert,
merging for deployment at step t, and merging techniques fmerge applied over time:

AXIS 1: INITIALIZATION

As expert models are created continuously over time, initialization becomes a crucial choice. Unlike
model merging at a single point in time, the number of potential starting points grows exponentially
over time as new experts are created. This raises the question: should starting points for each time
step be derived from the base weights (as in traditional merging), from a merged combination of
previous experts, or from most recent weights? In this work, we study the following initialization
protocols at time step t for TIME: (1) initZS, which consistently initializes with the base zero-shot
model weights θ0 at each timestep t; (2) initFT, which at step t always initializes with the latest
available finetuned model weights θSt−1; and (3) initEMA, which computes an unrolled exponential
moving average merge over all previously seen expert models {θSt′}1,...,t−1 following the equation:

θEMA
t′ = fmerge

(
θEMA
t′−1, θ

S
t′−1,F

)
(1)

with merging hyperparameters F . Consequently, the initialization weights are given as θIt = θEMA
t .

AXIS 2: DEPLOYMENT

With each update iteration and expert training phase t, a decision must be made on the final model
to deploy, determining which weights to present for downstream use. In continual pretraining, the
trained model θSt is deployed directly. In contrast, standard model merging applies a merging tech-
nique fmerge to a fixed set of k expert models. Temporal model merging, however, must account
for both previously deployed models and the growing number of expert models available over time.
Unlike standard merging, where k remains constant, the number of experts to merge increases with
each step. As a result, temporal merging introduces the idea of weighted combinations, balancing
recent updates with retained past knowledge to achieve adaptability and stability—both critical for
effective continual learning (Kirkpatrick et al., 2017; Zenke et al., 2017). In this work, we study three
strategies for model deployment: (1) deployFT, which always deploys the latest finetuned expert
model at step t, i.e., θOs = θSt ; (2) deployEMA, which computes an unrolled exponential moving
average merge over all expert models, i.e., θOt = θEMA

t+1 following Eq. (1); and (3) deployALL,
which applies a merging technique fmerge over all previously computed expert models {θSt′}t−1

1 .

AXIS 3: MERGING TECHNIQUES

At each point in time, for both initialization and deployment, merging technique fmerge defines how
to combine the available expert models and checkpoints. In this work, we study nine different
variants in total, shown in Tab. 1. Please refer to Appendix B for details.
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2.2 COMPLETE TEMPORAL MODEL MERGING PIPELINE

Incorporating all three axes of temporal model merging, we define a five-stage update pipeline for
each task t (see Fig. 2), consisting of the following steps: (1) Init: choose one of the aforementioned
initialization protocols—initZS, initFT, or initEMA. This produces initialization weights θIt at
task t; (2) Train: given θIt , train on current task data Dt within a set compute budget to produce the
expert model θSt ; (3) Store: append θSt to storage of expert model weights S; (4) Deploy: choose
a deployment protocol: deployFT, deployEMA, or deployALL, and produce the output weights
θOt = deploy(S); and (5) Eval: the deployed θOt is used for downstream applications and, in our
case, extensive evaluation. Note that particular choices of init, deploy and fmerge correspond
to existing approaches, for example (initZS,deployALL, f

WA
merge) simply recovers offline merging

through weight averaging over experts models derived from original base weights θ0 for each task t.
Similarly, (initFT, deployEMA, fWA

merge) recovers exponential moving average approaches as done
in Stojanovski et al. (2022); Roth et al. (2024b).

3 EXPERIMENTS

Training at task t. We continuously finetune and merge a ViT-B/16 CLIP Radford et al.
(2021); Cherti et al. (2022) model using the standard CLIP objective. The model is pretrained
on LAION-2B (Schuhmann et al., 2022). We fix the training steps for each task based on the
DataComp-Small budget of 1.8 × 109 GFLOPS, split equally across 20 tasks. At each step,
we allow unrestricted access to a pretraining data pool P , using the same 2M random subset of
LAION-400M as in Roth et al. (2024b). We use a cosine-decay LR schedule with a linear warmup
of 10%, AdamW optimizer Loshchilov & Hutter (2017), a batch size of 512 and gradient norm clip-
ping to 1. All experiments use PyTorch Paszke et al. (2019), and are run on a compute cluster using
NVIDIA A100/H100s.

Evaluation and Metrics. We use the continual pretraining benchmark Fomo-in-Flux by Roth et al.
(2024b). It includes 41 adaptation datasets and 22 separate evaluation datasets, covering visual
and semantic distribution shifts. We focus on two aspects: the level of adaptation, reflecting per-
formance improvement with each merging step, and retention, capturing the preservation of prior
knowledge. Specifically, we report two metrics following Roth et al. (2024b): Knowledge Accu-
mulation (AKA), the average accuracy (or recall@5 for retrieval) across all 41 adaptation datasets,
and Zero-Shot Retention (AZS), the zero-shot accuracy or recall@5 on all 22 held-out evaluation
datasets. Additional details can be found in the supplementary.

3.1 DO WE NEED MODEL MERGING ACROSS TIME?

The simplest approach to temporal merging is to disregard the time axis and follow the
standard offline merging paradigm. In TIME terms, this corresponds to a configuration of
(initZS,deployALL, fmerge), which always fine-tunes the initial base weights θ0. To study the
effectiveness of this strategy, we test it with various choices of fmerge in Fig. 6, including averaging,
task-arithmetic, magmax, ties, dare-ties, breadcrumbs-ties, and lines-ties. For context, we include
(1) a simple continual fine-tuning baseline (replay), which replays on both pretraining and previ-
ous task data, (2) initial zero-shot (θ0) performance lower bound, and (3) multitask training upper
bound. We visualize trajectories over time for knowledge accumulation AKA, zero-shot retention
AZS, and the geometric mean. Our results show that there are marginal differences between merging
techniques when deployed in an offline manner for a temporal problem, and they all trace similar tra-
jectories in the AKA and AZS space and achieve similar final performance. Overall, however, unlike
straightforward continual fine-tuning (replay), offline merging with any technique fails to address
the temporal aspects of the problem, particularly struggling to consistently acquire new knowledge
over time (as shown in Fig. 6, left).

3.2 TIME TRAVEL

Since offline merging is ill suited to the temporal setting, we systematically explore the design space
for temporal merging methods by testing all valid combinations of three initialization protocols
and three deployment protocols described in Sec. 2.2. After discarding incompatible pairs, such as
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Figure 3: A journey through TIME. We explore various initialization and deployment protocols,
finding that the EMA initialization-deployment strikes the best balance between knowledge accu-
mulation and zero-shot retention. We refer to this strategy as Best-in-TIME.
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Figure 4: Sweeping Best-in-TIME. All merging techniques perform well with the Best-in-TIME
strategy. Indeed, there are no significant differences between techniques, indicating that initialization
and deployment matter more for temporal merging.

initZS with deployFT, we evaluated the remaining eight variants using weight averaging as the
merging technique. As shown in Fig. 3, the choice of initialization and deployment strategy largely
determines performance, significantly affecting both knowledge accumulation and retention. One
combination that stands out consistently is initEMA with deployEMA. This supports the findings
of Stojanovski et al. (2022); Roth et al. (2024b) on small-scale continual learning and pretraining.

As the application of EMA model merging achieves a notably better balance between knowledge
accumulation and retention than other methods, we call this approach Best-in-TIME. In the next
section, we will explore the robustness of this strategy across different merging techniques. Please
refer to Appendix E for additional EMA experiments.

3.3 WHAT IS THE BEST MERGE FOR BEST-IN-TIME?

Having identified the optimal initialization and deployment merging strategy, we now investigate
the robustness of our finding by sweeping over merging techniques. In particular, we test 7 dif-
ferent merging techniques while keeping the Best-in-TIME initialization and deployment strategy.
From Fig. 4, it is clear that all merging techniques perform very similarly. This indicates that, over
a sufficiently long time horizon, all techniques converge to a similar behavior, echoing our results
in Sec. 3.1. However, we do notice higher variance in the retention metric (AZS).

3.4 SCALING UP TEMPORAL MODEL MERGING

We next scale temporal model merging up across three-axes: model size, compute budget, and num-
ber of tasks (results in Fig. 5 and Appendix E.2). All our experiments use the Best-in-TIME setup
described previously, conducting hyperparameter-optimal EMA at each task.

Scaling the Model. As we increase the model scale from S/16 (62.3M parameters) to B/16
(149.6M), L/14 (427.6M), and finally g/14 (1.37B) in Fig. 5 (left), we study the tradeoff between
knowledge accumulation and retention over time. We compare sequential fine-tuning (circles) and

5
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Best-in-TIME (squares). Best-in-TIME scales well with model size, with larger models exhibit-
ing increased affinity to merges over time. This extends and further corroborates offline merging
insights by Yadav et al. (2023), who showed that model scale facilitates merging. Moreover, while
Roth et al. (2024b) and Ibrahim et al. (2024) highlight better continual fine-tuning with scale, we
show temporal model merging to be substantially more effective across scale. For larger models
all the way to the largest ViT-g/14, Best-in-TIME vastly outperforms or matches sequential fine-
tuning and the multitask target in knowledge retention and positive backward transfer. Furthermore,
scale facilitates equivalent degrees of knowledge accumulation between sequential fine-tuning and
temporal model merging. Therefore, our model scaling results strongly suggest the use of temporal
model merging solutions over standard continual fine-tuning methods.

Scaling the Compute. Keeping the underlying base model fixed to ViT-B/16, we next change the
available compute budget by increasing the number of update steps per task. We compare a multitask
model, trained on all tasks simultaneously, to a budget-optimal Best-in-TIME. The only hyperpa-
rameter for Best-in-TIME is the interpolation weight w. For each compute budget, there is a clear
optimal choice of that hyperparameter (suboptimal runs shown as gray dots in Fig. 5 (right)). Higher
values of w put greater emphasis on accumulation, allowing optimal accumulation-retention trade-
offs to be reached at lower compute budgets. However, for a larger compute budget, less aggressive
temporal model merging can achieve higher absolute trade-offs. Note that in Fig. 5 (right), we report
the geometric mean between accumulation and retention, corresponding to the right-most panel in
previous plots. Best-in-TIME scales very well across compute budgets, clearly approaching the
multitask upper bound in accumulation-retention balance at larger compute budgets.

Scaling the Number of Tasks. Given that all our results until now have been with T=20, we next
study how Best-in-TIME performs as we increase the number of merging time-steps to much longer
time-sequences: T=50 and T=100. Best-in-TIME remains the optimal method of choice across
different initialization and deployment strategies. Please refer to Appendix E.2 for details.

4 CONCLUSION
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Figure 5: Scaling up model merging. (left) With scale, we
observe continued improvements of model merging com-
pared to the standard replay baseline. (right) Our Best-
in-TIME method continues to improve with scaled total
compute budget moving close to the multitask upper-bound.
Gray points in the plot visualize suboptimal Best-in-TIME
hyperparameter-instantiations.

In this work, we study temporal
model merging, addressing the chal-
lenge of continually merging multi-
modal models as new tasks and data
arrive, and new expert models are
trained in succession. To formal-
ize this setting, we propose TIME,
a novel unifying framework break-
ing down temporal model merging
into three key axes: (1) initialization
phase defining starting weights be-
fore each task, (2) deployment phase
denoting post-training expert model
aggregation, and (3) the choice of
merging technique. Using TIME,
we conduct a large-scale system-
atic study uncovering crucial prac-
tical guidelines for temporal model
merging. Our experiments on the
FoMo-in-Flux benchmark spanning
63 datasets, showcase that account-
ing for the temporal aspect is crucial,
with standard offline merging techniques falling short in this dynamic setting. Moreover, we find the
particular choice of merging technique matters far less than the merging strategy for initialization
and deployment. Finally, we introduce Best-in-TIME, which scales favorably with model size and
outperforms existing methods for continual multimodal pretraining. Our work provides a systematic
entry point into temporal model merging and establishes best practices for this emerging field.
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A RELATED WORKS

Model Merging. We provide a short overview of the model merging literature, detailed in these
excellent surveys (Yadav et al., 2024a; Yang et al., 2024a). While both model aggregation through
distillation Roth et al. (2024a); Cideron et al. (2024) and averaging checkpoints during training (Kad-
dour, 2022; Sanyal et al., 2024; Li et al., 2024) have shown success, the requirement of additional
compute limits practicability of these methods (Prabhu et al., 2023b). Instead, recent work (Worts-
man et al., 2022b;a; Ilharco et al., 2022; 2023; Rame et al., 2023; Sanyal et al., 2024; Sung et al.,
2023; Pari et al., 2024; Nylund et al., 2023; Zaman et al., 2023; Stoica et al., 2024; Wang et al.,
2024b; He et al., 2024; Oh et al., 2024; Shen et al., 2024; Sharma et al., 2024; Goddard et al.,
2024; Yadav et al., 2024a; Xiong et al., 2024; Yang et al., 2024b; Lu et al., 2024; Zheng & Wang,
2024; Nasery et al., 2024) has shown the effectiveness of training-free weight averaging and inter-
polation of fine-tuned expert models to produce an improved base model, benefiting from (linear)
mode connectivity in models fine-tuned from a single pre-trained checkpoint Izmailov et al. (2018);
Ramé et al. (2024); Neyshabur et al. (2020); Frankle et al. (2020); Ainsworth et al. (2023). These
insights have been extended into weight-averaged reward models Ramé et al. (2024), policy mod-
els Ramé et al. (2024) with spherical interpolation, and KL-constrained RLHF Lin et al. (2024); Liu
et al. (2024); Munos et al. (2024); Gorbatovski et al. (2024). Works such as Fisher-Merge Matena
& Raffel (2022), TIES Yadav et al. (2023), RegMean Jin et al. (2023), MATS Tam et al. (2024a),
DELLA Deep et al. (2024), DARE Yu et al. (2024), Breadcrumbs Davari & Belilovsky (2025), evo-
lutionary merging Akiba et al. (2024) and MagMax Marczak et al. (2024) have explored merging
strategies beyond simple interpolation to determine which weights should be merged across ex-
pert models. These methods have different benefits for in- and out-of-distribution generalization
across domains Tam et al. (2024b), though recently they have been shown to perform similarly at
scale Yadav et al. (2024b). Additionally, some works have explored the initialization dimension
for effectively merging models (Choshen et al., 2022; Don-Yehiya et al., 2022; Zhou et al., 2024;
Marczak et al., 2024). In this work, we propose a unifying framework for temporal merging and
conduct the most comprehensive study of this topic to date.

Continual Pretraining extends beyond standard Continual Learning (Prabhu et al., 2023a; Roth
et al., 2024b), focusing on large-scale model updates starting from pretrained foundation mod-
els Ibrahim et al. (2024); Garg et al. (2024); Roth et al. (2024b); Gui et al. (2024); Prabhu et al.
(2023c) and addressing more complex and substantial update tasks Lin et al. (2021); Cai et al.
(2021); Liska et al. (2022); Garg et al. (2024); Bornschein et al. (2023); Roth et al. (2024b). There
has been limited exploration into using model merging for continual pretraining (Marczak et al.,
2024; Alexandrov et al., 2024; Stojanovski et al., 2022; Roth et al., 2024b), as most prior works fo-
cus on training strategies including regularization objectives and learning-rate schedules (Roth et al.,
2024b; Prabhu et al., 2023b; Garg et al., 2024; Ibrahim et al., 2024; Srivastava et al., 2024; Li et al.;
Yıldız et al., 2024; Thede et al., 2024; Ostapenko et al., 2022; Mendieta et al., 2023). We keep the
training strategy fixed, and provide an in-depth exploration beyond simple merging techniques.
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B DETAILS OF THE MERGING METHODS

Denoting the number of models to merge at timestep t as Mt (with t = 0 and Mt = M for standard
model merging), we can define these methods as follows:

Weight Averaging Regent’s et al. (1996); Wortsman et al. (2022b); Ilharco et al. (2022); Sto-
janovski et al. (2022); Roth et al. (2024b) simply employs a uniformly weighted, element-wise
average over all models θt,i, resulting in a merge function fWA

merge:

θt =
1

Mt

∑
i

θt,i. (2)

SLERP Shoemake (1985); Ramé et al. (2024) assumes weights to live on a hypersphere, and
consequently conducts interpolation along a curved path connecting weight entries. In particular, for
two models θt,1 and θt,2 deriving from some base weight θt−1 and the corresponding task vectors
δt,i = θt,i − θt−1, SLERP with interrpolation weight λ is defined as

θt = θt−1 +
sin(1− λ)Ω1,2

sinΩ1,2
· δt,1 +

sinλΩ1,2

sinΩ1,2
· δt,2 (3)

with Ω1,2 being the angle between task vectors δt,1 and δt,2. We denote the corresponding merge
function fSLERP

merge .

Task Arithmetic Ilharco et al. (2023) defines the merge as a function over task vectors δt,i =
θt,i − θt−1 for each weight θt,i fine-tuned from θt−1. This introduces a simple merge formalism
fTA

merge for weighted parameter averaging with a scale λ:

θt = θt−1 + λ
1

Mt

∑
i

δt,i (4)

TIES Yadav et al. (2023) builds on the task arithmetic formalism through controlled pruning of
task vector entries with low magnitude. Moreover, the sign for each final merged parameter is set
based on the sign of the highest total magnitude across the merge candidates. The final update
follows basic task arithmetic, only for entries with matching signs. We refer to the respective merge
function as fTIES

merge.

DARE Yu et al. (2024) is a similar extension of task arithmetic, but instead of targetted pruning,
it randomly zeroes out task vector entries using a random mask Zi ∼ Bernoulli(p) and masking
probability p. Final task vector values for fDARE

merge are then rescaled based on p:

δDARE
t,i =

(1− Zi)δt,i
1− p

. (5)

Model Stock Jang et al. (2024) provides a geometric extension of simple weight averaging as done
in Model Soup Wortsman et al. (2022a) by incorporating base weights θt−1 into the merging process.
Given fine-tuned weights θt,1 and θt,2, the Model Stock merge fStock

merge is defined as follows:

θt =
2 · cosΩ1,2

1 + Ω1,2
· (θt,2 − θt,1) +

(
1− 2 · cosΩ1,2

1 + cosΩ1,2

)
, (6)

utilizing angle Ω1,2 between task vectors δt,1 and δt,2.

Breadcrumbs Davari & Belilovsky (2025) deploys another variation on task arithmetic for model
merging. In particular, for a given task vector δt,i, extreme left and right tails of the absolute mag-
nitude distribution in δt,i are zeroed out with left and right thresholds β and γ. The modified task
vectors δBread

t,i are then applied on base weights θt−1 following the task arithmetic setup, and giving
fBread

merge .
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Figure 6: Offline merging methods struggle with TIME. All tested merging techniques perform
extremely poorly, and are unable to adapt to the temporal setting, underperforming even a simple
replay baseline that sequentially trains the base model on task-replayed data.

MagMax Marczak et al. (2024) also uses task vectors—given multiple task vectors δt,i (with in-
crements possible along both time t and count axis i), the final task vector δt is yielded through
maximum magnitude entry selection; copying the largest magnitude entries across all {δt,i} into δt,
giving fMax

merge.

LiNeS Wang et al. (2024a), for Layer-increasing Network Scaling, scales weight updates based
on their respective layer depth enabling early layers to remain close to original pretraining weights
(cf. Neyshabur et al. (2020)). Given task vectors δt,i, now broken down across model layers δlt,i with
l ∈ [1, ..., L] and L the number of layers, LiNeS follows the base task arithmetic merging formalism,
but updates task vectors as

δLiNeS
t,i = concat

(
λl=1δl=1

t,i , ..., λl=Lδl=L
t,i

)
(7)

with layer-scaled interpolation weights λl = α+ β l−1
L−1 and hyperparameters α, β, giving fLines

merge.

C PLOTTING STYLE

Across TIME, we utilize a common plotting style to visualize our results—with three base subplots
(see for e.g., Fig. 5):

• Knowledge Accumulation (AKA) versus number of tasks over time. In this plot, a gray
star indicates the base-weight zero-shot performance on adaptation datasets. An orange
star indicates an upper bound achieved through jointly training on all the data at once, with
no separation over time.

• Zero-Shot Retention (AZS) versus number of tasks over time. Similar to AKA versus
tasks, this plot visualizes merging results for TIME-variants, but measuring performance
on withheld evaluation datasets. Again, gray and orange star indicate base and joint training
lower and upper bounds, respectively.

• Finally, we also aggregate both previous plots into one showcasing the progression of
merged performance geometric mean

√AZS ×AKA over time; utilizing the same star
indication as in the previous subplots.

The only deviation from this plotting style is Fig. 5. The left panel visualizes the trajectory across
tasks in the AKA - AZS space. Here, full-colored stars reference base model performance and
hollow stars the corresponding joint training upper bounds. The right panel shows the geometric
mean of AKA and AZS at the end of the last task for different compute budgets.

Finally, several plots such as Figs. 4, 6 and 7 show the extensive scale of our experiments through
background visualizations of sub-optimal hyperparameter choices in lighter colors (as opposed to
the optimal choices using darker coloring). This plotting style is loosely inspired by Beyer et al.
(2022).
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Figure 7: Improving offline merging. We identify two simple methods for adapting offline-merging
methods to the temporal setting: (1) replaying data from previous tasks (best-(offline+replay)) and
(2) recency-biased weighting of task checkpoints (best-(offline+replay+weighting)). With these
method improvements, offline merging methods can match the replay baseline.

D ADDITIONAL OFFLINE MERGING EXPERIMENTS

D.1 REPLAY AND TIME-WEIGHTING

In this section, we analyze extensions to offline methods that can help close the gap to the replay
baseline. As the continual fine-tuning baseline replays on past data from all previous tasks while
training at the current task t, can this task data-mixing also help offline merging methods?

Data replaying improves offline merging. Since offline methods operate entirely under a task-
independent assumption, they fail to capture any temporal dependencies. Fig. 7 shows that simply
applying data-replay on top of standard offline merging leads to significant boosts in the overall
performance. For instance, best-(offline+replay) achieves 58.2% compared to best-offline at 54.6%,
bringing it closer to the replay baseline. However, a notable performance gap remains, with best-
(offline+replay) at 58.2% falling short of replay at 59.1%.

Recency-biased weighting helps. Next, unlike in standard offline averaging, where all task check-
points are weighted uniformly, we impose temporal ordering via non-uniform weighting for offline
merging. We explore several recency-biased, non-uniform weighting schemes, assigning higher
weights to more recent tasks to account for the temporal nature of the setting.

We explore various discounting schemes: logarithmic, quadratic, exponential, and cubic, applied
to the best offline merge replay method from the previous experiment (please refer to the sup-
plementary for details). As shown in Fig. 7, these schemes improve performance, with best-
(offline+replay+weighting) reaching 58.9%, yet still falling slightly short of the replay baseline at
59.1%. These results provide strong evidence that accounting for the new temporal axis is crucial
for effective temporal model merging, even when implemented as an extension of offline merging.
Key takeaway: accounting for the time aspect is crucial for effective temporal model merging, even
as an extension on top of standard offline merging. Still, a small gap to the simple replay baseline
remains.

D.2 REVERSED NON-UNIFORM WEIGHTING SCHEMES

In Fig. 7, we found that a simple yet effective method for boosting the performance of offline merg-
ing methods is recency-biased non-uniform weighting, i.e. giving larger weights to more recent
checkpoints while merging. Here, we ask the question—what if we reversed the weighting schemes
such that we give larger weights to older task checkpoints? From Fig. 8, we indeed observe that
such a reverse strategy performs worse than the best recency-biased weighting schemes, since the
knowledge accumulation ability is hampered by giving more emphasis to older tasks. However,
note that such a sub-optimal reverse weighting strategy is still better than the pure offline merging
strategy with no replay. This helps further ablate the exact importance of replay and non-uniform
weighting for improving pure offline-merging techniques in the presence of the time axis.
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Figure 8: Effect of reverse-weighting for offline merging techniques. We find that reversing the
weighting scheme that yielded consistent boosts from Fig. 7 is sub-optimal—indeed, it performs
worse than the offline merging with replay methods.

E ADDITIONAL EMA EXPERIMENTS

E.1 TASKS AS DATASETS

In the main text, we presented all results using a data stream that randomly mixes concepts from
different datasets into a coherent set of tasks—following the random data-stream in Roth et al.
(2024b). Here, we relax this constraint and re-run our experiments using individual datasets as
tasks, consistent with the standard model merging literature (Ilharco et al., 2022; 2023; Yadav et al.,
2023). Specifically, we use the dataset-incremental stream from Roth et al. (2024b). Even in this
setup, we reproduce our main findings. In Fig. 9, we confirm the results from Fig. 6, showing that all
offline merging techniques perform poorly when exposed to the axis of time, failing to even match
the performance of a simple continual fine-tuning replay baseline. Additionally, in Fig. 10, we
corroborate the results from Fig. 3, demonstrating that the best-in-TIME method remains the most
effective temporal model merging approach. We also confirm that the choice of model merging
technique is far less critical for temporal model merging than the initialization and deployment
strategies.
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Figure 9: Offline merging techniques still struggle in the tasks-as-datasets setting. Switching
from the random data-stream (Fig. 6 in the main paper) to the dataset-incremental stream, which
aligns more closely with the standard multi-task merging literature setups, reveals that offline merg-
ing techniques still severely underperform compared to the simple replay baseline.

E.2 LONGER TASK SEQUENCES

To test the robustness of our findings in Sec. 3.2, we repeat the experiment shown in Fig. 3 on
a longer sequence with the number of tasks T = 50 (Fig. 11). For 50 tasks, Best-in-TIME still
strikes the optimal balance between knowledge accumulation and zero-shot retention. One notable
difference with respect to Fig. 3 is the large initial advantage of the zero-shot initialization strategy
combined with the EMA deployment strategy. When the learning horizon is further extended to 100
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Figure 10: Dataset-Incremental TIME Exploration. We replicate the results from Fig. 3 using the
dataset-incremental stream instead of the random stream. The main takeaways remain unchanged:
initialization and deployment strategies primarily determine temporal merging performance, and
the EMA-averaging initialization and deployment strategy utilized in Best-in-TIME is the best ap-
proach.
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Figure 11: A long journey through TIME. We compare all valid combinations of initialization and
deployment protocols on a longer sequence of 50 tasks. Best-in-TIME remains the best in balancing
knowledge accumulation and zero-shot retention.

tasks, this initial advantage is maintained, establishing the zero-shot initialization approach as the
best-performing method, as shown in Fig. 12. Although the double EMA variant surpasses zero-
shot initialization in knowledge accumulation, its poor retention relegates it to third place on the
combined metric. In this exploration we re-use the optimal interpolation weight from the 20 task
scenario, which may no longer be ideal for longer horizons, as it directly influences the balance
between knowledge accumulation and zero-shot retention.

E.3 VARIANCE ANALYSIS ACROSS RUNS

To put our results from Sec. 3.3 in perspective, we quantify the variance across runs for a single
merging method. Specifically, we run Best-in-TIME three times and show the mean and standard
deviation across runs in Fig. 13. Comparing this to Fig. 4 reveals that the best results for different
methods fall within the standard deviation of multiple runs of the same method. In particular, for the
last task, the standard deviation of the geometric mean of knowledge accumulation and zero-shot
retention is 0.96.

F HYPERPARAMETER DETAILS

In an effort to remove any confounding factors, we conduct an extensive hyperparameter sweep,
to the best of our abilities, for each individual merging technique for Figs. 4, 6 and 7. We list the
hyperparameter ranges swept over for each technique below:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

0 10 20 30 40 50 60 70 80 90 100

Tasks

35

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20 30 40 50 60 70 80 90 100

Tasks

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20 30 40 50 60 70 80 90 100

Tasks

46

48

50

52

54

56

58

60

62

√
A
Z
S
×
A
K
A

ft-all

all-ft

ema-ft

ft-ema

ema-all

all-ema

all-all

zs-ema

best-in-time

zero-shot

multitask

Figure 12: An even longer journey through TIME. We compare all valid combinations of initial-
ization and deployment protocols on a longer sequence of 100 tasks. Best-in-TIME still remains the
best approach balancing knowledge accumulation and retention, measured as the geometric mean of
the two metrics in the right-most figure.
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Figure 13: The mean and standard deviation across three runs of Best-in-TIME.

• Weight Averaging. For the offline merging, we use a standard merging coefficient of 1
N ,

where N is the number of task checkpoints to merge.
• SLERP. In SLERP, as we can only merge two checkpoints at a time, we sweep over the

following weight-coefficients: {0.1,0.3,0.5,0.7,0.9}.
• Task-Arithmetic. We sweep over the scaling factor:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}

• TIES. We sweep over the scaling factor: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} and the
pruning-fraction: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

• DARE-TIES. We sweep over the scaling factor: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
and the pruning-fraction: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

• Breadcrumbs-TIES. We sweep over the scaling factor:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} and the pruning-fraction:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

• MagMax. We sweep over the scaling factor: {0.2,0.4,0.8,1.0}.
• LiNeS-TIES. We keep α fixed to 0.5, and sweep β: {0.2,0.5,0.8} and prune-fraction:
{0.2,0.5,0.8} as recommended in the original paper (Wang et al., 2024a).
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