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Abstract

kNN based neural machine translation (kNN-001
MT) has achieved state-of-the-art results in a002
variety of MT tasks. One significant shortcom-003
ing of kNN-MT lies in its inefficiency in identi-004
fying the k nearest neighbors of the query rep-005
resentation from the entire datastore, which is006
prohibitively time-intensive when the datastore007
size is large.008

In this work, we propose Faster kNN-MT to009
address this issue. The core idea of Faster kNN-010
MT is to use a hierarchical clustering strategy011
to approximate the distance between the query012
and a data point in the datastore, which is de-013
composed into two parts: the distance between014
the query and the center of the cluster that the015
data point belongs to, and the distance between016
the data point and the cluster center. We pro-017
pose practical ways to compute these two parts018
in a significantly faster manner. Through exten-019
sive experiments on different MT benchmarks,020
we show that Faster kNN-MT is faster than021
Fast kNN-MT (Meng et al., 2021a) and only022
slightly (1.2 times) slower than its vanilla coun-023
terpart, while preserving model performance as024
kNN-MT. Faster kNN-MT enables the deploy-025
ment of kNN-MT models on real-world MT026
services.027

1 Introduction028

Recent years have witnessed the significant perfor-029

mance boost introduced by neural machine trans-030

lation models (Sutskever et al., 2014; Cho et al.,031

2014; Bahdanau et al., 2014; Luong et al., 2015).032

The recently proposed kNN based neural machine033

translation (kNN-MT) (Khandelwal et al., 2020)034

has achieved state-of-the-art results across a wide035

variety of machine translation setups and datasets.036

The core idea behind kNN-MT is that at each de-037

coding step, the model is required to incorporate038

the target tokens with k nearest translation contexts039

in a large constructed datastore. In short, kNN-MT040

refers to target tokens that come after similar trans-041

lation contexts in the constructed datastore, leading 042

to signficiant performance boost. 043

One significant shortcoming of kNN-MT lies in 044

its inefficiency in identifying the k nearest neigh- 045

bors from the whole target training tokens, which 046

is prohibitively slow when the datastore is large. To 047

tackle this issue, Meng et al. (2021a) proposed Fast 048

kNN-MT. Fast kNN-MT evades the necessity of it- 049

erating over the entire datastore for the KNN search 050

by first building smaller datastores for source to- 051

kens of a source sentence: for each source token, its 052

datastore is limited to reference tokens of the same 053

token type, rather than the entire corpus. The con- 054

catenation of the datastores for all source tokens are 055

concatenated and mapped to corresponding target 056

tokens, forming the final datastore at the decoding 057

step. Fast kNN-MT is two-order faster than kNN- 058

MT. However, Fast kNN-MT needs to retrieve k 059

nearest neighbors of each query source token from 060

all tokens of the same token type in the training 061

set. This can be still time-consuming when the 062

current source reference token is a high-frequency 063

word (e.g., “is”, “the”) and its corresponding token- 064

specific datastore is large. Additionally, the size 065

of the datastore on the target side is propotional to 066

the source length, making the model slow for long 067

source inputs. 068

In this paper, we propose Faster kNN-MT to 069

address the aforementioned issues. The core idea 070

of Faster kNN-MT is that we propose a novel hi- 071

erarchical clustering strategy to approximate the 072

distance between the query and a data point in the 073

datastore, which is decomposed into two parts: (1) 074

the distance between the query and the center of 075

the cluster that the data point belongs to, and (2) 076

the distance between the data point and the cluster 077

centroid. The proposed strategy is both every effec- 078

tive in time and space. For (1), the computational 079

complexity is low since the number of clusters is 080

significantly smaller than the size of the datastore; 081

for (2), distances between a cluster centroid and all 082
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constituent data points of that cluster can be com-083

puted in advanced and cached, making (b) also fast.084

Faster kNN-MT is also effective in space since it re-085

quires much smaller datastores than both Fast kNN-086

MT and vanilla kNN-MT. This makes it feasible087

to run the inference model with a larger batch-size,088

which leads to an additional speedup.089

Extensive experiments show that Faster kNN-090

MT is only 1.2 times slower than standard MT091

model while preserving model performance. Faster092

kNN-MT makes it feasible to deploy kNN-MT093

models on real-world MT services.094

The rest of this paper is organized as follows:095

we describe the background of kNN-MT and Fast096

kNN-MT in Section 2. The proposed Faster kNN-097

MT is detailed in Section 3. Experimental results098

are presented in Section 4. We briefly go through099

the related work in Section 5, followed by a brief100

conclusion in Section 6.101

2 Background102

2.1 kNN-MT103

General MT. A general MT model translates a104

given input sentence x = {x1, ..., xn} to a target105

sentence y = {y1, ..., ym}, where n and m are the106

length of the source and target sentences. For each107

token yi, (x, y1:i−1) is called translation context. Let108

h∗ be the hidden representations for tokens, then109

the probability distribution over vocabulary v for110

token yi, given the translation context, is:111

pMT(yi|x, y1:i−1) =
exp(hT

yi
· hi−1)∑

v exp(hT
v · hi−1)

. (1)112

Beam search (Bahdanau et al., 2014; Li and Juraf-113

sky, 2016; Vijayakumar et al., 2016) is normally114

applied for decoding.115

kNN-MT. The general idea of kNN-MT is to116

combine the information from k nearest neigh-117

bors from a large-scale datastore S , when calcu-118

lating the probability of generating yi. Specif-119

ically, kNN-MT first constructs the datastore S120

using key-value pairs ( f (x, y1:i−1), yi), where the121

key is the mapping representation of the transla-122

tion context hi−1 for all time steps of all sentences123

using function f (·), and the value is the gold tar-124

get token yi. The complete datastore is written as125

S = {(k, v)} = {( f (x, y1:i−1), yi),∀yi ∈ y}. Then,126

for each query q = f (x, y1:i−1), kNN-MT searches127

through the entire datastore S to retrieve k nearest128

translation contexts along with the corresponding129

target tokens N = {k j, v j}
k
j=1. Last, the retrieved 130

set is transformed to a probability distribution by 131

normalizing and aggregating the negative ℓ2 dis- 132

tances, −d(·, ·), using the softmax operator with 133

temperature T . pkNN(yi|x, y1:i−1) can be expressed 134

as follows: 135

pkNN(yi|x, y1:i−1) 136

=

∑
(k j,v j)∈N 1yi=v j

{
exp(−d(q, k j)/T )

}
Z

, (2) 137

Z =
∑

(k j,v j)∈N

exp(−d(q, k j)/T ). 138

The final probability for the next token in kNN- 139

MT, p(yi|x, y1:i−1), is a linear interpolation of 140

pMT(yi|x, y1:i−1) and pkNN(yi|x, y1:i−1) with a tun- 141

able hyper-parameter λ: 142

p(yi|x, y1:i−1) =λpkNN(yi|x, y1:i−1)+ 143

(1 − λ)pMT(yi|x, y1:i−1). (3) 144

The problem for kNN-MT is at each decoding 145

step, a beam search with size B needs to perform 146

B × k times nearest neighbor searches on the full 147

datastore S . It is extremely time-intensive when 148

the datastore size S or the beam size is large (Khan- 149

delwal et al., 2020). 150

2.2 Fast kNN-MT 151

To alleviate time complexity issue in kNN-MT, 152

Meng et al. (2021a) proposed Fast kNN-MT, which 153

constructs a significantly smaller datastore for the 154

nearest neighbors. Fast kNN-MT consists of the 155

following three steps (also illustrated on the right 156

side of blue part in Figure 1). 157

Building a Smaller Source Side Datastore. For 158

each source token in the test example, Fast kNN- 159

MT limits the kNN search to tokens of the same 160

token type, in contrast to the whole corpus as in 161

vanilla kNN-MT. Specifically, for each source to- 162

ken of the current test sentence, Fast kNN-MT se- 163

lects the top c nearest neighbors from tokens of 164

the same token type in the the source token corpus, 165

rather than from the whole corpus. The datastore 166

on the source side Dsource consists of selected near- 167

est neighbors of all constituent tokens within the 168

source sentence. 169

Transforming Source Datastore to Target Data- 170

store. As kNN-MT collects the k nearest target 171

tokens during inference, Dsource needs to be trans- 172

formed to a datastore on the target side. Meng et al. 173
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(2021a) leverages the FastAlign toolkit (Dyer et al.,174

2013) to link each source token in Dsource to its175

correspondence on the target side, forming Dtarget.176

Each instance in Dtarget is a tuple consisting of the177

aligned target token mapped from the source token178

and its high-dimensional representation.179

Decoding. At each time step t, the representation180

ht−1 produced by the decoder is used to query the181

target side representations in Dtarget to search the182

k nearest target neighbors. Then the kNN-based183

decoding probability pkNN is computed according184

to the selected nearest neighbors. Since Dtarget is185

significantly smaller than the corpus as a datastore,186

which is used in kNN-MT, Fast kNN-MT is orders187

of magnitude faster than vanilla kNN-MT.188

3 Our Proposed Method: Faster kNN-MT189

We observe two key issues that hinders the running190

time efficiency in Fast kNN-MT: (1) To construct191

Dsource, we need to go through all tokens in the192

training set of the same token type. It can still be193

time-consuming when the query token is a high-194

frequency word (e.g., “is”, “the”). (2) The size of195

Dtarget can be large, as Dsource combines c nearest196

neighbors of all input tokens, making it propor-197

tional to the size of the source input.198

In this work, we propose Faster kNN-MT to199

tackle these issues. The core idea of our method200

is to enable a much faster kNN search through a201

hierarchical strategy. Faster kNN-MT first group to-202

kens of the same type into clusters (in Section 3.1).203

Then, the distance between the query and a data204

point in the datastore is estimated by (1) the dis-205

tance between the query and the centroid of the206

cluster that a data point belongs to, and (2) the207

distance between the data point and the cluster cen-208

troid (in Section 3.2). We provide an overview of209

our proposed method in Figure 1 and use an exam-210

ple (in Section 3.3) to demonstrate our method.211

3.1 Obtaining Dtarget on the Target Side212

Our first step is to construct a datastore on the213

source side. For each token type, we cluster all214

tokens in the training set of that token type into g215

different clusters. Clusters are obtained by using216

k-means clustering algorithm on the token repre-217

sentations, which are the last layer representations218

from a pretrained MT model as in vanilla kNN-219

MT. g is the hyperparameter. At test time, for a220

given source token, we make an approximating as-221

sumption that its nearest neighbors should all come222

from its nearest cluster. Experimental results show 223

that this approximation works well. In this work, 224

the nearest clusters are identified based on the ℓ2 225

distance between the representation of the source 226

token and the cluster centroid. We combine all se- 227

lected nearest clusters of all constituent tokens of 228

the source input to constitute the cluster-store on 229

the source side, denoted by Dcluster
source . 230

We then construct the datastore on the target 231

side, as the source datastore can not be readily 232

used to search for nearest neighbors of target to- 233

kens during decoding. We directly map selected 234

source clusters to their corresponding target clus- 235

ters, since the target correspondence for each token 236

in each source cluster can be readily obtained using 237

FastAlign (Dyer et al., 2013). The target cluster 238

corresponding to a source cluster is the union of 239

all target tokens corresponding to source tokens 240

in that source cluster. We denote the cluster-store 241

on the target side as Dcluster
target . The concatenation of 242

constituent data points in clusters within Dcluster
target 243

constitute the target datastore, denoted by Dtarget. 244

In practice, the mapping between source and target 245

clusters can be obtained in advance and cached. 246

3.2 Selecting kNN on the Target Side 247

We now have the target datastore, the next step is to 248

run nearest neighbor search in each decoding step. 249

k nearest neighbors of ht−1 from Dtarget is selected 250

by ranking d(hi−1, z j), the distance between the 251

query representation hi−1 and a point z j in the target 252

datastore. To simplify notations and without loss of 253

generality, below we will only consider a 1 nearest 254

neighbor situation, we note k nearest neighbors can 255

be computed in a similar way. 256

We obtain the index for the nearest data point 257

by: 258

index for 1 NN = argmin
j

d(hi−1, z j). (4) 259

The key point of Faster kNN-MT is to approxi- 260

mately compute the distance d(hi−1, z j) by decou- 261

pling it into two parts: (1) d(cl, hi−1), which is the 262

distance between the hi−1 and the cluster centriod 263

cl that a given target point z j belongs to; and (2) 264

d(cl, z j), which is the distance between the cluster 265

centriod and the point z j: 266

d(hi−1, z j) ≈ d(cl, hi−1) + d(cl, z j). (5) 267

In this work, to enable faster computations, 268

we approximate the minimum of the addition of 269
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Figure 1: Comparison between vanilla kNN-MT, Fast kNN-MT and our proposed Faster kNN-MT. For our proposed
Faster kNN-MT (bottom, green), there are three core steps. (1) Clustering (bottom, left): We cluster all occurrences
of a particular token type from training set into g different groups. (2) Datastore construction (bottom, middle):
Given a test example containing three tokens {B,C, E}, we first choose the nearest cluster for each source token.
Then the selected clusters are aligned to their target clusters. The concatenation of all the centroids in the aligned
target clusters constitutes the datastore for the current input. (3) Decoding (bottom, right): At each decoding step, we
query the nearest cluster and directly use inter-cluster distances which is computed along with the former clustering
progress and stored in the cache as the kNN score for each decoding token.

d(cl, hi−1) and d(cl, z j) in Eq.5 by finding the min-270

imum for each term: (1) finding the nearest clus-271

ter by l = argminl d(cl, hi−1), and (2) finding the272

nearest neighbor by j = argmin j d(cl, z j). This ap-273

proximation works well because clusters in Dcluster
target274

are distinct: recall when we construct Dcluster
source , for275

each source token, we find its nearest cluster from276

clusters of the same token type, and add the cluster277

to Dcluster
source . As clusters in Dcluster

source are mapped to278

Dcluster
target in one-to-one correspondence, clusters in279

Dcluster
target should correspond to different token types,280

and are thus different.281

We observe our two-step procedure for finding282

the minimum data point above is extremely compu-283

tationally effective. We only need to go over O(n)284

clusters for finding the nearest cluster. Ranks of285

data points based on distances to cluster centroid286

can be computed in advance and cached, meaning287

no computations required at the test time.288

3.3 An Illustrative Example289

In this section, we work through the example in Fig-290

ure 1 (in green) to better illustrate our procedures.291

We assume that there are five kinds of source to-292

kens {A, B,C,D, E} and five kinds of target tokens293

{a, b, c, d, e} in the training set. We use h∗ and z∗ 294

for the representations of each token generated by 295

the last layer of the pre-trained MT model in the 296

source side and target side, respectively. 297

Obtaining Dtarget on the Target Side. We first 298

cluster tokens of the same type in the training set 299

into at most g clusters. In this example, we take 300

g=3 and then generate clusters for tokens based 301

on their hidden representations. In each cluster, 302

besides the specific tokens, we also calculate the 303

corresponding centroid of that cluster, denoted as 304

{ctype}. For instance, for token B, we generate 305

two clusters {h12, h21} and {h32, h41}, and assign the 306

cluster centroid c1B and c2B to these two clusters. 307

As we need to build a datastore on the target side 308

for decoding, we now construct the cluster-store 309

on the source side Dcluster
source , by querying the near- 310

est cluster according to the distance between the 311

representation of a specific token and the cluster 312

centroid representations for this token. Suppose 313

that the cluster {h12, h21, c1B} is the nearest cluster 314

for token B, among two clusters of B. Similarly, we 315

assume the cluster {h13, h22, c1C} is the nearest clus- 316

ter for token C and the cluster {h34, h52, c1E} is the 317
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nearest cluster for token E. The concatenation of318

all the tokens of above three selected clusters con-319

stitute the source side Dcluster
source for the given sentence320

{B,C, E}.321

To construct the cluster-store on the target side322

Dcluster
target , we use FastAlign toolkit for the consti-323

tuted Dcluster
source = {{h12, h21}, {h13, h22}, {h34, h52}} to324

find the mapped representation in the target side.325

Suppose that {{z12, z24}, {z13, z21}, {z35, z52}} is the326

mapped set from Dcluster
source . We then associate the327

centroid for each target cluster c′1B, c′1C , and c′1E328

after averaging all the representations of each tar-329

get cluster. The target datastore Dtarget contains all330

centroids in Dcluster
target .331

Selecting kNN on the Target Side. At each de-332

coding step t, to collect the k nearest neighbors for333

the current decoding representation ht, we first uti-334

lize ht to query the nearest target cluster in the335

target datastore Dtarget = {c′1B, c
′
1C , c

′
1E} accord-336

ing to the distance d(c′type, ht), type ∈ {1B, 1C, 1E}.337

We suppose that the cluster 1B is chosen for the338

current decoding representation ht. Then we se-339

lect k nearest neighbors in the inter-cluster rep-340

resentations of the target cluster clustertarget
1B =341

{z12, z24} according to the inter-cluster distances342

{d(c′1B, z12), d(c′1B, z24)}. All above distances are343

computed in advance.344

3.4 Comparisons to Fast kNN-MT345

We now compare the speed and space complexity346

of Faster kNN-MT against Fast kNN-MT.347

Let g be the number of clusters, c be the number348

of nearest neighbors for NN search in Dsource, F be349

the frequency of the source token, d be the repre-350

sentation dimensionality, and n be the length of the351

source sentence in the test example.352

Time Complexity. For Fast kNN-MT, to con-353

struct datastore on the source side, it needs to354

search k-nearest neighbors from F source tokens355

on average and construct Dsource with a size of cn356

with a time complexity of O(Fdcn). For decod-357

ing, the size of Dtarget is the same as Dsource. For358

each decoding step, it needs to search the k nearest359

neighbors from the datastore with size cn, making360

the time complexity for each decoding step being361

O(kdcn). We assume that the length of the decoded362

target is very similar to the source length, i.e., n.363

The time complexity for decoding is thus O(kdcn2).364

Summing all, the time complexity for Fast kNN-365

MT is O(Fdcn + kdcn2).366

For Faster kNN-MT, to construct Dcluster
source , we 367

only need to search k-nearest clusters from g source 368

clusters, which leads to a time complexity of 369

O(gdn) for a source of length n. For each token 370

in the source, we only select the nearest neighbor, 371

which leads to the size of Dcluster
source being n. Due 372

to the one-to-one correspondence between source 373

cluster and target cluster, the size of Dcluster
target is also 374

n. At each decoding step, we search the nearest 375

cluster from Dcluster
target , leading a time perplexity of 376

O(dn) for each step, and thus O(dn2) for the whole 377

target. Since all distances and ranks are computed 378

in advance and cached, nearest neighbors in the se- 379

lected cluster are picked with O(1) time perplexity. 380

The Overall time complexity of Faster kNN-MT is 381

O(gdn + dn2) which is significantly smaller than 382

O(Fdcn + kdcn2) of Fast kNN-MT. 383

Space Complexity. For space complexity, for 384

Fast kNN-MT, the size of Dsource and Dtarget are 385

both c × n, leading to a space complexity O(cnd), 386

where d denotes the representation dimensionality; 387

while for Faster kNN-MT, the size of Dcluster
source or 388

Dcluster
target is n respectively, leading to a space com- 389

plexity O(nd). This significant saving in space let 390

us increase the batch size with limited GPU mem- 391

ory, which also leads to a significant speedup. 392

4 Experiments 393

4.1 Datasets 394

We experiment with two types of datasets: tradi- 395

tional bilingual and domain adaptation datasets. 396

Table 1 shows the statistics for these datasets. 397

Bilingual Datasets. We use WMT’14 English- 398

French1 and WMT’19 German-English.2. We fol- 399

low protocols in Ng et al. (2019), including ap- 400

plying language identification filtering and only 401

keep sentence pairs with correct language on both 402

source and target side; removing sentences longer 403

than 250 tokens as well as sentence pairs with a 404

source/target length ratio exceeding 1.5; normal- 405

izing punctuation and tokenize all data with the 406

Moses tokenizer (Koehn et al., 2007); and utilizing 407

subword segmentation (Sennrich et al., 2016) do- 408

ing joint byte pair encodings (BPE) with 32K split 409

operations for WMT’19 German-English and 40K 410

split operations for WMT’14 English-French. 411

1http://www.statmt.org/wmt19/
translation-task.html

2http://www.statmt.org/wmt14/
translation-task.html
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Domain Adaptation Datasets. We use Medical,412

IT, Koran and Subtitles domains in the domain-413

adaptation benchmark (Koehn and Knowles,414

2017). For each domain dataset, we split it into415

train/dev/test sets and clean these sets following416

protocols in (Aharoni and Goldberg, 2020).417

4.2 Implementation Details418

Base MT Model. We directly use the Trans-419

former based model provided by the FairSeq (Ott420

et al., 2019) library as the vanilla MT model.3 Both421

the encoder and the decoder have 6 layers. We set422

the dimensionality of word representations to be423

1,024, the number of multi-attention heads to be 6424

and the inner dimensionality of feedforward layers425

to be 8,192.426

Quantization. To make sure all the token repre-427

sentations can be loaded into memory, we perform428

the product quantization (Jegou et al., 2010). For429

each token representation x ∈ RD, we first split it430

into M subvectors: [x1, x2, ..., xM] with the same431

dimension d = D/M. We then train the product432

quantizer using the following objective function:433

min
q1,...,qM

∑
x

M∑
m=1

∥ xm − qm(xm) ∥2, (6)434

where qi (1 ≤ i ≤ M) denotes M sub-quantizers435

used to map a subvector xm ∈ R
d to a codeword436

in a subcodebook Cm. Lastly, we leverage the M437

quantizers q1, ..., qM to compress the high dimen-438

sional vector x to M codewords. We set M to be439

128 in this work.440

FAISS kNN Search. We use FAISS (Johnson441

et al., 2019), a toolkit for approximate nearest442

neighbor search, to speed up the process of KNN443

search. FAISS firstly samples N data points from444

the full dataset, which are clustered into M clus-445

ters. The remaining data in the dataset are then446

mapped to these M clusters. For a given query,447

it first queries the nearest cluster and does brute448

force search within this cluster. In this paper, we449

directly adopt the brute force search for tokens with450

frequency lower than 30,000; For tokens with fre-451

quency larger than 30,000, we do the search using452

FAISS toolkit for tokens.453

Other Details We use the ℓ2 distance to compute454

the similarity function in k-means clustering and455

3https://github.com/pytorch/fairseq/tree/
master/examples/translation

use FAISS (Johnson et al., 2021) to cluster all ref- 456

erence tokens on the source side. The number of 457

clusters for each source token type is set to f /m, 458

where f is the frequency of the type token and m 459

is the hyper-parameter controlling the number of 460

clusters, which is set to 2,048. 461

4.3 Results on Bilingual Datasets 462

To tangibly understand the behavior of each module 463

of Faster kNN, we conduct ablation experiments 464

on the two WMT datasets by combining each mod- 465

ule of Faster kNN respectively with Fast kNN. We 466

experiment with the following two setups: 467

• Fast kNN with Faster kNN’s Source data- 468

store: We replace the source-side datastore 469

of Fast kNN-MT with the datastore Dcluster
source 470

from Faster kNN-MT. This is to test the in- 471

dividual influence of clustering tokens of the 472

same token type when constructing source 473

side datastore, as opposed to using all tokens 474

of the same token type as the datastore in Fast 475

kNN. More specifically, we first construct the 476

cluster-store on the source side Dcluster
source as in 477

Faster kNN-MT. Then, we conduct the token- 478

level mapping to map the source side cluster- 479

store Dcluster
source to target side datastore Dtarget. 480

Dtarget is then integrated to Fast kNN-MT as 481

the target datastore for each decoding step. 482

• Faster kNN without Cached Inter-cluster 483

distance: At each decoding step, we obtain 484

the top-k nearest neighbors of a target query 485

by directly computing the distance the query 486

with data points in Dcluster
target , instead of using 487

cached inter-cluster distance for speed-up pur- 488

poses. This is to test whether the inter-cluster 489

distance approximation in Equation (5) for se- 490

lecting top-k nearest neighbors results in a per- 491

formance loss. Specifically, as in Faster kNN, 492

we use the target side cluster-store Dcluster
target 493

mapped from Dcluster
source as the target side data- 494

store. At each decoding step, instead of se- 495

lecting the top-k points based on inter-cluster 496

distances as in Faster kNN, we select the top-1 497

nearest cluster from Dcluster
target and chose top-k 498

nearest target token representations by directly 499

computing the distance between ht and data 500

points. 501

Main Results. We report the SacreBLEU scores 502

(Post, 2018) in Table 2. We observe that our pro- 503

posed Faster kNN-MT model achieves compara- 504
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Bilingual Translation Domain Adaptation
WMT’14 En-Fr WMT’19 Ge-En Medical IT Koran Subtitles

Sentence pairs 35M 32M 0.25M 0.22M 0.02M 0.5
Maximum source sentence length 250 250 469 704 252 65
Average source sentence length 31.8 27.9 13.9 9.0 19.7 7.6
Number of tokens 1.1G 0.9G 3.5M 2.0M 0.3M 3.9M
Number of token types 44K 42K 18K 21K 7K 23K
Maximum token frequency 62M 40M 0.18M 0.11M 0.03M 0.4M
Average token frequency 26K 23.8K 374 182 74 237

Table 1: Dataset statistics for bilingual translation datasets and domain adaptation datasets.

ble BLEU scores to vanilla kNN-MT and Fast505

kNN-MT on English-French and German-English506

datasets, but with a significant speedup.507

In Figure 2, we show the speed comparison be-508

tween vanilla MT, Fast kNN-MT and Faster kNN-509

MT. Results for vanilla kNN-MT are just omitted510

as it is two orders of magnitude slower than vanilla511

MT (Khandelwal et al., 2020; Meng et al., 2021a).512

For Fast kNN-MT we observe that the speed advan-513

tage gradually diminishes as the number of nearest514

neighbors in Dsource increases. For Faster kNN-515

MT, since the size of datastore Dtarget used at each516

decoding step is fixed to the length of source test517

sentence, it would not suffer speed diminishing518

when the length of the input source get greater.519

Fast kNN-MT with Faster kNN’s source side520

cluster-store Dcluster
source . To build datastore Dsource,521

for each source token in the test example, Fast522

kNN-MT selects the top c nearest neighbors from523

tokens of the same token type in the source token524

corpus. Note that not all the c nearest neighbors525

can be clustered in the same one cluster in Dcluster
source ,526

and that Faster kNN’s only picks one cluster on the527

source side. The results for that setup is thus lower528

than Fast kNN-MT. For speed comparison between529

this setup and Fast kNN-MT shown in figure 2,530

since the size of Dtarget used at each decoding step531

for the two setups is approximately equal, the time532

consumption is almost equal.533

Faster kNN-MT without cached inter-cluster534

distance. The BLEU scores on WMT German-535

English and WMT English-French datasets is com-536

parable between the proposed setup,Fast kNN-MT537

and Faster kNN-MT. For speed comparison shown538

in figure 2, we can see that the speed of the current539

setup is faster than Fast kNN-MT but still slower540

than Faster kNN-MT, especially as the number of541

nearest neighbors queried at each decoding step542

increases. This result shows that the inter-cluster543

distance approximation in Eq.5 does improve the544

speed of Faster kNN-MT at each decoding step, 545

while the performance loss is not significant. 546

Model De-En En-Fr

Base MT 37.6 41.1
+ kNN-MT 39.1(+1.5) 41.8(+0.7)
+ Fast kNN-MT 39.3(+1.7) 41.7(+0.6)

Faster kNN-MT 39.3(+1.7) 41.6(+0.5)

Ablation Experiments
Fast kNN-MT + Dcluster

source 39.1(+1.5) 41.4(+0.3)
Faster kNN-MT - cached inter-cluster dist. 39.5(+1.9) 41.6(+0.5)

Table 2: SacreBLEU scores on WMT’14 En-Fr and
WMT’19 Ge-En datasets.

Figure 2: Speed comparison between Base MT, Fast
kNN-MT, Faster kNN-MT and two ablation strategies.

4.4 Results on Domain Adaptation Datasets 547

For domain adaptation, we evaluate the base MT 548

model and construct datastore within four German- 549

English domain parallel datasets: Medical, IT, Ko- 550

ran and Subtitles, which are originally provided in 551

(Koehn and Knowles, 2017). Results are shown in 552

Table 3. We observe that our proposed Faster kNN- 553

MT model achieves comparable BLEU scores to 554

Fast kNN-MT and vanilla kNN-MT on the four 555

datasets of domain adaption task, and similar to the 556

performance on the two WMT datasets the time 557

and space consumption of Faster kNN-MT are both 558

7



Model Medical IT Koran Subtitles Average

Aharoni and Goldberg (2020) 54.8 43.5 21.8 27.4 47.2
Base MT 39.9 38.0 16.3 29.2 30.9
+ kNN-MT 54.4(+14.5) 45.8(+7.8) 19.4(+3.1) 31.7(+2.5) 37.8(+6.9)
+ Fast kNN-MT 53.6(+13.7) 45.5(+7.5) 21.2(+4.9) 30.5(+1.3) 37.7(+6.8)
+ Faster kNN-MT 52.7(+12.8) 44.9(+6.9) 20.4(+4.1) 30.2(+1.0) 37.1(+6.2)

Table 3: SacreBLEU scores on four domain datasets: Medical, IT, Koran and Subtitles.

much smaller than Fast kNN-MT and vanilla kNN-559

MT.560

5 Related Work561

Neural Machine Translation. Recent advances562

on neural machine translation are build upon563

encoder-decoder architecture (Sutskever et al.,564

2014; Cho et al., 2014). The encoder infers a con-565

tinuous representation of the source sentence, while566

the decoder is a neural language model conditioned567

on the encoder output. The parameters of both mod-568

els are learned jointly to maximize the likelihood of569

the target sentences given the corresponding source570

sentences from a parallel corpus. More robust and571

expressive neural MT systems have also been de-572

veloped (Guo et al., 2020; Zhu et al., 2020; Kasai573

et al., 2021a,b; Lioutas and Guo, 2020; Peng et al.,574

2021; Tay et al., 2021; Li et al., 2020; Liu et al.,575

2020; Nguyen and Salazar, 2019; Wang et al., 2019;576

Xiong et al., 2020b) based on attention mechanism577

(Bahdanau et al., 2014; Luong et al., 2015).578

Retrieval Augmented Model. Retrieval aug-579

mented models additionally use the input to re-580

trieve a set of relevant information, compared to581

standard neural models that directly pass the in-582

put to the generator. Prior works have shown the583

effectiveness of retrieval augmented models in im-584

proving the performance of a variety of natural lan-585

guage processing tasks, including language model-586

ing (Khandelwal et al., 2019; Meng et al., 2021b),587

question answering (Guu et al., 2020; Lewis et al.,588

2020a,b; Xiong et al., 2020a), text classification589

(Lin et al., 2021), and dialog generation (Fan et al.,590

2020; Thulke et al., 2021; Weston et al., 2018).591

For neural MT systems, Zhang et al. (2018) re-592

trieves target n-grams to up-weight the reference593

probabilities. Bapna and Firat (2019) attend over594

neighbors similar to n-grams in the source using595

gated attention (Cao and Xiong, 2018). Tu et al.596

(2017) made a difference saving the former transla-597

tion histories with the help of cache-based models598

(Grave et al., 2016), and the model thus can deal 599

with a changing translation contexts. 600

There are also approaches improving the trans- 601

lation results by directly retrieving the example 602

sentence in the training set. At the beginning of 603

the machine translation, a lot of techniques fo- 604

cus on translating sentences by analogy (Nagao, 605

1981). These techniques identify the similar ex- 606

amples based on edit distance (Doi et al., 2005) 607

and trigram contexts (Van Den Bosch et al., 2007). 608

For recently, Gu et al. (2018) collected sentence 609

pairs according to the given source sentence from 610

the small subset of sentence pairs from the train- 611

ing set leveraging an off-the-shelf search engine. 612

Since these techniques focus on sentence-level ma- 613

chining, they will be hard to handle facing large 614

and changing contexts. To take more advantage of 615

neural context representations, (Khandelwal et al., 616

2020) proposed kNN-MT that it simply collects all 617

the target representations in the training set, and 618

constructs a much larger datastore than the above 619

approaches. However, the approaches described 620

above mainly focus on either efficiency or perfor- 621

mance. To benefit from retrieval augmented model 622

without loss of efficiency, Meng et al. (2021a) pro- 623

posed the Fast kNN-MT. This work offers a further 624

speed-up than Fast kNN-MT. 625

6 Conclusion 626

In this paper, we propose Faster kNN-MT, a method 627

to further speed up the previous Fast kNN-MT 628

model. Our method improves the speed to only 629

1.2 times slower than base MT, compared to Fast 630

kNN-MT which is 2 times slower. The core idea 631

of Faster kNN-MT is to constrain the search space 632

when constructing the datastore on both source 633

side and target side. We leverages k-means cluster- 634

ing for only querying the centroid of each cluster 635

instead of all examples from the datastore. Ex- 636

periments demonstrate that this strategy is more 637

efficient than Fast kNN-MT with minimal perfor- 638

mance degradation. 639
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