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Abstract
The next-coordinate prediction paradigm has
emerged as the de facto standard in current auto-
regressive mesh generation methods. Despite
their effectiveness, there is no efficient measure-
ment for the various tokenizers that serialize
meshes into sequences. In this paper, we in-
troduce a new metric Per-Token-Mesh-Entropy
(PTME) to evaluate the existing mesh tokenizers
theoretically without any training. Building upon
PTME, we propose a plug-and-play tokenization
technique called coordinate merging. It further
improves the compression ratios of existing to-
kenizers by rearranging and merging the most
frequent patterns of coordinates. Through ex-
periments on various tokenization methods like
MeshXL, MeshAnything V2, and Edgerunner, we
further validate the performance of our method.
We hope that the proposed PTME and coordinate
merging can enhance the existing mesh tokenizers
and guide the further development of native mesh
generation.

1. Introduction
A number of recent methods (Siddiqui et al., 2023; Weng
et al., 2024a; Chen et al., 2024a;b;c; Tang et al., 2024a; Hao
et al., 2024; Weng et al., 2024b) have emerged that seri-
alize 3D meshes into sequences and model them using an
auto-regressive Transformer. These generated meshes typi-
cally preserve sharp edges and high-quality topology, which
can be easily incorporated into existing graphics pipelines.
However, there is no effective metric to measure the qual-
ity of these tokenizers theoretically. The common way to
evaluate them is through expensive training and observing
experimental results, which is time-consuming and the ran-
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Figure 1. Per-Token-Mesh-Entropy (PTME) Analysis. (a) Visu-
alization demonstrates that our Rearrange & Merge Coordinates
(RMC) method significantly enhances geometric detail preserva-
tion and better topology. (b) Comparative analysis between base-
line Merge Coordinates (MC) and the proposed RMC approach.
MC fails to reduce PTME, while our RMC framework effectively
minimizes token entropy.

domness is uncontrollable.

In this paper, we equip mesh serialization with a mathemat-
ical tool, entropy (Shannon, 1948). Generally, a sequence
with a lower total amount of information is usually easier for
sequence learning (Su, 2018). The comparison of total in-
formation can be transformed into a comparison of average
information entropy. Considering the properties of meshes,
different tokenizers can produce varying lengths for the
same mesh. Based on the simplest raw representation from
MeshXL (Chen et al., 2024a), we have summarized a set
of formulas called Per-Coordinate-Mesh-Entropy (PCME).
The PCME is equal to the product of information entropy
and compression rate, and it can be used to compare the
amount of information contained in a mesh sequence with a
single coordinate as the basic unit. The lower the PCME, the
easier the sequence is to learn. This metric can effectively
measure the quality of the tokenizer without any training.

With the guidance of PCME, we further consider how to
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reduce it to improve current mesh tokenizers. Through our
early observation, we found that the serialized coordinate
sequence has a large number of repeated patterns. We con-
sider merging multiple coordinates into additional tokens to
reduce the redundancy in sequence, thus further facilitating
mesh learning.

Consequently, we extended the Per-Coordinate-Mesh-
Entropy to Per-Token-Mesh-Entropy (PTME), where a to-
ken can be coordinate tokens or merged tokens. A good
mesh tokenizer should have a relatively low PTME. We
further validated PTME on existing tokenizers such as
MeshXL (Chen et al., 2024a), MeshAnythingV2 (Chen
et al., 2024c), and EdgeRunner (Tang et al., 2024a). Further-
more, we introduce coordinate merging, which further com-
presses these tokenizers by merging some high-frequency
coordinates to construct a new vocabulary. By increasing
the vocabulary size, more coordinates are compressed thus
the PTME is further reduced. Note that we implement token
merging through SentencePiece training, which is simple
and efficient.

We constructed a simple point cloud conditioned mesh gen-
eration pipeline to evaluate the proposed method empiri-
cally. We used the filtered Objaverse (Deitke et al., 2023)
and Objaverse-XL (Deitke et al., 2024)) as training data.
For a fair comparison, we only took the tokenizers from
MeshXL, MeshAnything V2, and EdgeRunner, and incorpo-
rated them into our framework for training and testing in the
7-bit discretization setting. Extensive experiments demon-
strate that our PTME is an effective method for evaluating
the superiority of mesh tokenizers, and that the Rearrange
& Merge Coordinates (RMC) can effectively increase the
number of mesh faces generated by previous tokenizers.

Our contributions can be summarized as follows:

• We make the first attempt to build a mathematical frame-
work, PTME, to evaluate existing mesh tokenizers without
any training.

• We introduce a simple yet effective coordinate merging to
further compress the mesh sequence.

• We achieve a state-of-the-art compression ratio of 21.2%
by combining EdgeRunner with token merging, showing
the effectiveness of the proposed coordinate merging.

2. Related Work
Indirect Mesh Generation. These approaches (Zhao
et al., 2024a; Jain et al., 2022; Long et al., 2023; Zhao
et al., 2025) predominantly utilize 3D generation networks
initially to generate alternative representations, followed by
post-processing procedures to obtain the mesh. Broadly,
most of them can be classified into four categories. The first
category comprises the SDS optimization methods grounded
in NeRF and Gaussian frameworks, as elucidated in (Jain
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Figure 2. Comparison of token length distribution between co-
ordinate merging techniques. while the baseline Merge Coor-
dinates (MC) method typically requires 2 coordinates per token
representation, the Rearrange & Merging Coordinates (RMC) ap-
proach achieves more efficient compression, with most coordinates
being represented by a single token.

et al., 2022; Poole et al., 2022; Wang et al., 2023; Chen
et al., 2023; Tang et al., 2023). These methods effectively
capitalize on the generalizable capabilities of 2D diffusion
models to mitigate the scarcity of 3D data. However, they
are constrained by the limited 3D perception of 2D models,
and are characterized by relatively slow processing speeds.
The second category is the single-image-to-multi-image
transformation combined with a reconstruction approach,
as detailed in (Long et al., 2023; Tang et al., 2024b; Yang
et al., 2024). This class of methods incorporates a finetuned
multi-view diffusion model. To a certain extent, it can al-
leviate the Janus problem. Nevertheless, it is restricted by
challenges related to multi-view consistency, resulting in
unstable generation outcomes. The third category pertains
to the Large Reconstruction Model (LRM), as demonstrated
in (Hong et al., 2023; Xu et al., 2024; Wei et al., 2024),
which showcases end-to-end training of a triplane-NeRF
regression. However, the reconstruction performance of
these methods has an upper bound. The fourth category con-
sists of the 3D DiT-based methods, as presented in (Zhao
et al., 2024b; Zhang et al., 2024; Chen et al., 2024d; Zhao
et al., 2025). These methods employ a substantial volume
of 3D data to train a foundation geometry model, currently
exhibiting the most proficient geometric control capabili-
ties. However, their model performance is limited by the

2



FreeMesh: Boosting Mesh Generation with Coordinates Merging

Variational Autoencoder (VAE) (Kingma, 2013), and an
additional UV painting model (Zeng et al., 2024) is utilized
for texturing purposes. All four of the aforementioned meth-
ods are indirect mesh-generation techniques. The meshes
derived from these methods typically contain an excessive
number of faces and are not directly suitable for production-
ready applications.

Direct Mesh Generation. Recently, methodologies uti-
lizing auto-regressive models for the direct generation of
meshes have emerged. MeshGPT (Siddiqui et al., 2023)
pioneered this approach by tokenizing a mesh through face
sorting and compression using a VQ-VAE, and then utiliz-
ing an auto-regressive transformer to predict the token se-
quence. It incorporates direct supervision from topological
information, which is often disregarded in other approaches.
Subsequent works (Weng et al., 2024a; Chen et al., 2024b)
have explored diverse model architectures and extended
this approach to conditional generation tasks, such as point
cloud generation. A concurrent work, MeshXL (Chen et al.,
2024a), operates directly at the coordinate-level, abandon-
ing the VQ-VAE. MeshAnythingV2 (Chen et al., 2024c) and
Edgerunner (Tang et al., 2024a) both introduce an improved
mesh tokenization technique in the geometric dimension, en-
abling approximately 50% compression. They are capable
of doubling the maximum number of faces under equivalent
computational power. Our approach also falls within the
category of auto-regressive mesh generation and is based on
the coordinate-level. It can further compress the data based
on the aforementioned serialization methods and further
extend the maximum face count.

Sub-Word Tokenizer. In the field of Language Models,
early methods were mainly word-level (Zhao et al., 2019)
and character-level (Al-Rfou et al., 2019). Word-level vo-
cabularies have trouble handling infrequent words within
limited sizes, while character-level approaches lead to overly
long sequences, hampering model learning. Currently, sub-
word level approaches are most popular (Xu et al., 2020),
with Byte-Pair Encoding (BPE) (Sennrich et al., 2016) be-
ing the pioneer in generating sub-word vocabularies. BPE
aims to obtain sub-word units through a greedy merging
algorithm. It starts with individual characters as basic units.
In the training corpus, it counts the frequency of all adjacent
character pairs. The most frequent pair is then merged into
a new sub-word. This iterative process creates increasingly
complex sub-words that capture morphological and seman-
tic information. For instance, if ”ab” is the most frequent
pair in the initial stage, it will be merged into ”ab”. Sub-
word vocabularies strike a balance between character-and
word-level ones. They reduce token sparsity compared to
word-level vocabularies, as they can handle rare words by
breaking them into common sub-components. Also, they
enhance feature sharing among semantically related words.

Unlike character-level vocabularies, sub-words shorten se-
quence lengths, which is beneficial for model efficiency. Af-
ter BPE, variants like SentencePiece (Kudo & Richardson,
2018) have emerged. Our method applies BPE to merge co-
ordinates. Just as BPE shortens language sequences, merg-
ing coordinates in this way reduces the length of coordinate-
based mesh sequence. This not only makes the data more
manageable but also improves the efficiency of models pro-
cessing coordinate information, leveraging the power of
sub-word tokenization in our specific application.

3. Method
3.1. Preliminary

This section delineates the pipeline for coordinate-based
mesh generation, which incorporates the raw coordinates of
meshXL primitive (RAW), in conjunction with the com-
pressed representations of Adjacent Mesh Tokenization
(AMT) and EdgeRunner (EDR).

In the RAW representation: A triangular mesh M =
(f1, f2, . . . , fn) consisting of n faces can be described as a
combination of faces fi.

fi = (v1i , v
2
i , v
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2
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3
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(1)

Here, each face fi consists of three vertices, and each vertex
vi includes 3D coordinates (xi, yi, zi), discretized using a
7-bit resolution. The vertices are sorted in ascending order
based on their z-y-x coordinates, and the faces are ordered
according to their lowest vertices. The vocabulary size VR

is 128, disregarding the differences between x, y, and z
coordinates.

In the AMT representation, when fi and fj are adjacent
and share an edge, fj can be represented by a single vertex
vj , with the other two vertices implicitly represented by
the last two vertices of fi. This property allows for an
effective reduction in sequence length. However, a single
traversal cannot guarantee complete coverage of all faces,
necessitating a special token & to indicate the end of a
subsequence. In our experiments, the compression ratio is
approximately 0.495. The vocabulary size VA is 129.

The EDR representation, similar to AMT, also leverages
the shared edge property to reduce redundancy. However, it
utilizes the Half-Edge data structure and introduces direc-
tional tokens, N and P . These tokens not only preserve the
direction of the original normal but also enable more flexible
identification of adjacent faces. Despite the introduction of
additional directional tokens, they allow a subsequence to
connect more faces, thereby reducing the number of sub-
sequences. The compression ratio remains comparable to
AMT, with an approximate value of 0.505 in our experi-
ments. The vocabulary size VE is 131.
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Figure 3. Coordinate Merging Pipeline. Given a mesh, we first select a mesh tokenizer to convert the 3D structure into a 1D coordinate
sequence. This sequence then undergoes rule-based rearrangement followed by token merging using the Byte Pair Encoding (BPE)
algorithm. This approach can significantly reduce the length of the sequence, enabling the poly generation model to generate meshes with
more faces.

The proposed tokenization can be effortlessly integrated
into mesh generation. The token sequences are modeled
by a conventional auto-regressive Transformer with param-
eter θ, optimizing the log probability. The cross-attention
mechanism is utilized for point cloud conditions c, with
coordinates ci

L(θ) =

|SeqV |∏
i=1

p(ci|c1:i−1, c; θ), (2)

where |SeqV | denotes the total length of the sequence, and
V represents the set of coordinates .

3.2. Per-Token-Mesh-Entropy

Given a mesh M , we use the geometric tokenizer (Sec-
tion 3.1) to generate a coordinate sequence SeqVc

. The
raw sequence SeqVR

, produced by MeshXL (Chen et al.,
2024a), treats coordinates as atomic units. Let Vc denote
the set of unique coordinates. The amount of information of
a coordinate c is I(c) = − log pc, where pc is its empirical
probability. The total amount of information of SeqVc

is:

Itotal = −
∑

c∈SeqVc

log pc. (3)

To reduce redundancy, adjacent coordinates are merged into
substrings, producing a compressed sequence SeqVs

with
unique substrings Vs. The total information content of the
merged sequence is:

Imerged = −
∑

s∈SeqVs

log ps, (4)

where ps is the probability of substring s. Merging exploits
spatial coherence to reduce memory burden, theoretically
ensuring:

Imerged < Itotal. (5)

Let Nc and Ns denote the frequencies of coordinate c and
substring s, respectively. Aggregating recurrent units, Equa-
tion (5) becomes:

−
∑
s∈Vs

Ns log ps < −
∑
c∈Vc

Nc log pc. (6)

Normalizing by the raw sequence length |SeqVR
|, the right-

hand side of Equation (6) becomes the Per-Coordinate-
Mesh-Entropy(PCME):

PCME = −
∑
c∈Vc

Nc

|SeqVR
|
log pc = Hc × CR, (7)

where Hc = −
∑

c∈Vc
pc log pc, This represents the av-

erage entropy per coordinate and CR = |SeqVc
|/|SeqVR

|
represents compress ratio.

The left-hand side defines the Per-Token-Mesh-Entropy
(PTME) for merged substrings:

PT ME = −
∑
s∈Vs

Ns

|SeqVR
|
log ps =

Hs

l
× CR, (8)

where Hs = −
∑

s∈Vs
ps log ps is the substring entropy,

and l is the average substring length. Full derivations are in
Appendix A.

3.3. Coordinates Merging

After introducing Per-Token-Mesh-Entropy (PTME), our
goal is to minimize it to enhance the model’s capability. In
the following, we will introduce our baseline Merge Coordi-
nates (MC) algorithm and its improved version, Rearrange
& Merge Coordinates (RMC).

MC: Merge Coordinates (Baseline). The baseline ap-
proach implements coordinate merging through a three-
phase process: 1. Vocabulary Initialization: Construct
a vocabulary of 128 entries mapping integer coordinates
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Algorithm 1 Rearrange Coordinate Encode Operation
def rac_encode(nums):

X = nums[0::3]
Y = nums[1::3]
Z = nums[2::3]
return X + Y + Z

def rac_encode_full(nums):
if len(nums) < 9:

return rac_encode(nums)
remainder = len(nums) % 9
head_start = 0
head_end = 9
head = rac_encode(nums[head_start:head_end])
neck_start = head_end
neck_end = len(nums) - remainder
neck_len = (neck_end - neck_start) // 9
neck = []
for i in range(neck_len):

cur_seq = nums[neck_start+i*9:neck_start+(i+1)
*9]

neck.extend(rac_encode(cur_seq))
if remainder > 0:

tail = rac_encode(nums[neck_end:])
else:

tail = []
return head + neck + tail

(0-127) to atomic Chinese character units, thereby establish-
ing fundamental indivisible tokens. In AMT, this number
is 129, while in EDR, it is 131. 2. Dynamic Merging:
(a) Statistically analyze the frequencies of adjacent coordi-
nate pairs across training meshes; (b) Iteratively merge the
pair with the highest frequency into new composite tokens;
(c) Update sequences with merged tokens until the target
vocabulary size is reached. The implementation leverages
SentencePiece (Kudo & Richardson, 2018): 10k meshes
are serialized as Chinese character streams (one mesh per
line) and aggregated into a unified training corpus. While
the compression ratio is reduced (Fig. 5), Fig. 1 shows that
PTME paradoxically increases across serializations due to
the limitations of BPE’s cross-axis perception.

RMC: Rearrange & Merge Coordinates. This method
enhances MC through sequence restructuring: Group coordi-
nates as 9-character units (x1

i , x
2
i , x

3
i , y

1
i , y

2
i , y

3
i , z

1
i , z

2
i , z

3
i ).

The key implementation (Algs. 1 & 2) involves addressing
two challenges: a) AMT/EDR subsequences are of variable
length and not multiples of 9, and b) In EDR representa-
tion, direction words and coordinates alternate. For the
former, we group in units of 9 and handle any less than 9
specially. For the latter, within a subsequence, we move the
direction words before the coordinates. The rearrangement
preserves PTME (Table 1 confirms minimal performance
impact) while enabling significant entropy reduction when
merging coordinates (Fig. 1). Following BPT (Weng et al.,
2024b) principles for dense context utilization, we select
a vocabulary size of 8192: PTME reduction plateaus be-
yond this threshold while maintaining manageable class
complexity.

Algorithm 2 Rearrange Coordinates Decode Operation
def rac_decode(nums):

k = len(nums) // 3
X = nums[:k]
Y = nums[k:2*k]
Z = nums[2*k:]
return [val for triplet in zip(X, Y, Z) for val in

triplet]

def rac_decode_full(nums):
if len(nums) < 9:

return rac_decode(nums)
remainder = len(nums) % 9
if remainder < 3:

nums = nums[:-remainder]
remainder = 0

elif remainder < 6:
nums = nums[:- (remainder - 3)]
remainder = 3

else:
nums = nums[:- (remainder - 6)]
remainder = 6

head_start = 0
head_end = 9
head = rac_decode(nums[head_start:head_end])
neck_start = head_end
neck_end = len(nums) - remainder
neck_len = (neck_end - neck_start) // 9
neck = []
for i in range(neck_len):

cur_seq = nums[neck_start+i*9:neck_start+(i+1)
*9]

neck.extend(rac_decode(cur_seq))
tail = rac_decode(nums[neck_end:]) if remainder > 0

else []
return head + neck + tail

4. Experiments
4.1. Experiment Settings

Datasets. Our model’s training data comprise
ShapeNetV2 (Chang et al., 2015), 3D-FUTURE (Fu
et al., 2021), Objaverse (Deitke et al., 2023), and Objaverse-
XL (Deitke et al., 2024). The total number of meshes is
approximately 1 million. However, the serialized lengths of
the data can vary depending on the method used. We set the
Transformer’s context window to 9,000, thereby excluding
sequences with serialized lengths exceeding this limit from
the training process. As a result, the actual numbers of
data utilized can differ across methods. For our test set, we
sampled around 500, 1000, 2000, and 4000 face numbers
to reflect the model’s generalization under various face
numbers.

Baselines. Our subword tokenizer builds upon these
coordinate-level mesh generation methods: MeshXL (Chen
et al., 2024a), Meshanythingv2 (Chen et al., 2024c), and
EdgeRunner (Tang et al., 2024a). To ensure a fair compari-
son, we employ a consistent model architecture across all
methods, specifically a simple point cloud conditioned auto-
regressive mesh generation. The only difference lies in the
tokenizer algorithms used to convert mesh into sequences,
which we adopt from the respective methods.
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Figure 4. Comparison on point-cloud conditional generation. The figure above shows the results of generating meshes conditioned on
point clouds sampled from meshes with different face numbers. Using the RMC can significantly improve the quality of the topology and
the stability of generation, especially on higher face numbers.
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Metrics. To evaluate the effectiveness of the tokenizer, we
primarily measure two metrics. The first is the newly pro-
posed Per-Token-Mesh-Entropy (PTME), where a lower
value indicates that the serialized data is more suitable for
sequence learning. We also calculate the Compressive
Ratio (CR), which represents the compression rate. A
smaller value implies that, given the same context window,
the model can process data with a higher number of faces.
For point cloud conditioned generation, we primarily mea-
sure the Chamfer Distance (CD) and Hausdorff Distance
(HD). Both are used to measure the distance between sets,
in this case, the distance between the point clouds sampled
from our generated mesh and the dense mesh. These metrics
reflect the model’s control ability. For both CD and HD, a
lower distance indicates better performance.

Implementation Details. For coordinate merging, we
implement the Byte-Pair Encoding (BPE) algorithm from
Google’s SentencePiece (Kudo & Richardson, 2018). Each
mesh is first serialized and tokenized into atomic Chinese
characters, with individual meshes represented as single-
line character sequences. Our training dataset comprises
10,000 meshes, with vocabulary sizes systematically eval-
uated across 256, 512, 1024, 2048, 4096, 8192. The coor-
dinate merging algorithm completed training in under one
hour on CPU-only hardware. Our auto-regressive Trans-
former architecture adopts cross-attention conditioning fol-
lowing BPT (Weng et al., 2024b), with a point cloud encoder
adapted from Michelangeo (Zhao et al., 2024b) processing
8,192 sampled points. The mesh transformer features 24
layers with 1,024 hidden dimensions, 16 attention heads (64
dimensions per head), and DeepSpeed ZeRO2 parallelism.
Training executed on 48 H20 GPUs with a per-GPU batch
size of 2 for four days, utilizing Flash Attention and bf16
mixed precision. The point cloud encoder remained frozen
for the first 48 hours before fine-tuning commenced. We
employ AdamW (Loshchilov & Hutter, 2017) optimization
(β1 = 0.9, β2 = 0.999) with 0.1 weight decay and cosine
annealing, decaying the learning rate from 10−4 to 6×10−5.
Inference acceleration leverages KV caching for efficient
sequence generation.

4.2. Qualitative Experiments

We present the qualitative results of both our reproduced
baseline and improved methods. However, since we merely
employ a standard auto-regressive transformer with simple
position embedding, the results might differ from those
reported in the original baseline paper. Nonetheless, these
results are sufficient to substantiate our conclusions. As
depicted in Fig. 4, some methods like RAW Representation,
which have only been trained on datasets with up to 1k
faces, perform poorly on high-polygon meshes. This is
due to the low-to-high sorting order and the tendency to
consume too many tokens in fitting local features, often
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Figure 5. Compression ratio comparison of tokenizers with co-
ordinate merging techniques. We systematically evaluate base-
line Merge Coordinates (MC) and Rearrange & Merge Coordinates
(RMC) across varying vocabulary sizes. Both methods exhibit de-
creasing compression ratios with expanding vocabulary, while
RMC demonstrates a steeper reduction gradient than MC.

resulting in damage to the upper parts. The performance
of AMT and EDR is slightly better. It is easy to observe
that the baseline Merge Coordinates (MC) does not improve
the results generated by the model, and the Rearrangement
coordinates (RAC) do not degrade the performance. Only
the use of Rearrange & Merge Coordinates (RMC) improves
the generated results. Among them, EDR + RMC performs
the best, with fewer holes and better topology.

4.3. Quantitative Experiments

We validate and analyze the effectiveness of our coordinate-
merging methods (MC and RMC) based on RAW from
MeshXL (Chen et al., 2024a), AMT from MeshAny-
thingV2 (Chen et al., 2024c), and EDR from Edgerun-
ner (Tang et al., 2024a). The final vocabulary size for all
coordinate-merging methods is 8192.

Usable Mesh Number. Different mesh serialization meth-
ods produce varying sequence lengths for the same mesh.
Given our 9,000-token context window constraint, meshes
exceeding this length threshold were excluded from train-
ing. By implementing the RMC compression method, we
achieved a significant reduction in sequence length. This
allowed us to incorporate meshes that were previously ex-
cluded due to exceeding the token limit. As shown in Figure
6, we compared three baseline serialization methods with
their RMC-enhanced counterparts using a stratified sample
of 100k meshes from our 1M mesh dataset. This analy-
sis demonstrates the effectiveness of RMC in expanding
the number of usable training samples through intelligent
sequence compression.

Token Length Distribution. As shown in Figure 2, base-
line Merge Coordinates (MC) methods yield sequences with
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Table 1. Comparison of Mesh Tokenization Methods. We evaluate different tokenization strategies and their impacts on mesh generation
quality. Metrics (PTME, Hausdorff, and Chamfer distances) are computed using 10K sampled points per mesh. Lower values (↓) indicate
better performance. Abbreviations: MC = Merge Coordinates, RAC = Rearrange Coordinates, RMC = Rearrange + Merge Coordinates.

Method Compress Ratio ↓ PTME ↓ Hausdorff ↓ Chamfer ↓
RAW (Chen et al., 2024a) 1.000 6.742 0.647 0.326
AMT (Chen et al., 2024c) 0.495 3.349 0.428 0.219
EDR (Tang et al., 2024a) 0.505 3.139 0.408 0.198

RAW + MC 0.641 6.943 0.668 0.334
AMT + MC 0.339 3.451 0.443 0.232
EDR + MC 0.381 3.244 0.423 0.204

RAW + RAC 1.000 6.742 0.655 0.329
AMT + RAC 0.495 3.349 0.437 0.226
EDR + RAC 0.505 3.139 0.413 0.202

RAW + RMC 0.460 4.937 0.543 0.282
AMT + RMC 0.254 2.537 0.325 0.164
EDR + RMC 0.212 2.231 0.280 0.123
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78,279

99,177 99,982
W/O RMC
RMC

Figure 6. Usable Mesh number Comparison Across Serializa-
tion Methods and Their RMC Variants. The RMC approach
significantly increases the number of admissible training samples
through enhanced sequence compression.

high token counts: RAW+MC (7688), AMT+MC (7893),
and EDR+MC (8017), where most tokens represent 2 coor-
dinates. In contrast, our Rearrange & Merge Coordinates
(RMC) approach achieves significantly shorter sequences:
RAW+RMC (5697), AMT+RMC (5507), and EDR+RMC
(5155), with tokens predominantly encoding 3 coordinates
and often single-token representations for most coordinates.
Notably, EDR+RMC uniquely benefits from direction words
pre-encoded as 01-strings, enabling extreme compression:
one token can represent up to 16 coordinates.

Point Cloud Condition Generation Results. In Table 1,
we can observe the following: a) Metric Effectiveness. The
PTME metric shows a stronger correlation with generation
quality than the compression ratio (CR). EDR and AMT
have comparable CR values (0.505 for EDR and 0.495 for
AMT). However, EDR has a 13.3% lower PTME value
(3.139 compared to 3.349), indicating that the tokenized
sequence is more easily learned by the model. This is sup-
ported by a 5.1% improvement in the Hausdorff distance

(0.408 vs. 0.428). Thus, CR mainly reflects data com-
pactness, while PTME captures the sequence geometric
coherence crucial for autoregressive modeling. b) Sequence
Order Invariance. Coordinate rearrangement (RAC) in-
duces minimal performance variation across all baselines.
The RAW method shows only a 0.003 fluctuation in Cham-
fer distance (0.326 → 0.329), confirming the robustness of
transformer architectures to local permutation invariance.
This property enables flexible sequence optimization with-
out compromising model trainability. c) Rearrange Se-
quence then Merge Works. The RMC approach yields
nonlinear performance gains, particularly in the EDR+RMC
configuration: a 58% reduction in CR (0.505 → 0.212),
a 28.9% improvement in PTME (3.139 → 2.231), and a
37.9% enhancement in Chamfer distance (0.198 → 0.123).
This method, by overcoming the limitations of the original
Adjacent merge that cannot span across coordinate axes,
achieves lower PTME and CR values, and ultimately ex-
hibits excellent performance in generation. It is a successful
coordinate merge strategy.

5. Limitations and Future Work
While our proposed method provides an effective com-
pression mechanism, its performance, particularly the
Coordinate-Merge component, has been primarily evaluated
under a vertex quantization level of 128. At this quantiza-
tion level, the Coordinate-Merge strategy effectively com-
presses multiple adjacent coordinates into a single token by
exploiting common patterns. However, if the vertex quan-
tization is increased to 1024, which represents the typical
precision required for industry-standard meshes, the fre-
quency of identical adjacent coordinate patterns is expected
to decrease significantly. Consequently, the effectiveness

8



FreeMesh: Boosting Mesh Generation with Coordinates Merging

of pattern-based merging methods like ours might be di-
minished at such higher precision levels. This observation
highlights a key area for future work. Our current merge
strategy utilizes a fixed greedy algorithm. Exploring more
dynamic merging strategies could adapt better to varying
data characteristics and quantization levels. We believe that
adopting approaches similar to byte-level dynamic merging
techniques (Pagnoni et al., 2024), which can dynamically
adjust the merging based on data statistics, could lead to
further improvements in compression efficiency and robust-
ness.

6. Conclusion
We present Per-Token-Mesh-Entropy (PTME), a theory-
driven metric for evaluating mesh tokenizers without train-
ing, and coordinate merging, a plug-and-play technique
to enhance tokenizer efficiency. PTME quantifies sequence
learnability by balancing entropy and compression, reveal-
ing that merging high-frequency coordinate patterns reduces
redundancy. Experiments show our method achieves a
21.2% compression ratio with EdgeRunner, and state-of-
the-art generation results outperforming existing tokenizers
like MeshXL and MeshAnything V2 and original EdgeRun-
ner. These contributions offer a principled framework for
advancing mesh generation, prioritizing efficiency and geo-
metric fidelity. Future work may extend PTME to broader
representations and adaptive merging strategies.
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A. Per-Token-Mesh-Entropy
The Per-Token-Mesh-Entropy (PTME) is derived as follows:

PT ME = −
∑
s∈Vs

Ns

|SeqVR
|
log ps

=

(
−
∑
s∈Vs

Ns

|SeqVs
|
log ps

)/( |SeqVR
|

|SeqVs
|

)

=

(
−
∑
s∈Vs

ps log ps

)/( |SeqVc
|

CR × |SeqVs
|

)

=

(
−
∑
s∈Vs

ps log ps

)/(∑
s∈Vs

Nsls

|SeqVs
|

)
× CR

=

(
−
∑
s∈Vs

ps log ps

)/(∑
s∈Vs

psls

)
× CR

=
Hs

l
× CR,

(9)

where:

• ps =
Ns

|SeqVs
| is the empirical probability of substring s,

• ls denotes the number of coordinates in substring s,

• Hs = −
∑

s∈Vs
ps log ps is the entropy of substrings,

• l =
∑

s∈Vs
Nsls

|SeqVs
| =

∑
s∈Vs

psls is the average substring length (in coordinates),

• CR =
|SeqVc

|
|SeqVR

| is the compression ratio of the raw sequence.

B. Further Results
Low-Polygon Generation versus Re-meshing We conducted comparative experiments on low-polygon generation using
dense meshes from (Team, 2025). As shown in Figure 7, our RMC-enhanced Edgerunner (Tang et al., 2024a) model
outperforms traditional remeshing methods in terms of topological preservation.

Ours Remesh (5k face)Dense Mesh Remesh (1k face)

Figure 7. Comparative analysis of remesh approaches. Our method versus traditional remeshing techniques with 5k and 1k face targets.
However, for some cases with complex structures, the generation method is not robust enough and is prone to damage.
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C. Proof
Given that RAW, AMT, EDR representations and naive merge coordinates all induce a slight increase in PTME, we analyze
PCME using RAW as an exemplar while assuming CR remains constant.

Let Ni denote the frequency of substring i with total frequency N . We estimate pi = Ni/N , where li represents the length
of substring i. The PCME metric is defined as:

PCME =
H
l
=

−
∑

i pi log pi∑
i pili

(10)

Consider merging adjacent items a and b with joint frequency Nab. Pre-merging probability is pab = Nab/N . Post-merging,
the total frequency becomes Ñ = N −Nab, yielding updated probabilities:

p̃ab =
pab

1− pab
,

p̃a =
pa − pab
1− pab

,

p̃b =
pb − pab
1− pab

,

p̃i =
pi

1− pab
, (i ̸= a, b)

(11)

The updated entropy measure becomes:

H̃ = − 1

1− pab

pab log pab
1− pab

+
∑
i=a,b

(pi − pab) log
pi − pab
1− pab

+
∑
i ̸=a,b

pi log
pi

1− pab


=

1

1− pab
(H−Fab)

(12)

where:

Fab = pab log
pab
papb

− (1− pab) log(1− pab) +
∑
i=a,b

(pi − pab) log

(
1− pab

pi

)
(13)

The effective length transforms as:

l̃ =
pab(la + lb) +

∑
i=a,b(pi − pab)li +

∑
i ̸=a,b pili

1− pab

=
l

1− pab

(14)

Thus, the PCME difference becomes:

H̃
l̃
− H

l
= −Fab

l
(15)

For pab ≪ pa, pb, we approximate using natural logarithms:
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ln(1− pab) ≈ −pab

ln

(
1− pab

pi

)
≈ −pab

pi

(16)

Substituting into Fab while neglecting higher-order terms yields:

Fab ≈ F∗
ab = pab

(
ln

pab
papb

− 1

)
(17)

where PMI(a, b) = ln pab

papb
denotes Pointwise Mutual Information. To reduce H̃/l̃, we require Fab ≥ 0, which necessitates

maximizing pab

papb
. This implies two requirements:

• High co-occurrence probability pab

• Strong mutual information (PMI ≥ 1)

The observed PCME increase stems from insufficient pab values. Our rearrangement strategy enhances pab by increasing
substring co-occurrence probabilities.

D. More Analysis
PTME vs Perplexity (PPL). While PPL is a standard language modeling metric, it requires model training and, in our
specific task of molecular generation with RMC, it correlates poorly with final generation quality. Empirically, we observed
that the training loss (related to PPL) often plateaus early in training (e.g., around 0.2 for a vocabulary size of 8k, and 0.1 for
256) while the quality of generated molecules, as measured by downstream metrics like Chamfer Distance (CD), continues
to improve significantly beyond 100k training steps. This suggests a weak direct correlation between PPL/loss and final
generation performance in this context. To further illustrate this weak correlation, we calculated the Pearson correlation
coefficient between the training loss without RMC (closer to standard language modeling loss) and the downstream CD
without RMC, finding a value of r = −0.407 (p = 0.423). The table below also shows how loss values do not consistently
predict CD across different methods:

Table 2. Loss vs CD comparison across methods.

Method Loss (w/o RMC) CD (w/o RMC) Loss (w/ RMC) CD (w/ RMC)

RAW 0.103 0.326 0.202 0.282
AMT 0.105 0.219 0.205 0.164
EDR 0.099 0.198 0.198 0.123

In contrast, PTME offers a training-free evaluation of tokenizers, which is a significant advantage for quickly assessing
tokenizer effectiveness. Furthermore, as detailed in the next paragraph, PTME demonstrates a strong empirical correlation
with the downstream generation quality metric (CD).

PTME and CD Correlation Analysis. We specifically investigated the relationship between PTME and Chamfer Distance
(CD) for the EDR+RMC setup under varying vocabulary sizes. We calculated the Pearson correlation coefficient and found
a strong positive linear correlation: r = 0.965 (p = 0.0004). This highly significant correlation value empirically validates
PTME as a reliable and efficient training-free metric for evaluating the quality of tokenizers in the context of molecular
generation using EDR+RMC, as a higher PTME score strongly indicates better downstream generation performance
measured by lower Chamfer Distance.
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