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ABSTRACT

We propose LEAPS, an algorithm to sample from discrete distributions known up to
normalization by learning a rate matrix of a continuous-time Markov chain (CTMC).
The method can be seen as a continuous-time formulation of annealed importance
sampling and sequential Monte Carlo methods, extended so that the variance of
the importance weights is offset by the inclusion of the CTMC. To derive these
importance weights, we introduce a set of Radon-Nikodym derivatives of CTMCs
over their path measures. Because the computation of these weights is intractable
with standard neural network parameterizations of rate matrices, we devise a new
compact representation for rate matrices via what we call locally equivariant
functions. To parameterize them, we introduce a family of locally equivariant
multilayer perceptrons, attention layers, and convolutional networks, and provide
an approach to make deep networks that preserve the local equivariance. This
property allows us to propose a scalable training algorithm such that the variance
of the importance weights associated to the CTMC are minimal. We demonstrate
the efficacy of our method on problems in statistical physics.

1 INTRODUCTION
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Figure 1: Illustration of the LEAPS
algorithm. LEAPS allows to learn a
dynamical transport of discrete distribu-
tions from t = 0 to t = 1 (blue). Sam-
ples are generated via the simulation of a
Continuous-time Markov chain (yellow).
Further, importance sampling weights al-
low to correct training errors (red).

A prevailing task across statistics and the sciences is to
draw samples from a probability distribution whose prob-
ability density is known up to normalization. Solutions
to this problem have applications in topics ranging across
Bayesian uncertainty quantification (Gelfand & Smith,
1990), capturing the molecular dynamics of chemical com-
pounds (Berendsen et al., 1984; Allen & Tildesley, 1987),
and computational approaches to statistical and quantum
physics (Wilson, 1974; Duane et al., 1987; Faulkner &
Livingstone, 2023).

The most salient approach to such sampling problems is
Markov chain Monte Carlo (MCMC) (Metropolis et al.,
1953; Robert et al., 1999), in which a randomized process
is simulated whose equilibrium is the distribution of inter-
est. While powerful and widely applied, MCMC methods
can be inefficient as they suffer from slow convergence
times into equilibrium, especially for distributions exhibit-
ing multi-modality. Therefore, MCMC is often combined
with other techniques that rely on non-equilibrium dy-
namics, e.g. via annealing from a simpler distribution
with importance sampling (IS) (Kahn & Harris, 1951)
or sequential Monte Carlo methods (SMC) (Neal, 2001;
Doucet et al., 2001). Even then, the variance of these
importance weights may be untenably large, and making
sampling algorithms more efficient remains an active area
of research. Inspired by the rapid progress in generative
modeling, there has been extensive interest in augmenting
contemporary sampling algorithms with learning (Noé et al., 2019; Albergo et al., 2019; Gabrié et al.,
2022; Nicoli et al., 2020; Matthews et al., 2022).
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Recently, there has been rapid progress in development of generative models using techniques from
dynamical measure transport, i.e. where data from a base distribution is transformed into samples
from the target distribution via flow or diffusion processes (Ho et al., 2020; Song et al., 2020; Albergo
& Vanden-Eijnden, 2022; Albergo et al., 2023; Lipman et al., 2023; Liu et al., 2022). While there have
been various developments on adapting these non-equilibrium dynamics for sampling in continuous
state spaces (Zhang & Chen, 2022; Vargas et al., 2023; Máté & Fleuret, 2023; Tian et al., 2024;
Albergo & Vanden-Eijnden, 2024; Richter & Berner, 2024; Akhound-Sadegh et al., 2024; Sun et al.,
2024), there is a lack of existing literature on such approaches for discrete distributions.

However, discrete data are prevalent in various applications, such as in the study of spin models in
statistical physics, protein and genomic data, and language. For generative modeling, a new family of
models via continuous time Markov chains (CTMCs), commonly called ”discrete diffusion” models,
for discrete state spaces (Campbell et al., 2022; Bengio et al., 2021; Austin et al., 2021; Lou et al.,
2023; Gat et al.; Shaul et al., 2024; Campbell et al., 2024), have gained popularity. Here, we provide a
new solution to the discrete sampling problem via CTMCs assuming access only to the unnormalized
probability mass function. Our main contributions are:

• We introduce LEAPS, a sampler for discrete distributions via CTMCs that combines annealed
importance sampling and sequential Monte Carlo with learned measure transport.

• To define the importance weights, we derive a Radon-Nikodym derivative for reverse-time
CTMCs, control of which minimizes the variance of these weights.

• We show that the measure transport can be learnt and the variance of the importance weights
minimized by optimizing a physics-informed neural network (PINN) loss function.

• We make the computation of the PINN objective scalable by introducing the notion of a
locally equivariant network. We show how to build locally equivariant versions of common
neural network architectures, including attention and convolutions.

• We experimentally verify the correctness and efficacy of the resulting LEAPS algorithm in
high dimensions via simulation of the Ising model.

2 SETUP AND ASSUMPTIONS

In this work, we are interested in the problem of sampling from a target distribution ρ1 on a finite
state space S. We refer to ρ1 by its probability mass function (pmf) given by

ρ1(x) =
1

Z1
exp(−U1(x)) (x ∈ S), (1)

where we assume that we do not know the normalization constant Z1 but only the function potential
U1. Our goal is to produce samples X ∼ ρ1. To achieve this goal, it is common to construct a
time-dependent probability mass function (pmf) (ρt)0≤t≤1 over S which fulfils that ρ0 has a
distribution from which we can sample easily, e.g. ρ0 = UnifS , and ρ1 is our target of interest. We
write ρt as:

ρt(x) =
1

Zt
exp(−Ut(x)), Zt =

∑
y∈S

exp(−Ut(y)), Ft = − logZt (2)

where Zt (or equivalently Ft) is unknown. The value Ft is also called the free energy. Throughout,
we assume that Ut is continuously differentiable in t. Note that for the case of ρ0 = UnifS so that
U0(x) = 0, we get that ρt ∝ exp(−tU1(x)) that can be considered a form of temperature annealing.

3 BACKGROUND: CONTINUOUS-TIME MARKOV CHAINS (CTMCS)

In this work, we seek to sample from ρ1 using continuous-time Markov chains (CTMC). A CTMC
(Xt)0≤t≤1 is given by a set of random variables Xt ∈ S (0 ≤ t ≤ 1) whose evolution is determined
by a time-dependent rate matrix Qt(y, x) (0 ≤ t ≤ 1, x, y ∈ S) which fulfills the conditions:

Qt(y;x) ≥0 (for y ̸= x), Qt(x;x) = −
∑
y ̸=x

Qt(y, x) (for x ∈ S) (3)

The rate matrix Qt determines the generator equation
P[Xt+h = y|Xt = x] = 1x=y + hQt(y, x) + o(h) (4)
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for all x, y ∈ S and h > 0 where o(h) describes an error function such that lim
h→0

o(h)/h = 0. Our

goal is to find a Qt that is a solution to the Kolmogorov forward equation (KFE)

∂tρt(x) =
∑
y∈S

Qt(x, y)ρt(y), ρt=0 = ρ0. (5)

Fulfilling the KFE is a necessary and sufficient condition to ensure that the distribution of walkers
initialized as X0 ∼ ρ0 and evolving according to (3) follow the prescribed path ρt, in particular such
that Xt=1 ∼ ρ1.

4 IMPORTANCE SAMPLING WITH CTMCS

In general, the CTMC (Xt)0≤t≤1 with arbitrary Qt will have different marginals than ρt. To still
obtain an unbiased estimator, it is common to use importance sampling (IS) to reweigh samples
obtained while simulating Xt. Here, we introduce a time-evolving set of log-weights At ∈ R for
0 ≤ t ≤ 1 to re-weight the distribution of Xt to a distribution µt defined such that for all h : S → R

Ex∼µt
[h(x)] =

E[exp(At)h(Xt)]

E[exp(At)]
⇔ µt(x) =

E[exp(At)|Xt = x]∑
y∈S

E[exp(At)|Xt = y]
,

where E[·] denotes expectation over the process (Xt, At). Intuitively, the distribution µt is obtained
by re-weighting samples from the current distribution of Xt. This effectively means that from a finite
number of samples (X1

t , A
1
t ), . . . , (X

n
t , A

n
t ), we can obtain a Monte Carlo estimator of Ex∼µt [h(x)].

Our goal is to find a scheme of computing At such that its reweighted distribution coincides with the
target densities ρt, i.e. µt = ρt for all 0 ≤ t ≤ 1.

We next derive a proposed scheme of computing weights At. Before we provide a formal explanation
from first principles, we first provide a heuristic derivation of our proposed scheme in the following
paragraph. Intuitively, the log-weights At should accumulate the deviation from the true distribution
of Xt to the desired distribution ρt. We can rephrase this as ”accumulating the error of the KFE” that
one may want to write as the difference between both sides of equation (5):

∂tρt(x)−
∑
y∈S

Qt(x, y)ρt(y)

As we do not know the normalization constant Zt, it is intuitive to divide by ρt(x) and use that
−∂tFt + ∂tUt(x) = −∂t log ρt(x) = −∂tρt(x)/ρt(x) to obtain after dropping the constant −∂tFt

Ktρt(x) =
∂tρt(x)

ρt(x)
−

∑
y∈S

Qt(x, y)
ρt(y)

ρt(x)
= −∂tUt(x)−

∑
y∈S

Qt(x, y)
ρt(y)

ρt(x)
(6)

where we defined a new operator Ktρt. Intuitively, the operator Kt measures the violation from the
KFE in log-space and it is intuitive to define At as the accumulated error of that violation, i.e. as the
integral

At =

t∫
0

Ksρs(Xs)ds ⇔ At+h ⇒ At + hKtρt(Xt) (t = 0, h, 2h, 3h, . . . ) (7)

We call this the proactive update as the update anticipates where Xt is jumping to. We next provide
a rigorous characterization of At defined in this manner.

5 IS VIA RADON-NIKODYM DERIVATIVES

Apriori, it is not clear that the log-weights At that we obtain via the proactive rule provide a valid
IS scheme. Next, we show that there are many possible IS schemes but the proactive update rule
is optimal among a natural family of IS schemes. The state space that we are interested in is the
space X of CTMC trajectories defined as X = {X : [0, 1]→ S|Xt− exists and Xt+ = Xt}, i.e. all
trajectories that are continuous from the right with left limits. Such trajectories are commonly called
càdlàg trajectories. We consider path distributions (or path measures), i.e. probability distributions
over trajectories. For a CTMC X = (Xt)0≤t≤1 with rate matrix Qt and initial distribution µ, we
denote the corresponding path distribution as

−→
P µ,Q where the arrow

−→
P denotes that we go forward

in time. Similarly, we denote with
←−
P ν,Q′

a CTMC running in reverse time initialized with ν. We
present the following proposition whose proof can be found in Appendix A:
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Proposition 5.1. Let µ, ν be two initial distributions over S. Let Qt, Q
′
t be two rate matrices. Then

the Radon-Nikodym derivative of the corresponding path distributions running in opposite time over
the time interval [0, t] is given by:

log
d
←−
P ν,Q′

d
−→
P µ,Q

(X) = log

(
ν(Xt)

µ(X0)

)
+

t∫
0

Q′s(Xs, Xs)−Qs(Xs, Xs)ds+
∑

X−
s ̸=Xs

log

(
Q′s(X

−
s , Xs)

Qs(Xs, X
−
s )

)
where we sum over all points where Xs jumps in the last term.

Let us now revisit our goal of finding an IS scheme to sample from the target distribution ρ1. The key
idea is to construct a CTMC running in reverse-time with initial distribution ρt and then use the RND
from Proposition 5.1. For a function h : S → R, we can then express its expectation under ρt as:

Ex∼ρt
[h(x)] = E

X∼
←−
P ρt,Q

′ [h(Xt)] = E
Y∼
−→
P ρ0,Q

[
h(Xt)

d
←−
P ρt,Q

′

d
−→
P ρ0,Q

(X)

]
(8)

i.e. the RND d
←−P ρ1,Q′

d
−→P ρ0,Q

(X) gives a valid set of importance weights. Note that this holds for arbitrary
Q′t. However, to sample efficiently, it is crucial that the IS weights have low variance. Therefore,
we will now derive the optimal IS scheme of this form. Ideally the weights will have zero variance -
in other words the RND d

←−P ρ1,Q′

d
−→P ρ0,Q

(X) will be constant = 1. This is the case if and only if the path
measures are the same, i.e. if the CTMC in reverse time is a time-reversal of the CTMC running
in forward time. It is well-known that this is equivalent to Q′t(y, x) = Qt(x, y)qt(y)/qt(x) for all
y ̸= x where qt denotes the true marginal of Xt, i.e. Xt ∼ qt. As we strive to make qt = ρt, it is
natural to set qt = ρt and define Q′t = Q̄t as

Q̄t(y, x) =Qt(x, y)
ρt(y)

ρt(x)
for all y ̸= x, Q̄t(x, x) = −

∑
y∈S,y ̸=x

Qt(x, y)
ρt(y)

ρt(x)
(9)

Let us now return to the proactive update that we defined in (7). We can now rigorously characterize
it. Plugging in the definition of Q̄, we can use Proposition 5.1 to obtain the main result of this section:
Theorem 5.2. For the proactivate updates At as defined in (7) and Q̄t as defined in (9), it holds:

At + Ft − F0 = log
d
←−
P ρt,Q̄

d
−→
P ρ0,Q

(X)

This implies that we obtain a valid IS scheme fulfilling:

Ex∼ρt [h(x)] =
E[exp(At)h(Xt)]

E[exp(At)]
(0 ≤ t ≤ 1) (10)

i.e. µt = ρt for all 0 ≤ t ≤ 1. Further, At will have zero variance for every 0 ≤ t ≤ 1 if and only if
Xt ∼ ρt for all 0 ≤ t ≤ 1.

A proof can be bound in Appendix B. This theorem can be seen as a discrete state space equivalent of
the generalized version of the Jarzynski equality (Jarzynski, 1997; Vaikuntanathan & Jarzynski, 2008)
that has also recently been used for sampling in continuous spaces (Vargas et al., 2024; Albergo &
Vanden-Eijnden, 2024).

6 PINN OBJECTIVE

As a next step, we introduce a learning procedure for learning an optimal rate matrix of a CTMC. For
this, we denote with Qθ

t a parameterized rate matrix with parameters θ (e.g. represented in a neural
network). Our goal is to learn Qθ

t such that (5) is fulfilled for the corresponding CTMC Xt. By
Theorem 5.2 this equivalent to minimizing the variance of the IS weights. To measure the variance
the weights, it is common to use the log-variance divergence (Nüsken & Richter, 2023; Richter &
Berner, 2023) given by

Llog-var(θ; t) =VX∼Q[log
d
←−
P ρt,Q̄

θ

d
−→
P ρ0,Qθ

(X)] = VX∼Q[At + Ft − F0] = VX∼Q[At]
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where Q is a reference measuring whose support covers the support of
←−
P ρt,Q̄

θ

and
−→
P ρ0,Q

θ

and where
we used that F0, Ft are constants. The above loss is tractable but we can bound it by a loss that is
computationally more efficient. To do so, we use an auxiliary free energy network Fϕ

t : R→ R with
parameters ϕ. Note that Fϕ

t is a one-dimensional function and therefore induces minimal additional
computational cost.
Proposition 6.1. For any reference measure Q, the PINN-objective defined by

L(θ, ϕ; t) = Es∼Unif[0,t],xs∼Qs

[
|Kθ

sρs(xs)− ∂sF
ϕ
s |2

]
has a unique minimizer (θ∗, ϕ∗) such that Qθ∗

t satisfies the KFE and Fϕ∗

t = Ft is the free energy.
Further, this objective is an upper bound to the log-variance divergence:

Llog-var(θ; t) ≤ t2L(θ, ϕ; t)

In particular, if L(θ, ϕ; t) = 0, then also Llog-var(θ; t) = 0 and the variance of the IS weights is zero.

A proof can be found in Appendix C. Note that we can easily minimize the PINN objective via
stochastic gradient descent. It is ”off-policy” as the reference distribution Q is arbitrary. This
objective can be seen as the CTMC equivalent of that in (Albergo & Vanden-Eijnden, 2024; Tian
et al., 2024; Sun et al., 2024).

7 EFFICIENT IS AND TRAINING VIA LOCAL EQUIVARIANCE

=

=
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Figure 2: Visualization of local equivari-
ance. Two tokens T = {−1,+1} and
d = 6. Local equivariance means that
the flux to transition to a neighbor is the
negative of the flux of transitioning from
that neighbor back.

We now turn to the question of how to make the above
training procedure efficient. Note that for small state
spaces S we could rely on analytical solutions to the KFE
(Campbell et al., 2022; Shaul et al., 2024). In many appli-
cations, though, the state space S is so large that we cannot
store |S| elements efficiently in a computer. Often state
spaces S are of the form S = T d where T = {1, . . . , N}
is a set of N tokens. One then defines a notion of a neigh-
bor y of x, i.e. an element y = (y1, . . . , yd) that differs
from x in at most one dimension (i.e. yi ̸= xi at most one
i). We denote as N(x) the set of all neighbors of x. We
then restrict functional form of the rate matrices to only al-
low for jumps to neighbors, i.e. Qθ

t (y, x) = 0 if y /∈ N(x).
One can then use a neural network Qθ

t represented by the
function

Qθ
t : S → (RN−1)d, x 7→ (Qθ

t (τ, i|x))i=1,...,d,τ∈T \{xi}

to parameterize a rate matrix defined Qt(y, x) =
Qθ

t (y
j , j|x) if y ∈ N(x) and yj ̸= xj . This parame-

terization is commonly used in the context of discrete
markov models (”discrete diffusion models”) (Campbell et al., 2022; 2024). With that, the operator
Kθ

t in (6) becomes:

Kθ
t ρt(x) + ∂tUt(x) =

∑
i=1,...,d

y∈N(x), yi ̸=xi

[
Qθ

t (y
i, i|x)−Qθ

t (x
i, i|y)ρt(y)

ρt(x)

]

The key problem with the above update is that it requires us to evaluate the neural network |N(x)|
times. Therefore, with the standard neural network parameterization, this update - and with that
proactive IS sampling scheme and training via the PINN-objective - is very inefficient.

To make the computation of Kθ
t efficient, we choose to build an inductive bias into our neural

network architecture to compute Kθ
t with no additional cost. Specifically, we introduce here the

notion of local equivariance. A neural network F θ
t represented by the function

F θ
t : S → (RN−1)d, x 7→ (F θ

t (τ, i|x))i=1,...,d,τ∈T \{xi}
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Figure 3: Overview of locally equivariant convolutional neural network architecture.

is called locally equivariant if the following condition holds for all i = 1, . . . , d:

F θ
t (τ, i|x) = −F θ

t (x
i, i|Swap(x, i, τ)) where Swap(x, i, τ) = (x1, . . . , xi−1, τ, xi+1, . . . , xd)

In other words, the function F θ
t gives values for each neighbor of an element x. It is instructive

to consider this value as a ”flux” going from x to each neighbor. Local equivariance says that the
flux from x to its neighbor is negative the flux from the neighbor to x (see Figure 2). Therefore,
every coordinate map Fj is equivariant with respect to transformations of the j-th input (“locally”
equivariant). Note that we do not specify how Fi transforms for i ̸= j under transformations of
xj . This distinguishes it from ”full” equivariance as, for example, used in geometric deep learning
(Bronstein et al., 2021; Weiler & Cesa, 2019; Thomas et al., 2018). We can use a locally equivariant
neural network to parameterize a rate matrix via

Qθ
t (τ, j|x) = [F θ

t (τ, j|x)]+, (11)
where [z]+ = max(z, 0) describes the ReLU operation. This representation is not a restriction (see
Appendix D for a proof):
Proposition 7.1 (Universal representation theorem). For any CTMC model with marginals ρt, there
is a corresponding CTMC with the same marginals ρt and a rate matrix that can be written as in (11)
for a locally equivariant function F θ

t .

This representation allows to efficiently compute Kθ
t in one forward pass of the neural network:

Kθ
t ρt(x) + ∂tUt(x) =

∑
i=1,...,d

y∈N(x), yi ̸=xi

[
[F θ

t (y
i, i|x)]+ − [−F θ

t (y
i, i|x)]+

ρt(y)

ρt(x)

]

With this, we can efficiently compute the proactive IS update At and evaluate the PINN-objective.
Therefore, this construction allows for scalable training and efficient importance sampling. We call
the resulting algorithm LEAPS (Locally Equivariant discrete Annealed imPortance Sampler). The
acronym also highlights that we use a Markov jump process to sample (i.e. that takes ”leaps” through
space). Finally, we note that while the sum in computing Kθ

t includes values ρ(y) for all neighbors
y of x, this can be a considered a discrete gradient. For many scientific and physical models this
requires often only 2× the computation compared to a single evaluation of ρt(x).

8 DESIGN OF LOCALLY EQUIVARIANT NEURAL NETWORKS

It remains to be stated how to construct locally equivariant neural networks. We will focus on
two fundamental designs used throughout deep learning: attention layers, and convolutional neural
networks (in Appendix G, we discuss multilayer perceptrons). As usual, tokens are embedded as
token vectors eτ ∈ Rcin where cin is the embedding dimension.

Locally-equivariant attention (LEA) layer. Let us consider a self-attention layer operating on keys
kj = kj(xj), queries qj = qj(xj), and values vj = vj(xj) - each of which is a function of element
xj . We define the locally equivariant attention layer then as:

F θ
t (τ, j|x) = (ωτ − ωxj

)T
∑
s̸=j

exp(kTs qj)∑
t ̸=j

exp(kTt qj)
vs

6
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It can be shown that this layer is locally equivariant if the queries qj are independent of the sign of xj

(i.e. qj(xj) = qj(−xj)) which can be easily achieved. By stacking across multiple attention heads,
one can create a locally equivariant MultiHeadAttention (LEA) with this.

Locally-equivariant convolutional (LEC) network. Local equivariance is different from “proper”
equivariance in that the composition of locally equivariant functions is not locally equivariant in
general. Therefore, we cannot simply compose locally equivariant neural network layers as we would
do with “proper” equivariant neural networks. In particular, the MLP (see Appendix G) and the
attention layers cannot simply be composed as their composition would violate the local equivariance.
This fundamentally changes considerations about how to compose layers and how to construct deep
neural networks. We will now illustrate this for the case of convolutional neural networks. To
construct a deep locally equivariant convolutional neural network (LEC), we assume that our data lies
on a grid. A convolutional layer is characterized by a matrix W ∈ R(2k−1)×(2k−1) and its operation
is denoted via k(W ) ∗ x where k denotes the convolutional kernel with weights W . Here, we set the
center of W to zero: Wkk = 0 (i.e. such that corresponding location is effectively ignored). To stack
such layers, we can make the output of the previous layer feed into the weights of the next layer:

h0 =(1, . . . , 1)T , Wi = σ(Aihi + bi) + cj , hi+1 = kt(Wi) ∗ x, Hθ
t (x) = hL

where Ai ∈ Rdi×di , bi ∈ Rdi , ci ∈ Rdi are learnable tensors which operate on each coordinate
independently (i.e. a 1x1 convolution) and σ : R→ R is an activation function to make it non-linear.
We call the resulting network Hθ

t (x) = (Hθ
t (1|x), . . . ,Hθ

t (d|x) the prediction head. Combined
with a small network P θ

t : T → Rk that we call token projector, we define the full neural network
as

F θ
t (τ, j|x) = (P θ

t (eτ )− P θ
t (xj))

THθ
t (j|x)

In Appendix E, we verify that F θ
t defined in this way is locally equivariant. With this construction,

one can stack deep highly complex convolutional neural networks. Note that this convolutional
neural network has two (separate) symmetries: it is geometrically translation equivariant and locally
equivariant in the sense defined in this work.

9 RELATED WORK

CTMCs (Campbell et al., 2022) have been used for various applications in generative modeling
(”discrete diffusion” models), including text and image generation (Shi et al., 2024; Shaul et al., 2024;
Sahoo et al., 2024) and molecular design (Gruver et al., 2023; Campbell et al., 2024; Lisanza et al.,
2024). While here we use a RND for CTMC running in reverse time, one recovers the loss functions
of these generative models considering a RND of two forward time CTMCs (in Appendix A).

Over the past decade there has been continued interest in combining the statistical guarantees of
MCMC and IS with learning transport maps. A non-parametric version of this is described in
(Marzouk et al., 2016), and a parametric version through coupling-based normalizing flows was
used to study systems in molecular dynamics and statistical physics (Noé et al., 2019; Albergo et al.,
2019; Gabrié et al., 2022; Wang et al., 2022). These methods were extended to weave normalizing
flows with SMC moves (Arbel et al., 2021; Matthews et al., 2022). More recent research focuses on
replacing the generative model with a continuous flow or diffusion (Zhang & Chen, 2022; Vargas
et al., 2023; Akhound-Sadegh et al., 2024; Sun et al., 2024). Our method is similar in spirit to the
results in (Albergo & Vanden-Eijnden, 2024; Vargas et al., 2024) but takes the necessary theoretical
and computational leaps to make these approaches possible for discrete distributions.

The primary alternative to what we propose is to correct using importance weights arising from the
estimate of the probability density computed using an autoregressive model (Nicoli et al., 2020).
However, the computational cost of producing samples in this case scales naively as O(d), whereas
we have no such constraint a priori in our case so long as the error in the Euler sampling scheme is
kept small. Other work focuses on discrete formulations of normalizing flows, but the performant
version reduces to an autoregressive model (Tran et al., 2019).

10 EXPERIMENTS

As a demonstration of the validity of LEAPS in high dimensions, we sample the Gibbs distribution
associated to a 2-dimensional Ising model. We choose the Ising model because it is a well-studied

7
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Figure 4: Performance metrics of LEAPS on the L = 15, J = 0.4, β = 0.7 Ising model. Left: Effec-
tive sample size of LEAPS samplers over training. Increasing the depth of LEC significantly improves
performance. Center: Difference in the histograms of the magnetization M(x) of configurations
as compared to the ground truth set attained from a Glauber dynamics run of 25,000 steps, labeled
as M∗. We denote by ”no transport” the case of using annealed dynamics with just the marginal
preserving MCMC updates to show that the transport from Qt is essential in our construction. Right:
Comparison of the 2-point correlation function against the Glauber dynamics ground truth.

model. In particular, it is a solvable model, which allows us to construct a robust ground truth against
which we can assess the various neural architectures underlying our algorithm. Configurations of
the L × L Ising lattice follow the target distribution ρ1(x) = e−βH(x)+F1 where β is the inverse
temperature of the system, F1 the free energy, and H(x) : {−1, 1}L×L → R is the Hamiltonian for
the model (see equation (12) for details). Neighboring spins are uncorrelated at high temperature but
reach a critical correlation when the temperature drops behold a certain threshold. We use LEAPS
to reproduce the statistics of the theory on a 15 × 15 lattice at parameters which approach this
threshold, and compare our results against a ground truth of long-run Glauber dynamics, an efficient
algorithm for simulation in this parameter regime. Note that this corresponds to a d = 15× 15 = 225
dimensional space. To make ρt time dependent, we make the parameters of Jt, µt, βt linear functions
of time, starting from the non-interacting case J0 = 0.

Results. We compare three different realizations of our method, one using LEA, and the other two
using deep LEC that vary in depth. For all generated samples, we use 100 steps of integration of (3).
We benchmark them on the effective sample size (ESS), which is a standard measure of how many
effective samples our model gives according to the variance of the importance weights (see details
Appendix H). In addition, we compute various observables using the Ising configurations generated
by our model, such as histograms of the magnetization compared to ground truth, as well as the two
point connected correlation function. The latter is a measure of the dependency between spin values
a distance r in lattice separation. In Figure 4, we show in the leftmost panel that the convolutional
architecture outperforms the attention-based method, and the performance gap grows as we make the
LEC network deeper. In the center panel, the difference in histograms of the magnetization of lattice
configurations for our models as compared to ground truth samples is shown to be statistically zero,
whereas relying on local MCMC alone for the same number of sampling steps (plotted in purple)
illustrates that the dynamics have not converged. In the right plot, we see clear agreement between
our learned sampler and the ground truth for the connected two point function. These results show
that LEAPS can be an efficient simulator of complex, high dimensional target distributions.

11 DISCUSSION

In this work, we present the LEAPS algorithm that allows to learn a non-equilibrium sampler via
CTMCs parameterized by locally equivariant neural networks. A natural direction of future work
will be to connect the ideas presented here with guidance or reward fine-tuning of generative CTMC
models (discrete diffusion) - a problem known to be strongly tied to sampling. Further, LEAPS could
easily be extended to sample across a whole family of distributions as opposed to only for a single,
fixed target. Finally, we anticipate that the use of locally equivariant neural network combined with
the IS scheme presented here might be useful more broadly for probabilistic models.
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A PROOF OF PROPOSITION 5.1

Without loss of generality, we set the final time point to be T = 1. We compute for a bounded
continuous function Φ : X → R:

E
X∼
−→P µ,Q [Φ(X)]

= lim
n→∞

E
X∼
−→P µ,Q [Φ(X0, X1/n, X2/n, . . . , Xn−1

n
, X1)]

= lim
n→∞

E
X∼
←−P ν,Q′

Φ(X0, X1/n, X2/n, . . . , Xn−1
n

, X1)

−→
P µ,Q(X0, X1/n, . . . , Xn−1

n
, X1)

←−
P ν,Q′(X0, X1/n, X2/n, . . . , Xn−1

n
, X1)


= lim

n→∞
E
X∼
←−P ν,Q′

Φ(X0, X1/n, X2/n, . . . , Xn−1
n

, X1)
µ(X0)

ν(X1)

∏
s=0,1/n,2/n,...,n−1

n

−→
P µ,Q(Xs+h|Xs)
←−
P ν,Q′(Xs|Xs+h)


= lim

n→∞
E
X∼
←−P ν,Q′

Φ(X)
µ(X0)

ν(X1)
exp

h
∑

s,Xs+h=Xs

Qs(Xs, Xs)−Q′s+h(Xs, Xs)

 ∏
s,Xs+h ̸=Xs

Qs(Xs+h, Xs)

Q′s+h(Xs, Xs+h)


=E

X∼
←−P ν,Q′

Φ(X)
µ(X0)

ν(X1)
exp

 1∫
0

Qs(Xs, Xs)−Q′s(Xs, Xs)ds

 ∏
s,Xs− ̸=Xs

Qs(Xs, Xs−)

Q′s(Xs− , Xs)



where we used the definition of the rate matrix Qt, Q
′
t, the continuity of Q′t in t and the fact that the

left and right Riemann integral coincide. As Φ was arbitrary, the RND is given by:

log
d
−→
P µ,Q

d
←−
P ν,Q′

(X) = log(µ(X0))− log(ν(X1)) +

1∫
0

Qs(Xs, Xs)−Q′s(Xs, Xs)ds+
∑

s,X−
s ̸=Xs

log

(
Qs(Xs, X

−
s )

Q′s(X
−
s , Xs)

)

B PROOF OF THEOREM 5.2

Specifically, we use Proposition 5.1 to compute

log
d
←−
P ρt,Q̄t

d
−→
P ρ0,Qt

(X) = log(ρt(Xt))− log(ρ0(X0)) +

t∫
0

Q̄s(Xs, Xs)−Qs(Xs, Xs)ds+
∑

s,X−
s ̸=Xs

log

(
Q̄s(X

−
s , Xs)

Qs(Xs, X
−
s )

)

=Ft − F0 − Ut(Xt) + U0(X0) +

t∫
0

Q̄s(Xs, Xs)−Qs(Xs, Xs)ds+
∑

s,X−
s ̸=Xs

log

(
Q̄s(X

−
s , Xs)

Qs(Xs, X
−
s )

)

Note that the function t 7→ Ut(Xt) is a piecewise differentiable function. Therefore, we can apply
the fundamental theorem on every differentiable ”piece” and get:

Ut(Xt)− U0(X0) =

t∫
0

∂sUt(Xt)ds+
∑

s,X−
s ̸=Xs

Us(Xs)− Us(X
−
s )

=

t∫
0

∂sUs(Xs)ds+
∑

s,X−
s ̸=Xs

log
ρs(X

−
s )

ρs(Xs)
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Next, we can insert the above equation and get:

log
d
←−
P ρt,Q̄t

d
−→
P ρ0,Qt

(X)

=Ft − F0 − Ut(Xt) + U0(Y0) +

t∫
0

Q̄s(Xs, Xs)−Qs(Xs, Xs)ds+
∑

s,X−
s ̸=Xs

log

(
Q̄s(X

−
s , Xs)

Qs(Xs, X
−
s )

)

=Ft − F0 −
t∫

0

∂sUs(Xs)ds−
∑

s,X−
s ̸=Xs

log
ρs(X

−
s )

ρs(Xs)
+

t∫
0

Q̄s(Xs, Xs)−Qs(Xs, Xs)ds+
∑

s,X−
s ̸=Xs

log

(
Q̄s(X

−
s , Xs)

Qs(Xs, X
−
s )

)

=Ft − F0 −
t∫

0

∂sUs(Xs)ds+

t∫
0

Q̄s(Xs, Xs)−Qs(Xs, Xs)ds+
∑

s,X−
s ̸=Xs

log

 Q̄s(X
−
s , Xs)

Qs(Xs, X
−
s )

ρs(Xs)

ρs(X
−
s )︸ ︷︷ ︸

=1


=Ft − F0 −

t∫
0

∂sUs(Xs)ds+

t∫
0

−
∑
y ̸=Xs

Qs(Xs, y)
ρt(y)

ρt(Xs)
−Qs(Xs, Xs)ds+ 0

=Ft − F0 +

− t∫
0

∂sUs(Xs)ds−
t∫

0

∑
y∈S

Qs(Xs, y)
ρt(y)

ρt(Xs)
ds


=Ft − F0 +At

where we used the definition of At in (7) and the definition of Q̄t in (9). Note that for h = 1, we get
that

1 = Ex∼ρt
[h(x)] = E[exp(At + Ft − F0)] = E[exp(At)] exp(Ft − F0)

because Ft, F0 are constants. Therefore, in particular E[exp(At)] = exp(F0 − Ft) = Zt/Z0. Note
that we assume that Z0 = 1 as we know ρ0. Therefore, E[exp(At)] = Zt. This proves (10).

C PROOF OF PROPOSITION 6.1

We can use the variational formulation of the variance as the minimizer of the mean squared error to
derive a computationally more efficient upper bound, i.e. we can re-express for every 0 ≤ t ≤ 1:

Llog-var(θ; t)

=VX∼Q[At]

= min
F̂t∈R

EX∼Q[|At − F̂t|2]

=t2 min
∂sF̂s∈R,0≤s≤t

EX∼Q

|1
t

t∫
0

Kθ
sρs(Xs)− ∂sF̂sds|2


≤t2 min

∂sF̂s∈R,0≤s≤t
EX∼Q

1

t

t∫
0

|Kθ
sρs(Xs)− ∂sF̂s|2ds


=t2 min

∂sF̂s∈R,0≤s≤t
Es∼Unif[0,1],Xs∼Qs

[
|Kθ

sρs(Xs)− ∂sF̂s|2
]

where we used Jensen’s inequality and denote with Qs the marginal of Q at time s. We now arrive at
the result by replacing the above with the free energy network Fϕ

t . Further, note that the above bound
is tight for Q-almost every X:

Kθ
sρs(Xs)− ∂sFs = C(X0:t)

is a constant in time s. However, this constant may depend on X. Further, note that

Qs(Xs) = |Kθ
sρs(Xs)− ∂sFs|2
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D PROOF OF PROPOSITION 7.1

Before we prove the statement, we prove an auxiliary statement about one-way rate matrices. We call
a rate matrix Qt a one-way rate matrix if

Qt(y, x) ̸= 0 ⇒ Qt(x, y) = 0 for all x ̸= y

⇔ Qt(y, x) = 0 or Qt(x, y) = 0 for all x ̸= y

Intuitively, a rate matrix Qt is a one-way rate matrix if we can always only go from x→ y or from
y → x. The next proposition shows that there is no problem restricting ourselves to one-way rate
matrices.

Lemma D.1. For every CTMC with rate matrix Qt and marginals qt, there is a one-way rate matrix
Q̄t such that its corresponding CTMC Xt has marginals qt if X0 ∼ q0 is initialized with the same
initial distribution. Furhter, if Qt(y, x) = 0 for y ̸= x, then also Q̄t(y, x) = 0.

Proof. Let Qt be a rate matrix defining a CTMC with marginals qt. Then

∂tqt(x) =
∑
y∈S

Qt(x, y)qt(y)

=
∑
y ̸=x

Qt(x, y)qt(y)−Qt(y, x)qt(x)

=
∑
y ̸=x

[
Qt(x, y)−Qt(y, x)

qt(x)

qt(y)

]
qt(y)

=
∑
y ̸=x

[
Qt(x, y)−Qt(y, x)

qt(x)

qt(y)

]
+

qt(y)−
[
Qt(y, x)

qt(x)

qt(y)
−Qt(x, y)

]
+

qt(y)

=
∑
y ̸=x

[
Qt(x, y)−Qt(y, x)

qt(x)

qt(y)

]
+

qt(y)−
[
Qt(y, x)−Qt(x, y)

qt(y)

qt(x)

]
+

qt(x)

=
∑
y ̸=x

Q̄t(x, y)qt(y)− Q̄t(y, x)qt(x)

=
∑
y∈S

Q̄t(x, y)qt(y)

where we defined

Q̄t(y, x) =


[
Qt(y, x)−Qt(x, y)

qt(y)
qt(x)

]
+

y ̸= x

− ∑
z ̸=x

Qt(z, x) y = x

Note that

Q̄t(y, x) >0

⇒ Qt(y, x) >Qt(x, y)
qt(y)

qt(x)

⇒ Qt(y, x)
qt(x)

qt(y)
>Qt(x, y)

⇒
[
Qt(x, y)−Qt(y, x)

qt(x)

qt(y)

]
+

=0

⇒ Q̄t(x, y) =0

Therefore, we learn that Q̄t fulfils the desired condition and fulfils the KFE. Therefore, we have
proved that we can swap out Qt for Q̄t and we will have an CTMC with the same marginals.

15



Published at Frontiers of Probabilistic Inference workshop at ICLR 2025

Now, let us return to the proof of Proposition 7.1. Given a rate matrix Qt, we can now use a one-way
rate matrix Q̄t with the same marginals and define function:

Ft(τ, i|x) =
{
Q̄t(y, x) if Qt(y, x) > 0

−Q̄t(x, y) otherwise
where y = Swap(x, i, τ)

By construction, it holds that Ft(τ, i|x) is locally equivariant and that [Ft(τ, i|x)]+ = Q̄t(y, x). This
finishes the proof.

E LOCAL EQUIVARIANCE OF CONVNET

To verify the local equivariance, one can compute

F θ
t (τ, i|x) =(P θ

t (eτ )− P θ
t (xi))

THθ
t (i|x)

=− (P θ
t (xi)− P θ

t (eτ ))
THθ

t (i|x)
=− (P θ

t (xi)− P θ
t (eτ ))

THθ
t (i|Swap(x, i, τ))

=− Ft(x
i, i|Swap(x, i, τ)),

where we have used the invariance of the projection head Hθ
t (i|x) to changes in the i-th dimension.

This shows the local equivariance.

F RECOVERING LOSS FUNCTIONS FOR CTMC MODELS VIA RNDS

We discuss here in more detail how the Radon-Nikodym derivatives (RNDs) presented in Proposi-
tion 5.1 relate to the construction of loss function for CTMC generative models, also called ”discrete
diffusion” models. The connection lies in the fact that the loss function of these models relies on
RNDs of two CTMCs running both in forward time. We can prove the following statement:

Proposition F.1. Let µ, ν be two initial distributions over S. Let Qt, Q
′
t be two rate matrices. Then

the Radon-Nikodym derivative of the corresponding path distributions in forward time over the
interval [0, t] is given by:

log
d
−→
P µ,Q

d
−→
P ν,Q′

(X) = log
dµ

dν
(X0) +

t∫
0

Qs(Xs, Xs)−Q′s(Xs, Xs)ds+
∑

s,X−
s ̸=Xs

log

(
Qs(Xs, X

−
s )

Q′s(Xs, X
−
s )

)

where we sum over all points where Xs jumps in the last term.

The proof of the above formula is very similar to the proof of Proposition 5.1 and an analogous
formula also appeared in (Campbell et al., 2024), for example. The above proposition allows us to by

16



Published at Frontiers of Probabilistic Inference workshop at ICLR 2025

compute the KL-divergence:

DKL(
−→
P µ,Q

1 ||−→P ν,Q′

1 )

≤DKL(
−→
P µ,Q||−→P ν,Q′

)

=E
X∼
−→
P µ,Q

[
log

d
−→
P µ,Q

d
−→
P ν,Q′

(X)

]

=DKL(µ||ν) + E
X∼
−→P µ,Q

 1∫
0

Qt(Xt, Xt)−Q′t(Xt, Xt)dt+
∑

t,X−
t ̸=Xt

log

(
Qt(Xt, X

−
t )

Q′t(Xt, X
−
t )

)
=DKL(µ||ν) + E

t∼Unif[0,1],xt∼
−→P µ,Q

t
[Qt(Xt, Xt)−Q′t(Xt, Xt)]

+ E
X∼
−→P µ,Q

 ∑
t,X−

t ̸=Xt

log

(
Qt(Xt, X

−
t )

Q′t(Xt, X
−
t )

)
=DKL(µ||ν) + E

t∼Unif[0,1],xt∼
−→P µ,Q

t
[Qt(Xt, Xt)−Q′t(Xt, Xt)]

+

1∫
0

E
Xt∼

−→P µ,Q
t

 ∑
y ̸=Xt

Qt(y;Xt) log

(
Qt(y;Xt)

Q′t(y,Xt)

)dt

=DKL(µ||ν) + E
t∼Unif[0,1],Xt∼

−→P µ,Q
t

 ∑
y ̸=Xt

Q′t(y,Xt)−Qt(y,Xt) +Qt(y;Xt) log

(
Qt(y;Xt)

Q′t(y,Xt)

)
where we have used the data processing inequality in the first term. Having a parameterized model
Q′t = Qθ

t , this leads to the following loss:

L(θ) =DKL

(−→
P µ,Q||−→P µ,Qθ

t

)
=DKL(µ||ν) + E

t∼Unif[0,1],Xt∼
−→P µ,Q

t

 ∑
y ̸=Xt

Qθ
t (y,Xt)−Qt(y,Xt) log

(
Qθ

t (y,Xt)
)+ C

where Qt is some reference process. The above recovers loss functions in the context of CTMC and
jump generative models (Campbell et al., 2022; Gat et al.; Shaul et al., 2024; Campbell et al., 2024)
and Euclidean jump models (Holderrieth et al., 2024, Section D.1.). Note that the above loss cannot
be used for the purposes of sampling in a straight-forward manner because we do not have access to
samples from the marginals of the ground reference

−→
P µ,Q.

G LOCALLY-EQUIVARIANT MULTILAYER PERCEPTRONS (MLPS)

Let us set cin = 1 in this paragraph for readability. Let W 1, . . . ,W k ∈ Rd×d be a set of weight
matrices with a zero diagonal, i.e. Wii = 0 for i = 1, . . . , d. Further, let σ : R→ R be an activation
function and ωτ ∈ Rk be a learnable projection vector for every token τ ∈ T . Then define the map:

F θ
t (τ, j|x) =

k∑
i=1

(ωi
τ − ωi

xj
)σ(W ix)j

where σ(W ix)j denotes the j-th element of the vector obtained by multiplying the vector x with the
matrix W i and applying the activation function a componentwise. One can easily show that this is a
locally equivariant neural network corresponding to a MLP with one hidden layer.

H NUMERICAL EXPERIMENTS

Hamiltonian of Ising model. The Hamiltonian of the Ising model is given by

H(x) = −J
∑
⟨i,j⟩

xixj + µ
∑
i

xi. (12)
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Here, J is the interaction strength, ⟨i, j⟩ denotes summation over nearest neighbors of spins si, sj , µ
is the magnetic moment.

Effective Sample Size We use the self-normalized definition of the effective sample size such that,
given the log weights At associated to N CTMC instances, the ESS at time t in the generation is
given by:

ESSt =

(
N−1

∑N
t=1 exp

(
Ai

t

))2

N−1
∑N

i=1 exp
(
2Ai

i

) (13)

H.1 ISING MODEL EXPERIMENTS

Here we provide details of the numerical implementation of our study of the L = 15 Ising model.
For the locally equivariant attention (LEA) mechanism, we use 40 attention heads, each with query,
key, and value matrices of dimension 40x40. As such, there are about 350,000 parameters in the
model. In addition, the locally equivariant convolutional net (LEC) of depth three uses kernel sizes of
[5, 7, 15], while the depth five version uses [3, 5, 7, 9, 15], amounting to around 100,000 parameters.
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