Faster Nearest Neighbor Machine Translation

Anonymous ACL submission

Abstract

kNN based neural machine translation (KNN-
MT) has achieved state-of-the-art results in a
variety of MT tasks. One significant shortcom-
ing of kKNN-MT lies in its inefficiency in identi-
fying the k nearest neighbors of the query rep-
resentation from the entire datastore, which is
prohibitively time-intensive when the datastore
size is large.

In this work, we propose Faster kANN-MT to
address this issue. The core idea of Faster KNN-
MT is to use a hierarchical clustering strategy
to approximate the distance between the query
and a data point in the datastore, which is de-
composed into two parts: the distance between
the query and the center of the cluster that the
data point belongs to, and the distance between
the data point and the cluster center. We pro-
pose practical ways to compute these two parts
in a significantly faster manner. Through exten-
sive experiments on different MT benchmarks,
we show that Faster ANN-MT is faster than
Fast kNN-MT (Meng et al., 2021a) and only
slightly (1.2 times) slower than its vanilla coun-
terpart, while preserving model performance as
kKNN-MT. Faster kNN-MT enables the deploy-
ment of KANN-MT models on real-world MT
services.

1 Introduction

Recent years have witnessed the significant perfor-
mance boost introduced by neural machine trans-
lation models (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014; Luong et al., 2015).
The recently proposed kNN based neural machine
translation (kNN-MT) (Khandelwal et al., 2020)
has achieved state-of-the-art results across a wide
variety of machine translation setups and datasets.
The core idea behind kANN-MT is that at each de-
coding step, the model is required to incorporate
the target tokens with k nearest translation contexts
in a large constructed datastore. In short, KNN-MT
refers to target tokens that come after similar trans-

lation contexts in the constructed datastore, leading
to signficiant performance boost.

One significant shortcoming of kANN-MT lies in
its inefficiency in identifying the k nearest neigh-
bors from the whole target training tokens, which
is prohibitively slow when the datastore is large. To
tackle this issue, Meng et al. (2021a) proposed Fast
KNN-MT. Fast kNN-MT evades the necessity of it-
erating over the entire datastore for the KNN search
by first building smaller datastores for source to-
kens of a source sentence: for each source token, its
datastore is limited to reference tokens of the same
token type, rather than the entire corpus. The con-
catenation of the datastores for all source tokens are
concatenated and mapped to corresponding target
tokens, forming the final datastore at the decoding
step. Fast kNN-MT is two-order faster than kNN-
MT. However, Fast kANN-MT needs to retrieve k
nearest neighbors of each query source token from
all tokens of the same token type in the training
set. This can be still time-consuming when the
current source reference token is a high-frequency
word (e.g., “is”, “the”) and its corresponding token-
specific datastore is large. Additionally, the size
of the datastore on the target side is propotional to
the source length, making the model slow for long
source inputs.

In this paper, we propose Faster kNN-MT to
address the aforementioned issues. The core idea
of Faster kNN-MT is that we propose a novel hi-
erarchical clustering strategy to approximate the
distance between the query and a data point in the
datastore, which is decomposed into two parts: (1)
the distance between the query and the center of
the cluster that the data point belongs to, and (2)
the distance between the data point and the cluster
centroid. The proposed strategy is both every effec-
tive in time and space. For (1), the computational
complexity is low since the number of clusters is
significantly smaller than the size of the datastore;
for (2), distances between a cluster centroid and all



constituent data points of that cluster can be com-
puted in advanced and cached, making (b) also fast.
Faster KNN-MT is also effective in space since it re-
quires much smaller datastores than both Fast KNN-
MT and vanilla kNN-MT. This makes it feasible
to run the inference model with a larger batch-size,
which leads to an additional speedup.

Extensive experiments show that Faster kNN-
MT is only 1.2 times slower than standard MT
model while preserving model performance. Faster
KNN-MT makes it feasible to deploy ANN-MT
models on real-world MT services.

The rest of this paper is organized as follows:
we describe the background of kANN-MT and Fast
KNN-MT in Section 2. The proposed Faster kNN-
MT is detailed in Section 3. Experimental results
are presented in Section 4. We briefly go through
the related work in Section 5, followed by a brief
conclusion in Section 6.

2 Background

2.1 kNN-MT

General MT. A general MT model translates a
given input sentence x = {xi,..., x,} to a target
sentence y = {yi, ..., ym}, Where n and m are the
length of the source and target sentences. For each
token y;, (x, y1:i—1) is called translation context. Let
h. be the hidden representations for tokens, then
the probability distribution over vocabulary v for
token y;, given the translation context, is:

exp(hl, - hi_1)
Svexp(hl - hiy)

Beam search (Bahdanau et al., 2014; Li and Juraf-
sky, 2016; Vijayakumar et al., 2016) is normally
applied for decoding.

pmt(ilx, y1.i-1) = (D

kKNN-MT. The general idea of KNN-MT is to
combine the information from k nearest neigh-
bors from a large-scale datastore S, when calcu-
lating the probability of generating y;. Specif-
ically, kNN-MT first constructs the datastore S
using key-value pairs (f(x,y1:i-1),y;), where the
key is the mapping representation of the transla-
tion context h;_1 for all time steps of all sentences
using function f(-), and the value is the gold tar-
get token y;. The complete datastore is written as
S = {(k,v)} = {(f(x,y1:-1),¥i), Vyi € y}. Then,
for each query g = f(x,y1:i-1), KNN-MT searches
through the entire datastore S to retrieve k nearest
translation contexts along with the corresponding

target tokens N = {k;,v J-}']‘.zl. Last, the retrieved
set is transformed to a probability distribution by
normalizing and aggregating the negative ¢, dis-
tances, —d(-,-), using the softmax operator with
temperature T. pxnN(yilx, y1:i-1) can be expressed
as follows:

PINNilX, Y1:i-1)
_ Spen Lysy, fexp(=d(q.kp/T))
= > ,
Z= exp(—d(q,k;)/T).

(k_/,V_,‘)EN

The final probability for the next token in kNN-
MT, p(yilx,y1:i-1), is a linear interpolation of

pmr(ilx, y1:-1) and penn (il yrii-1) with a tun-
able hyper-parameter A:

PQilx, y1:i-1) =ApiNn il X, y1:i-1)+
(I = VpmrQilx, yri-1).  3)

The problem for kNN-MT is at each decoding
step, a beam search with size B needs to perform
B x k times nearest neighbor searches on the full
datastore S. It is extremely time-intensive when
the datastore size S or the beam size is large (Khan-
delwal et al., 2020).

2.2 Fast kNN-MT

To alleviate time complexity issue in KNN-MT,
Meng et al. (2021a) proposed Fast ANN-MT, which
constructs a significantly smaller datastore for the
nearest neighbors. Fast KNN-MT consists of the
following three steps (also illustrated on the right
side of blue part in Figure 1).

Building a Smaller Source Side Datastore. For
each source token in the test example, Fast KNN-
MT limits the kNN search to tokens of the same
token type, in contrast to the whole corpus as in
vanilla kNN-MT. Specifically, for each source to-
ken of the current test sentence, Fast ANN-MT se-
lects the top ¢ nearest neighbors from tokens of
the same token type in the the source token corpus,
rather than from the whole corpus. The datastore
on the source side Dgoyrce cOnsists of selected near-
est neighbors of all constituent tokens within the
source sentence.

Transforming Source Datastore to Target Data-
store. As kKNN-MT collects the k nearest target
tokens during inference, Dgoyrce Needs to be trans-
formed to a datastore on the target side. Meng et al.



(2021a) leverages the FastAlign toolkit (Dyer et al.,
2013) to link each source token in Dggyree tO its
correspondence on the target side, forming Dyyget.
Each instance in Dy s a tuple consisting of the
aligned target token mapped from the source token
and its high-dimensional representation.

Decoding. At each time step ¢, the representation
h;—1 produced by the decoder is used to query the
target side representations in Dy to search the
k nearest target neighbors. Then the KNN-based
decoding probability pinn is computed according
to the selected nearest neighbors. Since Dygpger i8
significantly smaller than the corpus as a datastore,
which is used in kNN-MT, Fast kNN-MT is orders
of magnitude faster than vanilla ANN-MT.

3 Our Proposed Method: Faster kNN-MT

We observe two key issues that hinders the running
time efficiency in Fast ANN-MT: (1) To construct
Dgources We need to go through all tokens in the
training set of the same token type. It can still be
time-consuming when the query token is a high-
frequency word (e.g., “is”, “the”). (2) The size of
Diarger can be large, as Dyource COmbines ¢ nearest
neighbors of all input tokens, making it propor-
tional to the size of the source input.

In this work, we propose Faster ANN-MT to
tackle these issues. The core idea of our method
is to enable a much faster kNN search through a
hierarchical strategy. Faster kNN-MT first group to-
kens of the same type into clusters (in Section 3.1).
Then, the distance between the query and a data
point in the datastore is estimated by (1) the dis-
tance between the query and the centroid of the
cluster that a data point belongs to, and (2) the
distance between the data point and the cluster cen-
troid (in Section 3.2). We provide an overview of
our proposed method in Figure 1 and use an exam-
ple (in Section 3.3) to demonstrate our method.

3.1 Obtaining Di,rger 0n the Target Side

Our first step is to construct a datastore on the
source side. For each token type, we cluster all
tokens in the training set of that token type into g
different clusters. Clusters are obtained by using
k-means clustering algorithm on the token repre-
sentations, which are the last layer representations
from a pretrained MT model as in vanilla kNN-
MT. g is the hyperparameter. At test time, for a
given source token, we make an approximating as-
sumption that its nearest neighbors should all come

from its nearest cluster. Experimental results show
that this approximation works well. In this work,
the nearest clusters are identified based on the ¢;
distance between the representation of the source
token and the cluster centroid. We combine all se-
lected nearest clusters of all constituent tokens of
the source input to constitute the cluster-store on
the source side, denoted by DEuster,

We then construct the datastore on the target
side, as the source datastore can not be readily
used to search for nearest neighbors of target to-
kens during decoding. We directly map selected
source clusters to their corresponding target clus-
ters, since the target correspondence for each token
in each source cluster can be readily obtained using
FastAlign (Dyer et al., 2013). The target cluster
corresponding to a source cluster is the union of
all target tokens corresponding to source tokens
in that source cluster. We denote the cluster-store
on the target side as Df;}‘géfr. The concatenation of
constituent data points in clusters within Dg}’gs;fr
constitute the target datastore, denoted by Dyyreer.
In practice, the mapping between source and target

clusters can be obtained in advance and cached.

3.2 Selecting kNN on the Target Side

We now have the target datastore, the next step is to
run nearest neighbor search in each decoding step.
k nearest neighbors of /;_1 from Dy 18 selected
by ranking d(h;_1,z;), the distance between the
query representation 4;_; and a point z; in the target
datastore. To simplify notations and without loss of
generality, below we will only consider a 1 nearest
neighbor situation, we note k nearest neighbors can
be computed in a similar way.

We obtain the index for the nearest data point
by:

index for 1 NN = argmin d(h;_1, z;). 4
J

The key point of Faster ANN-MT is to approxi-
mately compute the distance d(h;_1,z;) by decou-
pling it into two parts: (1) d(c;, hi—1), which is the
distance between the 4;_; and the cluster centriod
c; that a given target point z; belongs to; and (2)
d(cy, zj), which is the distance between the cluster
centriod and the point z;:

d(hi-y,zj) = d(cy, hi-y) + d(cy, zj). )

In this work, to enable faster computations,
we approximate the minimum of the addition of
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Figure 1: Comparison between vanilla kANN-MT, Fast ANN-MT and our proposed Faster \NN-MT. For our proposed
Faster kNN-MT (bottom, green), there are three core steps. (1) Clustering (bottom, left): We cluster all occurrences
of a particular token type from training set into g different groups. (2) Datastore construction (bottom, middle):
Given a test example containing three tokens {B, C, E}, we first choose the nearest cluster for each source token.
Then the selected clusters are aligned to their target clusters. The concatenation of all the centroids in the aligned
target clusters constitutes the datastore for the current input. (3) Decoding (bottom, right): At each decoding step, we
query the nearest cluster and directly use inter-cluster distances which is computed along with the former clustering
progress and stored in the cache as the kNN score for each decoding token.

d(cy, hi-1) and d(cy, z;) in Eq.5 by finding the min-
imum for each term: (1) finding the nearest clus-
ter by / = argmin,; d(cj, hi—1), and (2) finding the
nearest neighbor by j = argmin; d(c;, z;). This ap-

cluster
D target

are distinct: recall when we construct DSUSEr for
each source token, we find its nearest cluster from
clusters of the same token type, and add the cluster
to DS As clusters in DEUSET are mapped to

Df;;‘géfr in one-to-one correspondence, clusters in

Df&‘rlgséfr should correspond to different token types,
and are thus different.

We observe our two-step procedure for finding
the minimum data point above is extremely compu-
tationally effective. We only need to go over O(n)
clusters for finding the nearest cluster. Ranks of
data points based on distances to cluster centroid
can be computed in advance and cached, meaning

no computations required at the test time.

proximation works well because clusters in

3.3 An Illustrative Example

In this section, we work through the example in Fig-
ure 1 (in green) to better illustrate our procedures.
We assume that there are five kinds of source to-
kens {A, B, C, D, E} and five kinds of target tokens

{a,b,c,d, e} in the training set. We use &, and z.
for the representations of each token generated by
the last layer of the pre-trained MT model in the
source side and target side, respectively.

Obtaining Dy,rget 0N the Target Side.  We first
cluster tokens of the same type in the training set
into at most g clusters. In this example, we take
g=3 and then generate clusters for tokens based
on their hidden representations. In each cluster,
besides the specific tokens, we also calculate the
corresponding centroid of that cluster, denoted as
{ctype}. For instance, for token B, we generate
two clusters {h12, hp1} and {h3,, h41}, and assign the
cluster centroid c¢;g and c;p to these two clusters.

As we need to build a datastore on the target side
for decoding, we now construct the cluster-store
on the source side DT by querying the near-
est cluster according to the distance between the
representation of a specific token and the cluster
centroid representations for this token. Suppose
that the cluster {h12, h»1, c18} is the nearest cluster
for token B, among two clusters of B. Similarly, we
assume the cluster {/3, h7, cic} is the nearest clus-

ter for token C and the cluster {h34, hso, c1g} is the



nearest cluster for token E. The concatenation of
all the tokens of above three selected clusters con-
stitute the source side DSUST for the given sentence
{B,C, E}.

To construct the cluster-store on the target side
Diger, we use FastAlign toolkit for the consti-
tuted DEMSET = {{h12, ho1}, {13, hoo), {hsa, hsy)) to
find the mapped representation in the target side.
Suppose that {{z12, 224}, {213, 221}, {235, 252}} is the
mapped set from DS’ We then associate the
centroid for each target cluster c’l B c’1 c» and c’l £
after averaging all the representations of each tar-
get cluster. The target datastore Dyye coOntains all

9 P cluster
centroids in D"

Selecting kKNN on the Target Side. At each de-
coding step t, to collect the k nearest neighbors for
the current decoding representation /,, we first uti-
lize h; to query the nearest target cluster in the
target datastore Dygrger = {C] B,c’lc,c’l g} accord-
ing to the distance d(c{ype, hy), type € {1B,1C, 1E}.
We suppose that the cluster 1B is chosen for the
current decoding representation #,. Then we se-
lect k nearest neighbors in the inter-cluster rep-

resentations of the target cluster cluster'>5 =

1B
{z12, 204} according to the inter-cluster distances
{d(c}p,712),d(c] g, 224)}. All above distances are

computed in advance.

3.4 Comparisons to Fast A\NN-MT

We now compare the speed and space complexity
of Faster ANN-MT against Fast kNN-MT.

Let g be the number of clusters, ¢ be the number
of nearest neighbors for NN search in Dgoyrce, F' be
the frequency of the source token, d be the repre-
sentation dimensionality, and n be the length of the
source sentence in the test example.

Time Complexity. For Fast kNN-MT, to con-
struct datastore on the source side, it needs to
search k-nearest neighbors from F source tokens
on average and construct Dggyree With a size of cn
with a time complexity of O(Fdcn). For decod-
ing, the size of Dyygec is the same as Dgoyrce. For
each decoding step, it needs to search the k nearest
neighbors from the datastore with size cn, making
the time complexity for each decoding step being
O(kdcn). We assume that the length of the decoded
target is very similar to the source length, i.e., n.
The time complexity for decoding is thus O(kdcn?).
Summing all, the time complexity for Fast kNN-
MT is O(Fdcn + kdcn?).

For Faster KNN-MT, to construct DSUSEr we
only need to search k-nearest clusters from g source
clusters, which leads to a time complexity of
O(gdn) for a source of length n. For each token
in the source, we only select the nearest neighbor,
which leads to the size of DIUSET being n. Due
to the one-to-one correspondence between source
cluster and target cluster, the size of Dfalﬁgéfr is also
n. At each decoding step, we search the nearest
cluster from Df;;'gséfr, leading a time perplexity of
O(dn) for each step, and thus O(dn?) for the whole
target. Since all distances and ranks are computed
in advance and cached, nearest neighbors in the se-
lected cluster are picked with O(1) time perplexity.
The Overall time complexity of Faster ANN-MT is
O(gdn + dn?) which is significantly smaller than

O(Fdcn + kdcn®) of Fast kNN-MT.

Space Complexity. For space complexity, for
Fast kNN-MT, the size of Dyource and Dyarge are
both ¢ X n, leading to a space complexity O(cnd),
where d denotes the representation dimensionality;
while for Faster kNN-MT, the size of DEUSEr or

szll;‘gséfr is n respectively, leading to a space com-
plexity O(nd). This significant saving in space let
us increase the batch size with limited GPU mem-

ory, which also leads to a significant speedup.

4 Experiments

4.1 Datasets

We experiment with two types of datasets: tradi-
tional bilingual and domain adaptation datasets.
Table 1 shows the statistics for these datasets.

Bilingual Datasets. We use WMT’ 14 English-
French! and WMT’ 19 German-English.>. We fol-
low protocols in Ng et al. (2019), including ap-
plying language identification filtering and only
keep sentence pairs with correct language on both
source and target side; removing sentences longer
than 250 tokens as well as sentence pairs with a
source/target length ratio exceeding 1.5; normal-
izing punctuation and tokenize all data with the
Moses tokenizer (Koehn et al., 2007); and utilizing
subword segmentation (Sennrich et al., 2016) do-
ing joint byte pair encodings (BPE) with 32K split
operations for WMT’ 19 German-English and 40K
split operations for WMT’ 14 English-French.

Thttp://www.statmt.org/wmt19/
translation-task.html

’http://www.statmt.org/wmt14/
translation-task.html
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Domain Adaptation Datasets. We use Medical,
IT, Koran and Subtitles domains in the domain-
adaptation benchmark (Koehn and Knowles,
2017). For each domain dataset, we split it into
train/dev/test sets and clean these sets following
protocols in (Aharoni and Goldberg, 2020).

4.2 Implementation Details

Base MT Model. We directly use the Trans-
former based model provided by the FairSeq (Ott
et al., 2019) library as the vanilla MT model.?> Both
the encoder and the decoder have 6 layers. We set
the dimensionality of word representations to be
1,024, the number of multi-attention heads to be 6
and the inner dimensionality of feedforward layers
to be 8,192.

Quantization. To make sure all the token repre-
sentations can be loaded into memory, we perform
the product quantization (Jegou et al., 2010). For
each token representation x € R”, we first split it
into M subvectors: [xj, xa, ..., xp7] with the same
dimension d = D/M. We then train the product
quantizer using the following objective function:

M

min > > Il % = @) I7. - (6)

1
q s q x m=1

where ¢; (1 <i < M) denotes M sub-quantizers
used to map a subvector x,, € R? to a codeword
in a subcodebook C,,. Lastly, we leverage the M
quantizers ¢y, ..., ¢y to compress the high dimen-
sional vector x to M codewords. We set M to be
128 in this work.

FAISS ANN Search. We use FAISS (Johnson
et al., 2019), a toolkit for approximate nearest
neighbor search, to speed up the process of KNN
search. FAISS firstly samples N data points from
the full dataset, which are clustered into M clus-
ters. The remaining data in the dataset are then
mapped to these M clusters. For a given query,
it first queries the nearest cluster and does brute
force search within this cluster. In this paper, we
directly adopt the brute force search for tokens with
frequency lower than 30,000; For tokens with fre-
quency larger than 30,000, we do the search using
FAISS toolkit for tokens.

Other Details We use the ¢, distance to compute
the similarity function in k-means clustering and

Shttps://github.com/pytorch/fairseq/tree/
master/examples/translation

use FAISS (Johnson et al., 2021) to cluster all ref-
erence tokens on the source side. The number of
clusters for each source token type is set to f/m,
where f is the frequency of the type token and m
is the hyper-parameter controlling the number of
clusters, which is set to 2,048.

4.3 Results on Bilingual Datasets

To tangibly understand the behavior of each module
of Faster kNN, we conduct ablation experiments
on the two WMT datasets by combining each mod-
ule of Faster kNN respectively with Fast KNN. We
experiment with the following two setups:

e Fast kNN with Faster kNN’s Source data-
store: We replace the source-side datastore
of Fast KNN-MT with the datastore DSuster
from Faster kNN-MT. This is to test the in-
dividual influence of clustering tokens of the
same token type when constructing source
side datastore, as opposed to using all tokens
of the same token type as the datastore in Fast
kNN. More specifically, we first construct the
cluster-store on the source side DU as in
Faster kNN-MT. Then, we conduct the token-
level mapping to map the source side cluster-
store DI (o target side datastore Digrger.

Dyarger 1s then integrated to Fast kANN-MT as
the target datastore for each decoding step.

e Faster kNN without Cached Inter-cluster
distance: At each decoding step, we obtain
the top-k nearest neighbors of a target query
by directly computing the distance the query
with data points in Df;?géfr, instead of using
cached inter-cluster distance for speed-up pur-
poses. This is to test whether the inter-cluster
distance approximation in Equation (5) for se-
lecting top-k nearest neighbors results in a per-
formance loss. Specifically, as in Faster kNN,

we use the target side cluster-store DSUSter

target
mapped from DEUSET a5 the target side data-

store. At each decoding step, instead of se-
lecting the top-k points based on inter-cluster
distances as in Faster kNN, we select the top-1
nearest cluster from Df;‘rlggt’r and chose top-k
nearest target token representations by directly
computing the distance between /i, and data

points.

Main Results. We report the SacreBLEU scores
(Post, 2018) in Table 2. We observe that our pro-
posed Faster kNN-MT model achieves compara-
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Bilingual Translation Domain Adaptation
WMT’14 En-Fr WMT’19 Ge-En | Medical IT Koran Subtitles
Sentence pairs 35M 32M 0.25M  0.22M  0.02M 0.5
Maximum source sentence length 250 250 469 704 252 65
Average source sentence length 31.8 27.9 13.9 9.0 19.7 7.6
Number of tokens 1.1G 0.9G 3.5M 20M  03M 3.9M
Number of token types 44K 42K 18K 21K 7K 23K
Maximum token frequency 62M 40M 0.18M 0.11M 0.03M 0.4M
Average token frequency 26K 23.8K 374 182 74 237

Table 1: Dataset statistics for bilingual translation datasets and domain adaptation datasets.

ble BLEU scores to vanilla kNN-MT and Fast
kKNN-MT on English-French and German-English
datasets, but with a significant speedup.

In Figure 2, we show the speed comparison be-
tween vanilla MT, Fast ANN-MT and Faster kNN-
MT. Results for vanilla kANN-MT are just omitted
as it is two orders of magnitude slower than vanilla
MT (Khandelwal et al., 2020; Meng et al., 2021a).
For Fast kNN-MT we observe that the speed advan-
tage gradually diminishes as the number of nearest
neighbors in Dgoyrce increases. For Faster ANN-
MT, since the size of datastore Dyyeer used at each
decoding step is fixed to the length of source test
sentence, it would not suffer speed diminishing
when the length of the input source get greater.

Fast KNN-MT with Faster kKNN’s source side
cluster-store Dg};;f;gg . To build datastore Dy, ce,
for each source token in the test example, Fast
kKNN-MT selects the top ¢ nearest neighbors from
tokens of the same token type in the source token
corpus. Note that not all the ¢ nearest neighbors
can be clustered in the same one cluster in DEUSEr,
and that Faster kNN’s only picks one cluster on the
source side. The results for that setup is thus lower
than Fast kNN-MT. For speed comparison between
this setup and Fast kNN-MT shown in figure 2,
since the size of Dy4¢ used at each decoding step
for the two setups is approximately equal, the time

consumption is almost equal.

Faster kANN-MT without cached inter-cluster
distance. The BLEU scores on WMT German-
English and WMT English-French datasets is com-
parable between the proposed setup,Fast ANN-MT
and Faster KNN-MT. For speed comparison shown
in figure 2, we can see that the speed of the current
setup is faster than Fast KNN-MT but still slower
than Faster kNN-MT, especially as the number of
nearest neighbors queried at each decoding step
increases. This result shows that the inter-cluster
distance approximation in Eq.5 does improve the

speed of Faster kNN-MT at each decoding step,
while the performance loss is not significant.

Model De-En En-Fr
Base MT 37.6 41.1

+ kKNN-MT 39.l(+1.5) 41.8(+047)
+ Fast kANN-MT 393417 41.706)
Faster kNN-MT 393417y 41.6¢405)
Ablation Experiments

Fast ANN-MT + Dgluster 39.1:15 414103
Faster kNN-MT - cached inter-cluster dist.  39.5419) 41.6(40.5)

Table 2: SacreBLEU scores on WMT’14 En-Fr and
WMT’19 Ge-En datasets.

decoding speed
(tokens per second)

—&— vanilla kNN MT
—~— Fast kNN MT
—~— + source side cluster-store
50- —e— Faster kNN MT
- cached inter-cluster distance

2 64 121 256 512
 (# neighbors of each source token)

Figure 2: Speed comparison between Base MT, Fast
kNN-MT, Faster kNN-MT and two ablation strategies.

4.4 Results on Domain Adaptation Datasets

For domain adaptation, we evaluate the base MT
model and construct datastore within four German-
English domain parallel datasets: Medical, IT, Ko-
ran and Subtitles, which are originally provided in
(Koehn and Knowles, 2017). Results are shown in
Table 3. We observe that our proposed Faster kNN-
MT model achieves comparable BLEU scores to
Fast kNN-MT and vanilla kANN-MT on the four
datasets of domain adaption task, and similar to the
performance on the two WMT datasets the time
and space consumption of Faster ANN-MT are both



Model Medical IT Koran Subtitles Average
Aharoni and Goldberg (2020) 54.8 43.5 21.8 27.4 47.2
Base MT 399 38.0 16.3 29.2 30.9
+ KNN-MT 54.4(,145 458078 194031 317025 37.8(69)
+ Fast kANN-MT 53.6(+13_7) 45.5(+7.5) 21.2(+4_9) 30.5(+1_3) 37-7(+6.8)
+ Faster kNN-MT 52-7(+12.8) 44-9(+6.9) 20.4(+4_1) 30.2(+1_0) 37-1(+6.2)

Table 3: SacreBLEU scores on four domain datasets: Medical, IT, Koran and Subtitles.

much smaller than Fast ANN-MT and vanilla kNN-
MT.

5 Related Work

Neural Machine Translation. Recent advances
on neural machine translation are build upon
encoder-decoder architecture (Sutskever et al.,
2014; Cho et al., 2014). The encoder infers a con-
tinuous representation of the source sentence, while
the decoder is a neural language model conditioned
on the encoder output. The parameters of both mod-
els are learned jointly to maximize the likelihood of
the target sentences given the corresponding source
sentences from a parallel corpus. More robust and
expressive neural MT systems have also been de-
veloped (Guo et al., 2020; Zhu et al., 2020; Kasai
et al., 2021a,b; Lioutas and Guo, 2020; Peng et al.,
2021; Tay et al., 2021; Li et al., 2020; Liu et al.,
2020; Nguyen and Salazar, 2019; Wang et al., 2019;
Xiong et al., 2020b) based on attention mechanism
(Bahdanau et al., 2014; Luong et al., 2015).

Retrieval Augmented Model. Retrieval aug-
mented models additionally use the input to re-
trieve a set of relevant information, compared to
standard neural models that directly pass the in-
put to the generator. Prior works have shown the
effectiveness of retrieval augmented models in im-
proving the performance of a variety of natural lan-
guage processing tasks, including language model-
ing (Khandelwal et al., 2019; Meng et al., 2021b),
question answering (Guu et al., 2020; Lewis et al.,
2020a,b; Xiong et al., 2020a), text classification
(Lin et al., 2021), and dialog generation (Fan et al.,
2020; Thulke et al., 2021; Weston et al., 2018).
For neural MT systems, Zhang et al. (2018) re-
trieves target n-grams to up-weight the reference
probabilities. Bapna and Firat (2019) attend over
neighbors similar to n-grams in the source using
gated attention (Cao and Xiong, 2018). Tu et al.
(2017) made a difference saving the former transla-
tion histories with the help of cache-based models

(Grave et al., 2016), and the model thus can deal
with a changing translation contexts.

There are also approaches improving the trans-
lation results by directly retrieving the example
sentence in the training set. At the beginning of
the machine translation, a lot of techniques fo-
cus on translating sentences by analogy (Nagao,
1981). These techniques identify the similar ex-
amples based on edit distance (Doi et al., 2005)
and trigram contexts (Van Den Bosch et al., 2007).
For recently, Gu et al. (2018) collected sentence
pairs according to the given source sentence from
the small subset of sentence pairs from the train-
ing set leveraging an off-the-shelf search engine.
Since these techniques focus on sentence-level ma-
chining, they will be hard to handle facing large
and changing contexts. To take more advantage of
neural context representations, (Khandelwal et al.,
2020) proposed KNN-MT that it simply collects all
the target representations in the training set, and
constructs a much larger datastore than the above
approaches. However, the approaches described
above mainly focus on either efficiency or perfor-
mance. To benefit from retrieval augmented model
without loss of efficiency, Meng et al. (2021a) pro-
posed the Fast kNN-MT. This work offers a further
speed-up than Fast ANN-MT.

6 Conclusion

In this paper, we propose Faster ANN-MT, a method
to further speed up the previous Fast ANN-MT
model. Our method improves the speed to only
1.2 times slower than base MT, compared to Fast
KNN-MT which is 2 times slower. The core idea
of Faster kNN-MT is to constrain the search space
when constructing the datastore on both source
side and target side. We leverages k-means cluster-
ing for only querying the centroid of each cluster
instead of all examples from the datastore. Ex-
periments demonstrate that this strategy is more
efficient than Fast ANN-MT with minimal perfor-
mance degradation.
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