
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

HOW TO MERGE MULTIMODAL MODELS OVER TIME?

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging combines multiple “expert” models finetuned from a base foun-
dation model on diverse tasks and domains into a single, more capable model.
However, most existing model merging approaches assume that all experts are
available simultaneously. In reality, new tasks and domains emerge over time,
requiring strategies to integrate the knowledge of expert models as they become
available: a process we call temporal model merging. The temporal dimension
introduces unique challenges not addressed in prior work, raising new questions
such as: when training for a new task, should the expert model start from the
merged past experts or from the original base model? Should we merge all models
at each time step? Which merging techniques are best suited for temporal merg-
ing? Should different strategies be used to initialize the training and deploy the
model? To answer these questions, we propose a unified framework called TIME
(Temporal Integration of Model Expertise) which defines temporal model merging
across three axes: (1) initialization, (2) deployment, and (3) merging technique.
Using TIME, we study temporal model merging across model sizes, compute
budgets, and learning horizons on the FoMo-in-Flux benchmark. Our comprehen-
sive suite of experiments across TIME allows us to build a better understanding
of current challenges and best practices for effective temporal model merging.

1 INTRODUCTION

Time step: t=1 Time step: t=2 Time step: t=T

…
Initialization:

Merge
&

Select

…
……

Deployment:
Merge

&
Select

Merge
&

Selection
grows in

complexity

Merge
&

Selection
grows in

complexity

Fo
un

da
tio

n
M

od
el

Standard Model
Merging

…
…
…
…
…
…
…
…
…
…
…

Train Merge

Figure 1: Temporal Model Merging generalizes
standard model merging (yellow), which merges
multiple trained experts once, in a single step. Our
study reveals that initialization and deployment
strategies are crucial in the temporal setting.

Foundation models consolidate a wide range of
capabilities and knowledge into a single, large
model. Consequently, model merging (Re-
gent’s et al., 1996; Wortsman et al., 2022a) has
emerged as a key technique for unifying multi-
ple task-specific specialist models derived from
a shared base into a single, generalist model.

Current model merging approaches typically
assume a fixed base model that is fine-tuned in-
dependently on k diverse tasks and domains to
produce a set of independent experts (Garipov
et al., 2018; Rofin et al., 2022; Ilharco et al.,
2022; Yadav et al., 2023; Li et al., 2022), which
are then merged simultaneously. Research in
this field has therefore focused on improving merging techniques for larger or structurally different
k-sets, exploring the impact of the diversity and scale of finetuning domains, tasks and experts.

However, the world is constantly evolving, leading to continuous shifts over data distributions, do-
mains, and tasks, with new concepts emerging that may have been insufficiently covered during
large-scale pretraining (Koh et al., 2021; Hu et al., 2022; Pratt et al., 2023; Menon & Vondrick,
2023; Zhang et al., 2021; Gui et al., 2024). This dynamic nature of real-world applications motivates
a hitherto missing systematic exploration into temporal model merging (see Fig. 1) to better under-
stand model merging along an additional, understudied axis: time (Zhou et al., 2024; Don-Yehiya
et al., 2022). Specifically, in this work, we ask: (1) What is the best merging strategy to initialize
each expert model before training? (2) What is the best merging strategy to deploy each expert
model after training? (3) Which model merging techniques are most suitable for temporal merging?
To answer these questions, we propose a unified framework for studying temporal model merging:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Flow at each task t

1.Init

2.Train

4.Deploy

5.Eval

3.Store

…

1.Init

4.Deploy

…
2.Train

train

…insert

3.Store

merge

merge

5.Eval

KA eval

ZS eval

…Legend:
Initialized, saved,
output ckpts
at task t.

Buffer to store all
task checkpoints.

Train data
at task t.

Eval scores
at task t.

def train_task(t, data, ckpts, merge_params):
 # 1. init ckpt for task t
 theta_i = merge(ckpts, merge_params)

 # 2. train on current task data
 theta_s = train(theta_i, data, t)

 # 3. save current task's ckpt to buffer
 ckpts.append(theta_s)

 # 4. get output ckpt at task t
 theta_o = merge(ckpts, merge_params)

 # 5. get scores for task t
 scores = eval(theta_o)

 return ckpts, scores

t = 5 # current task t
d = next(iter(dataloader)) # data for task t
m_params = {
 'type': 'interpolation', # slerp | ties | …
 'weight_coeffs': [0.5] * t,
}
run step at task t
ckpts, scores = train_task(t,d,ckpts,m_params)

Figure 2: Design Space of Temporal Model Merging through TIME. We showcase our frame-
work for the per-task pipeline of temporal model merging over multiple tasks: At each task t, we first
initialize the current checkpoint to start training from, θit, by using one or more previously stored
checkpoints from previous tasks, either directly or by merging them. We train θit on current task
data Dt to yield the current task checkpoint θst , which is inserted into the checkpoint buffer. Finally,
to produce the output model, θot , we either merge previously stored checkpoints from the buffer or
use them directly. The entire framework is depicted in the pseudo-code on the right panel.

TIME (Temporal Integration of Model Expertise). It is structured around three key axes spanning
the design space of temporal merging solutions (as shown in Fig. 2): the choice of past checkpoints
to merge before training on the current task (initialization), the choice of past checkpoints to merge
after training on the current task (deployment), and the choice of the merging technique. Using our
TIME framework, we position existing model merging approaches along each key axis and conduct
a systematic study of model merging over time. For this, we leverage the multimodal FoMo-in-
Flux by Roth et al. (2024b), a benchmark comprising 63 datasets with well-documented sequential
properties, enabling a thorough investigation of temporal model merging under practical compute
constraints. Our experiments systematically explore different merging techniques, initialization, and
deployment strategies, providing several key insights:

Key Insights for Temporal Model Merging

[A] Accounting for time is crucial. Standard “offline” model merging techniques do not
generalize well to the temporal merging setting (Sec. 3.1).
[B] Complex merging techniques matter little. Choosing sophisticated merging tech-
niques beyond simple weighted averaging provides at best marginal benefits for temporal
model merging, especially for long task sequences (Sec. 3.3).
[C] Initialization and deployment are critical. Choosing how to select and combine avail-
able weights before and after each task t is most important for temporal model merging
(Sec. 3.2).
[D] Temporal model merging scales well. Larger models or compute budgets allows
greater benefits from temporal merging. Scaling enables temporal model merging to even
outperform the multitask model, trained on all tasks at once (Sec. 3.4).

2 DESIGN SPACE OF TEMPORAL MODEL MERGING

Notation. Throughout this work, we use t to refer to a given task at time t. Full model param-
eterization is denoted by θ, with the following key instantiations: θt represents model weights at
task t, while θIt , θSt , and θOt denote weights used for initialization, saved weight checkpoints at task
t (i.e. the trained expert models), and the output deployed model weights, respectively. Note that
while standard model merging considers model weights as elements of a fixed set {θk}Kk=1, temporal
model merging organizes them along the time axis θt.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Comparison of model merging techniques.
Method Sparsification Consensus Scaling
Weight averaging Regent’s et al. (1996); Wortsman et al. (2022a) ✗ Linear Int. Weight coeff.
SLERP Ramé et al. (2024) ✗ Spherical Int. Weight coeff.
Task Arithmetic Ilharco et al. (2023) ✗ Linear Int. Scaling factor
MagMax Marczak et al. (2024) ✗ Max. Magnitude Scaling factor
TIES Yadav et al. (2023) Top-k Sign Agreement Scaling factor
DARE-TIES Yu et al. (2024) Random Sign Agreement Scaling factor
Breadcrumbs-TIES Davari & Belilovsky (2025) Top/Bottom-k Sign Agreement Scaling factor
Model Stock Jang et al. (2024) ✗ Geometric Adaptive ratio
LiNeS Wang et al. (2024a) ✗ ✗ Layer weights

2.1 TEMPORAL MODEL MERGING THROUGH TIME

Standard model merging is typically performed offline, after all experts have been trained to conver-
gence. In contrast, model merging in continual pretraining is generally done sequentially, using past
checkpoints. Both approaches are specific instances of our more general temporal merging frame-
work, TIME, which defines temporal merging along three key axes: initialization of each expert,
merging for deployment at step t, and merging techniques fmerge applied over time:

AXIS 1: INITIALIZATION

As expert models are created continuously over time, initialization becomes a crucial choice. Unlike
model merging at a single point in time, the number of potential starting points grows exponentially
over time as new experts are created. This raises the question: should starting points for each time
step be derived from the base weights (as in traditional merging), from a merged combination of
previous experts, or from most recent weights? In this work, we study the following initialization
protocols at time step t for TIME: (1) initZS, which consistently initializes with the base zero-shot
model weights θ0 at each timestep t; (2) initFT, which at step t always initializes with the latest
available finetuned model weights θSt−1; and (3) initEMA, which computes an unrolled exponential
moving average merge over all previously seen expert models {θSt′}1,...,t−1 following the equation:

θEMA
t′ = fmerge

(
θEMA
t′−1, θ

S
t′−1,F

)
(1)

with merging hyperparameters F . Consequently, the initialization weights are given as θIt = θEMA
t .

AXIS 2: DEPLOYMENT

With each update iteration and expert training phase t, a decision must be made on the final model
to deploy, determining which weights to present for downstream use. In continual pretraining, the
trained model θSt is deployed directly. In contrast, standard model merging applies a merging tech-
nique fmerge to a fixed set of k expert models. Temporal model merging, however, must account
for both previously deployed models and the growing number of expert models available over time.
Unlike standard merging, where k remains constant, the number of experts to merge increases with
each step. As a result, temporal merging introduces the idea of weighted combinations, balancing
recent updates with retained past knowledge to achieve adaptability and stability—both critical for
effective continual learning (Kirkpatrick et al., 2017; Zenke et al., 2017). In this work, we study three
strategies for model deployment: (1) deployFT, which always deploys the latest finetuned expert
model at step t, i.e., θOs = θSt ; (2) deployEMA, which computes an unrolled exponential moving
average merge over all expert models, i.e., θOt = θEMA

t+1 following Eq. (1); and (3) deployALL,
which applies a merging technique fmerge over all previously computed expert models {θSt′}t−1

1 .

AXIS 3: MERGING TECHNIQUES

At each point in time, for both initialization and deployment, merging technique fmerge defines how
to combine the available expert models and checkpoints. In this work, we study nine different
variants in total, shown in Tab. 1. Please refer to Appendix B for details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 COMPLETE TEMPORAL MODEL MERGING PIPELINE

Incorporating all three axes of temporal model merging, we define a five-stage update pipeline for
each task t (see Fig. 2), consisting of the following steps: (1) Init: choose one of the aforementioned
initialization protocols—initZS, initFT, or initEMA. This produces initialization weights θIt at
task t; (2) Train: given θIt , train on current task data Dt within a set compute budget to produce the
expert model θSt ; (3) Store: append θSt to storage of expert model weights S; (4) Deploy: choose
a deployment protocol: deployFT, deployEMA, or deployALL, and produce the output weights
θOt = deploy(S); and (5) Eval: the deployed θOt is used for downstream applications and, in our
case, extensive evaluation. Note that particular choices of init, deploy and fmerge correspond
to existing approaches, for example (initZS,deployALL, f

WA
merge) simply recovers offline merging

through weight averaging over experts models derived from original base weights θ0 for each task t.
Similarly, (initFT, deployEMA, fWA

merge) recovers exponential moving average approaches as done
in Stojanovski et al. (2022); Roth et al. (2024b).

3 EXPERIMENTS

Training at task t. We continuously finetune and merge a ViT-B/16 CLIP Radford et al.
(2021); Cherti et al. (2022) model using the standard CLIP objective. The model is pretrained
on LAION-2B (Schuhmann et al., 2022). We fix the training steps for each task based on the
DataComp-Small budget of 1.8 × 109 GFLOPS, split equally across 20 tasks. At each step,
we allow unrestricted access to a pretraining data pool P , using the same 2M random subset of
LAION-400M as in Roth et al. (2024b). We use a cosine-decay LR schedule with a linear warmup
of 10%, AdamW optimizer Loshchilov & Hutter (2017), a batch size of 512 and gradient norm clip-
ping to 1. All experiments use PyTorch Paszke et al. (2019), and are run on a compute cluster using
NVIDIA A100/H100s.

Evaluation and Metrics. We use the continual pretraining benchmark Fomo-in-Flux by Roth et al.
(2024b). It includes 41 adaptation datasets and 22 separate evaluation datasets, covering visual
and semantic distribution shifts. We focus on two aspects: the level of adaptation, reflecting per-
formance improvement with each merging step, and retention, capturing the preservation of prior
knowledge. Specifically, we report two metrics following Roth et al. (2024b): Knowledge Accu-
mulation (AKA), the average accuracy (or recall@5 for retrieval) across all 41 adaptation datasets,
and Zero-Shot Retention (AZS), the zero-shot accuracy or recall@5 on all 22 held-out evaluation
datasets. Additional details can be found in the supplementary.

3.1 DO WE NEED MODEL MERGING ACROSS TIME?

The simplest approach to temporal merging is to disregard the time axis and follow the
standard offline merging paradigm. In TIME terms, this corresponds to a configuration of
(initZS,deployALL, fmerge), which always fine-tunes the initial base weights θ0. To study the
effectiveness of this strategy, we test it with various choices of fmerge in Fig. 6, including averaging,
task-arithmetic, magmax, ties, dare-ties, breadcrumbs-ties, and lines-ties. For context, we include
(1) a simple continual fine-tuning baseline (replay), which replays on both pretraining and previ-
ous task data, (2) initial zero-shot (θ0) performance lower bound, and (3) multitask training upper
bound. We visualize trajectories over time for knowledge accumulation AKA, zero-shot retention
AZS, and the geometric mean. Our results show that there are marginal differences between merging
techniques when deployed in an offline manner for a temporal problem, and they all trace similar tra-
jectories in the AKA and AZS space and achieve similar final performance. Overall, however, unlike
straightforward continual fine-tuning (replay), offline merging with any technique fails to address
the temporal aspects of the problem, particularly struggling to consistently acquire new knowledge
over time (as shown in Fig. 6, left).

3.2 TIME TRAVEL

Since offline merging is ill suited to the temporal setting, we systematically explore the design space
for temporal merging methods by testing all valid combinations of three initialization protocols
and three deployment protocols described in Sec. 2.2. After discarding incompatible pairs, such as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

0 10 20

Tasks

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20

Tasks

65

66

67

68

69

70

71

72

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20

Tasks

52

54

56

58

60

62

√
A
Z
S
×
A
K
A

replay

ft-all

all-ft

ema-ft

ft-ema

ema-all

all-ema

all-all

zs-ema

best-in-time

zero-shot

multitask

Figure 3: A journey through TIME. We explore various initialization and deployment protocols,
finding that the EMA initialization-deployment strikes the best balance between knowledge accu-
mulation and zero-shot retention. We refer to this strategy as Best-in-TIME.

0 5 10 15 20

Tasks

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 5 10 15 20

Tasks

62

64

66

68

70

72

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 5 10 15 20

Tasks

52

54

56

58

60

62

√
A
Z
S
×
A
K
A

slerp

averaging

task-arithmetic

magmax

ties

dare-ties

breadcrumbs-ties

lines-ties

zero-shot

multitask

Figure 4: Sweeping Best-in-TIME. All merging techniques perform well with the Best-in-TIME
strategy. Indeed, there are no significant differences between techniques, indicating that initialization
and deployment matter more for temporal merging.

initZS with deployFT, we evaluated the remaining eight variants using weight averaging as the
merging technique. As shown in Fig. 3, the choice of initialization and deployment strategy largely
determines performance, significantly affecting both knowledge accumulation and retention. One
combination that stands out consistently is initEMA with deployEMA. This supports the findings
of Stojanovski et al. (2022); Roth et al. (2024b) on small-scale continual learning and pretraining.

As the application of EMA model merging achieves a notably better balance between knowledge
accumulation and retention than other methods, we call this approach Best-in-TIME. In the next
section, we will explore the robustness of this strategy across different merging techniques. Please
refer to Appendix E for additional EMA experiments.

3.3 WHAT IS THE BEST MERGE FOR BEST-IN-TIME?

Having identified the optimal initialization and deployment merging strategy, we now investigate
the robustness of our finding by sweeping over merging techniques. In particular, we test 7 dif-
ferent merging techniques while keeping the Best-in-TIME initialization and deployment strategy.
From Fig. 4, it is clear that all merging techniques perform very similarly. This indicates that, over
a sufficiently long time horizon, all techniques converge to a similar behavior, echoing our results
in Sec. 3.1. However, we do notice higher variance in the retention metric (AZS).

3.4 SCALING UP TEMPORAL MODEL MERGING

We next scale temporal model merging up across three-axes: model size, compute budget, and num-
ber of tasks (results in Fig. 5 and Appendix E.2). All our experiments use the Best-in-TIME setup
described previously, conducting hyperparameter-optimal EMA at each task.

Scaling the Model. As we increase the model scale from S/16 (62.3M parameters) to B/16
(149.6M), L/14 (427.6M), and finally g/14 (1.37B) in Fig. 5 (left), we study the tradeoff between
knowledge accumulation and retention over time. We compare sequential fine-tuning (circles) and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Best-in-TIME (squares). Best-in-TIME scales well with model size, with larger models exhibit-
ing increased affinity to merges over time. This extends and further corroborates offline merging
insights by Yadav et al. (2023), who showed that model scale facilitates merging. Moreover, while
Roth et al. (2024b) and Ibrahim et al. (2024) highlight better continual fine-tuning with scale, we
show temporal model merging to be substantially more effective across scale. For larger models
all the way to the largest ViT-g/14, Best-in-TIME vastly outperforms or matches sequential fine-
tuning and the multitask target in knowledge retention and positive backward transfer. Furthermore,
scale facilitates equivalent degrees of knowledge accumulation between sequential fine-tuning and
temporal model merging. Therefore, our model scaling results strongly suggest the use of temporal
model merging solutions over standard continual fine-tuning methods.

Scaling the Compute. Keeping the underlying base model fixed to ViT-B/16, we next change the
available compute budget by increasing the number of update steps per task. We compare a multitask
model, trained on all tasks simultaneously, to a budget-optimal Best-in-TIME. The only hyperpa-
rameter for Best-in-TIME is the interpolation weight w. For each compute budget, there is a clear
optimal choice of that hyperparameter (suboptimal runs shown as gray dots in Fig. 5 (right)). Higher
values of w put greater emphasis on accumulation, allowing optimal accumulation-retention trade-
offs to be reached at lower compute budgets. However, for a larger compute budget, less aggressive
temporal model merging can achieve higher absolute trade-offs. Note that in Fig. 5 (right), we report
the geometric mean between accumulation and retention, corresponding to the right-most panel in
previous plots. Best-in-TIME scales very well across compute budgets, clearly approaching the
multitask upper bound in accumulation-retention balance at larger compute budgets.

Scaling the Number of Tasks. Given that all our results until now have been with T=20, we next
study how Best-in-TIME performs as we increase the number of merging time-steps to much longer
time-sequences: T=50 and T=100. Best-in-TIME remains the optimal method of choice across
different initialization and deployment strategies. Please refer to Appendix E.2 for details.

4 CONCLUSION

0

-0.5

0

2

Scaling Up Model Size

S B L g S B L g

G
ap

 to

ZS
/r

ep
lay

Scaling Up Compute

Figure 5: Scaling up model merging. (left) With scale, we
observe continued improvements of model merging com-
pared to the standard replay baseline. (right) Our Best-
in-TIME method continues to improve with scaled total
compute budget moving close to the multitask upper-bound.
Gray points in the plot visualize suboptimal Best-in-TIME
hyperparameter-instantiations.

In this work, we study temporal
model merging, addressing the chal-
lenge of continually merging multi-
modal models as new tasks and data
arrive, and new expert models are
trained in succession. To formal-
ize this setting, we propose TIME,
a novel unifying framework break-
ing down temporal model merging
into three key axes: (1) initialization
phase defining starting weights be-
fore each task, (2) deployment phase
denoting post-training expert model
aggregation, and (3) the choice of
merging technique. Using TIME,
we conduct a large-scale system-
atic study uncovering crucial prac-
tical guidelines for temporal model
merging. Our experiments on the
FoMo-in-Flux benchmark spanning
63 datasets, showcase that account-
ing for the temporal aspect is crucial,
with standard offline merging techniques falling short in this dynamic setting. Moreover, we find the
particular choice of merging technique matters far less than the merging strategy for initialization
and deployment. Finally, we introduce Best-in-TIME, which scales favorably with model size and
outperforms existing methods for continual multimodal pretraining. Our work provides a systematic
entry point into temporal model merging and establishes best practices for this emerging field.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models mod-
ulo permutation symmetries. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Anton Alexandrov, Veselin Raychev, Mark Niklas Müller, Ce Zhang, Martin Vechev, and Kristina
Toutanova. Mitigating catastrophic forgetting in language transfer via model merging. arXiv
preprint arXiv:2407.08699, 2024.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander
Kolesnikov. Knowledge distillation: A good teacher is patient and consistent. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10925–10934, 2022.

Jorg Bornschein, Alexandre Galashov, Ross Hemsley, Amal Rannen-Triki, Yutian Chen, Arslan
Chaudhry, Xu Owen He, Arthur Douillard, Massimo Caccia, Qixuan Feng, et al. Nevis’ 22: A
stream of 100 tasks sampled from 30 years of computer vision research. JMLR, 2023.

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribution
shifts: An empirical study with visual data. In ICCV, 2021.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. arXiv preprint arXiv:2212.07143, 2022.

Leshem Choshen, Elad Venezian, Shachar Don-Yehia, Noam Slonim, and Yoav Katz. Where to
start? analyzing the potential value of intermediate models. arXiv preprint arXiv:2211.00107,
2022.

Geoffrey Cideron, Andrea Agostinelli, Johan Ferret, Sertan Girgin, Romuald Elie, Olivier Bachem,
Sarah Perrin, and Alexandre Ramé. Diversity-rewarded cfg distillation. arXiv preprint
arXiv:2410.06084, 2024.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky,
Torsten Sattler, and Gül Varol (eds.), Computer Vision – ECCV 2024, pp. 270–287, Cham, 2025.
Springer Nature Switzerland. ISBN 978-3-031-73226-3.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
model merging through magnitude-based sampling. arXiv preprint arXiv:2406.11617, 2024.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem
Choshen. Cold fusion: Collaborative descent for distributed multitask finetuning. arXiv preprint
arXiv:2212.01378, 2022.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In Hal Daumé III and Aarti Singh (eds.), Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 3259–3269. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/frankle20a.html.

Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari, Raviteja Vemulapalli, Sachin Mehta, Oncel
Tuzel, Vaishaal Shankar, and Fartash Faghri. Tic-clip: Continual training of clip models. In
ICLR, 2024.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wil-
son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf.

7

https://openreview.net/forum?id=CQsmMYmlP5T
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksenov,
Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference model for real good
alignment. arXiv preprint arXiv:2404.09656, 2024.

Zhongrui Gui, Shuyang Sun, Runjia Li, Jianhao Yuan, Zhaochong An, Karsten Roth, Ameya Prabhu,
and Philip Torr. knn-clip: Retrieval enables training-free segmentation on continually expanding
large vocabularies. arXiv preprint arXiv:2404.09447, 2024.

Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model
merging via sparse task arithmetic. arXiv preprint arXiv:2408.13656, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models. arXiv preprint arXiv:2403.08763, 2024.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. In NeurIPS, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few
fine-tuned models. In Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy,
September 29–October 4, 2024, Proceedings, Part XLIV, pp. 207–223, Berlin, Heidelberg, 2024.
Springer-Verlag. ISBN 978-3-031-72783-2. doi: 10.1007/978-3-031-72784-9 12. URL https:
//doi.org/10.1007/978-3-031-72784-9_12.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=FCnohuR6AnM.

Jean Kaddour. Stop wasting my time! saving days of imagenet and bert training with latest weight
averaging. arXiv preprint arXiv:2209.14981, 2022.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
arXiv preprint arXiv:2402.07865, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. PNAS, 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning,
pp. 5637–5664. PMLR, 2021.

8

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.1007/978-3-031-72784-9_12
https://doi.org/10.1007/978-3-031-72784-9_12
https://openreview.net/forum?id=FCnohuR6AnM

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Jeffrey Li, Mohammadreza Armandpour, Seyed Iman Mirzadeh, Sachin Mehta, Vaishaal Shankar,
Raviteja Vemulapalli, Oncel Tuzel, Mehrdad Farajtabar, Hadi Pouransari, and Fartash Faghri.
Tic-lm: A multi-year benchmark for continual pretraining of language models. In NeurIPS 2024
Workshop on Scalable Continual Learning for Lifelong Foundation Models.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models.
arXiv preprint arXiv:2208.03306, 2022.

Tao Li, Weisen Jiang, Fanghui Liu, Xiaolin Huang, and James T Kwok. Learning scalable model
soup on a single gpu: An efficient subspace training strategy. arXiv preprint arXiv:2407.03641,
2024.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
Wang, Wenbin Hu, Hanning Zhang, Hanze Dong, Renjie Pi, Han Zhao, Nan Jiang, Heng Ji, Yuan
Yao, and Tong Zhang. Mitigating the alignment tax of RLHF. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 580–606, Miami, Florida, USA, November 2024. Association for Com-
putational Linguistics. URL https://aclanthology.org/2024.emnlp-main.35.

Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The clear benchmark: Continual learning
on real-world imagery. In NeurIPS, 2021.

Adam Liska, Tomas Kocisky, Elena Gribovskaya, Tayfun Terzi, Eren Sezener, Devang Agrawal,
D’Autume Cyprien De Masson, Tim Scholtes, Manzil Zaheer, Susannah Young, et al. Stream-
ingqa: A benchmark for adaptation to new knowledge over time in question answering models.
In International Conference on Machine Learning, pp. 13604–13622. PMLR, 2022.

Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
Llinares-López, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-
time realignment of language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 31015–31031. PMLR, 21–27 Jul 2024. URL https://
proceedings.mlr.press/v235/liu24r.html.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, and Jiajun Zhang. Merge, ensemble,
and cooperate! a survey on collaborative strategies in the era of large language models. arXiv
preprint arXiv:2407.06089, 2024.

Daniel Marczak, Bartłomiej Twardowski, Tomasz Trzciński, and Sebastian Cygert. Magmax: Lever-
aging model merging for seamless continual learning. arXiv preprint arXiv:2407.06322, 2024.

Michael S Matena and Colin Raffel. Merging models with fisher-weighted averaging. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Infor-
mation Processing Systems, 2022. URL https://openreview.net/forum?id=LSKlp_
aceOC.

Matı́as Mendieta, Boran Han, Xingjian Shi, Yi Zhu, and Chen Chen. Towards geospatial foundation
models via continual pretraining. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 16806–16816, 2023.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=jlAjNL8z5cs.

Remi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme Fiegel, Andrea
Michi, Marco Selvi, Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J Mankowitz,
Doina Precup, and Bilal Piot. Nash learning from human feedback. In Ruslan Salakhutdinov, Zico

9

https://aclanthology.org/2024.emnlp-main.35
https://proceedings.mlr.press/v235/liu24r.html
https://proceedings.mlr.press/v235/liu24r.html
https://openreview.net/forum?id=LSKlp_aceOC
https://openreview.net/forum?id=LSKlp_aceOC
https://openreview.net/forum?id=jlAjNL8z5cs
https://openreview.net/forum?id=jlAjNL8z5cs

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 36743–36768. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/munos24a.html.

Anshul Nasery, Jonathan Hayase, Pang Wei Koh, and Sewoong Oh. Pleas–merging models with
permutations and least squares. arXiv preprint arXiv:2407.02447, 2024.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 512–523. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf.

Kai Nylund, Suchin Gururangan, and Noah A Smith. Time is encoded in the weights of finetuned
language models. arXiv preprint arXiv:2312.13401, 2023.

Changdae Oh, Yixuan Li, Kyungwoo Song, Sangdoo Yun, and Dongyoon Han. Dawin: Training-
free dynamic weight interpolation for robust adaptation. arXiv preprint arXiv:2410.03782, 2024.

Oleksiy Ostapenko, Timothee Lesort, Pau Rodrı́guez, Md Rifat Arefin, Arthur Douillard, Irina Rish,
and Laurent Charlin. Continual learning with foundation models: An empirical study of latent
replay. In Conference on Lifelong Learning Agents (CoLLAs), 2022.

Jyothish Pari, Samy Jelassi, and Pulkit Agrawal. Collective model intelligence requires compatible
specialization. arXiv preprint arXiv:2411.02207, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Ameya Prabhu, Zhipeng Cai, Puneet Dokania, Philip Torr, Vladlen Koltun, and Ozan Sener. Online
continual learning without the storage constraint. arXiv preprint arXiv:2305.09253, 2023a.

Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet Dokania, Philip HS Torr, Ser-Nam Lim,
Bernard Ghanem, and Adel Bibi. Computationally budgeted continual learning: What does mat-
ter? In CVPR, 2023b.

Ameya Prabhu, Hasan Abed Al Kader Hammoud, Ser-Nam Lim, Bernard Ghanem, Philip HS Torr,
and Adel Bibi. From categories to classifier: Name-only continual learning by exploring the web.
arXiv preprint arXiv:2311.11293, 2023c.

Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
ating customized prompts for zero-shot image classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 15691–15701, October 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Alexandre Rame, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Leon Bottou, and David Lopez-Paz.
Model ratatouille: Recycling diverse models for out-of-distribution generalization. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 28656–28679. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/rame23a.html.

Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert Dadashi, Léonard Hussenot, Pierre-Louis
Cedoz, Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard, and Olivier Bachem. Warp: On the
benefits of weight averaged rewarded policies. arXiv preprint arXiv:2406.16768, 2024.

10

https://proceedings.mlr.press/v235/munos24a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
https://proceedings.mlr.press/v202/rame23a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Alexandre Ramé, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In Proceed-
ings of the 36th International Conference on Neural Information Processing Systems, NIPS ’22,
2024. ISBN 9781713871088.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. arXiv
preprint arXiv:2401.12187, 2024.

Regent’s, ParkLondon, Ukj, and . Utans. Weight averaging for neural networksand local resampling.
1996. URL https://api.semanticscholar.org/CorpusID:475398.

Mark Rofin, Nikita Balagansky, and Daniil Gavrilov. Linear interpolation in parameter space is good
enough for fine-tuned language models. arXiv preprint arXiv:2211.12092, 2022.

Karsten Roth, Lukas Thede, A. Sophia Koepke, Oriol Vinyals, Olivier J Henaff, and Zeynep Akata.
Fantastic gains and where to find them: On the existence and prospect of general knowledge
transfer between any pretrained model. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=m50eKHCttz.

Karsten Roth, Vishaal Udandarao, Sebastian Dziadzio, Ameya Prabhu, Mehdi Cherti, Oriol Vinyals,
Olivier Hénaff, Samuel Albanie, Matthias Bethge, and Zeynep Akata. A practitioner’s guide to
continual multimodal pretraining. arXiv preprint arXiv:2408.14471, 2024b.

Sunny Sanyal, Atula Tejaswi Neerkaje, Jean Kaddour, Abhishek Kumar, and sujay sanghavi. Early
weight averaging meets high learning rates for LLM pre-training. In First Conference on Lan-
guage Modeling, 2024. URL https://openreview.net/forum?id=IA8CWtNkUr.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Ekansh Sharma, Daniel M Roy, and Gintare Karolina Dziugaite. The non-local model merging
problem: Permutation symmetries and variance collapse. arXiv preprint arXiv:2410.12766, 2024.

Li Shen, Anke Tang, Enneng Yang, Guibing Guo, Yong Luo, Lefei Zhang, Xiaochun Cao, Bo Du,
and Dacheng Tao. Efficient and effective weight-ensembling mixture of experts for multi-task
model merging. arXiv preprint arXiv:2410.21804, 2024.

Ken Shoemake. Animating rotation with quaternion curves. Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, 1985. URL https://api.
semanticscholar.org/CorpusID:11290566.

Shikhar Srivastava, Md Yousuf Harun, Robik Shrestha, and Christopher Kanan. Improving multi-
modal large language models using continual learning. arXiv preprint arXiv:2410.19925, 2024.

George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
merging with svd to tie the knots. arXiv preprint arXiv:2410.19735, 2024.

Zafir Stojanovski, Karsten Roth, and Zeynep Akata. Momentum-based weight interpolation of
strong zero-shot models for continual learning. arXiv preprint arXiv:2211.03186, 2022.

Yi-Lin Sung, Linjie Li, Kevin Lin, Zhe Gan, Mohit Bansal, and Lijuan Wang. An empirical study
of multimodal model merging. arXiv preprint arXiv:2304.14933, 2023.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter
subspaces. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL
https://openreview.net/forum?id=qNGo6ghWFB.

Derek Tam, Yash Kant, Brian Lester, Igor Gilitschenski, and Colin Raffel. Realistic evaluation of
model merging for compositional generalization. arXiv preprint arXiv:2409.18314, 2024b.

11

https://api.semanticscholar.org/CorpusID:475398
https://openreview.net/forum?id=m50eKHCttz
https://openreview.net/forum?id=IA8CWtNkUr
https://api.semanticscholar.org/CorpusID:11290566
https://api.semanticscholar.org/CorpusID:11290566
https://openreview.net/forum?id=qNGo6ghWFB

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Lukas Thede, Karsten Roth, Olivier J Hénaff, Matthias Bethge, and Zeynep Akata. Reflect-
ing on the state of rehearsal-free continual learning with pretrained models. arXiv preprint
arXiv:2406.09384, 2024.

Ke Wang, Nikolaos Dimitriadis, Alessandro Favero, Guillermo Ortiz-Jimenez, Francois Fleuret,
and Pascal Frossard. Lines: Post-training layer scaling prevents forgetting and enhances model
merging. arXiv preprint arXiv:2410.17146, 2024a.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. arXiv preprint
arXiv:2405.07813, 2024b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Lud-
wig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accu-
racy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 23965–23998. PMLR, 17–23 Jul 2022a. URL https://proceedings.mlr.press/
v162/wortsman22a.html.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
Schmidt. Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 7959–7971, June 2022b.

Feng Xiong, Runxi Cheng, Wang Chen, Zhanqiu Zhang, Yiwen Guo, Chun Yuan, and Ruifeng
Xu. Multi-task model merging via adaptive weight disentanglement. arXiv preprint
arXiv:2411.18729, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging: Re-
solving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=xtaX3WyCj1.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen,
Mohit Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging:
Recycling and routing among specialized experts for collaborative learning. arXiv preprint
arXiv:2408.07057, 2024a.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
and Tsendsuren Munkhdalai. What matters for model merging at scale? arXiv preprint
arXiv:2410.03617, 2024b.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024a.

Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, and Dacheng
Tao. Representation surgery for multi-task model merging. arXiv preprint arXiv:2402.02705,
2024b.

Çağatay Yıldız, Nishaanth Kanna Ravichandran, Prishruit Punia, Matthias Bethge, and Beyza Ermis.
Investigating continual pretraining in large language models: Insights and implications. arXiv
preprint arXiv:2402.17400, 2024.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 57755–57775. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/yu24p.html.

12

https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://openreview.net/forum?id=xtaX3WyCj1
https://proceedings.mlr.press/v235/yu24p.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Kerem Zaman, Leshem Choshen, and Shashank Srivastava. Fuse to forget: Bias reduction and
selective memorization through model fusion. arXiv preprint arXiv:2311.07682, 2023.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017.

Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021.

Shenghe Zheng and Hongzhi Wang. Free-merging: Fourier transform for model merging with
lightweight experts. arXiv preprint arXiv:2411.16815, 2024.

Luca Zhou, Daniele Solombrino, Donato Crisostomi, Maria Sofia Bucarelli, Fabrizio Silvestri, and
Emanuele Rodolà. Atm: Improving model merging by alternating tuning and merging. arXiv
preprint arXiv:2411.03055, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Acknowledgements. The authors would like to thank (in random order) Shyamgopal Karthik,
Shashwat Goel, Ankit Sonthalia, Olivier Hénaff, Alexandre Ramé, and Daniel Marczak for help-
ful feedback. The plotting style in our work is inspired by figures from Beyer et al. (2022). The
style of Fig. 2 is inspired by Figure 1 of Karamcheti et al. (2024). VU, KR, and SD thank the
International Max Planck Research School for Intelligent Systems (IMPRS-IS). VU, KR, and SD
also thank the European Laboratory for Learning and Intelligent Systems (ELLIS) PhD program for
support. VU is supported by a Google PhD Fellowship in Machine Intelligence. SA is supported
by a Newton Trust Grant. AP is supported by the Federal Ministry of Education and Research
(BMBF), FKZ: 011524085B. MB acknowledges financial support via the Open Philanthropy Foun-
dation funded by the Good Ventures Foundation. MB is a member of the Machine Learning Cluster
of Excellence, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – EXC number 2064/1 – Project number 390727645.
ZA acknowledges the support from the German Research Foundation (DFG): SFB 1233, Robust
Vision: Inference Principles and Neural Mechanisms, project number: 276693517 and ERC Grant
DEXIM, project number: 853489. This research utilized compute resources at the Tübingen Ma-
chine Learning Cloud, DFG FKZ INST 37/1057-1 FUGG.

A RELATED WORKS

Model Merging. We provide a short overview of the model merging literature, detailed in these
excellent surveys (Yadav et al., 2024a; Yang et al., 2024a). While both model aggregation through
distillation Roth et al. (2024a); Cideron et al. (2024) and averaging checkpoints during training (Kad-
dour, 2022; Sanyal et al., 2024; Li et al., 2024) have shown success, the requirement of additional
compute limits practicability of these methods (Prabhu et al., 2023b). Instead, recent work (Worts-
man et al., 2022b;a; Ilharco et al., 2022; 2023; Rame et al., 2023; Sanyal et al., 2024; Sung et al.,
2023; Pari et al., 2024; Nylund et al., 2023; Zaman et al., 2023; Stoica et al., 2024; Wang et al.,
2024b; He et al., 2024; Oh et al., 2024; Shen et al., 2024; Sharma et al., 2024; Goddard et al.,
2024; Yadav et al., 2024a; Xiong et al., 2024; Yang et al., 2024b; Lu et al., 2024; Zheng & Wang,
2024; Nasery et al., 2024) has shown the effectiveness of training-free weight averaging and inter-
polation of fine-tuned expert models to produce an improved base model, benefiting from (linear)
mode connectivity in models fine-tuned from a single pre-trained checkpoint Izmailov et al. (2018);
Ramé et al. (2024); Neyshabur et al. (2020); Frankle et al. (2020); Ainsworth et al. (2023). These
insights have been extended into weight-averaged reward models Ramé et al. (2024), policy mod-
els Ramé et al. (2024) with spherical interpolation, and KL-constrained RLHF Lin et al. (2024); Liu
et al. (2024); Munos et al. (2024); Gorbatovski et al. (2024). Works such as Fisher-Merge Matena
& Raffel (2022), TIES Yadav et al. (2023), RegMean Jin et al. (2023), MATS Tam et al. (2024a),
DELLA Deep et al. (2024), DARE Yu et al. (2024), Breadcrumbs Davari & Belilovsky (2025), evo-
lutionary merging Akiba et al. (2024) and MagMax Marczak et al. (2024) have explored merging
strategies beyond simple interpolation to determine which weights should be merged across ex-
pert models. These methods have different benefits for in- and out-of-distribution generalization
across domains Tam et al. (2024b), though recently they have been shown to perform similarly at
scale Yadav et al. (2024b). Additionally, some works have explored the initialization dimension
for effectively merging models (Choshen et al., 2022; Don-Yehiya et al., 2022; Zhou et al., 2024;
Marczak et al., 2024). In this work, we propose a unifying framework for temporal merging and
conduct the most comprehensive study of this topic to date.

Continual Pretraining extends beyond standard Continual Learning (Prabhu et al., 2023a; Roth
et al., 2024b), focusing on large-scale model updates starting from pretrained foundation mod-
els Ibrahim et al. (2024); Garg et al. (2024); Roth et al. (2024b); Gui et al. (2024); Prabhu et al.
(2023c) and addressing more complex and substantial update tasks Lin et al. (2021); Cai et al.
(2021); Liska et al. (2022); Garg et al. (2024); Bornschein et al. (2023); Roth et al. (2024b). There
has been limited exploration into using model merging for continual pretraining (Marczak et al.,
2024; Alexandrov et al., 2024; Stojanovski et al., 2022; Roth et al., 2024b), as most prior works fo-
cus on training strategies including regularization objectives and learning-rate schedules (Roth et al.,
2024b; Prabhu et al., 2023b; Garg et al., 2024; Ibrahim et al., 2024; Srivastava et al., 2024; Li et al.;
Yıldız et al., 2024; Thede et al., 2024; Ostapenko et al., 2022; Mendieta et al., 2023). We keep the
training strategy fixed, and provide an in-depth exploration beyond simple merging techniques.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

B DETAILS OF THE MERGING METHODS

Denoting the number of models to merge at timestep t as Mt (with t = 0 and Mt = M for standard
model merging), we can define these methods as follows:

Weight Averaging Regent’s et al. (1996); Wortsman et al. (2022b); Ilharco et al. (2022); Sto-
janovski et al. (2022); Roth et al. (2024b) simply employs a uniformly weighted, element-wise
average over all models θt,i, resulting in a merge function fWA

merge:

θt =
1

Mt

∑
i

θt,i. (2)

SLERP Shoemake (1985); Ramé et al. (2024) assumes weights to live on a hypersphere, and
consequently conducts interpolation along a curved path connecting weight entries. In particular, for
two models θt,1 and θt,2 deriving from some base weight θt−1 and the corresponding task vectors
δt,i = θt,i − θt−1, SLERP with interrpolation weight λ is defined as

θt = θt−1 +
sin(1− λ)Ω1,2

sinΩ1,2
· δt,1 +

sinλΩ1,2

sinΩ1,2
· δt,2 (3)

with Ω1,2 being the angle between task vectors δt,1 and δt,2. We denote the corresponding merge
function fSLERP

merge .

Task Arithmetic Ilharco et al. (2023) defines the merge as a function over task vectors δt,i =
θt,i − θt−1 for each weight θt,i fine-tuned from θt−1. This introduces a simple merge formalism
fTA

merge for weighted parameter averaging with a scale λ:

θt = θt−1 + λ
1

Mt

∑
i

δt,i (4)

TIES Yadav et al. (2023) builds on the task arithmetic formalism through controlled pruning of
task vector entries with low magnitude. Moreover, the sign for each final merged parameter is set
based on the sign of the highest total magnitude across the merge candidates. The final update
follows basic task arithmetic, only for entries with matching signs. We refer to the respective merge
function as fTIES

merge.

DARE Yu et al. (2024) is a similar extension of task arithmetic, but instead of targetted pruning,
it randomly zeroes out task vector entries using a random mask Zi ∼ Bernoulli(p) and masking
probability p. Final task vector values for fDARE

merge are then rescaled based on p:

δDARE
t,i =

(1− Zi)δt,i
1− p

. (5)

Model Stock Jang et al. (2024) provides a geometric extension of simple weight averaging as done
in Model Soup Wortsman et al. (2022a) by incorporating base weights θt−1 into the merging process.
Given fine-tuned weights θt,1 and θt,2, the Model Stock merge fStock

merge is defined as follows:

θt =
2 · cosΩ1,2

1 + Ω1,2
· (θt,2 − θt,1) +

(
1− 2 · cosΩ1,2

1 + cosΩ1,2

)
, (6)

utilizing angle Ω1,2 between task vectors δt,1 and δt,2.

Breadcrumbs Davari & Belilovsky (2025) deploys another variation on task arithmetic for model
merging. In particular, for a given task vector δt,i, extreme left and right tails of the absolute mag-
nitude distribution in δt,i are zeroed out with left and right thresholds β and γ. The modified task
vectors δBread

t,i are then applied on base weights θt−1 following the task arithmetic setup, and giving
fBread

merge .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

0 5 10 15 20

Tasks

0

10

20

30

40

50

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 5 10 15 20

Tasks

0

10

20

30

40

50

60

70

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 5 10 15 20

Tasks

0

10

20

30

40

50

60

√
A
Z
S
×
A
K
A

replay

averaging

task-arithmetic

magmax

ties

dare-ties

breadcrumbs-ties

lines-ties

zero-shot

multitask

Figure 6: Offline merging methods struggle with TIME. All tested merging techniques perform
extremely poorly, and are unable to adapt to the temporal setting, underperforming even a simple
replay baseline that sequentially trains the base model on task-replayed data.

MagMax Marczak et al. (2024) also uses task vectors—given multiple task vectors δt,i (with in-
crements possible along both time t and count axis i), the final task vector δt is yielded through
maximum magnitude entry selection; copying the largest magnitude entries across all {δt,i} into δt,
giving fMax

merge.

LiNeS Wang et al. (2024a), for Layer-increasing Network Scaling, scales weight updates based
on their respective layer depth enabling early layers to remain close to original pretraining weights
(cf. Neyshabur et al. (2020)). Given task vectors δt,i, now broken down across model layers δlt,i with
l ∈ [1, ..., L] and L the number of layers, LiNeS follows the base task arithmetic merging formalism,
but updates task vectors as

δLiNeS
t,i = concat

(
λl=1δl=1

t,i , ..., λl=Lδl=L
t,i

)
(7)

with layer-scaled interpolation weights λl = α+ β l−1
L−1 and hyperparameters α, β, giving fLines

merge.

C PLOTTING STYLE

Across TIME, we utilize a common plotting style to visualize our results—with three base subplots
(see for e.g., Fig. 5):

• Knowledge Accumulation (AKA) versus number of tasks over time. In this plot, a gray
star indicates the base-weight zero-shot performance on adaptation datasets. An orange
star indicates an upper bound achieved through jointly training on all the data at once, with
no separation over time.

• Zero-Shot Retention (AZS) versus number of tasks over time. Similar to AKA versus
tasks, this plot visualizes merging results for TIME-variants, but measuring performance
on withheld evaluation datasets. Again, gray and orange star indicate base and joint training
lower and upper bounds, respectively.

• Finally, we also aggregate both previous plots into one showcasing the progression of
merged performance geometric mean

√AZS ×AKA over time; utilizing the same star
indication as in the previous subplots.

The only deviation from this plotting style is Fig. 5. The left panel visualizes the trajectory across
tasks in the AKA - AZS space. Here, full-colored stars reference base model performance and
hollow stars the corresponding joint training upper bounds. The right panel shows the geometric
mean of AKA and AZS at the end of the last task for different compute budgets.

Finally, several plots such as Figs. 4, 6 and 7 show the extensive scale of our experiments through
background visualizations of sub-optimal hyperparameter choices in lighter colors (as opposed to
the optimal choices using darker coloring). This plotting style is loosely inspired by Beyer et al.
(2022).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

0 5 10 15 20

Tasks

30

35

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 5 10 15 20

Tasks

60

62

64

66

68

70

72

74

76

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 5 10 15 20

Tasks

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

√
A
Z
S
×
A
K
A

replay

best-offline

best-(offline+replay)

best-(offline+replay+weighting)

zero-shot

multitask

Figure 7: Improving offline merging. We identify two simple methods for adapting offline-merging
methods to the temporal setting: (1) replaying data from previous tasks (best-(offline+replay)) and
(2) recency-biased weighting of task checkpoints (best-(offline+replay+weighting)). With these
method improvements, offline merging methods can match the replay baseline.

D ADDITIONAL OFFLINE MERGING EXPERIMENTS

D.1 REPLAY AND TIME-WEIGHTING

In this section, we analyze extensions to offline methods that can help close the gap to the replay
baseline. As the continual fine-tuning baseline replays on past data from all previous tasks while
training at the current task t, can this task data-mixing also help offline merging methods?

Data replaying improves offline merging. Since offline methods operate entirely under a task-
independent assumption, they fail to capture any temporal dependencies. Fig. 7 shows that simply
applying data-replay on top of standard offline merging leads to significant boosts in the overall
performance. For instance, best-(offline+replay) achieves 58.2% compared to best-offline at 54.6%,
bringing it closer to the replay baseline. However, a notable performance gap remains, with best-
(offline+replay) at 58.2% falling short of replay at 59.1%.

Recency-biased weighting helps. Next, unlike in standard offline averaging, where all task check-
points are weighted uniformly, we impose temporal ordering via non-uniform weighting for offline
merging. We explore several recency-biased, non-uniform weighting schemes, assigning higher
weights to more recent tasks to account for the temporal nature of the setting.

We explore various discounting schemes: logarithmic, quadratic, exponential, and cubic, applied
to the best offline merge replay method from the previous experiment (please refer to the sup-
plementary for details). As shown in Fig. 7, these schemes improve performance, with best-
(offline+replay+weighting) reaching 58.9%, yet still falling slightly short of the replay baseline at
59.1%. These results provide strong evidence that accounting for the new temporal axis is crucial
for effective temporal model merging, even when implemented as an extension of offline merging.
Key takeaway: accounting for the time aspect is crucial for effective temporal model merging, even
as an extension on top of standard offline merging. Still, a small gap to the simple replay baseline
remains.

D.2 REVERSED NON-UNIFORM WEIGHTING SCHEMES

In Fig. 7, we found that a simple yet effective method for boosting the performance of offline merg-
ing methods is recency-biased non-uniform weighting, i.e. giving larger weights to more recent
checkpoints while merging. Here, we ask the question—what if we reversed the weighting schemes
such that we give larger weights to older task checkpoints? From Fig. 8, we indeed observe that
such a reverse strategy performs worse than the best recency-biased weighting schemes, since the
knowledge accumulation ability is hampered by giving more emphasis to older tasks. However,
note that such a sub-optimal reverse weighting strategy is still better than the pure offline merging
strategy with no replay. This helps further ablate the exact importance of replay and non-uniform
weighting for improving pure offline-merging techniques in the presence of the time axis.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

0 10 20

Tasks

0

10

20

30

40

50

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20

Tasks

0

10

20

30

40

50

60

70

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20

Tasks

0

10

20

30

40

50

60

√
A
Z
S
×
A
K
A

replay

best-offline

best-(offline+replay)

best-(offline+replay+weighting)

best-(offline+replay+reverse-weighting)

zero-shot

multitask

Figure 8: Effect of reverse-weighting for offline merging techniques. We find that reversing the
weighting scheme that yielded consistent boosts from Fig. 7 is sub-optimal—indeed, it performs
worse than the offline merging with replay methods.

E ADDITIONAL EMA EXPERIMENTS

E.1 TASKS AS DATASETS

In the main text, we presented all results using a data stream that randomly mixes concepts from
different datasets into a coherent set of tasks—following the random data-stream in Roth et al.
(2024b). Here, we relax this constraint and re-run our experiments using individual datasets as
tasks, consistent with the standard model merging literature (Ilharco et al., 2022; 2023; Yadav et al.,
2023). Specifically, we use the dataset-incremental stream from Roth et al. (2024b). Even in this
setup, we reproduce our main findings. In Fig. 9, we confirm the results from Fig. 6, showing that all
offline merging techniques perform poorly when exposed to the axis of time, failing to even match
the performance of a simple continual fine-tuning replay baseline. Additionally, in Fig. 10, we
corroborate the results from Fig. 3, demonstrating that the best-in-TIME method remains the most
effective temporal model merging approach. We also confirm that the choice of model merging
technique is far less critical for temporal model merging than the initialization and deployment
strategies.

0 10 20

Tasks

20

30

40

50

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20

Tasks

30

40

50

60

70

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20

Tasks

20

30

40

50

60

√
A
Z
S
×
A
K
A

replay

averaging

task-arithmetic

magmax

ties

dare-ties

breadcrumbs-ties

lines-ties

zero-shot

multitask

Figure 9: Offline merging techniques still struggle in the tasks-as-datasets setting. Switching
from the random data-stream (Fig. 6 in the main paper) to the dataset-incremental stream, which
aligns more closely with the standard multi-task merging literature setups, reveals that offline merg-
ing techniques still severely underperform compared to the simple replay baseline.

E.2 LONGER TASK SEQUENCES

To test the robustness of our findings in Sec. 3.2, we repeat the experiment shown in Fig. 3 on
a longer sequence with the number of tasks T = 50 (Fig. 11). For 50 tasks, Best-in-TIME still
strikes the optimal balance between knowledge accumulation and zero-shot retention. One notable
difference with respect to Fig. 3 is the large initial advantage of the zero-shot initialization strategy
combined with the EMA deployment strategy. When the learning horizon is further extended to 100

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

0 10 20

Tasks

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20

Tasks

64

65

66

67

68

69

70

71

72

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20

Tasks

52

54

56

58

60

62

√
A
Z
S
×
A
K
A

zs-ema

ft-all

all-ft

ema-ft

ft-ema

ema-all

all-ema

all-all

best-in-time

zero-shot

multitask

Figure 10: Dataset-Incremental TIME Exploration. We replicate the results from Fig. 3 using the
dataset-incremental stream instead of the random stream. The main takeaways remain unchanged:
initialization and deployment strategies primarily determine temporal merging performance, and
the EMA-averaging initialization and deployment strategy utilized in Best-in-TIME is the best ap-
proach.

0 10 20 30 40 50

Tasks

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20 30 40 50

Tasks

60

62

64

66

68

70

72

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20 30 40 50

Tasks

50

52

54

56

58

60

62

√
A
Z
S
×
A
K
A

ft-all

all-ft

ema-ft

ft-ema

ema-all

all-ema

all-all

zs-ema

best-in-time

zero-shot

multitask

Figure 11: A long journey through TIME. We compare all valid combinations of initialization and
deployment protocols on a longer sequence of 50 tasks. Best-in-TIME remains the best in balancing
knowledge accumulation and zero-shot retention.

tasks, this initial advantage is maintained, establishing the zero-shot initialization approach as the
best-performing method, as shown in Fig. 12. Although the double EMA variant surpasses zero-
shot initialization in knowledge accumulation, its poor retention relegates it to third place on the
combined metric. In this exploration we re-use the optimal interpolation weight from the 20 task
scenario, which may no longer be ideal for longer horizons, as it directly influences the balance
between knowledge accumulation and zero-shot retention.

E.3 VARIANCE ANALYSIS ACROSS RUNS

To put our results from Sec. 3.3 in perspective, we quantify the variance across runs for a single
merging method. Specifically, we run Best-in-TIME three times and show the mean and standard
deviation across runs in Fig. 13. Comparing this to Fig. 4 reveals that the best results for different
methods fall within the standard deviation of multiple runs of the same method. In particular, for the
last task, the standard deviation of the geometric mean of knowledge accumulation and zero-shot
retention is 0.96.

F HYPERPARAMETER DETAILS

In an effort to remove any confounding factors, we conduct an extensive hyperparameter sweep,
to the best of our abilities, for each individual merging technique for Figs. 4, 6 and 7. We list the
hyperparameter ranges swept over for each technique below:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

0 10 20 30 40 50 60 70 80 90 100

Tasks

35

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20 30 40 50 60 70 80 90 100

Tasks

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20 30 40 50 60 70 80 90 100

Tasks

46

48

50

52

54

56

58

60

62

√
A
Z
S
×
A
K
A

ft-all

all-ft

ema-ft

ft-ema

ema-all

all-ema

all-all

zs-ema

best-in-time

zero-shot

multitask

Figure 12: An even longer journey through TIME. We compare all valid combinations of initial-
ization and deployment protocols on a longer sequence of 100 tasks. Best-in-TIME still remains the
best approach balancing knowledge accumulation and retention, measured as the geometric mean of
the two metrics in the right-most figure.

0 10 20

Tasks

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

0 10 20

Tasks

66

67

68

69

70

Z
er

o-
S

h
ot

R
et

en
ti

on
(A

Z
S
)

0 10 20

Tasks

52

54

56

58

60

62

√
A
Z
S
×
A
K
A

best-in-time zero-shot multitask

Figure 13: The mean and standard deviation across three runs of Best-in-TIME.

• Weight Averaging. For the offline merging, we use a standard merging coefficient of 1
N ,

where N is the number of task checkpoints to merge.
• SLERP. In SLERP, as we can only merge two checkpoints at a time, we sweep over the

following weight-coefficients: {0.1,0.3,0.5,0.7,0.9}.
• Task-Arithmetic. We sweep over the scaling factor:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}

• TIES. We sweep over the scaling factor: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} and the
pruning-fraction: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

• DARE-TIES. We sweep over the scaling factor: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
and the pruning-fraction: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

• Breadcrumbs-TIES. We sweep over the scaling factor:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} and the pruning-fraction:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

• MagMax. We sweep over the scaling factor: {0.2,0.4,0.8,1.0}.
• LiNeS-TIES. We keep α fixed to 0.5, and sweep β: {0.2,0.5,0.8} and prune-fraction:
{0.2,0.5,0.8} as recommended in the original paper (Wang et al., 2024a).

20

	Introduction
	Design Space of Temporal Model Merging
	Temporal Model Merging through TIME
	Complete Temporal Model Merging Pipeline

	Experiments
	Do We Need Model Merging Across Time?
	TIME Travel
	What is the best merge for Best-in-TIME?
	Scaling Up Temporal Model Merging

	Conclusion
	Related Works
	Details of the merging methods
	Plotting Style
	Additional Offline Merging Experiments
	Replay and Time-Weighting
	Reversed Non-Uniform Weighting Schemes

	Additional EMA Experiments
	Tasks as Datasets
	Longer Task Sequences
	Variance Analysis across Runs

	Hyperparameter Details

