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Abstract

The selective classifier (SC) has been proposed
for rank based uncertainty thresholding, which
could have applications in safety critical areas
such as medical diagnostics, autonomous driv-
ing, and the justice system. The Area Under the
Risk-Coverage Curve (AURC) has emerged as
the foremost evaluation metric for assessing the
performance of SC systems. In this work, we
present a formal statistical formulation of popula-
tion AURC, presenting an equivalent expression
that can be interpreted as a reweighted risk func-
tion. Through Monte Carlo methods, we derive
empirical AURC plug-in estimators for finite sam-
ple scenarios. The weight estimators associated
with these plug-in estimators are shown to be con-
sistent, with low bias and tightly bounded mean
squared error (MSE). The plug-in estimators are
proven to converge at a rate of O(y/In(n)/n)
demonstrating statistical consistency. We em-
pirically validate the effectiveness of our estima-
tors through experiments across multiple datasets,
model architectures, and confidence score func-
tions (CSFs), demonstrating consistency and ef-
fectiveness in fine-tuning AURC performance.

1. Introduction

In safety-critical scenarios such as autonomous driving,
medical diagnostics, and the justice system (Berk et al.,
2021; Leibig et al., 2022; Dvijotham et al., 2023; Franc
et al., 2023; Groh et al., 2024), selective classifiers (SC)
are promising for their ability to withhold predictions un-
der conditions of uncertainty, thereby mitigating associated
risks and enhancing the reliability of the models (Geifman
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and El-Yaniv, 2017; Geifman et al., 2019; Ding et al., 2020;
Galil et al., 2023). Specifically, these classifiers employ
cost-based models (Chow, 1970; Cortes et al., 2016; Hen-
drickx et al., 2024) with a reject region to balance the risks
of wrong predictions against the non-decision costs. The
goal of an effective SC system is to minimize the expected
misclassification costs—termed selective risk—while max-
imizing coverage, ensuring the model provides accurate
predictions for as many instances as possible. This dual
focus on selective risk and coverage motivates the develop-
ment and evaluation of SC systems.

Prominent evaluation metrics in SC systems, such as the
area under the risk-coverage curve (AURC) and the normal-
ized AURC (E-AURC) (Geifman et al., 2019), are widely
used to assess model performance based on selective risk
and coverage. While most studies interpret and improve (Ao
et al., 2023; Traub et al., 2024) these metrics from the per-
spective of risk and coverage, relatively little attention has
been given to directly optimizing SC models by treating
AURC as a loss function. In addition, these metrics are typi-
cally computed empirically from the given datasets, making
them susceptible to biases and variances, particularly in the
context of a small finite sample rather than the underlying
population. Franc et al. (2023) proposed the Selective Clas-
sifier Learning (SELE) loss as a lower bound of empirical
AURC and is designed to optimize uncertainty scores by
minimizing both the regression and SELE losses using batch
training strategies. This approach only learns uncertainty
scores on top of a pre-trained model within the selective
classifier framework, and does not directly optimize the clas-
sifier itself based on the loss. Franc et al. (2023) motivate
the SELE loss by the fact that it is “a close approximation of
the AuRC and, at the same time, amenable to optimization.”
We demonstrate here through analysis of the computational
complexity and statistical properties of direct AURC estima-
tion, that approximation by a lower bound is unnecessary
and both AURC and SELE are equally amenable to opti-
mization.

We establish a formal definition of AURC at the population
level based on the underlying data distribution and derive
an equivalent expression that explicitly represents it as a
reweighted risk function, where the weights are determined



A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators

solely by population rankings according to the CSFs. This
formulation allows us to treat AURC as a loss function in a
more theoretically grounded manner. Building upon these
findings, we introduce two plug-in estimators with weight
estimators derived from Monte Carlo method. We show that
both can provide good estimation and come with theoretical
guarantees. Specifically, we analyze the statistical properties
of the weights estimators, including their MSE and bias,
and establish the convergence rate of the plug-in estimators.
Finally, we validate their efficacy through evaluations and
fine-tuning experiments across various model architectures,
CSFs, and datasets, demonstrating their practical advantages
in AURC estimation.

2. Related Work

Evaluation Metrics: The Area Under the Risk Cover-
age curve (AURC) and its normalized counterpart Excess-
AURC (E-AURC) (Geifman et al., 2019) are the most preva-
lent evaluation metrics for SC systems that compute the risk
or the error with accepted predictions at different confidence
thresholds. Furthermore, Cattelan and Silva (2024) have
proposed a min-max scaled version of E-AURC, designed
to maintain a monotonic relationship with AURC, thereby
enhancing its consistency in performance assessment. How-
ever, Traub et al. (2024) argues that these metrics related
to the selective risk, which only focus on the risk w.r.t. ac-
cepted predictions, do not suffice for a holistic assessment.
To address this limitation, they developed the Area under
the Generalized Risk Coverage curve (AUGRC), which
quantifies the average risk of undetected failures across all
predictions, thereby providing a comprehensive measure of
system reliability. Despite these achievements, most stud-
ies directly employ the empirical AURC as a proxy for the
population AURC, even in finite sample scenarios, without
thoroughly examining the effectiveness of these estimators
under such conditions. Franc et al. (2023) introduced the
SELE score, a lower bound for AURC. However, their study
did not explore important statistical properties of this es-
timator, such as its bias or MSE, when compared to the
population AURC. In contrast to previous studies, our work
focuses on formally defining the population AURC in terms
of the underlying data distribution and offering a reliable
approximation for it in finite sample settings. Our goal is
to propose an effective estimator with theoretical guaran-
tees and perform an empirical analysis to compare it with
existing AURC estimators.

Uncertainty estimation: There has been a large number
of works (Geifman et al., 2019; Abdar et al., 2021; Zhu
et al., 2023) that highlight the importance of confidence
scoring and uncertainty quantification associated with pre-
dictions. In practice!, commonly used CSFs fall into two

'While it is preferable for the output domain of CSFs to be in

main categories: ensemble approaches and post-hoc meth-
ods. Ensemble methods (Lakshminarayanan et al., 2017;
Teye et al., 2018; Liu et al., 2023; Xia and Bouganis, 2023;
Hou et al., 2023) require multiple forward passes to approx-
imate the posterior predictive distribution, exemplified by
Monte Carlo Dropout (MCD) techniques (Gal and Ghahra-
mani, 2016). However, recent works (Cattelan and Silva,
2024; Xia and Bouganis, 2022) suggest that ensembles
may not be crucial for enhancing uncertainty estimation
but rather serve to improve the predictions through a set
of diverse classifiers. Thus such methods are not consid-
ered further in this paper. In contrast, post-hoc estimators
leverage the logits produced by the model to evaluate its
performance. Popular methods include Maximum Softmax
Probability (MSP) (Hendrycks and Gimpel, 2022), Max-
imum Logit Score (MaxLogit) (Hendrycks et al., 2022),
Softmax Margin (Belghazi and Lopez-Paz, 2021), and Neg-
ative Entropy (Liu et al., 2020). Furthermore, Cattelan and
Silva (2023) show that the maximum p-norm of the logits
(MaxLogit-pNorm) can work better than MSP in uncertainty
estimation when dealing with some models. Specifically,
normalizing the logits with 5 norm has been shown to yield
more distinct confidence scores, as evidenced in (Wei et al.,
2022). Gomes et al. (2022) propose the Negative Gini Score,
which utilizes the squared /5 norm of the softmax probabil-
ity. In this study, we examine the impact of the post-hoc
CSFs on the AURC, aiming to offer a thorough evaluation
of AURC estimators in finite sample scenarios.

3. Performance Evaluation of Selective
Classifiers

3.1. Problem Setting

Let X C R? be the input space, ) C {0, 1}* be the label
space, and P(z, y) be the unknown joint distribution over
X x ). We consider a classifier f : X — A, which maps
to a k-dimentional probability simplex, and a confidence
scoring function (CSF) g : X — [0, 1], the selective classi-
fication system (f, g) at an input  can then be described
by

f(x)

“abstain”

ifg(z) > 7,
otherwise.

(f,9)(x) = { (1)

where “abstain” is triggered when g(z) falls below a de-
cision threshold 7 € R. Given a loss function ¢

AF x Y — R, the true risk of f w.r.t. P(z,y) is R(f) =
Ep(z,4)[€(f(2),y)]. Given the finite sample dataset D,, =
{(zs,v:)} iy C (X x V) sampled i.i.d. from P(z,y), the
true risk can be inferred from the empirical risk }AE( f) =
LS L €(f(xi), y:). For practical purposes, we define the

[0, 1] for easier determination of selection thresholds, this is not a
strict requirement.
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selection function g as g(z) = I[g(z) > 7]. The choice
of 7 depends on the specific scenario and the evaluation
metric being used. It can either be a pre-defined constant or
adapt dynamically based on the predicted uncertainty of the
observations.

3.2. Evaluation Metrics

One common way to assess the performance of selective
classifiers is the risk-coverage curve (RC curve) (El-Yaniv
et al., 2010), where coverage measures the probability mass
of the input space that is not rejected in Eq. (1), denoted
by Ep(2)[d(7)]. And the selective risk w.r.t. P(x,y) is then
defined as

Epa,y [((f(2),y)g(x)]

¢ is typically the 0/1 error, making R(f,g) the selective
error. As indicated by the equation above, risk and cover-
age are strongly dependent, where rejecting more examples
reduces selective risk but also results in lower coverage.
This relationship revealed by the curve motivates the devel-
opment of more nuanced evaluation metrics for selective
classifiers. Additionally, accuracy alone often fails in cases
of class imbalance or pixel-level tasks (Ding et al., 2020),
so evaluation metrics should accommodate different loss
functions for a more comprehensive assessment.

R(f,9) = @

3.3. Equivalent Expressions of AURC

Driven by the aforementioned considerations, the AURC
metric (Geifman et al., 2019) is designed to offer a robust
evaluation framework for classifiers by effectively capturing
performance across varying rejection thresholds that are
determined based on the distribution of samples within the
population. The AURC is typically specified as an empirical
quantity from a finite sample (Franc et al., 2023, Eq. (27)),
from which we derive the population AURC as

E(z,y) P f(f (), ) [g(x) > g(Z)] .

AURC, (/) = Bavbr == | L Tlo() > 9(@)]

3)
Noticing that the expectation in the numerator can be
swapped with the expectation outside, the equation above
can then be written as:

AURCP(f) = E(r,y)wP(m,y) [a(;v)f (f ({,C) 7y)} 4)
where

OE I
This expression shows that the population AURC can be

interpreted as the expectation of the risk function weighted
by a(x) that accounts for the importance of each point. In

a(r) = Ezup(a) (IE

order to better understand the population AURC, we study
the behavior of the weight a(x) in Eq. (5). The following
proposition provides an equivalent expression for a(x).

Proposition 3.1 (An equivalent expression of «(x)). Define
function G(x) as the cumulative distribution function(CDF)
of the CSF g(x) such that

Ga) = Pr(gla’) < g (@) = [ Llgla') < g (@) dP(a').
(6)
Under this definition, the o(x) in Eq. (5) is equivalent to

a(z) = —In(1 — G(z)). @)

Proof. Since the expectation in the denominator in Eq. (5)
is the CDF of 1 — G(z), we have:

a(z) = /I Hote) 2 o)) éé()j)]dP(j).

This implies that we are integrating over the domain & where
g(Z) < g(x). Hence, we can rewrite it as:

o(#)<g(x) L — G(Z)

To proceed, note that G(Z) is the CDF of ¢(Z), and since
G(Z) is monotonically increasing in g(Z), we can reparam-
eterize the integral in terms of G (). Specifically, we know
that G(Z) takes values between 0 and 1 as it is a CDF, thus
integration can be rewritten as:

_ 1 I L | =
a(z) _/G(i)gG(z) 71_G(£)dP(m) —/0 71—G(5:)dp( ).

Now, this integral is straightforward to compute:

dP(7).

/ ——dt = —In(1 — G(x)).
, 1t

Thus, we have derived the desired result:
a(r) = —In(1 — G(z)).

O
Here G(z) can be interpreted as the population rank per-
centile based on the CSF sorted in ascending order. This
proposition motivates the following formulation, which can
be considered equivalent to the population AURC in Eq. (3).

Definition 3.2 (An equivalent expression of AURC,).
Given G(x) as the CDF of the random variable g(x), the
population AURC in Eq. (3) is equivalent to:

AURC, (f) — / a@)(f(2).)dPx.y) (B

where a(z) = —In (1 — G(z)).
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We also provide empirical evidence supporting the equiv-
alence in Appendix A.5. Notably, the following integral
holds:

1
/ —In(1-2)dz=1. ©)
0

This result indicates that, in the limit of infinite data, the
integral of a(z) computed using this formula converges to
one. Consequently, the population AURC can be interpreted
as a redistribution of the risk.

3.4. Plug-in Estimator of AURC

Given a finite sample of size n, namely D, =
{(zs,v:)}i—;, C (X x V), which is sampled i.i.d. from
the joint probability distribution P(z, i), following Eq. (3),
the empirical AURC can be defined based on the sample as

mp(f):%z:

j=1

5 2o Hg(zn) > g(z;)

(10)
This formulation represents the widely used AURC metric
for evaluating the SC system. However, guarantees on the
relationship to population-level AURC has not been con-
sidered, even though relying on this empirical estimator
may introduce error, particularly when assessing the SC
system with a small sample size. The naive implementa-
tion of this estimator incurs a quadratic computational cost
of O(n?) due to the nested loops. However, some pack-
ages e.g. torch-uncertainty’ decrease this complexity to
O(nln(n)) by replacing redundant subset evaluations with
a single sorting step followed by cumulative summation that
efficiently computes error rates across all coverage levels.
Here, we present a derivation of a method that achieves a
computational complexity of O(n In(n)). By leveraging the
approach used to transform Eq.(3) into Eq.(4), the empirical
AURC can be reformulated as a plug-in estimator:

n

AURG,(f) = - > aa)(fr)y) (D)

i=1

where

Ti

w1>g(aa)} _ 1
Z_:l - mk)>g(xj)]_;n—j+1

B (12)

where r; denotes the rank of x; when the data is sorted in as-
cending order according to the CSF, such that a larger r; cor-
responds to a higher CSF value. For simplicity, we use &; as
shorthand for &(x;). This estimator is a consistent estimator
of «; for the population AURC, as directly established by the

Mttps://github.com/ENSTA-U2IS—-ATI/
torch-uncertainty

2L o(f (), y)g (i) > g(xy)]
T

Continuous Mapping Theorem. Let H,, := Z 1 ,16 denote

the nth harmonic number, and define the digamma function

as ¢(n) := L) The relationship between these two func-

T'(n)
tions is given by H,, = t(n + 1) + -, where v =~ 0.577
is the Euler—Mascheroni constant. Setting Hy = 0, we
can express &; in terms of harmonic numbers or digamma
functions:
642' - Hn - Hn—m = ZZJ(” + 1)
which enables efficient computation of the weight estimator.
The computation cost of Eq. (11) is O(n1n(n)) due to the
sorting operation required for rank computation. Addition-

ally, for the finite sample case, we have

n n

1 . 1
Sy ai= Y (Ha-He) =1, (4)

i=1 =1

indicating the plug-in estimator with this weight &; can
be viewed as a redistribution of the risk. Each individual
loss is weighted by %di, which depends on the rank of the
corresponding sample point.

Franc et al. (2023) gave another expression of the empirical
AURC in Eq. (10) that can be interpreted as an arithmetic
mean of the empirical selective risks corresponding to the
coverage spread evenly over the interval [0, 1] with step
%. In addition, they proposed the SELE score, served as a
coarse lower bound for empirical AURC. Details about this
estimator are provided in Appendix A.2.

3.5. Alternate Derivation of Plug-in Estimators via
Monte Carlo

In this section, we explore an alternative derivation of plug-
in estimators using the Monte Carlo method. For our popu-
lation AURC, in Eq. (8), we aim to estimate this quantity
using Monte Carlo integration. Since the cumulative dis-
tribution score G(z) is unknown, we require an estimator
for Eq. (7), which can be achieved by taking the conditional
expectation

E[=In(1 - G(2:)){g(zj) hr<j<nl - (15)

Since {G(z;)}1<i<n behave as i.i.d. samples from a uni-
form distribution ¢[0,1] when z; are ii.d. from P(x),
we sample i.i.d. {8;}1<i<n ~ U]0, 1], then sort this set
in ascending order. Let r; be the rank for /3; and set
a; = —In(1 — B;). Consequently, we can find a lower
variance estimate with the same bias by repeating the pro-
cess and averaging the obtained «; estimates. The (; are
order statistics of the uniform distribution, and have known
distribution (Jones, 2009, Section 2)

Bt — By

B(ri,n—O—l _Ti) (16)

Bi ~ Beta(r;,n+1—1r;) =


https://github.com/ENSTA-U2IS-AI/torch-uncertainty
https://github.com/ENSTA-U2IS-AI/torch-uncertainty
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where B denotes the beta function. Consequently, the limit
expectation of our estimator with repeatedly resampled j3;
will yield

&; = Eg,[—In(1 - ;)]

1 ri—1l(1 _ p\n—ri
:/ fln(lf:c)m (1—2)
0

d 17
B(ri,n+1—r;) = D

=H, — Hn—n

which leads to the weight estimator in Eq. (13). This indi-
cates that the plug-in estimator of Sec. 3.4 is in fact quite
principled. Furthermore, we demonstrate the consistency
of this weight estimator in Prop. A.4 and 3.6. In the above
procedure, we have used &; = Eg,[—In(1 — §;)], but we
can utilize the expectation of 3;, leading to another weight
estimator

6;=—In(1-Eg [fi]) = -In <1 - 1) (18)

where the last equation is due to the fact that the expecta-
tion of Beta(a, b) is ;4. This estimator is consistent, as

lim ( d = f3;. In addition, we have
n—oco \ 1+ 1
J 1 7
- O V— In{1-— <1, 19

but it approaches one as n — oo. Since the function m(t) =
—1In(1 — ¢t) is convex, applying Jensen’s inequality gives:

—In(1 - Epg, [Bi]) <Ep,[-In(1 - 5)],  (20)

indicating the first estimator &; upper bounds the &;. Thus
this weight estimator &/ will lead to a consistent plug-in
estimator that lower bounds the plug-in estimator with &;.
In the next section, we will analyze the statistical properties
of these two plug-in estimators, incorporating the weight
estimators discussed above.

3.6. Statistical Properties

In this section, we show that empirical estimators of AURC
are in general biased (Prop. 3.3, 3.4), but we also show con-
sistency at a favorable convergence rate (Prop. 3.6) indicat-
ing the soundness of empirical estimators even at relatively
small batch sizes. Given the fact that the weight estimator
and the losses are typically not independent as they both
depend on the model logits, it is difficult to directly derive
the statistical properties of the plug-in estimators. There-
fore, we begin by examining the properties of the weight
estimators &; and &/ based on finite samples. For a specific
data pair (x;,y;) € (X,Y) with an unknown population
rank percentile 3;, we consider randomly sampling n — 1
i.i.d. samples repeatedly from the population. Our analy-
sis focuses on assessing the bias and MSE of the weight
estimators associated with this data pair.

Proposition 3.3 (Bias of &; ). The bias of the &; is given by

=H, Y H, ;C; 87 (1= B)" " +1n(1 - B).
i=1

Proof. The conditional expectation of &; associated with
(z4,y;) is given by

E[6:|G(x:) = Bi) = Y (Hp — Ho—i) Pr(ri = i|G () = Bi) -
i=1
We notice that Pr(r;|G(z;) = f;) is a binomial distribution
Bin(n — 1, 8;) given by:
Pr(r; = i|G(x;) = B;) = Cp 1 81 (1 = )"

because the probability of any i.i.d. sample being ranked
below z; is ;, and there must be (¢ — 1) of them for the
sample to be ranked ith, while the remaining (n—4) samples
must be ranked higher, each with an independent probability
of (1 — f3;). Combining these results gives us:

Bias (dJG(:L‘z) = 5,) =E [OAzllG(QZl) = Bz} —
=H,— Y H, Ci /87 (1—8)"" +1n(1 - B).
i=1
which concludes our proof. O
Proposition 3.4 (Bias of &}). The bias of the &/, is given by
Bias (&; | G(z:) = Bi) (22)

—= Yo (1o ) e - a0 - )

Proof. The expected & associated with (z;, y;) is given by
E [6G(e:) = 8]

_ iln (1 _ %H) Pr(r; = i|G(z:) = By).

=1
Since Pr(r;|G(z;) = ;) follows Bin(n — 1, 3;), we obtain:
Bias (OACHG(CE»L) = ﬂz) =K [d;‘G(LL‘l) = ﬁl] —

-2 (1 - 1) CLhB (1= B +In(1 - B)
=1

which concludes our proof. O

For the above mentioned weight estimators, the SELE
Weight estimator &;° exhibits the largest bias compared
with & and &/, as indicated in Fig 1. Due to this significant
bias in weight estimation, SELE is not a reliable estimator
for population AURC.
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Bi Bi
(a) n=8 (b) n=128
Figure 1. The bias of the weights estimator as a function of 3,
based on the results in Propositions 3.3, 3.4 and A.2. The bias of
these weight estimators is not equal to zero in general, but being
positive for smaller 3; and negative for larger (3; as indicated. As
sample size increases, the expected bias decreases significantly

for larger 3;. The complete plots for different sample size can be
found in Appendix S8.

Proposition 3.5 (MSE of &;). The MSE of the &; is

MSE(&;) = ¢/'(n+1—7r;) —¢'(n+1)
Bi

SR >

Proof. From result in Prop.3.1, we calculate:
MSE(&;) = Eg, [(&; + In(1 — 3;))?]

- / ((Hy — Ho_r,) +1In (1 - ;) dP(5:)

- /o1 In(1 — 5:)°dP(8;) — (Hy — Hor,)

=M

where the second equality is led by fol In(1 — B;)dP(B;) =
— (H,, — H,—,,). And dP(0;) is taken to mean integration
with respect to the measure induced by 3; ~ Beta(r;,n +
1 — ;). Focusing on the remaining integral, we have the
closed form:

M= (H, — Hn—m)2 + w’(n +1 =) — 1/’/(” +1),
and the result:

MSE(&;) =¢'(n+1—1r;) —¢'(n+1).

This term involves the first derivative of the digamma func-
tion for which the inequality £ + -1 <¢/(n) <1+ %
is well known. Applying these inequalities, we obtain

1 1 112
(n+1-7)2 n+1 (n+1)2

MSE(&;) <
S (a)_n—&—l—ri

_ 1 1 _ Bi
_O(n—ri—kl_n—kl)_O(n(l—,ﬁi)—kl)'

By analogous reasoning determining a lower bound on the
MSE, we achieve the result

. Bi
MSE(&;) < —————— V8, € (0,1). 24
(@)= sy YO @Y
which is visualized in Fig 2. O

0 100
50 h

Figure 2. The bound in Eq. (24) as a function of n and f;.

We also demonstrate in Appendix A.3 that the MSE of &; is
tightly upper bounded by Eq. (24), though it remains larger
than the MSE of &;.

Proposition 3.6 (Convergence Rate of the plug-in esti-
mators with &; or &, ). Assume that the loss function { is
square-integrable, i.e., [ (*(f(z),y)dP(z,y) < co. Then,
the plug-in estimators with &; or &; as the weight estimator,
converges at a rate of O(y/In(n)/n).

Proof. We first analyze the difference between the plug-in
estimator with ¢&; and the population expected value:

3=

Z ail(f(xi),yi) — Elel(f(x), y)].

This can be decomposed as the sum of the following two
terms:

A= 3"@ — a)l(f @), y)

[
B % > aut(f (), vi) — Elat(f(x),y)

where term (1) captures the error caused by the bias in
estimating «; and term (2) represents the error introduced
by approximating the expected value E[al(f(z),y)] with
the empirical average.

Making use of the Cauchy—Schwarz inequality, we obtain
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the following result:

3

A < (:L > (@i - Oéz‘)z) (; Zg(f(l“i),yvz)Q)
izl 1=1 (25)
= (i Z(di - ai)2> E [0(f(x),y)*] .

From Proposition A.4, 1 3"  MSE(d&;) is bounded by
o (mi") ) , which means

S ().

By combining this with Eq. (25) and the square-integrable
assumption of the loss function ¢, term A asymptotically
converges at a rate O(y/In(n)/n). Term B, correspond-
ing to the Monte Carlo method, is well-known to converge
at a rate O(n~1/2) (Caflisch, 1998), which is faster than
O(+/In(n)/n). Thus, our overall convergence rate is dom-
inated by the rate derived for term A. Similarly, the same
convergence rate applies to the estimator with &,. O

(26)

4. Experiments

Datasets. We use images datasets such as CI-
FAR10/100 (Krizhevsky et al., 2009) and ImageNet (Deng
et al., 2009), and a text dataset i.e Amazon Reviews (Ni
et al., 2019). The Amazon dataset contains review text
inputs paired with 1-out-of-5 star ratings as labels.

Models. For experiments on CIFAR10/100, we report
the results on the VGG13, VGG16, VGG19 (Simonyan
and Zisserman, 2014) model with batch norm layers,
WideResNet28x10 (Zagoruyko and Komodakis, 2016), and
ResNet (He et al., 2016) models with different depths
(20,56, 110, 164). For each model architecture, we have
5 different models that are pre-trained on the CIFAR10/100
dataset. For experiments on Amazon dataset, we use pre-
trained transformer-based models — BERT (Kenton and
Toutanova, 2019), RoBERTa (Liu et al., 2021a), Distill-
Bert (Sanh, 2019) (D-BERT), and Distill-Roberta (D-
RoBERTa)>. For experiments on the ImageNet dataset, we
use the pre-trained models from fimm (Wightman, 2019)
package, including two vision transformer (ViT) (Dosovit-
skiy et al., 2020) variants, ViT-Small and ViT-Large; and
two Swin transformer-based models (Liu et al., 2021b),
Swin-Base and Swin-Tiny. All these models are configured
with standard image resolution — 224.

Metrics. For our comparative analysis, we evaluate several
metrics, including the population AURC,, and finite-sample
estimators. The AURC,, is computed using Eq. (11) across

3Obtained from RoBERTa with the procedure of Sanh (2019)

the test set. In the finite-sample setting, we evaluate the
plug-in estimators with & or &', the SELE score (Franc et al.,
2023), and 2x SELE as proposed by the original authors (see
Appendix A.2 for a discussion). Beyond the 0/1 loss, we
incorporate these metrics with the Cross-Entropy (CE) loss
that serves as a complementary measure for assessing the
classifier’s performance.

Experimental setup. We evaluate the metrics using sev-
eral pre-trained models on the test set, which is randomly
divided into various batch sizes (8,16, 32, --- ,1024). We
use MSP as our confidence score function, compute the
metrics for these batch samples, and subsequently calculate
the mean and standard deviation of these finite sample es-
timators. The population AURC,, is computed across all
samples in the test set. For the CIFAR10/100 datasets, we
evaluate the mean and standard deviation of the Mean Ab-
solute Error (MAE) across five distinct pre-trained models.
For the ImageNet and Amazon datasets, we compute the
mean, standard deviation, and MSE for different estimators
of the pre-trained model across batch samples.*
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Figure 3. (Amazon) Finite sample estimators with 0/1 or CE loss.
We utilize a pre-trained model and randomly divide the test set
into batch samples of size n. Subsequently, we compute the mean
and std of various estimators applied to these batch samples.

Measurement of the statistical properties of the estima-
tors. From Fig. 3, it is observable that with 0/1 loss (accu-
racy) and increasing sample size, the SELE score tends to un-
derestimate the population AURC,. Conversely, 2 x SELE
tends to overestimate the population AURC,,. The plug-in
estimator with &' empirically serves as a lower bound for
that with &, supporting the correctness of our theoretical
results. As the sample size grows, both estimators progres-
sively converge to the population AURC,,. Similar trends
can also be observed regardless of the 0/1 loss or CE loss in
Fig. S15-S19. Furthermore, a comparison between Fig. 3(a)
and 3(b) reveals that using CE loss rather than 0/1 loss re-
sults in a different magnitude of variance and bias in the
estimators. The bias plots in Figures S9-S12 show similar
findings. In Fig.4, the MAE of the plug-in estimators con-

4Code is available at https://github.com/han678/
AsymptoticAURC.
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Table 1. Summary of population AURC,, (expressed as mean = standard deviation, scaled by 10™2) of the test set for models fine-tuned
with various loss functions. The AURC,, is calculated for each model architecture based on the fine-tuned results aggregated from five

different seeds, each using the same pre-trained model.

CIFARI10 CIFAR100
Model CE SELE & Est. &' Bst. ‘ CE SELE & Est. &' Bst.
ResNet18 4.967+0.038 447010030 447310030 4.471i0030 | 6.64810.021 6.577T10.011  6.53210012 6.53310.014
ResNet34 6.46410.036 5.66110039 5.65210036 5.651i0.036 | 6.02310.016 5.86210012 5.82510.011  5.82610.011
ResNet50 8.318i0>002 7'892i0.046 7‘921i0,047 7.918i0_049 6.225i0_009 6.043i0_015 6~007i0.008 6.007i0_009
VGG16BN 792210002 7.01010.018 7.06410.014 7.06010015 | 10.79010.001 10.58610.020 10.559+0.020 10.560+0.030
VGG19BN 9.81340.192 8.47510.061 8.528410.059 8.524.10059 | 10.63310.001 10.42119026 10.39310025 10.39110.024
WideResNet28x10 4-137i0,046 3.867i()‘049 3.864i0‘049 3.863i0_049 5-912i0A652 5.607i0_707 5.83610‘652 5.607i()‘707
oc0s| @ Est. P @ Est SELE 0035/ I @Est § @Est SELE —— G Est. A —— GQEst.
: 0.0025 & Est. 0.0 @ Est.
0.030 SELE 0.030 SELE
o00s| ' 0.025| | 0.0020 *— 2XSELE 05 \ +— 2xSELE
w w 0.020 ' mO.DOIS gD.UZU
Soo0s Soos = = o015
0.010 ’ N 0010]
oo : : 0.0005 ) .
i . . o t ‘ L 0.005 ]
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(a) VGG16BN (CIFAR10)  (b) VGG16BN (CIFAR100) win-Base (O ®)Sw )

Figure 4. (CIFAR10/100) MAE of different finite sample estima-
tors evaluated with 0/1 loss. For each model architecture, we
compute the mean and std of the MAE across five distinct pre-
trained models. The MAE for each model is calculated using batch
samples divided from the test set. More results can be found in
Figs. S13-S14.

sistently decreases as the sample size increases. However,
the SELE score does not always exhibit this trend. Its per-
formance lacks stability compared to the plug-in estimators
and can even be worse as sample size increases. Results
shown in Fig. 5 also indicate a declining trend in the MSE of
the plug-in estimators on the ImageNet dataset as the sam-
ple size increases, regardless of whether 0/1 or CE loss is
used. This convergence is not reflected in the SELE scores,
as expected. Similar MSE results are also observed across
other model architectures for the CIFAR10/100 and Ama-
zon datasets (see Fig. S20-S25). Although & theoretically
exhibits lower MSE in weight estimation compared to &',
its corresponding plug-in estimator empirically achieves an
even higher MSE than that of &.

Influence of the CSFs. We also examine the impact of vari-
ous CSFs on the estimators to provide a thorough evaluation
of the metrics. Specifically, we consider MSP, Negative En-
tropy, MaxLogit, Softmax Margin, MaxLogit-f5 norm, and
Negative Gini Score, as outlined in Table S2. The sample
size is set to 128. We report the results for Amazon and
ImageNet datasets in Fig. S26-S28. As indicated in Fig. 6,
both plug-in estimators exhibits lower bias compared to
other estimators across various CSFs. The 2xSELE score is
more likely to overestimate AURC,,, but this is not always

Figure 5. (ImageNet) MSE of finite sample estimators with 0/1 or
CE loss. For each model architecture, we calculate the MSE of
the estimators using a pre-trained model on batch samples derived
from the test set.

R e Rl el
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(a) BERT (0/1 loss)

NegEntropy SoftmaxMargin _ MaxLogit

(b) BERT (CE loss)

Lnorm  NegGiniscore

Figure 6. (Amazon) Finite sample estimators with different CSFs.

the case, as shown in Fig. 6(b). The SELE score is sub-
stantially lower than the population AURC,, across various
CSFs in our evaluations. We can also observe that compared
to CSFs, these finite sample estimators are more sensitive
to the choice of loss functions. When using 0/1 loss, they
display lower variance than CE loss.

Training a selective classifier.

We can finetune our pre-trained model using these finite
sample estimators as a loss function. The MSP is employed
as the CSF when applying the metrics. The models in Ta-
ble 1 are fine-tuned on the training set using these estimators
incorporated with CE loss over 30 epochs, using a learn-
ing rate of 1073, We set the training batch size to be 128.
Additionally, we present the results for both CE loss and
SELE score, as detailed in Table 1 for the CIFAR10/100
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dataset. As indicated by Table 1, training with these estima-
tors can effectively optimize the AURC,, compared with the
CE. Moreover, training with SELE loss also accelerates the
optimization of AURC,, compared with CE optimization.

5. Conclusion and Future Work

In this work, we revisit the definition of empirical AURC
and propose the population AURC from a statistical per-
spective, along with an equivalent expression that can be
interpreted as a reweighted risk function. Subsequently,
we introduce a plug-in estimator for population AURC,
characterized by a biased weight estimator. Additionally,
we provide an alternative derivation of this and another
plug-in estimator using the Monte Carlo method. We rig-
orously analyze the statistical properties of these Monte
Carlo-derived weight estimators, including their bias, MSE,
and consistency, and establish their convergence rate to be
O(+/In(n)/n). To validate our theoretical results, we eval-
uate the estimator across various state-of-the-art neural net-
work models and widely-used datasets. Both plug-in estima-
tors exhibit better performance compared to the SELE score.
Finally, we have demonstrated that the combination of good
statistical convergence and efficient computation make them
suitable training objectives for directly fine-tuning networks
to minimize AURC.

In this paper, our primary focus is on the estimation of
AURC for a fixed model. For completeness, we discuss in
the appendix the scenario in which a Bayesian model is con-
sidered, specifically when f ~ P(f|D). We anticipate that
these directions will inspire further research. Additionally,
investigating the performance of estimators under distribu-
tion shift or in the context of imbalanced datasets represents
a promising avenue for future work. We also encourage
studies that adapt estimators of the form developed in this
paper to these settings.
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A. Appendix
A.1. Additional Proofs

Proposition A.1 (Consistency of &;). Assume (3; is the population rank percentile of the observation (x;,y;) ranked by
CSF. Under this definition, the parameter &; is consistent, converging to the limit

n—oo
Proof. Given the sample size n and sample rank r;, let us set r; = 5in for 8, € (0, 1) and take the limit

lim [H, —H,—p,;n] = lim [¥(n+1) —¢(n— Bin+1)]

n— oo n—oo
1 1
=1l 1 1)— — -1 - B N+ ——"->-——
o {“(’” T Py e (e AU A e 1)]
. 1 1 Bi (27)
=1 — —In(1 - g :
nl—{go[ 2(n—|—1)+2(n—5£n+1) n ﬁl)+n+1)}
- T -7
=— lim In(1 -5
=—In(1-5;)
where the 2nd equation was obtained using the asymptotic result that ¢)(n) — lnn — 2% asn — 0. O

Proposition A.2 (Bias of &°). The bias of the the weight estimator &3¢ corresponding to the SELE score is given by
Bias (45¢|G(z;) = Z c; LB = )M+ In(1 — By).

Proof. From Sec. A.2, the expected 7€ associated with (x;, y;) is given by

E [&fe|G(IL’Z) - 61] = Z %Pr(ri = Z‘G(SCZ) = 51)

=1

Since Pr(r;|G(z;) = f;) is a binomial distribution Bin(n — 1, 8;), we obtain:
Bias (&}|G(x;) = 8;) = E[a}|G(x:) = 8] — Z c LAY = B)" T+ In(1 - By) (28)

which conclude our proof. O

Proposition A.3 (MSE of &}). The MSE of &, is given by

AIN / Ty 2v Bi

Proof. From the result in Proposition 3.1, we calculate the MSE as follows:

MSE(&}) = Eg, [(&] + In(1 - 8:))?] ,

MSE(a)) = /01 <—1n <1 - n: 1) +1In(1 - m)z dP(5;).

We can break this into two parts, denoted M and N:

which becomes:

MSE(&}) = M + N,

S12
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where

1
M = [ W0 ) dP(3) = (B~ Hup )4 (041 10) = 0/ 4 1),
0

and

N = In? (1— Zl>+2ln(1— ’zl)(Hn_Hnm)'

n n

Here, dP(;) refers to the integration with respect to the probability measure induced by 8; ~ Beta(r;,n + 1 —r;).
Now, by combining M and N, we obtain the MSE:

MSE(&)) =¢'(n+1—r;) —¢'(n+1) + Q7

where
T

=In(1-
@ n( n+1

) +H,— H,_,,.
Using the inequalities of the harmonic numbers, v + In(n) < H,, < In(n + 1) 4 ~, we obtain the following bounds:
0<H, —-H,—, <In(n+1) —In(n —r).

This leads to the upper bound for Q:
1

1
Qéln<1+ )S ;
n—r; n—r;

since it holds that In(1 + =) < z for z > —1. For the remaining term, we use the same approach as in Proposition 3.5 and
obtain the following estimate:

1/)’(n+1—ri)—¢’(n+1)x(’)<nﬂi>.

(1-8)+1
Combining this with the upper bound for (), we obtain the final bound for the MSE:
MSE(&}) < __ s Vg € (0,1) (30)
¢ n(l—p;)+1
as the MSE is dominated by this remaining term. O

Proposition A.4 (£ 37" | MSE(&;) or + 37" | MSE(&})). The average of the sum of the MSEs of the weight estimators
ln(n))

n

&; or & is tightly bounded by O

Proof. From result in Proposition 3.5, we derive:

1 ¢ 1 ¢ Bi
— MSE(&;) — —
n; (&) nlzln(lfﬂi)Jrl
1
B
— ————df
/0 n(l-8)+1 " | (31)
_(r+1)In(n+1) 1
- n? n
_ 0 <ln(n)>
n
‘We could obtain the same results for d;, thereby concluding our proof. O
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A.2. SELE score

Franc et al. (2023) gave another expression of the empirical AURC in Eq. (10) that can be interpreted as an arithmetic mean
of the empirical selective risks corresponding to the coverage spread evenly over the interval [0, 1] with step % In addition,
they proposed a coarse lower bound, referred to as the SELE score given by

n n

Awie (f) = — sz )Ig (25) > g(x;)]. (32)

=1 j=1

as an alternative to the empirical AURC. They claim that 2A. (f) is an upper bound to the empirical AURC, but in the
Appendix A.2, we demonstrate that this is not the case. This naive implementation of this metric requires O(n?) operations
but we can rewrite it in a form that can be computed in O(n In(n)) using the trick for empirical AURC:

n ’]"Z
sele Z ﬁ z) . (33)

i=1

For this metric, ;¢ = 7% serves as the estimate for a(-). For the SELE score in Eq. (33), we can show that 2A. (f) does
not always serve as an upper bound for empirical AURC, meaning that (Franc et al., 2023, Theorem 8) does not hold. We
could find a simple counterexample s.t. the following inequality holds

AURC,(f) > 2 (f) - (34)

Given a dataset of 5 observations sorted according to the CSF {x;,y;}2_;, it is possible to find a classifier f s.t.
(f(xi),yi) =0fori=1---4and £(f (z5),ys) > 0. Then we would have:

= Hy — Hy ~ 2.2833 > 245° = 2, (35)

which leads to

5

AURG,(f) =Y Gl (f (x:) ,y1) > Z 2650 (f (2) , yi) = 20ete (f) - (36)
=1

In their proof of Theorem 8§, since b is a non-decreasing sequence so they cannot use Lemma 15 to derive their results.

A.3. A Generalized Approach to Epistemic Risk for Bayesian Models

In this work, we mainly focus on the estimation of AURC for a fixed model. However, when considering a Bayesian model
with f ~ P(f|D), a natural approach is to consider the following expectation:

E fp(fi0)[AURC(f)] = Efop(sip) [Ex [R (f, 9) |7 = g(2)]] (37

where 7 is the threshold value. This can be computed directly using our method with Monte Carlo sampling. By applying
Fubini’s Theorem, we can exchange the order of the two expectations, leading to

E ¢ p(f1p)[AURC(f)] = Ey [Efp(spy [R (f,9) |7 = g(x)] ] (38)

Since g(x) depends on f(x) under the posterior distribution P(f|D), and the predictions are made through a full Bayesian
framework, this formulation allows the evaluation of AURC in a way analogous to the standard AURC for a fixed model.
We can envision several ways to define potential quantities of interest based on model uncertainty. Many of these quantities
could be potentially connected to AURC and epistemic risk, and exploring these relationships could open up valuable
avenues for further investigation.

A.4. Confidence Score Functions (CSFs)

The CSFs are generally defined as functions of the predicted probabilities p;, which are the outputs by passing the logits z
produced by the model for the input  through the softmax function o (-), expressed as o(z) € R¥. The specific forms of
these CSFs are outlined as follows:
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Table S2. Commonly Used CSFs

Method Equation

MSP g(z) = maxX | p;

MaxLogit g(z) = maxt | z;

Softmax Margin 9(z) = pi — max;2; p;
with i = arg maxX | p;

Negative Entropy g(z) = 21}(:1 z; log z;

MaxLogit-¢, Norm 9(z) = ||z,

Negative Gini Score g(z) = -1+ Zfil p?

10
cifarl0 e « cifarl0 °
017 cifar100 2 cifar100
« amazon « amazon

1« imagenet |« imagenet o

12 AURCp = AURC, o AURC, =AURC,
N Lo8 .
oo g
S S
3 I os

0075 s

/
o 0s
0050 »
. P
z
0.025 o2 4
rd
P Wl
0000
0o0 oo om0 0055 oo oz oo ols @ P o 7 s o 2 T
AURC, AURC,
Figure S6. (a) 0/1 Loss Figure S6. (b) CE Loss

Figure S7. Comparison of AURC, and AURC,, under different loss functions. The AURC,, and AURC, are computed across the test set
using Eqgs. (4) and (8), respectively. Subfigure (a) shows the 0/1 loss, while subfigure (b) depicts the CE loss.

A.5. Empirical Comparison Between AURC, and AURC,,

In Section 3.4, we demonstrate the theoretical equivalence of these two metrics, and here, we aim to provide an empirical
validation of this equivalence. We evaluate the two population AURC metrics using either 0/1 or CE loss across 30 different
models on test sets from CIFAR10/100. We also assess these metrics for the previously mentioned models on the test sets
from Amazon and ImageNet datasets. The results are reported in Fig. S7, where these two population AURC metrics are
shown to be identical to each other. We also assessed the results using a two-sided t-test, which yielded p-values of 0.9981
and 0.998 for the 0/1 and CE loss, respectively. These values suggest that we should accept the null hypothesis that these
two metrics are identical.

A.6. Figures
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Figure S8. The bias of the weights estimator as a function of /3 for different sample size n. The bias is computed based on the results in

Prop. 3.3,3.4 and A.2.
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Figure S9. (CIFAR10) Bias of different finite sample estimators evaluated with 0/1 or CE loss. For each model architecture, We utilize a
pre-trained model and randomly divide the test set into batch samples of size n. Subsequently, we compute the mean and std of bias for
various estimators applied to these batch samples.
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Figure S10. (CIFAR100) Bias of different finite sample estimators evaluated with 0/1 or CE loss. For each model architecture, We utilize
a pre-trained model and randomly divide the test set into batch samples of size n. Subsequently, we compute the mean and std of bias for
various estimators applied to these batch samples.
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Figure S11. (Amazon) Bias of different finite sample estimators evaluated with 0/1 or CE loss. For each model architecture, We utilize a
pre-trained model and randomly divide the test set into batch samples of size n. Subsequently, we compute the mean and std of bias for
various estimators applied to these batch samples.

S18



A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators

025 —4— GEst. —4— GEst. 020 —4— @Est.
—}— & Est. —}— &' Est. : —}— @ Est.
0.20 4 SELE 015 4 SELE 015 ~t SELE
4 2xXSELE - 2xSELE § 4 2xSELE
0.15 0.10
0.10
g o1 2 8 2
s & 005 @ 0.05 @
0.05
0.00 0.00 0.00
-0.05 _0.05 -0.05
-0.10 -0.10
4 5 7 9 10 a4 5 7 10 4 5 7 10 4 5 7 10
loga (n) loga (n) log> (n) loga (n)
(a) ViT-Small (0/1) (b) ViT-Large (0/1) (c) Swin-Tiny (0/1) (d) Swin-Base (0/1)
1.0 —4— GEst. —— &Est. 08 —— GEst. —4— GEst.
o 4 @Est 06 b @Est. i @Est. 06 4 dEst
’ - SELE 4 SELE 06 4 SELE ~+- SELE
06 4+ 2xSELE 04 ~+~ 2xSELE 4 2xSELE 04 4 2xSELE
04
0.4
8 8 02 8 o2 8 07
@ 02 @ o [
0.0 00 0.0 0.0
-02 _02 -02 ~02
-0.4 -0.4
-0.4 ) -04
4 5 7 10 a4 5 7 10 4 5 7 10 4 5 7 9 10
loga (n) loga (n) log; (n) logz (n)
(e) ViT-Small (CE) (f) ViT-Large (CE) (g) Swin-Tiny (CE) (h) Swin-Base (CE)

Figure S12. (ImageNet) Bias of different finite sample estimators evaluated with 0/1 or CE loss. For each model architecture, We utilize
a pre-trained model and randomly divide the test set into batch samples of size n. Subsequently, we compute the mean and std of bias for
various estimators applied to these batch samples.
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Figure S13. (CIFAR10) MAE of different finite sample estimators evaluated with 0/1 or CE loss. For each model architecture, we
compute the mean and std of the MAE across five distinct pre-trained models. The MAE for each model is calculated using batch samples
divided from the test set.
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Figure S14. (CIFAR100) MAE of different finite sample estimators evaluated with 0/1 or CE loss. For each model architecture, we
compute the mean and std of the MAE across five distinct pre-trained models. The MAE for each model is calculated using batch samples

divided from the test set.
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Figure S15. Finite sample estimators on CIFAR10 dataset with 0/1 loss. We utilize a pre-trained model and randomly divide the test set
into batch samples of size n. Subsequently, we compute the mean and variance of various estimators applied to these batch samples.
Additionally, the population AURC, is computed across all samples in the test set.
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Figure S16. Finite sample estimators on CIFAR10 dataset with CE loss. We utilize a pre-trained model and randomly divide the test set
into batch samples of size n. Subsequently, we compute the mean and variance of various estimators applied to these batch samples.
Additionally, the population AURC,, is computed across all samples in the test set.
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Figure S17. Finite sample estimators on the CIFAR100 dataset with 0/1 loss. We utilize a pre-trained model and randomly divide the test
set into batch samples of size n. Subsequently, we compute the mean and variance of various estimators applied to these batch samples.
Additionally, the population AURC, is computed across all samples in the test set.
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Figure S18. (Amazon) Finite sample estimators with 0/1 or CE loss. We utilize a pre-trained model and randomly divide the test set
into batch samples of size n. Subsequently, we compute the mean and variance of various estimators applied to these batch samples.
Additionally, the population AURC,, is computed across all samples in the test set.
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Figure S19. (ImageNet) Finite sample estimators with 0/1 or CE loss. We utilize a pre-trained model and randomly divide the test set

into batch samples of size n. Subsequently, we compute the mean and variance of various estimators applied to these batch samples.
Additionally, the population AURC, is computed across all samples in the test set.
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Figure S20. (CIFAR10) MSE of different finite sample estimators with 0/1 loss. For each model architecture, we calculate the MSE of
the estimators using a pre-trained model on batch samples derived from the test set.
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Figure S21. (CIFAR10) MSE of different finite sample estimators with CE loss. For each model architecture, we calculate the MSE of
the estimators using a pre-trained model on batch samples derived from the test set.

0.010{ —— QEst. 0012 \ —— QEst. 0.0081 5 —— QEst.
\ N 012+ N \ .
\\ —— a' Est. \\\ —— Q' Est. 0.007 \\ —— a' Est.
ooos] SELE ootol  \ SELE SELE
\ —=— 2XSELE \\ —— 2 xSELE 0.006 \\ —=— 2XSELE
\ \ \
\ 0.008+ \ 0.005 \
0.006 \ \ \
w w w
£ \ £ 0.006- L0004
0.004 - . 0.003
S~ 0.004- S~ o
— — 0,002
0.002 0.002
-\\ : 0.001
0000] - —— 0.000- k‘“’fi‘ﬂ* - 0.000
3 4 5 6 7 8 5 10 3 3 5 6 7 3 5 10 3 4 5 6 7 8 9 10
logz (n) logz (n) logz (n)
(a) VGG16BN (b) PreResNet20 (c) PreResNet56
0.007 " 0.007 -
A\ —— Q@Est. A\ —« GEst. \ —— G&Est.
\ a Iy
0.006| \ —— @' Est. 0.0061 |\ e & Est. 0.004 \\ —— @' Est.
\ \
—— SELE \ ~— SELE \ SELE
0.005 \\ —« 2xSELE 0.005 \ e 2XSELE \ «— 2 XSELE
\ \ 0.003 \
0.004 \ 0.004 \ \
4 3 \ 4
= 0.003 =0.003- \ = 0,002
0.002 NG 0.002- ~_
e S TTr—~——— 0.001
0.001 0.001-
— . \h
0.000{ ¥t — — 0000 F—— e 0.000
3 4 5 6 7 8 9 10 3 4 5 6 7 8 5 10 3 4 5 6 7 8 9 10
loga (n) log, (n) logs (n)
(d) PreResNet110 (e) PreResNet164 (f) WideResNet28x10

Figure S22. (CIFAR100) MSE of different finite sample estimators with 0/1 loss. For each model architecture, we calculate the MSE of
the estimators using a pre-trained model on batch samples derived from the test set.
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Figure S23. (CIFAR100) MSE of different finite sample estimators with CE loss. For each model architecture, we calculate the MSE of
the estimators using a pre-trained model on batch samples derived from the test set.
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Figure S24. (Amazon) MSE of different finite sample estimators with 0/1 or CE loss. For each model architecture, we calculate the MSE
of the estimators using a pre-trained model on batch samples derived from the test set.
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Figure S25. (ImageNet) MSE of finite sample estimators with 0/1 or CE loss. For each model architecture, we calculate the MSE of the
estimators using a pre-trained model on batch samples derived from the test set.
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Figure S26. (Amazon) Finite sample estimators that utilize 0/1 or CE loss with different CSFs.
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Figure S27. (ImageNet) Finite sample estimators that utilize 0/1 loss with different CSFs.
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Figure S28. (ImageNet) Finite sample estimators that utilize CE loss with different CSFs.
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