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Unifying Local and Global Knowledge: Empowering Large
Language Models as Political Experts with Knowledge Graphs

Anonymous Author(s)∗

ABSTRACT
Large Language Models (LLMs) have revolutionized solutions for
general natural language processing (NLP) tasks. However, deploy-
ing these models in specific domains still confronts challenges like
hallucination. While existing knowledge graph retrieval-based ap-
proaches offer partial solutions, they can not be well adapted to
the political domain. On the one hand, existing generic knowledge
graphs lack vital political context, hindering deductions for practical
tasks. On the other hand, the nature of political questions often ren-
ders the direct facts elusive, necessitating deeper aggregation and
comprehension of retrieved evidence. To address these challenges,
we present a Political Experts through Knowledge Graph Integra-
tion (PEG) framework. PEG entails the creation and utilization of a
multi-view political knowledge graph (MVPKG), which integrates
U.S. legislative, election, and diplomatic data, as well as conceptual
knowledge from Wikidata. With MVPKG as its foundation, PEG
enhances existing methods through knowledge acquisition, aggre-
gation, and injection. This process begins with refining evidence
through semantic filtering, followed by its aggregation into global
knowledge via implicit or explicit methods. The integrated knowl-
edge is then employed in LLMs through prompts. Experiments
on three real-world datasets across diverse LLMs reaffirm PEG’s
superiority in tackling political modeling tasks.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; • Human-centered computing→ Collaborative and social
computing.
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1 INTRODUCTION
Large Language Models (LLMs) have exhibited impressive abil-
ity to tackle a wide range of tasks. As the scale of LLMs contin-
ues to expand, they possess the ability to answer questions based
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(a) Large Language Model w/o Political Domain Knowledge Augmentation 

(b) Large Language Model with Generic Knowledge Prompting

Question: What will Andre Carson vote on the bill H.R.26: “Born-Alive 

Abortion Survivors Protection Act: To amend title 18, United States Code, to 

prohibit a health care practitioner from failing …"?

I'm sorry, but I cannot provide real-time information on how a specific member 

of Congress, since my knowledge only goes up until September 2021. 

<Knowledge>

Question: What will Andre Carson vote on the bill H.R.26: “Born-Alive Abortion …

Answer:

Andre Carson
United States 

Representative

position 

held
African 

Americans

United States 

of America

Yea

(c) Large Language Model with Political Knowledge Integration

ethnic 

groups

country of citizenship

H.R.26

×
direct fact can not be found

Local Evidence Global Knowledge

Andre 

Carson
H.R.8818

Donald

Trump

H.R.3207

LLMs
Andre 

Carson

Abortion 

Rights

Voter 

Access

vote

yea

sponsor

impeach support

support

< Global Knowledge >

< Local Evidence >

Question: What will Andre Carson vote on the bill H.R.26: “Born-Alive Abortion …

Answer:

Nay

Figure 1: (a) An illustration of GPT-3.5 [40] answering a roll
call vote prediction question. It declined to answer due to out-
dated internal knowledge limitations. (b) Prompting LLMs
with generic knowledge fromWikidata [49]. Existing solu-
tions [3] cannot find the direct fact and generate the wrong
answer. (c) Our PEG framework retrieves local evidence from
our political domain KG, derives global knowledge, and uni-
fies both knowledge, to generate the correct answer.

on their inherent knowledge, eliminating the need for additional
fine-tuning [6, 32]. Nevertheless, when deployed in specific do-
mains, these models still encounter certain challenges. Since intrin-
sic knowledge can be incomplete and outdated, LLMs may refuse
to respond to a question or produce factually incorrect answers,
leading to the well-known hallucination phenomenon [45]. This
issue is particularly evident in the political domain, as shown in
Figure 1(a), where LLMs struggle to perform tasks like political
actor modeling and opinion mining without external knowledge,
such as social context and expert knowledge.

To compensate for the knowledge gap of LLMs, a line of research
proposes retrieval-based methods to augment LLMs via contex-
tually relevant external knowledge. Early work [17, 20, 28, 46]
utilize documents as sources of knowledge. Compared to docu-
ments, knowledge graphs (KGs) consisting of triples, i.e., {(head
entity, relation, tail entity)}, provide brief and explicit structural
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knowledge and explainable reasoning paths [54]. An additional ad-
vantage of KGs lies in their adaptability and expansibility, allowing
for seamless modifications and additions. Considering this, some
efforts [3, 47, 54] were made recently, to prompt LLMs to answer
questions that can be resolved by referencing KGs. This is accom-
plished by providing LLMs with plain text, reformatted paths, or
mindmaps that contain basic triples extracted from KGs.

Despite the remarkable achievements in general knowledge
graph question answering (KGQA) tasks, existing approaches that
enhance LLMs with KGs fall short in addressing challenges spe-
cific to the political domain. This limitation stems from several
key factors: (1) Knowledge-Task Mismatch. Existing knowledge
graphs, such as Wikidata [49], Freebase [4], and YAGO [43], primar-
ily contain domain-specific political information such as politicians’
names and nationalities. However, this information is inadequate
for capturing the opinions and stances of politicians on specific
policies - a critical aspect that attracts more attention in political
domain question answering. The mere inclusion of this basic knowl-
edge into LLMs is insufficient for generating accurate responses
due to the inherent mismatch between the available knowledge and
the depth of inquiry within the political domain; (2) Ineffective
Direct Fact Retrieval. Even if we enrich the current knowledge
graphs with politicians’ historical opinions about specific policies,
existing methods for direct fact retrieval [2] or path reasoning [47]
may still encounter difficulties when applied to prediction tasks
like vote prediction and event prediction, as the future fact can not
be directly retrieved in KGs. As shown in Figure 1(b), existing KG-
enhanced LLM frameworks like KAPING [3] is not able to produce
accurate answers because it struggles to locate the relevant facts or
construct the expected reasoning paths; (3) Lack of Semantic Un-
derstanding. The current KG-enhanced LLM approaches typically
focus on presenting local evidence and path links while neglecting
the nuanced semantic relationships between pieces of evidence and
their derived high-level contextual clues, resulting in an incomplete
comprehension of the acquired knowledge.

In light of these challenges, we propose to enhance Large Lan-
guage Models as Political Experts through Knowledge Graph Inte-
gration (PEG). This framework leverages political domain knowl-
edge to incorporate background information and augment LLMs in
computational political tasks, comprising two key components:

First, to address the knowledge-task mismatch issue, we start
with constructing a multi-view political knowledge graph, cov-
ering factual knowledge pertaining to U.S. politics, including leg-
islation, election, and diplomatic events. This knowledge graph
supplements generic conceptual knowledge by providing a tailored
foundation for political expertise.

Second, based on this KG, we augment LLMs’ inference by
knowledge acquisition, aggregation, and injection. In par-
ticular, for each question, we extract relevant entities and explore
their associated facts as candidate evidence. We then filter the ev-
idence according to their semantic similarity to the question to
reduce noise. This process intends to effectively retrieve relevant
knowledge. After acquiring local evidence, we proceed to aggre-
gate the local evidence into global knowledge, either implicitly
through embedding techniques or explicitly making use of the
strong summarization and reasoning capabilities of LLMs. Finally,
we incorporate both the local evidence and global knowledge along

Table 1: Examples of conceptual knowledge and factual
knowledge in the MVPKG.

Conceptual Knowledge Examples Factual Knowledge Examples

(Donald Trump, occupation,
real estate entrepreneur)

(Andre Carson, sponsor bill,
Patient Advocate Tracker Act. . . )

(Donald Trump, member of political party,
Republican Party)

(Andre Carson, vote yea,
Women’s Health Protection Act of 2021...)

(Donald Trump, country of citizenship,
United States of America)

(2020 United States presidential election in Colorado,
successful candidate, Joe Biden)

(Donald Trump, owner of, Kingdom 5KR) (Yemen, Host a visit, Barack Obama, 01/01/2010)

with the question through pre-defined prompt templates, to guide
LLMs in producing answers grounded in the provided knowledge
with semantic understanding. As shown in Figure 1, PEG har-
nesses the cognitive capabilities and reasoning prowess of LLMs
to consolidate localized evidence into a comprehensive body of
contextual knowledge. This approach enables LLMs to deliver an-
swers with greater depth, as exemplified in the case of attitudes on
abortion issues. Here, LLMs can navigate a succinct reasoning path,
{H.R.26->against->abortion rights, Andre Carson->support->abortion
rights}=>Andre Carson->against->H.R.26, thereby eliminating the
need for complex reasoning based solely on local evidence.

Our main contributions can be summarized as follows:
• To enhance large language models as political experts, we

particularly construct a domain-specific political knowl-
edge graph involving contemporary U.S. political facts of
multiple perspectives, which consists of 116,176 entities,
602 relations and 1,857,410 triples.

• We introduce a novel approach for mining high-level knowl-
edge from localized facts, thus addressing situations where
direct answers within knowledge graphs prove elusive. We
provide both implicit and explicit implementations for dif-
ferent types of LLMs.

• We have conducted comprehensive experiments on var-
ious real-world datasets and across different LLMs. Our
proposed methodology consistently demonstrates compet-
itive performance in comparison to established baselines.
Furthermore, a thorough analysis affirms the superior per-
formance and interpretability of our approach.

2 MVPKG: A MULTI-VIEW POLITICAL
KNOWLEDGE GRAPH

While existing generic knowledge graphs such as Wikidata KG [49],
FreeBase [4] and YAGO [43] have proven valuable in a range of
NLP tasks, their utility is largely confined to addressing basic de-
mographic queries. These knowledge graphs, however, lack the
capability to effectively support complex tasks related to political
actor modeling and argumentative reasoning in politics-related
tasks. To our knowledge, merely a single attempt [12] has been
made to construct a politics-related knowledge graph, but it con-
centrates on the congressional employment status, neglecting the
broader spectrum of behavior-related insights. Because of these
limitations, we propose to construct a knowledge graph that is
both political domain-specific, with a keen emphasis on political
knowledge, andmulti-view, covering diverse situations within U.S.
politics. Generally, we start with extracting U.S. political concep-
tual knowledge in Wikidata KG [49] and extend it by incorporating
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factual knowledge, thereby ensuring a more comprehensive and
nuanced understanding of political dynamics. Table 1 shows sev-
eral examples of conceptual knowledge and factual knowledge in
MVPKG.

2.1 Political Conceptual Knowledge
To begin with, we select entities within U.S. politics, including the
President and Cabinet members, Congressional legislators, Gover-
nors, and various government offices, as the seed entities. Subse-
quently, we manually retrieve their unique QID identifiers from
Wikidata [49] and proceed to query all 1-hop facts to form a KG
subset, which is named baseKG. This process ends with 71,646
entities, 368 relations and 103,174 triples.

2.2 Political Factual Knowledge
Based on baseKG, we further expand our knowledge graph with
more factual knowledge. Our objective is to ensure that the knowl-
edge graph is multi-view, effectively covering key facets of U.S.
politics, including legislation, elections, and diplomatic events span-
ning the past few decades. To achieve this, we have sourced data
from a variety of resources and structured it for integration into the
knowledge graph. Specifically, we use Legiscan API1 to obtain leg-
islative information including bills, sponsorship details and voting
records of legislators. Data related to elections has been primarily
collected from public sources such as Ballotpedia,2 Wikipedia3 and
Cha, Kuriwaki, and Snyder [7]. This data contains election results
for various offices including the President, Congressional House,
Congressional Senate, Governor, State Houses, State Senate, and
Mayors. For diplomatic events, records of interactions involving
socio-political actors have been extracted, with a specific focus on
those related to U.S. politics [5].

Most of the data crawled is structured or semi-structured. We
organize the original data through certain rules so that all facts
are expressed in the form of (subject, predicate, object) to conform
to the storage format of the knowledge graph. Note that event
data includes timestamps, which do not impact subsequent usage,
as they can be treated as part of the factual context. As shown in
Table 1, these historical factual facts provide clues for understanding
political actors and events.

After acquiring subgraphs from each of these perspectives, we
employ the existing entity linking tool [1, 18] to align entities
with those already present in baseKG. Additionally, we further use
BERT [24] to encode entities, merge entities with a similarity ex-
ceeding 0.95 to existing entities, and add the unmatched entities into
baseKG. As a result, we obtain a comprehensive knowledge graph -
MVPKG, which is composed of 116,176 entities, 602 relations and
1,857,410 triples.

3 EMPOWERING LARGE LANGUAGE MODELS
WITH POLITICAL KNOWLEDGE

Figure 2 illustrates the overview of our proposed framework. We
first acquire local evidence by entity-centric exploration and semantic-
based filtering. Following this, we aggregate the local evidence to

1https://legiscan.com/
2https://ballotpedia.org/
3https://www.wikipedia.org/

derive the global knowledge in a hidden space. To enhance in-
terpretability and adapt to more LLMs, we also offer an explicit
solution to express global knowledge in natural language. Finally,
we perform prompt engineering to inject both local and global
knowledge into LLMs’ understanding and reasoning process.

3.1 Knowledge Acquisition
Given a question 𝑞, our goal is to retrieve a sub-graph G𝑞 con-
sisting of a set of fact triples {(eℎ, r, e𝑡 )} from an external KG
G = {(eℎ, r, e𝑡 )} ∈ E × R × E, where E and R are sets of enti-
ties and relations, and eℎ , r and e𝑡 stand for the head entity, relation
and tail entity, respectively.

3.1.1 Entity-centric Evidence Exploration. Since some key entities
such as individuals and organizations are crucial in political sce-
narios, our initial step is to extract entities mentioned in the given
question. Entity matching is implemented by existing entity-linking
techniques [1, 18, 29]. This process yields an entity set E𝑞 for explo-
ration of evidence. We regard all the 1-hop fact triples associated
with entities in E𝑞 as the candidate fact triples, forming the candi-
date subgraph in Figure 2.
3.1.2 Semantic-based Evidence Filter. To simplify the process, one
might consider injecting all candidate evidence related to entities
directly into LLMs. However, this method suffers from limitations
on input length and the potential for introducing noise, given the
substantial number of associated triples, many of which might not
be relevant to the question at hand. To address this challenge, we
propose to further filter the evidence based on semantics. Firstly,
we verbalize each fact triple which involves converting symbolic
triples into text strings. We achieve this by concatenating the names
of the head entity, relation and tail entity.

After verbalization, each fact triple can be regarded as a docu-
ment and we can apply existing dense retrieval patterns [23, 56] to
retrieve relevant evidence based on embedding similarities. To elab-
orate, we use the same sentence encoder to embed both question
and fact triples and compute their similarity. In this way, for each
triple, we can define a retrieval score as the inner product between
the embeddings of the given question 𝑞 and the candidate triple 𝑡 ,
as follows:

𝑠 (𝑡 | 𝑞) ∝ exp
(
𝑑 (𝑡)⊤𝑑 (𝑞)

)
(1)

where 𝑑 is the embedding function. Subsequently, we only re-
serve top-𝐾 fact triples G𝑙 = {(eℎ, r, e𝑡 )} as our local evidence,
where 𝐾 is a pre-defined hyper-parameter.

3.2 Knowledge Aggregation
After knowledge acquisition, most existing work [3, 47, 54] often
directly prompts LLMs with plain text or reformatted paths. How-
ever, these approaches often overlook the semantic relationships
that underlie the facts within the knowledge graph. In this sec-
tion, we describe how we provide LLMs with more comprehensive
knowledge. This enhancement is achieved by further aggregating
local evidence to form global and more generalized knowledge com-
pared to the fine-grained evidence, to better deal with the situations
where direct facts are not readily matched, and relying only on local
evidence proves insufficient.
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Figure 2: After constructing the multi-view political knowledge graph (MVPKG), we empower large language models with
political knowledge through knowledge acquisition, aggregation, and injection. For knowledge aggregation, we implement two
options: (1) implicit aggregation with embedding techniques, and (2) explicit aggregation with natural language.

3.2.1 Implicit Aggregation. Intuitively, we can aggregate the se-
mantic information of retrieved facts in the embedding space. Here,
we introduce another language model as a global knowledge en-
coder. Concretely, we use the knowledge encoder to encode the
retrieved fact triples separately and average the sentence embed-
ding as the global topic vector. This topic vector is further processed
through a multilayer perceptron (MLP), to ensure alignment with
the semantic space of LLMs, as follows:

𝒗 =
1
𝐾

𝐾∑︁
𝑘=1

𝑀𝐿𝑃 (𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑡𝑘 )) (2)

where 𝑡𝑘 is the 𝑘-th triple after evidence filtering in Section 3.1.2.
This topic vector 𝒗 serves as a soft prompt to facilitate LLMs in

answering the questions effectively. However, it is worth noting
that a knowledge encoder and an MLP with random initialization
or general pre-training may perform poorly in transforming infor-
mation from the space of the original knowledge encoder to that of
the target LLMs. This is due to a lack of specific training for this
purpose. Thus, we propose a fact reconstruction task to pre-train
the knowledge encoder and MLP components.

Specifically, we use the knowledge encoder to acquire the sen-
tence embedding of each single fact triple and prompt LLMs to
reconstruct the texts of the given triple based on the embedding.
This task enables the knowledge encoder and MLP to express fact-
related information in LLMs’ space, without additional annotated
data. In essence, we leverage signals from a fixed language model

to train the encoder, using a language modeling objective:

𝑝 (𝒚 | 𝒙, 𝒗) =
𝑇∏
𝑡=1

𝑝
(
𝑦𝑡 | 𝒙, 𝒗,𝒚0:𝑡−1

)
(3)

where 𝒚 = [𝑦1, ..., 𝑦𝑇 ] is the output response, i.e., the text of input
triple, 𝒙 = [𝑥1, ..., 𝑥𝑁 ] is the prompt instructing LLMs to reconstruct
the triple based on the given vector 𝒗. Note that this process can
be applied to any set of triples, and once the knowledge encoder is
trained, it can be adapted to the frozen LLMs for inference directly.
3.2.2 Explicit Aggregation. Although aggregating vectors in a hid-
den space is straightforward, explaining what knowledge the vec-
tors actually represent is not trivial. Relying on the strong reasoning
and generation ability of large language models, we aggregate the
facts in an explicit manner, where the derived knowledge is ex-
pressed in natural language, to provide a global view of the local
evidence. This method is more flexible since it can be applied to
black-box LLMs like ChatGPT [40], where inputs in the form of vec-
tors are often not acceptable. The simplest way to achieve this goal
is to prompt LLMs to reason and summarize the given evidence in
natural language𝒘 = [𝑤1, ...,𝑤𝑖 ], similar to the principles behind
many prior studies [25, 36, 53]. We achieve this by instructing LLMs
with the question, "What can you infer from the following facts?"
This variant is named Naive Summary.

While the idea is intuitive, the dispersion of evidence can result
in ambiguous and cluttered summaries. Often, these summaries
may merely consist of repetitions or abstracts of individual facts.
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To address this issue, we introduce a Group Then Reason (GTR)
strategy. Specifically, we add the instruction to prompt LLMs to
divide the evidence into several groups 𝑔1, ..., 𝑔𝑀 according to the
topical information, and summarize the reasoning result of each
group into new fact triples Gℎ = {(eℎ, r, e𝑡 )}. Symbolically, this
approach generates new pseudo-entities that convey topical infor-
mation and their relationships with existing entities. This enhances
the potential for answering questions that may not have direct
matches in the knowledge graph. By organizing evidence into topi-
cal categories, it becomes easier for LLMs to reason about implicit
knowledge hidden within the evidence, such as a politician’s ideol-
ogy or attitudes towards subjects within the same category.

3.3 Knowledge Injection
Once we have collected the local evidence and aggregated global
view, the next step is to inject the knowledge, allowing LLMs to
provide answers that are rooted in the associated external knowl-
edge. For explicit aggregation, we integrate the verbalized local
evidence G𝑙 and the aggregated result𝒘 or Gℎ using a pre-defined
instruction template. This prompt is then placed at the beginning
of the input question 𝒒, to stimulate LLMs to generate answers con-
ditioned on the provided knowledge. The process can be formalized
as 𝑝 (𝒚 | [Gℎ,G𝑙 , 𝒒]), where [·] denotes concatenation.

For implicit aggregation, inspired by prompt tuning [27] and
P-tuning [34], we regard the global vector as a soft token and
concatenate it with token embeddings derived from the verbalized
local evidence G𝑙 and the question. The resulting sequence of token
embeddings is then fed into the transformer layers of the LLMs.

Note that we are following the zero-shot setting, where we do
not possess any labeled samples or train models. This differs from
supervised learning [2, 22], where models are trained with a set of
(question, answer) pairs or (question, ground-truth facts) pairs.

4 EXPERIMENTS
To showcase that MVPKG and the proposed framework for knowl-
edge integration can generally assist various tasks in the political
domain, we conduct comprehensive experiments.

4.1 Experiment Settings
4.1.1 Tasks and Datasets. We employ three datasets representing
various political scenarios for the assessment. RCVP [38] is a con-
gressional roll-call vote prediction dataset. We further collect 7,927
voting records in 2023 from Legiscan for evaluation. The histori-
cal records are integrated into KGs to align with the time-based
setting proposed in Mou et al.. As per the conventions outlined in
prior studies [38, 39], we report the macro F1 score for this binary
classification task. ICEWS [5] contains political diplomatic events
where we reserve 9,322 samples from 01/01/2023 to 04/10/2023 for
evaluation. Following Zhu et al., we formulate the task as predicting
either the subject or the object of each event. For each question,
we randomly sample three negative entities in the same category
with the ground-truth answer to form a multiple-choice setting.
Accuracy is reported. StaId represents a statement identification
task curated in this paper. We sample 4,000 tweets from Mou et al.
and create questions that revolve around determining whether a

given statement on a specific issue was posted by a particular politi-
cian. This task assesses the capabilities of LLMs to comprehend
politicians’ attitudes on various issues. Macro F1 is reported for
this binary classification task.

4.1.2 Compared Methods.

Baselines without External Knowledge.
• Vanilla, i.e., providing questions directly to LLMs.
• GKP [31] extracts knowledge from LLMs themselves and

then prompts LLMs with the generated knowledge.

Baselines with Local Evidence Only.
• KAPING [3] retrieves the knowledge based on similarity

and prompts the textual triples to LLMs.
• MindMap𝑟𝑜𝑢𝑡𝑒 [54] clusters the retrieved triples into struc-

tured pathways like 2020 U.S. state House of Representatives
elections in District 75 of Iowa->candidate->(Ruby Bodeker,
Thomas Gerhold), which is subsequently prompted to LLMs.

• MindMap𝑙𝑎𝑛𝑔 [54] prompts LLMs to describe the evidence
route in natural language and leverage the generated con-
tent for further prompting.

• MindMap [54] prompts LLMs to answer the questions and
meanwhile describe the evidence route and construct a
decision tree-like mindmap.

Our Methods.
• PEG𝑖𝑚𝑝 , our method with implicit aggregation.
• PEG𝑒𝑥𝑝_𝑠𝑢𝑚 , our method with explicit aggregation, where

the global knowledge is generated through Naive Summary.
• PEG𝑒𝑥𝑝_𝐺𝑇𝑅 , our method with explicit aggregation, where

the global knowledge is generated through GTR.

4.1.3 Implementation Details. We use several LLMs to verify the
effectiveness of our framework, including Llama2-7b-chat [48],
Vicuna-7b-v1.1 [60] and GPT-3.5-turbo [40]. We use ReFinED [1]
for entity linking and a document-pretrained distillbert4 as the
retriever for semantic filtering. We use the KAPING [22] methods
to arrange local evidence. Top-10 facts are reserved for knowledge
graph integration. When evaluating white-box LLMs including
Llama2 and Vicuna, we follow Li et al. to concatenate each can-
didate answer with the input and compare the language modeling
likelihood to determine the answer for a stable evaluation. When it
comes to black-box LLMs such as GPT-3.5, we evaluate based on the
generated results since likelihood is not available. Unless otherwise
specified, all KG-enhanced methods use knowledge sourced from
MVPKG. More details can be found in Appendix A.1.

4.2 Experiment Results
4.2.1 Main Results. Table 2 presents the primary results across var-
ious tasks and white-box language models. In general, our proposed
methods consistently outperform other baselines. It is important to
note that the generated knowledge model (GKP) is not significantly
superior to the vanilla knowledge-free model, since in most cases
of our political tasks, LLMs can not generate relevant and accurate
knowledge about future facts, limiting their assistance in improving
answers. Conversely, KG-augmented methods clearly outperform
4https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3
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Table 2: Main results of white-box large language models.
The best scores are emphasized in bold.

Methods RCVP ICEWS StaId
Llama2 Vicuna Llama2 Vicuna Llama2 Vicuna

Vanilla 40.07 37.17 23.98 22.88 57.10 49.57
GKP [31] 42.95 35.71 29.40 24.47 56.56 52.73
KAPING [3] 44.66 42.92 39.80 36.06 53.67 53.84
MindMap𝑟𝑜𝑢𝑡𝑒 [54] 43.41 43.73 40.07 36.12 52.67 53.85
MindMap𝑙𝑎𝑛𝑔 [54] 44.67 42.44 37.87 33.94 53.03 45.84
MindMap [54] 43.45 40.24 33.38 29.95 55.42 55.27

PEG𝑖𝑚𝑝 52.56 44.56 37.47 34.25 56.36 52.07
PEG𝑒𝑥𝑝_𝑠𝑢𝑚 47.77 42.75 38.60 35.06 58.67 53.67
PEG𝑒𝑥𝑝_𝐺𝑇𝑅 47.49 44.16 40.10 36.51 55.11 54.76

Table 3: Main results of GPT-3.5. The best scores are empha-
sized in bold. Note that due to the constraint of the input
format and the inherent inability to predict the future, we
do not include results of PEG𝑖𝑚𝑝 and the vanilla baseline.

Methods RCVP ICEWS StaId

GKP [31] 20.43 15.40 45.32
KAPING [3] 37.83 20.80 36.99
MindMap𝑟𝑜𝑢𝑡𝑒 [54] 32.60 28.00 35.03
MindMap𝑙𝑎𝑛𝑔 [54] 38.57 28.40 42.19
MindMap [54] 38.72 25.60 23.38

PEG𝑒𝑥𝑝_𝑠𝑢𝑚 40.62 26.40 42.12
PEG𝑒𝑥𝑝_𝐺𝑇𝑅 41.21 28.60 46.21

the naive models, underscoring the value of the knowledge con-
tained within MVPKG for addressing political tasks. Among these
methods, our methods demonstrate distinct advantages, suggesting
that simply arranging local facts or describing the structural rela-
tions among facts is insufficient for tackling complex tasks like
vote prediction. Integrating global knowledge can lead to substan-
tial enhancements. Additionally, building a mindmap proves to be
a challenging endeavor, especially for smaller-scale LLMs. Conse-
quently,MindMap falls short of achieving superior results compared
to its simpler counterparts, MindMap𝑟𝑜𝑢𝑡𝑒 and MindMap𝑙𝑎𝑛𝑔 . In
contrast, summarizing and reasoning about the local evidence is
not only more feasible but also cost-effective.

Through comparison, it is evident that various datasets and tasks
necessitate distinct aggregation strategies. In the case of RCVP,
PEG with implicit aggregation proves most effective, primarily be-
cause the retrieved facts predominantly consist of historical voting
records with lengthy text, and the explicitly summarized content
may include irrelevant information. Conversely, for ICEWS and
StaId, PEG with explicit aggregation exhibits a slight advantage.
This difference could be attributed to the retrieved facts being less
concentrated compared to the voting records in RCVP, making the
averaging of facts in the latent space potentially less meaningful.

Table 3 provides the results of GPT-3.5. Relying on the rich in-
ternal knowledge of GPT-3.5, the advantage of the GKP method
becomes evident in the StaId dataset. However, it still struggles to
handle tasks like RCVP. Comparatively, our methods show consis-
tent superiority in assisting this black-box LLM across diverse tasks.

Table 4: Results of adding global knowledge to different pat-
terns of local evidence.

Evidence Format Integration Method RCVP ICEWS StaId

KAPING

w/o global knowledge 44.66 39.80 53.67

PEG𝑖𝑚𝑝 52.56 37.47 56.36
PEG𝑒𝑥𝑝_𝑠𝑢𝑚 47.77 38.60 58.67
PEG𝑒𝑥𝑝_𝐺𝑇𝑅 47.49 40.10 55.11

Mindmap𝑟𝑜𝑢𝑡𝑒

w/o global knowledge 43.41 40.07 52.67

PEG𝑖𝑚𝑝 48.67 39.84 55.63
PEG𝑒𝑥𝑝_𝑠𝑢𝑚 47.48 40.31 53.49
PEG𝑒𝑥𝑝_𝐺𝑇𝑅 48.11 40.37 53.01

Mindmap𝑙𝑎𝑛𝑔

w/o global knowledge 44.67 37.87 53.03

PEG𝑖𝑚𝑝 45.03 38.17 53.90
PEG𝑒𝑥𝑝_𝑠𝑢𝑚 45.46 39.68 54.52
PEG𝑒𝑥𝑝_𝐺𝑇𝑅 45.65 39.63 49.29

The improvement brought by PEG𝑒𝑥𝑝_𝐺𝑇𝑅 is more pronounced for
GPT-3.5 than for Llama2 and Vicuna, as GPT-3.5 poses stronger
capabilities to group and summarize local information.

4.2.2 Effectiveness of MVPKG. To demonstrate the effectiveness of
ourMVPKG, we compare it with other generic knowledge graphs in-
cluding Wikidata KG [49], i.e., baseKG in this paper, and YAGO [43]
and political knowledge graph KGAP proposed in Feng et al.. Fig-
ure 3 shows the performance paired with different KGs on Llama2.
The results suggest that domain knowledge graphs including KGAP
and our MVPKG are more practical than generic KGs in under-
standing the political actors and events since they assist models
in learning from related factual history. Moreover, our knowledge
graph is more comprehensive than KGAP, encompassing various
aspects of U.S. politics. Consequently, it exhibits strengths across
diverse datasets. Surprisingly, Wikidata demonstrates competitive
performance on the StaId dataset. This could be attributed to the
fact that some statements’ content is partially linked to fundamental
attributes of politicians, such as party affiliation and home state.

4.2.3 Effectiveness of Global Knowledge. In order to illustrate the
effectiveness of global knowledge, we test our PEG framework with
different patterns of local evidence, i.e., KAPING, MindMap𝑟𝑜𝑢𝑡𝑒
and MindMap𝑙𝑎𝑛𝑔 . Table 4 shows the results of this ablation study.
Overall, global knowledge works across three different forms of
local evidence. PEG𝑒𝑥𝑝_𝑠𝑢𝑚 exhibits the most consistent perfor-
mance, since the global knowledge in a format of natural languages
is the most straightforward for a language model to comprehend.
While for PEG𝑒𝑥𝑝_𝐺𝑇𝑅 on Mindmap𝑟𝑜𝑢𝑡𝑒 and Mindmap𝑙𝑎𝑛𝑔 , LLMs
need to understand at least two forms of knowledge, i.e., local evi-
dence in forms of path or language and global knowledge in forms
of triple. Thus, the gain is unstable. In contrast, PEG𝑒𝑥𝑝_𝐺𝑇𝑅 with
KAPING clearly improves the KAPING baseline, since both local
and global knowledge is expressed in fact triples.

In response to the challenge of limited domain knowledge com-
prehension, some researchers [9, 58] have turned to instruction
tuning [35] using domain-specific data. We also compare our meth-
ods with this line of approaches that fine-tune the model to solve
domain tasks. Experimental results reveal that instruction tuning
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Figure 3: Performance of Llama2 when using different knowledge graphs for knowledge integration.
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Figure 4: The PCA outputs of the global knowledge vectors
corresponding to questions asking to predict Congressional
members’ votes on the Born-Alive Abortion Survivors Pro-
tection Act (upper) and the Protection of Women and Girls
in Sports Act of 2023 (lower).

does not exhibit significant advantages over our external knowl-
edge integration approach. Moreover, the augmentation of LLMs
with knowledge graphs, instead of resorting to additional training,
proves to be a more flexible and cost-effective solution, particularly
in addressing the rapidly evolving political landscape. More details
can be found in Appendix A.4.

5 FURTHER ANALYSIS
In this section, we conduct more experiments to implement an
in-depth analysis of the PEG framework and global knowledge.

5.1 Explainability of Global Knowledge
Compared to explicit methods where reasoning results are ex-
pressed in natural language, the implicit method is much more
difficult to explain. Intuitively, the aggregated vector contains in-
formation on one or more aspects related to the central entity
with respect to the given question. To validate this, we take the
RCVP dataset as an example for analysis by visualizing the PCA-
transformed representation of the global knowledge vector. Figure 4
depicts the global knowledge vector after dimensionality reduction
of questions asking to predict different Congressional members’
votes on two bills respectively. We label each member’s position on
abortion issues (Pro-choice and Pro-life in Figure 4) and transgender
issues (For Transgender Rights and Not For Transgender Rights in
Figure 4) based on information provided by public websites.5 6

The visualization shows that samples with similar positions cluster
5https://justfacts.votesmart.org/
6https://www.ontheissues.org/
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Figure 5: Performance with varying amount of knowledge,
where we change the number of fact triples K1 for local
evidence and K2 for global knowledge.

together. This indicates that the global knowledge vector aggre-
gated by the knowledge encoder, using factual traces, can reflect
the attitudes of key individuals on specific topics or issues. With
this information, models can more easily deduce how members are
likely to vote on emerging bills related to the same issue.

5.2 Impact of Amount of Knowledge
To explore the influence of the information load on both local evi-
dence and global knowledge, we vary the number of facts used to
form local evidence and global knowledge. Figure 5 displays the
average results of three datasets when we use top 𝐾1 facts for local
evidence and top 𝐾2 facts for global knowledge using different
knowledge aggregation methods on Llama2. Firstly, the perfor-
mance shows an increasing trend followed by a decrease as the
quantity of local evidence changes in most cases. This trend occurs
because including more clues can lead to improved results initially,
but as the amount of provided facts increases, LLMs may become
distracted by irrelevant fact triples, which hinders performance.
This phenomenon is not significant for PEG𝑒𝑥𝑝_𝑠𝑢𝑚 , possibly be-
cause it extracts more relevant information during the summary
process. Also, it is noticeable that when relying solely on global
knowledge (i.e., 𝐾1 = 0), these methods, particularly the explicit
ones, can still produce competitive results. In contrast to general
KGQA tasks, where the ground-truth answer triple is often expected
in the retrieved results, our approach leverages both local evidence
and global knowledge to provide relevant information rather than
searching for specific answer triples. Furthermore, when 𝐾2 in-
creases, the methods exhibit varying trends. PEG𝑒𝑥𝑝_𝑠𝑢𝑚 demon-
strates an improvement in performance, whereas PEG𝑒𝑥𝑝_𝐺𝑇𝑅 ex-
periences a decline, mainly due to the drop in GTR performance
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Question: What will Jason Smith vote on the bill: To terminate the requirement imposed by the 

Director of the Centers for Disease Control and Prevention for proof of COVID-19 vaccination for 

foreign travelers, and for other purposes?

[GT]: Yea.

Retrieved Local Evidence

(Jason Smith, vote nay, Directing the Attending Physician to take 

timely action to provide updated mask wearing guidance applicable …)

(Jason Smith, vote yea, Ensuring Children and Child Care Workers 

Are Safe Act of 2020: Provides federal support to mitigate the spread 

of COVID-19…)

…

𝐏𝐄𝐆𝒆𝒙𝒑_𝒔𝒖𝒎
Jason Smith is likely to support measures that 

provide financial assistance to small businesses, 

and increase funding for public health measures to 

combat the COVID-19 pandemic.

𝐏𝐄𝐆𝒆𝒙𝒑_𝑮𝑻𝑹
(Jason Smith, conservative, Healthcare and 

Public Health)

(Jason Smith, conservative, Economic 

Policy and Emergency Assistance)

KAPING

Nay. This is because 

the instruction states 

Jason Smith has voted 

nay on similar bills in 

the past.

Yea. The bill …, which aligns with Jason Smith's 

stance on reducing regulations and promoting 

economic growth.

Yea. as he is a conservative and the bill 

aligns with his political views.

Figure 6: A case from the RCVP dataset. Clues utilized by
LLM inference and reasons for answers are highlighted.

when more facts with longer texts are introduced. This indicates
that the effectiveness of different knowledge aggregation methods
can be influenced by the quantity of global knowledge used.

5.3 Case Study
Figure 6 shows a case from the RCVP dataset, where we further ask
LLM why it outputs the answer. We can observe that even provided
with relevant historical information, KAPING [3] cannot answer
correctly. This is because bills of similar topics might express differ-
ent leanings, but LLM does not fully comprehend the relationship
between them. This again highlights the challenges in reasoning
from such local evidence. In contrast, PEG𝑒𝑥𝑝_ and PEG𝑒𝑥𝑝_𝐺𝑇𝑅
provide direct information about the politicians.

6 RELATEDWORK
Knowledge-augmented LLMs. To mitigate the hallucination
problem of large language models (LLMs), some recent works have
leveraged external knowledge for LLM inference. Works repre-
sented by REALM [17], RAG [28] and Replug [46] first proposed
to retrieve documents and augment LLMs with the retrieved un-
structured corpora. Compared to documents, knowledge graphs,
as another knowledge source alternative, are less constrained by
the limited input length of LLMs and can express more explicit
knowledge in a more compact form of fact triples. Previous re-
search on KG-augmented language models or the synergization
of KG and language models focused on designing additional mod-
ules and training objectives to incorporate knowledge in the pre-
training, fine-tuning and inference stages of language models re-
spectively [33, 42, 51, 52, 59]. With the recent progress of large
language models, the research paradigm is shifting to prompting
fixed LLMs without additional training. Baek et al. first proposed
to retrieve fact triples from knowledge graphs based on similar-
ity with a given question and prompt the triple texts to LLMs to
handle the knowledge graph question answering questions. Guo
et al. and Wang et al. have explored prompting LLMs for graph
mining. To fill the gap in understanding structural information, Sun
et al. iteratively retrieved triples and constructed reasoning paths

and Wen et al. further prompted LLMs to generate a decision tree-
like mindmap to visualize the reasoning process and help better
answer the questions. Although reporting positive results, existing
methods focus on directly stacking all facts or focusing on path
links between facts, while ignoring the semantic relationships be-
tween facts, i.e., the global thematic information. Many of these
methods are primarily designed and tested on general or medical do-
main Q&A datasets, where the correct answers are typically entities
that can be directly matched within the corresponding knowledge
graphs. Consequently, plain text answers or reasoning paths can
provide meaningful and effective solutions. However, when these
methods are applied to more complex tasks such as prediction, they
may fall short since the direct facts or paths needed for accurate
answers can no longer be readily found. In our study, we aim to
address this challenge by experimenting with a simple yet effective
approach - aggregating local facts to generate higher-level global
knowledge that is both more directly relevant to the questions and
capable of providing better signals for large language models.
Political Actor Modeling and Opinion Mining.Modeling the
political actors and understanding their discourse is at the core
of computational political science. There are a wide range of ap-
plications in various tasks such as roll call vote prediction [38],
perspective detection [12] and frame detection [21, 41]. Early re-
search focused on statistical analysis of roll call data to estimate
the ideology of political actors. One of the most widely used meth-
ods for vote-based analysis is the Ideal Point Model [8], which
reveals how the divisions among legislators reflect their partisan
affiliations. Researchers have expanded upon this model by incor-
porating the texts of bills to enhance its accuracy [14, 26]. Recently,
researchers have introduced more abundant social contextual infor-
mation such as co-sponsorship network between legislators [57],
hashtag network [38], relations of contributors [10], relations of
stakeholders [11] and mention in documents [44]. Although these
kinds of metadata have proven effective, collecting it in large quanti-
ties is expensive due to their complex and diverse data formats. Mou
et al. proposed a unified scheme by injecting social information in
the pre-training stage and using languages only to represent politi-
cal actors and solve various downstream tasks. Considering large
language models’ strong ability in understanding and reasoning, we
do not aim to train the models but construct a multi-view political
knowledge graph where social information is expressed in a unified
format of triple, and covering different scenes of U.S. politics whose
source records are publicly available and continuously updated.

7 CONCLUSION
In this study, to address the challenge of insufficient political knowl-
edge in large language models, we construct a comprehensive
domain-specific political knowledge graph covering diverse facets
of U.S. politics. Subsequently, we introduce the Political Experts
through Knowledge Graph Integration (PEG) framework to ad-
dress the tasks of political actor modeling and opinion mining.
Based on existing work, we unify the local and global knowledge
using diverse methods, to alleviate the issue when direct answers
can not be found in constructed knowledge graphs. Experiments
across different datasets and LLMs demonstrate the effectiveness
and explainability of the proposed approach.
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A EXPERIMENT DETAILS
A.1 Hyperparameters
We present the hyperparameter settings in Table 6.

A.2 Evaluation
For evaluation on white-box LLMs, i.e., Llama2 and Vicuna, we fol-
low Li et al. to implement a likelihood evaluation. Given knowledge
context 𝑘 , question 𝑞 and options 𝐶 =

{
𝑐𝑖
}𝑁
𝑖=1, the answer predic-

tion can be determined by the generation likelihood predicted by
the evaluated model:

𝑐 = argmax
𝑐𝑖 ∈𝐶

𝑃𝜃

(
𝑐𝑖 | 𝑘, 𝑞

)
(4)

where 𝑃𝜃 is parameterized by the causal-LLM.
For evaluation on black-box LLMs, i.e., GPT-3.5, we provide

options in prompt and ask the model to output its choice, since
likelihood is not applicable in the API. And we further write regular

Table 5: Performance on vanilla Vicuna, instruction-tuned Vi-
cuna andKG-enhancedVicuna (best PEG variant is reported).

Method RCVP ICEWS StaId

Vanilla 37.17 22.88 49.57
FT 38.81 23.89 39.18
PEG 44.56 36.51 54.76

Table 6: Hyperparameter settings.

Hyperparameter Value

Knowledge Encoder Training

batch size 1,024
epochs 5
learning rate for encoder 2e-5
learning rate for MLP 2e-4
warmup ratio 0.1
encoder distillbert 7

Explicit Aggregation

max tokens for summary generation 128
max tokens for GTR generation 128
do sample False
temperature 1
num beams 1

LLM inference

K 10
VectorDB for retrieval FAISS

expressions to match answers to deal with situations when options
are not explicitly output.

A.3 Prompts
We illustrate prompt examples in Figure 7 and Figure 8.

A.4 Comparison with Domain
Instruction-tuned LLMs

Facing the challenge of insufficient comprehension of domain knowl-
edge, some researchers [9, 58] have employed instruction tun-
ing [35] on domain-specific data. To compare directly providing
external knowledge with internalizing knowledge through fine-
tuning in the political domain, we curate an instruction dataset
consisting of 28,187 samples, from 28 publicly available datasets
across 11 tasks, such as stance detection [15, 37] and ideology detec-
tion [13, 55]. Subsequently, we use LoRA [19] to finetune Vicuna.
As shown in Table 5, instruction tuning (FT) does not show obvi-
ous advantages over the external knowledge integration solution.
Meanwhile, enhancing LLMs with KG instead of additional training
appears to be a more adaptable and cost-effective solution for the
rapidly evolving political landscape.
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Figure 7: Prompt examples in PEG.

Prompt Value

QA for RCVP, ICEWS, StaId

Below is knowledge related to the answer to the question:

{global knowledge}

{local evidence}

Question: 

{question}

Answer:

Naïve summary generation

What can you infer from the following facts?

Facts:

{local evidence}

Inference:

GTR generation

Here are some fact triples in the form of (subject, predicate, object). Group the 

facts based on the topical information and summarize what you can infer from 

each group of facts into triples. Output the triples only.

Here is an example.

Input:

(Andre Carson, vote nay, Born-Alive Abortion Survivors Protection Act: To 

amend title 18, United States Code, to prohibit a health care practitioner from 

failing to exercise the proper degree of care in the case of a child who survives an 

abortion or attempted abortion.)

(Andre Carson, vote yea, Women’s Health Protection Act of 2021: To protect a 

person’s ability to determine whether to continue or end a pregnancy, and to 

protect a health care provider’s ability to provide abortion services.)

(Andre Carson, vote nay, Providing for consideration of the bill (H.B. 4712) to 

amend title 18, United States Code, to prohibit a health care practitioner from 

failing to exercise the proper degree of care in the case of a child who survives an 

abortion or attempted abortion, and providing for proceedings during the period 

from January 22, 2018, through January 26, 2018)

(Andre Carson, vote yea, Supporting Families of the Fallen Act: A bill to amend 

title 38, United States Code, to increase automatic maximum coverage under the 

Servicemembers' Group Life Insurance program and the Veterans' Group Life 

Insurance program, and for other purposes.)

(Andre Carson, sponsor bill, Patient Advocate Tracker Act: To amend title 38, 

United States Code, to improve the ability of veterans to electronically submit 

complaints about the delivery of health care services by the Department of 

Veterans Affairs.)

(Andre Carson, sponsor bill, Protecting Our Kids Act: To amend title 18, United 

States Code, to provide for an increased age limit on the purchase of certain 

firearms, prevent gun trafficking, modernize the prohibition on untraceable 

firearms, encourage the safe storage of firearms, and for other purposes.)

Output:

(Andre Carson, liberal, abortion rights and abortion services)

(Andre Carson, support, increase veterans' group life insurance and healthcare 

services)

(Andre Carson, liberal, gun control for kids)

Try to output:

Input:

{local evidence}

Output:

11
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Figure 8: Prompt for Mindmap generation we curate with reference to medical mindmap prompt in [54].

Prompt Value

Mindmap

Generation

Given some political knowledge information, answer the questions. Think step by step. Output three parts.

Output1: The answer to the question.

Output2: Show me inference process as a string about extract what knowledge from which Evidence, and in 

the end infer what result.

Transport the inference process into the following format:

Evidence number('entity name'->'relation name'->...)->Evidence number('entity name'->'relation name'->...)-

>Evidence number('entity name'->'relation name'->...)->...).

Output3: Draw a decision tree. The entity or relation in single quotes in the inference process is added as a 

node with the source of evidence, which is followed by the entity in parentheses.

Here is a sample:

Knowledge:

(Andre Carson, vote nay, banning federal health coverage that includes abortion)

(Andre Carson, support, funding abortion avoids discrimination against poor women)

(Andre Carson, support, constitutional right to terminate pregnancy for health)

Question:

What stance will Andre Carson take on baning anti-abortion limitations on abortion services?

Output1:

Andre Carson will support baning anti-abortion limitations on abortion services.

Output2:

Evidence 1('Andre Carson'->'vote nay'->'banning federal health coverage that includes abortion')->Evidence 

2('banning federal health coverage that includes abortion'->'oppose'->'abortion')->Evidence 3('Andre Carson'-

>'support'->'funding abortion avoids discrimination against poor women')->Evidence 4('funding abortion 

avoids discrimination against poor women'->'support'->'abortion')->Evidence 5('Andre Carson'->'support'-

>'constitutional right to terminate pregnancy for health')->Evidence 6('constitutional right to terminate 

pregnancy for health'->'support'->'abortion').

Output3: 

Andre Carson(Evidence 1)(Evidence 3)(Evidence 5)

├── vote nay(Evidence 1)

│ └── banning federal health coverage that includes abortion(Evidence 1)(Evidence 2)

│ └── oppose(Evidence 2)

│ └── abortion(Evidence 2)

├── support(Evidence 3)

│ └── funding abortion avoids discrimination against poor women(Evidence 3)(Evidence 4)

│ └── support(Evidence 4)

│ └── abortion(Evidence 4)

└── support(Evidence 5)

└── constitutional right to terminate pregnancy for health(Evidence 5)(Evidence 6)

└── support(Evidence 6)

└── abortion(Evidence 6)

Now try to output:

Knowledge:

{local evidence}

Question:

{question}
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